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Abstract
Fixpoint Logic with Chop (FLC) extends the modal µ-calculus with an operator for sequential
composition between predicate transformers. This makes it an expressive modal fixpoint logic which
is capable of formalising many non-regular program properties. Its satisfiability problem is highly
undecidable. Here we define Visibly Pushdown Fixpoint Logic with Chop, a fragment in which
fixpoint formulas are required to be of a certain form resembling visibly pushdown grammars. We
give a sound and complete game-theoretic characterisation of FLC’s satisfiability problem and show
that the games corresponding to formulas from this fragment are stair-parity games and therefore
effectively solvable, resulting in 2EXPTIME-completeness of this fragment. The lower bound is
inherited from PDL over Recursive Programs, which is structurally similar but considerably weaker
in expressive power.
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1 Introduction

Modal fixpoint logics form the backbone of many program specification languages. The most
prominent example is the modal µ-calculus Lµ [15] which extends modal logic with least
and greatest fixpoint quantifiers in order to express limit behaviour. Modal logic as a basis
ensures bisimulation invariance which is a desirable property for program logics.

The two main decision problems associated with program logics are model checking
and satisfiability checking. Whilst model checking for logics like Lµ is easily seen to be
decidable using fixpoint iteration for instance, satisfiability checking is computationally,
combinatorically and conceptually more difficult. A relatively easy proof of the decidability
of Lµ’s satisfiability problem is via a translation into Monadic Second-Order Logic (MSO)
on trees using bisimulation-invariance [16]. MSO is decidable over infinite trees, but this
only gives a non-elementary upper bound. Over time, this has been improved [26] until the
problem could finally be placed in the complexity class EXPTIME using a translation into
alternating tree automata [6].

The semantics of such automata can be phrased in terms of two-player games, and this can
also be done directly to formulas. Hence, there are also game-theoretic characterisations of
Lµ’s satisfiability problem as finite Rabin or parity games, which gives alternative decidability
results [24, 9].

The EXPTIME upper bound is optimal; a matching lower bound is inherited from
Propositional Dynamic Logic (PDL) – a modal logic that can be translated linearly into
Lµ and whose satisfiability problem is EXPTIME-complete [7]. The translation shows that
PDL is in fact also a modal fixpoint logic with the fixpoints being implicitly present in the
definition of regular languages used in modalities as in ⟨a∗b∗⟩p for instance.
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23:2 A Decidable Non-Regular Modal Fixpoint Logic

Regularity is also the answer to the question after Lµ’s expressiveness. The translation
into MSO on trees shows that it can only express properties which are regular in the sense
that they can be recognised by a finite automaton. Lµ is in fact the largest such program
logic as it is equi-expressive to the bisimulation-invariant fragment of MSO [12].

There is obviously a link between the decidability of satisfiability and the restriction of
the expressiveness to regularity only. However, regularity on the expressiveness side does not
constitute the border between decidability and undecidability, as there are program logics
with the capability of expressing non-regular properties whose satisfiability problem remains
decidable. The natural extension PDL[CFL] of PDL to all context-free (rather than just
regular) programs is undecidable [10] but early on it has been observed that its extension
by some context-free languages like L1 := {anbn | n ≥ 1} leads to a decidable program
logic [14, 11].

Some such extension, for instance with the similar CFL L2 := {anban | n ≥ 1} lead
to undecidability, though. This may seem odd at first sight but it makes perfect sense in
the light of a later finding, namely that the extension of PDL with all visibly pushdown
context-free languages PDL[VPL], is decidable [20]. Note that L1 is a visibly pushdown
language (VPL) but L2 is not.

PDL[VPL] and Lµ are incomparable in expressive power. The latter can express all regular
and no non-regular properties, the former can express some non-regular path properties and
by no means all regular properties. A typical PDL[VPL] property not expressible in Lµ is
⟨L1⟩p stating “there is a path with a label from anbn ending in a p-state.” A typical regular
property not expressible in PDL[VPL] (or even its extension with the ∆-operator [25]) is
µX.win ∨ ♢□X defining the set of winning positions for the beginning player in a turn-based
two-player game.

In this paper we show that the boundary of undecidability can be pushed up even
further. We introduce a modal fixpoint logic which embeds both PDL[VPL] and Lµ – the
currently known peaks in the hierarchy of decidable program logics – and is thus strictly
more expressive than either of them. The logic is obtained as a fragment of Fixpoint
Logic with Chop (FLC) [23], an extension of Lµ in which subformulas denote predicate
transformers rather than predicates. Syntactically, this extension is comparable to the step
taken from right-linear to context-free grammars, and the presence of conjunctions then
makes satisfiability undecidable in general. However, we define a fragment by restricting the
syntax such that, structurally, formulas resemble visibly pushdown grammars. This helps
to retain decidability. We call this fragment Visibly Pushdown Fixpoint Logic with Chop
(vpFLC). Conceptually, it is close to PDL[VPL] but the restriction to pure (visibly pushdown)
path properties is lifted, and the typical visibly-pushdown principles can be combined more
or less freely with modal operators to form properties like “there is an n ≥ 1 s.t. ⟨a⟩n[c]⟨b⟩np

holds.” Henceforth, we will call this the ⟨a⟩n[c]⟨b⟩n-property. From what seems to almost
be a pure side-effect of this construction, vpFLC can express all regular properties, too.
Hence, it genuinely pushes the limits of decidability amongst modal fixpoint logics as it
extends both Lµ and PDL[VPL] which are, as said above, incomparable in expressive power.
Hence, vpFLC is at least as expressive as their union. Recently, it has even been shown to
be strictly more expressive than this union, since there even are non-regular (and therefore
non-Lµ-expressible) properties like ⟨a⟩n[b]np which which can expressed in vpFLC but not
in PDL[CFL] and therefore also not in PDL[VPL] [1].

In Sect. 2 we recall necessary preliminaries from program logics, formal languages and
games. In Sect. 3 we formally define vpFLC and argue that it extends both PDL[VPL]
and Lµ such that we obtain a 2EXPTIME lower bound for satisfiability inherited from the
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former. In Sect. 4 we define satisfiability games which are sound and complete for the full
logic FLC, and show that for the fragment vpFLC they are decidable, leading to a matching
2EXPTIME upper bound. In Sect. 5 we conclude with remarks on further work in this area.

2 Preliminaries

2.1 Fixpoint Logic with Chop
Labelled transition systems. Let P = {p, q, . . .} be a set of atomic propositions and
Σ = {a, b, . . .} be a finite set of action names. A labeled transition system (LTS) over P and
Σ is a T = (S,−→, s0, λ) s.t. S is a set of states with a designated initial state s0 ∈ S, and
−→ ⊆ S × Σ × S is the transition relation. We simply write s a−→ t instead of (s, a, t) ∈ −→.
Finally, λ : S → 2P assigns a label to each state in the form of the atomic propositions which
are supposed to be true in that respective state.

Syntax. Let P and Σ be as above. Let V be a countably infinite set of variable names.
Formulas of FLC over P, Σ and V are given by the following grammar.

φ ::= q | q | X | τ | ⟨a⟩ | [a] | φ ∨ φ | φ ∧ φ | µX.φ | νX.φ | φ;φ

where q ∈ P, a ∈ Σ and X ∈ V.
We will write κ for either µ or ν. To save parentheses we introduce the convention

that the operator ; binds stronger than ∧ which binds stronger than ∨. We also use the
abbreviations ff := q ∧ q and tt := q ∨ q for some q ∈ P. Note that FLC does not contain a
negation operator to ensure well-definedness of fixpoints. Nevertheless, FLC is closed under
complements, cf. [23] for details. Hence, we may also use Boolean operators like →,↔ or
even ¬ directly in examples when it helps to make formulas more understandable.

The set Sub(φ) of subformulas of φ is defined as usual, with Sub(κX.ψ) = {κX.ψ}∪Sub(ψ)
etc. For technical convenience with the satisfiability games introduced in Sect. 4, we assume
that tt is always part of Sub(φ) for any φ, cf. also the definition of the semantics below. Let
Sub∨(φ) = {ψ0 ∨ ψ1 | ψ0 ∨ ψ1 ∈ Sub(φ)} be the set of disjunctive subformulas of φ.

Formulas of the form q or q are called literals; those of the form ⟨a⟩ or [a] are called
modalities.

Formulas are assumed to be well-named in the sense that no variable is bound by a µ or
a ν more than once in a given formula. Our main interest is with formulas that do not have
free variables, in which case there is a function fpφ : V ∩ Sub(φ) → Sub(φ) that maps each
variable X to its unique defining fixpoint formula κX.ψ in φ.

Given two variables X,Y ∈ Sub(φ) for some φ, we write X <φ Y if Y occurs free in
fpφ(X). A variable X is called outermost among a set of variables V ⊆ V ∩ Sub(φ) if it is
maximal in V w.r.t. <φ.

Semantics. Given an LTS T = (S,−→, s0, λ), an environment ρ : V → (2S → 2S) assigns to
each variable a function from sets of states to sets of states in T . We write ρ[X 7→ f ] for the
function that maps X to f and agrees with ρ on all other arguments.

The semantics J·KT
ρ : 2S → 2S of an FLC formula, relative to an LTS T and an environment,

is such a function. It is monotone with respect to the inclusion ordering on 2S . Such functions
together with the partial order given by

f ⊑ g iff ∀T ⊆ S : f(T ) ⊆ g(T )
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23:4 A Decidable Non-Regular Modal Fixpoint Logic

form a complete lattice with joins ⊔ and meets ⊓ – defined as the pointwise intersection, resp.
union. By the Knaster-Tarski Theorem [27] the least and greatest fixpoints of functionals
F : (2S → 2S) → (2S → 2S) exist. They are used to interpret fixpoint formulas of FLC. The
semantics is then inductively defined as follows.

JqKT
ρ = 7→ {s ∈ S | q ∈ λ(s)} J⟨a⟩KT

ρ = T 7→ {s ∈ S | ∃t ∈ T s.t. s a−→ t}
JqKT

ρ = 7→ {s ∈ S | q ̸∈ λ(s)} J[a]KT
ρ = T 7→ {s ∈ S | ∀t : s a−→ t ⇒ t ∈ T}

JZKT
ρ = ρ(Z) JµX.φKT

ρ =
l

{f : 2S → 2S | f mon., JφKT
ρ[X 7→f ] ⊑ f}

JτKT
ρ = T 7→ T JνX.φKT

ρ =
⊔

{f : 2S → 2S | f mon., f ⊑ JφKT
ρ[X 7→f ]}

Jφ;ψKT
ρ = JφKT

ρ ◦ JψKT
ρ Jφ ∨ ψKT

ρ = JφKT
ρ ⊔ JψKT

ρ

Jφ ∧ ψKT
ρ = JφKT

ρ ⊓ JψKT
ρ

For any FLC formula φ, any LTS T = (S,−→, s0, λ) and any environment ρ let ||φ||Tρ :=
JφKT

ρ (S). We call this the set of positions in T defined by φ and ρ. We also write T , s |=ρ φ

if s ∈ ||φ||Tρ , resp. T |=ρ φ if T , s0 |=ρ φ. If φ is closed we may omit ρ in both kinds of
notation. We say that T is a model of a closed formula φ if T |= φ. A formula is satisfiable
if it has a model.

Two formulas φ and ψ are equivalent, written φ ≡ ψ, iff their semantics are the same, i.e.
for every environment ρ and every LTS T : JφKT

ρ = JψKT
ρ . Two formulas φ and ψ are weakly

equivalent, written φ ≈ ψ, iff they define the same set of states in an LTS, i.e. for every ρ
and every T we have ||φ||Tρ = ||ψ||Tρ . Hence, we have φ ≈ φ; tt for any φ.

▶ Example 1. Take the ⟨a⟩n[c]⟨b⟩n-property mentioned in the introduction. It is definable
in FLC via φacb := ⟨a⟩; (µX.[c] ∨ ⟨a⟩;X; ⟨b⟩); ⟨b⟩; p. For better readability, i.e. to stay closer
to the syntax of more familiar fixpoint logics like Lµ we drop the sequential composition
operator when its left argument is a modality. This is semantically sound as the standard
translation from Lµ to FLC replaces ⟨a⟩φ with ⟨a⟩;φ etc. Then we can write this formula as
⟨a⟩(µX.[c] ∨ ⟨a⟩X; ⟨b⟩); ⟨b⟩p.

To see that this truly formalises the desired property, we need two principles. They are
simple consequences of the functional semantics and established truths in the theory of FLC.
1. Sequential composition is associative and left-commutes with Boolean operators, e.g.

(φ ∨ ψ);χ ≡ φ;χ ∨ ψ;χ.
2. The fixpoint unfolding principle holds, e.g. µX.φ ≡ φ[µX.φ/X].
Then we have

⟨a⟩(µX.[c] ∨ ⟨a⟩X; ⟨b⟩︸ ︷︷ ︸
φX

); ⟨b⟩p ≡ ⟨a⟩([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩⟨a⟩φX ; ⟨b⟩⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩⟨a⟩([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩2[c]⟨b⟩2p ∨ ⟨a⟩3([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩3p

≡ . . . ≡
∨

n≥1
⟨a⟩ . . . ⟨a⟩︸ ︷︷ ︸

n

[c] ⟨b⟩ . . . ⟨b⟩︸ ︷︷ ︸
n

p

▶ Example 2. Consider φubn := νX.τ ∧X; ⟨a⟩. Remember that φubn ≈ φubn; tt by definition
of the semantics. Using a similar unfolding approach as above, we can see that

φubn; tt ≡
∧

n≥0
⟨a⟩ntt



F. Bruse and M. Lange 23:5

stating “there are a-paths of unbounded lengths.” This is not a regular property either: take
for instance φubn; tt ∧ µY.[a]Y , i.e. its conjunction with the property stating that all a-paths
are of finite length. This formula is satisfiable but does not have finite models, hence, φubn; tt
cannot be expressed in Lµ which has the finite model property.

Later, we will need the notion of guardedness in FLC formulas which plays the same role
as it does in Lµ, requiring that fixpoint variables occur “behind” modal operators. For FLC,
this is easy to define formally.

▶ Definition 3. Let φ ∈ FLC. An occurrence of a fixpoint variable X is guarded, if it
occurs in the right argument ψ2 of a sequential composition ψ1;ψ2 within its defining fixpoint
formula fpφ(X) such that ψ1 does not contain τ . The formula φ itself is guarded if all
occurrences of fixpoint formulas in it are guarded.

For instance, φacb from Ex. 1 is guarded but φubn from Ex. 2 is not. This lifts the notion
of guardedness – useful for decision procedures – from Lµ to FLC in the most obvious way.

2.2 Visibly Pushdown Systems and Languages
A visibly pushdown alphabet is a partition Σ = Σint ⊎ Σcall ⊎ Σret of an action set into three
categories of designated internal-, call-, resp. return symbols.

The concepts introduced in the following are always defined relative to a fixed visibly
pushdown alphabet which will not be mentioned over and over again. Moreover, when
connecting multiple ones, for instance when explaining equivalence between two visibly
pushdown automata, the underlying alphabet is always assumed to be partitioned in the
same way for all participating entities.

Visibly pushdown systems. A visibly pushdown frame (VPF) over a visibly pushdown
alphabet Σ, partitioned accordingly, is a (Q,Γ, q0, δ) where Q is a finite set of states, q0 ∈ Q

is a designated starting state, Γ is a finite stack alphabet including a designated bottom-of-
stack symbol ⊥, and δ = δcall ∪ δint ∪ δret with

δcall ⊆ Q×Γ×Σcall ×Q×Γ , δint ⊆ Q×Γ×Σint ×Q×Γ , δret ⊆ Q×(Γ\{⊥})×Σret ×Q

is its transition table. A visibly pushdown system (VPS) over a set P of atomic propositions
is a A = (Q,Γ, q0, δ, λ) where (Q,Γ, q0, δ) are a visibly-pushdown frame and λ : Q → 2P

assigns to each state a set of atomic propositions.
Such a VPS gives rise to a generally infinite-state LTS TA = (Q × Γ∗⊥,−→, (q0,⊥), λ′)

where λ′(q, γ) := λ(q), and transitions are given as follows. Let q, p ∈ Q, B,C ∈ Γ, γ ∈ Γ∗

and a ∈ Σ.

(q,Bγ) a−→(p, Cγ) if (q,B, a, p, C) ∈ δint

(q,Bγ) a−→(p, CBγ) if (q,B, a, p, C) ∈ δcall

(q,Bγ) a−→(p, γ) if (q,B, a, p) ∈ δret

Remember that Σcall ∩ Σint = ∅. Hence, if (q,B, a, p, C) ∈ δcall and (q,B, a′, p, C) ∈ δint then
a ̸= a′. The underlying directed graph (Q× Γ∗⊥,−→) is also called the configuration graph of
the VPS A.

A path in (the LTS associated with the) VPS A is, as usual, an infinite sequence alternating
between states and actions π = (q0, γ0), a0, (q1, γ1), a1, . . . s.t. (qi, γi) ai−−→(qi+1, γi+1) for all
i ≥ 0. We write Paths(TA) for the set of all paths through TA starting in the initial state
(q0,⊥).
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23:6 A Decidable Non-Regular Modal Fixpoint Logic

For such a path π, the set of states (of the underlying VPS) occurring infinitely often
is inf(π) = {q ∈ Q | there are infinitely many i s.t. q = qi}. The word of such a path π is
word(π) = a0a1 . . . ∈ Σω.

Let (q0, B0γ0), (q1, B1γ1), . . . be the projection of such a path π to the states, ignoring
actions and giving names to the top stack symbols in each position. Such a position (qi, Biγi)
in π is a stair-position if for every j ≥ i: |γj | ≥ |γi|. I.e. in stair positions the top-most stack
symbol may become replaced but not removed. Moreover the content of the stack below
the top-most symbol persists throughout the entire remainder of the path since changing
it would require the top-most stack symbol to be removed. For a path π, let stairs(π) be
the projection of π onto stair-positions, i.e. stairs(π) = (q0,⊥), (qi1 , Bi1γi1), . . . for some
0 < i1 < i2 < . . .. Note that each infinite path has infinitely many stair positions since the
bottom-of-stack symbol ⊥ never gets removed.

Visibly pushdown automata. A visibly pushdown Büchi automaton (VPA) is a A =
(Q,Γ, q0, δ, F ) s.t. (Q,Γ, q0, δ) is a VPF and F ⊆ Q. Note that this can be seen as a VPS
over a singleton atomic proposition fin marking those states that belong to F . Hence, a VPA
also gives rise to an LTS TA just like a VPS does. The two are distinguished only because
of their different pragmatic use: a VPS is a finite representation of an infinite-state LTS,
serving as a model for branching-time properties expressible in logics like FLC; a VPA is a
finite representation of an ω-language, obtained as follows.

The language of the VPA A = (Q,Γ, q0, δ, F ) is

L(A) = {word(π) | π ∈ Paths(TA), F ∩ inf(π) ̸= ∅}

consisting of all paths in the associated LTS which traverse states from F infinitely often.
A stair-parity automaton (SPA) is a A = (Q,Γ, q0, δ,Ω) where (Q,Γ, q0, δ) is a VPF and

Ω : Q → N. The language of an SPA is

L(A) = {a0a1 . . . ∈ Σω | there is π = (q0, γ0), a0, (q1, γ1), a1, . . . ∈ Paths(TA) s.t.
stairs(π) = (qi0 , γi0), (qi1 , γi1), . . . and lim sup

j→∞
Ω(qij

) is even} .

Thus, a word w = a0a1 . . . is accepted by a SPA if there is a path π through the LTS
associated with the SPA s.t. the word along the transitions through π is w and the maximal
priority which occurs infinitely often in stair positions along π is an even one.

An SPA A = (Q,Γ, q0, δ,Ω) is deterministic (DSPA) if for every q, p, p′ ∈ Q, B,C,C ′ ∈ Γ
and a ∈ Σ we have

if (q,B, a, p, C), (q,B, a, p′, C ′) ∈ δcall ∪ δint then p = p′ and C = C ′, and
if (q,B, a, p), (q,B, a, p′) ∈ δret then p = p′.

The purpose of the introduction of the complicated stair-parity acceptance condition is
the fact that (nondeterministic) VPA are not determinisable, not even with Muller acceptance
conditions [2]. However, when the range of interpretation of the acceptance condition is
restricted as it is done in SPA, then determinisation becomes possible. Moreover, DSPA are
easy to complement.

We measure the size of a VPA or SPA over the VPF (Q,Γ, q0, δ) as |Q| + |Γ| + |δ|.

▶ Proposition 4 ([21]). For every VPA A of size n there is a DSPA D of size 2O(n2) s.t.
L(D) = L(A).

The main purpose of automata determinisation in the context of game solving is their
ability to reduce games with abstract winning conditions to those with very concrete ones,
see Cor. 6 below.
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2.3 Games
Graph games. Two-player games played on directed graphs play a fundamental role in
system’s verification based on formal logic. We will use the game-theoretic approach to
characterise FLC’s satisfiability problem in Sect. 4 and to show decidability of the fragment
defined in Sect. 3. This uses particular games known as stair-parity games defined below.

An (edge-labeled) game over a set Σ of labels is a G = (V, V∃, V∀, E, v0,W ) s.t. (V,E) is
a directed graph. The nodes are also called configurations or positions of the game (arena).
The edge relation E ⊆ V × Σ × V is usually assumed to be total in the sense that for each
v ∈ V and a ∈ Σ there is a u ∈ V with (v, a, u) ∈ E. This is not a strict requirement,
though, as there are easy ways to transform games without total edge relations into those
with. V∃ and V∀ partition the set of positions into those owned by player ∃, resp. player ∀.
W ⊆ (V × Σ)ω is the winning condition for player ∃.

A play is an alternating sequence of positions and actions π = v0, a0, v1, a1, . . . starting
in the initial position v0 and satisfying (vi, ai, vi+1) ∈ E for all i ≥ 0. Player ∃ wins π if
π ∈ W , otherwise it is won by player ∀.

A strategy for player p ∈ {∃,∀} is a σp : (V × Σ)∗(Vp × Σ) → V s.t. for all ρ =
v0, a0, . . . , vn, an with vn ∈ Vp we have (vn, an, σp(ρ)) ∈ E. I.e. it prescribes, given the
history of a moment in a play, the next move to player p in terms of a successors of the
current position and a given action. A play π = v0, a0, v1, a1, . . . adheres to σp if for every
n ∈ N with vn ∈ Vp we have that vn+1 = σp(v0, a0, . . . , vn, an), i.e. in this play, player p has
always followed the advice given by σp whenever it was her turn to move.

The strategy σp is a winning strategy for player p, if every play that adheres to σp is
winning for player p. The problem of solving is: given a game G, decide whether or not
player ∃ has a winning strategy for G.

Stair-Parity Games. A stair-parity game (SPG) is a G = (Q,Q∃, Q∀,Γ, q0, δ,Ω) such that
F = (Q,Γ, q0, δ) is a VPF with its state space partitioned into Q = Q∃ ⊎Q∀, and Ω : Q → N
is a priority function as above. It gives rise to the abstract game (V, V∃, V∀, v0, E,W ) where
the arena (V,E) is the configuration graph of F . The initial position is v0 = (q0,⊥). The
partition of positions belonging to either of the players is derived from the partition Q∃ ⊎Q∀
into states belonging to them, s.t. Vp = Qp × Γ∗⊥ for p ∈ {∃,∀}.

The winning condition derived from Ω is defined similar to the acceptance condition for
stair-parity automata, hence the name. A play π = (q0, γ0), a0, (q1, γ1), a1, . . . belongs to W
iff lim supj→∞ Ω(qij ) is even where i0, i1, i2, . . . is the set of stair positions in π.

The size of an SPG is simply defined as |δ|. Note that an SPG can easily be represented
using space that is linear in |δ|. Another important parameter for the complexity of analysing
games is its index which is defined as |{Ω(q) | q ∈ Q}|.

▶ Proposition 5 ([21]). The problem of solving an SPG is decidable in EXPTIME.

The proof is by a reduction to the problem of solving a parity game [22, 5] which is
exponential in the size of the game but polynomial in its index. There are several algorithms
showing that parity games can be solved in time polynomial in their size but exponential in
their index, cf. [13], resulting in the EXPTIME upper bound for SPGs. Recent advances
showing that parity games can be solved in quasi-polynomial [4] time do not have any impact
that is significant for our purposes here.

▶ Corollary 6. Suppose G is a game of size n, played on an arena that is a VPF with winning
condition W s.t. W is recognised by a VPA of size O(nc). Then G is solvable in 2EXPTIME.
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23:8 A Decidable Non-Regular Modal Fixpoint Logic

Proof. This uses the well-known product construction between a game and a deterministic
automaton (cf. [9]) for the winning condition, obtained here through Prop. 4. If the latter
is a DSPA, the resulting product becomes a stair-parity game of exponential size, and the
doubly exponential bound follows from Prop. 5. ◀

3 Visibly Pushdown Fixpoint Logic with Chop

3.1 Syntax
The definition of the syntax of vpFLC is inspired by the structure of visibly pushdown
grammars (VPG) [3] and PDL[VPL] (see Appendix A for a brief introduction). Again, we
assume the set of actions to be partitioned into Σ = Σint ⊎ Σcall ⊎ Σret.

▶ Definition 7. The syntax of the fragment vpFLC of FLC is given by the following grammar.

φ ::= q | q | X | φ ∨ φ | φ ∧ φ | µX.φ | νX.φ |
[⟨aint⟩] | [⟨aint⟩];φ | [⟨acall⟩]; [⟨aret⟩] | [⟨acall⟩];φ; [⟨aret⟩] | [⟨acall⟩]; [⟨aret⟩];φ | [⟨acall⟩];φ; [⟨aret⟩];φ

where q ∈ P, X ∈ V, ax ∈ Σx for m ∈ {int, call, ret}, and [⟨a⟩] can be either ⟨a⟩ or [a]. Further-
more, we postulate that the sequential composition operator is right-associative; parentheses
are not shown explicitly here for the sake of better readability.

Hence, vpFLC restricts the use of sequential composition such that the left argument is a
modality over an internal or call-action. In the latter case, the right argument contains a
modality over a return-action, possibly surrounded by formulas. The termination operator τ
– the neutral element for sequential composition – is forbidden.

▶ Example 8. The ⟨a⟩n[c]⟨b⟩n-property is definable in vpFLC provided that a ∈ Σcall, b ∈ Σret
and c ∈ Σint. Reconsider the FLC formula φacb defined in Ex. 1. It is easily seen to be a
vpFLC formula; note how the call-modality ⟨a⟩ is paired with the return-modality ⟨b⟩ both
around the fixpoint variable X as well as the entire fixpoint formula for X.

The formula µX.⟨b⟩ ∨ ⟨a⟩;X; ⟨a⟩ stating “there is a path labeled anban for some n ≥ 0”
is not a vpFLC formula because a cannot be a call- and return-modality at the same time,
see also the comment on L2 not being a VPL in the introduction.

3.2 Expressive Power
The logic vpFLC extends both Lµ and PDL[VPL] in expressive power.

▶ Theorem 9. For every formula φ ∈ Lµ ∪ PDL[VPL] there is a ψ ∈ vpFLC s.t. ψ ≡ φ and
|ψ| = O(|φ|).

Proof. (Sketch) The case of φ ∈ Lµ is easy as Lµ embeds into FLC straightforwardly via
⟨a⟩χ ≡ ⟨a⟩;χ etc., cf. [23]. By considering all action symbols to be internal, Σ = Σint, the
resulting formulas fall into vpFLC. In fact, the standard translation produces formulas that
fall into the syntax when restricted to literals, Boolean connectives, fixpoints and formulas
of the form ⟨a⟩;φ and [a];φ alone.

The other clauses in the syntax are needed to capture PDL[VPL]. We sketch the
translation here for PDL[VPL] without the test operator. A corresponding extension is just
a matter of technicality then. Take a PDL[VPL] formula of the form ⟨L⟩φ where L is a VPL.
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FLC

vpFLC

PDL[VPL] Lµ

PDL

Figure 1 The expressiveness of logics closely related to vpFLC. Dotted lines are strict inclusions.

W.l.o.g. we can assume ε ̸∈ L because of ⟨{ε} ∪ L⟩φ ≡ φ ∨ ⟨L \ {ε}⟩φ. According to [3], L is
representable by a context-free grammar with productions of the form A → ε, A → aintB,
A → acallBaretC. Using standard ε-elimination, this can be transformed into a grammar with
productions in either of the following six forms.

A → aint, A → aintB, A → acallaret, A → acallBaret, A → acallaretC, A → acallBaretC

Applying the translation of full PDL[CFL] into unrestricted FLC from [19] results in formulas
which fall into vpFLC – note how its syntax resembles the form of these six grammar
productions. ◀

For the embedding of PDL[VPL] it would indeed be easier to have τ in the syntax of
vpFLC as this would eliminate the need to argue about the elimination of ε, and we would
only need two instead of six patterns of productions. However, the inclusion of τ in vpFLC
would invalidate the relatively simple argument in the proof of Lemma 19 below which is
needed in the decidability proof.

Since PDL[VPL] and Lµ are known to be incomparable in expressive power [20] we even
have strict inclusion of both of them in vpFLC.

▶ Corollary 10. Both PDL[VPL] and Lµ are strictly less expressive than vpFLC.

In fact, vpFLC is even more expressive than the union of PDL[VPL] and Lµ, cf. [1].
Fig. 1 shows the hierarchy of expressiveness amongst the modal fixpoint logics mentioned
here. The undecidability of FLC– as opposed to vpFLC’s decidability shown in the following
section – gives a strong indication that FLC is strictly more expressive than vpFLC: there
can, at least, be no effective translation from FLC to vpFLC.

Another consequence of the embeddings, which happen to be polynomial, is the inheritance
of lower complexity bounds of the satisfiability problems from the embedded logics. For Lµ

it is “only” EXPTIME-hard, this is already the case for the smaller PDL [7]. However, the
satisfiability problem for PDL[VPL] is even 2EXPTIME-hard [20].

▶ Corollary 11. The satisfiability problem for vpFLC is 2EXPTIME-hard.

4 Satisfiability Games

4.1 Satisfiability Games for FLC
Let χ ∈ FLC be closed. The satisfiability game Gsat(χ) is played between the verifier
(V) and the refuter (R). A position in this game is a set of stacks, and a stack is a
sequential composition ψ1; . . . ;ψm of subformulas of χ. A position C is written γ1, . . . , γn,
resp. φ1; γ1 , . . . , φn; γn if we want to refer to the tops, resp. heads of the stacks particularly.
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(∨)
(φ0 ∨ φ1); γ , Φ

φi; γ , Φ
V : i ∈ {0, 1} (∧)

(φ0 ∧ φ1); γ , Φ
φ0; γ , φ1; γ , Φ

(;)
(φ0;φ1); γ , Φ
φ0;φ1; γ , Φ

(τ)
τ ; γ , Φ
γ , Φ

(fp)
κX.φ; γ , Φ
X; γ , Φ

(var)
X; γ , Φ
φ; γ , Φ

if fpχ(X) = κX.φ

(mod)
ℓ1; γ1, . . . , ℓn; γn , ⟨a1⟩; γ′

1, . . . , ⟨am⟩; γ′
m , [b1]; γ′′

1 , . . . , [bk]; γ′′
k

γ′
i, {γ′′

j | bj = ai}
R : i ∈ {1, . . . ,m}

Figure 2 The rules of the FLC satisfiability games.

We may abbreviate several elements in a set of elements, writing such a position for
instance as φ; γ , Φ, for instance when the particular shapes of elements other than φ; γ are
of no particular concern.

The initial position of the game Gsat(χ) is C0 = χ; tt, i.e. it only contains a single stack
whose head is χ and rest is the single formula tt. The game then proceeds according to
the rules shown in Fig. 2. They all, apart from (mod), operate on the head of one stack,
transforming this within a game position. If the head formula is a disjunction, then player
V performs a choice with rule (∨) to replace it by one of its disjuncts. The others are
deterministic and do not require a player to make a choice. Rule (mod), though, requires
player R to make one. It is only applicable when all heads in the current position are either
literals or modal formulas. The conclusion of this rule is called an a-child of its premise if
ai = a for the i chosen by R.

The next step to be taken is to explain under which condition a play is won by one of the
players. This requires a technical definition, though.

▶ Definition 12. Suppose π = Φ0,Φ1, . . . is a play of Gsat(χ). A thread in π is a sequence
π = γ0 , γ1, . . . of stacks s.t. for all i ≥ 0: γi ∈ Φi and the rule played in Φi either

operates on a formula different to the top of the stack γi and γi+1 = γi, or
operates on the top of γi, and γi+1 results from γi through this rule application.

Let φ0, φ1, . . . be the sequence of topmost formulas in the stacks of π, i.e. γi = φi; γ′
i for some

γ′
i. Let i0, i1, . . . be the set of stair positions in π′ according to the definition in Sect. 2.2.

We say that π is a µ-thread, if the outermost variable occurring infinitely often in the
sequence φi0 , φi1 , . . . is of type µ. Otherwise, it is a ν-thread.

Threads trace the evolution of single formulas with their appended stacks through a play,
and µ-threads witness the existence of a non-well-founded least fixpoint construct in the
configurations of a play. These should be avoided in the search for a model. In other words,
player V– who aims to prove satisfiability of the input formula – should avoid µ-threads in
her proof (in form of a winning strategy).

▶ Definition 13. The play π = Φ0,Φ1, . . . of Gsat(χ) is won by player R, if
there is an n s.t. Φn = q; γ , q; γ′ ,Φ for some q ∈ P and some γ, γ′,Φ; or
π contains a µ-thread.

Otherwise, player V wins π.

Next we show that the FLC satisfiability games are sound and complete. We make use of
model checking games for FLC [17]; for convenience they are presented in Appendix B.
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▶ Theorem 14. If χ is satisfiable then player V has a winning strategy for Gsat(χ).

Proof. Suppose there is an LTS T with a state s0 s.t. T , s0 |= χ. By definition we also
have T , s |= χ; tt. A strategy σV for V can be described as follows. She annotates each
configuration γ1, . . . , γm with a state s from T , written s ⊢ γ1, . . . , γm. We then call such
an annotated configuration safe if V has a winning strategy in Gmc

T (χ) starting from s ⊢ γi

for all i. By completeness of the model checking games, she has a winning strategy σ′ for
Gmc

T (χ) starting in s0 ⊢ χ; tt and, hence, this annotated initial configuration is safe.
The key observation here is that V can preserve safety by consulting σ′: whenever she is

required to choose a disjunct in an annotated configuration s ⊢ (φ0 ∨ φ1); γ,Φ, there is a
corresponding choice of a disjunct under σ′ in a configuration s ⊢ (φ0 ∨ φ1); γ. Moreover,
the deterministic rules and R’s choices preserve safety in general.

Now suppose π = s0 ⊢ Φ0, s1 ⊢ Φ1, . . . is an (annotated) play adhering to this strategy
σV. It remains to be seen that it is won by V. The second key observation is that any thread
in this play, together with the state annotation corresponds to a play in Gmc

T (χ) that adheres
to σ′. By assumption, it is won by V. If it is an infinite play then the outermost variable
occurring infinitely often in stair positions is of type ν, i.e. it is a ν-thread. In other words,
π cannot contain a µ-thread and is therefore won by V. π cannot be won in finite time by
player R either because there cannot be a safe configuration of the form s ⊢ q; γ, q; γ, Φ, as
by soundness of the model checking games we would have s |= q and s ̸|= q at the same time.
Hence, π is won by V, showing that σV is indeed a winning strategy. ◀

Soundness does not hold in general: take for instance (νX.X) ∧ (µY.Y ) which is unsat-
isfiable. Not every play will exhibit a µ-thread, though, as one may get caught up in the
unwinding of νX.X. Guardedness (cf. Def. 3) excludes this as it requires rule (mod) to be
played between each two unfoldings of any fixpoint formula.

▶ Theorem 15. Let χ be guarded. If player V has a winning strategy for Gsat(χ) then χ is
satisfiable.

Proof. Consider the tree of all plays adhering to V’s winning strategy σ. Guardedness
ensures that each play uses rule (mod)infinitely often. Moreover, note that this tree only
branches through applications of rule (mod) since this is the only one that gives player R the
ability to perform choices.

We extract a tree model Tσ from this tree of plays by collapsing each segment Ci, . . . , Cj

into a state ⟨Ci, . . . , Cj⟩ s.t. before Ci and in Cj rule (mod) has been applied. Transitions are
given as ⟨Ci, . . . , Cj⟩ a−→⟨Cj+1, . . . , Ck⟩ if Cj+1 is an a-child of Cj in rule (mod). The labelling
is given by q ∈ λ(⟨Ci, . . . , Cj⟩) if q; γ ∈ Cj for some γ. Write C⃗0 for the initial state of Tσ

according to this segmentation.
It remains to be seen that Tσ, C⃗0 |= χ. Suppose it was not the case. By soundness of

Gmc
Tσ

(χ), R would have a winning strategy σR for this game starting in C⃗0 ⊢ χ; tt. As in the
proof of Thm. 14, the key observation is that any infinite play adhering to σR is a µ-thread
in a play adhering to σ, contradicting the assumption that σ is a winning strategy for V
in Gsat(χ). Moreover, suppose R won a finite play with σR by ending in a configuration
C⃗ ⊢ q; γ, i.e. C⃗ ̸|= q but q ∈ λ(C⃗) by construction. This also contradicts the assumption that
σ would be a winning strategy. The other cases of winning finite plays are handled equally.
Hence, we must indeed have Tσ, C⃗0 |= χ finishing the proof. ◀

▶ Example 16. Consider φ = (µY.[c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X) ∧ νZ.[a]; (Z ∧ ⟨c⟩; tt); [b]. The
initial part of one play of the game Gsat(φ) is shown in Fig. 3. For sake of brevity, rules that
operate on separate stacks in a configuration have been compressed into a single step from
one configuration to a next one, and the first rule application is not shown.
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(µY.[c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); tt , (νZ.[a]; (Z ∧ ⟨c⟩; tt); [b]); tt
(fp), (fp)

Y ; tt , Z; tt
(var), (var)

([c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); tt , ([a]; (Z ∧ ⟨c⟩; tt); [b]); tt
(∨), (;)

(νX.⟨a⟩;Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(fp)

X ; tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(var)

(⟨a⟩;Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(;)

⟨a⟩; (Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(mod)

(Y ; ⟨b⟩;X); tt , ((Z ∧ ⟨c⟩; tt); [b]); tt
(;), (;)

Y ; (⟨b⟩;X); tt , (Z ∧ ⟨c⟩; tt); [b]; tt
(var), (∧)

([c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); (⟨b⟩;X); tt , Z; [b]; tt , ⟨c⟩; tt; [b]; tt
(∨), (var)

[c]; (⟨b⟩;X); tt , ([a]; (Z ∧ ⟨c⟩; tt); [b]); [b]; tt , ⟨c⟩; tt; [b]; tt
(;)

[c]; (⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); [b]; tt , ⟨c⟩; tt; [b]; tt
(mod)

(⟨b⟩;X); tt , tt; [b]; tt
(;)

⟨b⟩; X ; tt , tt; [b]; tt
(mod)

X ; tt
...

Figure 3 Initial part of a play on the formula from Ex. 16 with some rule applications compressed.

It would be cumbersome to try to express the property formalised by φ in English words;
in fact, φ is constructed specifically to exemplify the mechanics of the satisfiability games.
The grey background highlights the evolution of one of the stacks, particularly its elements
up to stack height 2. One can see that the stack reaches height 3 inbetween, and it is there
that Y occurs in head position for the second time. This is not a stair position, though. The
play could be continued s.t. both X and Y occur infinitely often in head positions but it is
only the inner X which does so in stair positions. Hence, this forms a ν-thread.

4.2 Satisfiability Games for Guarded vpFLC are Stair-Parity Games
Thms. 14 and 15 give a reduction from FLC’s satisfiability problem to the problem of solving
particular games on infinite-state spaces. Undecidability of the former transfers to these
games which are therefore not algorithmically solvable for arbitrary FLC formulas. They
are, however, for guarded vpFLC formulas. We prove this by revealing them as special
stair-parity games. As a first step in this direction, we reformulate them as turn-based games.
Fix some χ ∈ vpFLC over some visibly pushdown alphabet Σ.

▶ Definition 17. Configurations of the turn-based satisfiability game Gsat
tb (χ) are of the same

form as those in the original FLC satisfiability game Gsat(χ). The initial configuration is
also χ; tt. The rules, however, deviate.

Let f : Sub∨(χ) → {0, 1}. A configuration C ′ is the f-normalisation of a configuration
C, if C ′ is obtained by repeatedly applying rules (∧), (;), (fp) and (var) to C until all heads of
all stacks are either literals or modalities. Likewise, when some head of a stack is of a form
ψ0 ∨ ψ1 then it gets replaced by ψi using rule (∨) where i = f(ψ0 ∨ ψ1).

In a configuration C, the turn-based game Gsat
tb (χ) proceeds as follows.

1. V selects a function f : Sub∨(χ) → {0, 1},
2. R applies rule (mod) to the f -normalisation of C.
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The following is not difficult to see; Gsat
tb (χ) can be seen as an efficient way of playing

Gsat(χ) with several rules being played at once.

▶ Lemma 18. Player V wins Gsat
tb (χ) iff she wins Gsat(χ).

Proof. Note that all that the definition of Gsat
tb (χ) does is to condense consecutive choices

V does in selecting disjuncts and the applications of deterministic rules into a single move
by player V. All that is needed then is to see that the syntax of vpFLC guarantees the
f -normalisation of any configuration to exist (uniquely), for any f . In a sense, vpFLC
formulas are guarded, i.e. between two unfoldings of a fixpoint variable, rule (mod) needs
to be played. In Gsat

tb (χ), this just happens in two consecutive steps requiring a V choice
followed by a R choice. Hence, winning strategies can easily be transferred between these
two games. ◀

The next goal is to show that turn-based satisfiability games are in fact stair-parity
games. There are two obstacles to overcome. Note that positions in stair-parity games
contain a single stack, whereas satisfiability games on arbitrary FLC formulas can contain
an unbounded number of stacks.
1. There needs to be a representation of the set of stacks as a single one. This is possible

because on vpFLC formulas, the sizes of all stacks do not deviate by much. Secondly, we
can use a standard encoding via transition profiles in order to represent the unboundedly
many stacks by one of fixed width.

2. The winning condition for V needs to be phrased as a stair-parity condition.

To tackle the first problem, we call a configuration γ1, . . . , γm k-aligned for k ≥ 0, if the
stack heights differ by at most k: ||γi|−|γj || ≤ k for all i, j. Note that the initial configuration
of Gsat

tb (χ) is always 0-aligned as it contains only one stack. The first key observation here
is the following. It uses the fact that sequential composition is forced by the syntax to be
right-associative, and that a child under the modal rule is built from stacks all starting with
modalities for the same action symbol.

▶ Lemma 19. The following holds.
a) The f -normalisation C ′ of a 0-aligned configuration C is 1-aligned, and
b) the a-child C ′′ of any 1-aligned configuration C ′ in rule (mod) is 0-aligned, for any a ∈ Σ.

Proof. Part (b) is easier to see: note that all stacks in C ′′ are suffixes of a stack in C ′ which
started with a modality containing a. The syntax of vpFLC can only create non-0-aligned
configurations by making use of two different actions, though. Note how, for instance, a
call-modality ⟨a⟩ can only be used in a formula of the form αcall;φ;αret according to the
syntax, and this is the case for any other stack head which is either ⟨a⟩ or [a] for the same
a ∈ Σ.

For part (a) observe that sequential compositions in the syntax of vpFLC (apart from
those directly linked to call- and return-modalities) are right-associative. Hence, rule (;) can
increase the size of a stack by one but not any more as further sequential compositions can
only occur in the right argument but not the left. ◀

This reduces the complexity of a potentially unbounded number of stacks of different
height to a potentially unbounded number of stacks of essentially the same height. Next
we observe that it can be reduced further to a bounded number of stacks of (almost) equal
height. This follows from the fact that the game rules operate on the stack heads only of
which there are at most n different ones. Additional stacks can only be created using rule (∧)

which duplicates the rest of the stack that it operates on.
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▶ Lemma 20. Let C = γ1, . . . , γm be a configuration of Gsat
tb (χ) and n := |χ|. There are

1 ≤ i1, . . . , in ≤ m s.t. for all j ∈ {1, . . . ,m} there is a j′ ∈ {i1, . . . , in} s.t. γj and γj′ differ
at most in their heads.

Consequently, the m stacks in a configuration can only have been grown out of n different
ones in the previous configuration. This suggests a compact representation of a configuration
Φ = γ1, . . . , γm with γi = ψi,h; . . . ;ψi,0 as a single stack over the stack alphabet Γχ = 2[n]×[n].
Assume some enumeration φ0, . . . , φn−1 of Sub(χ). Then Φ can be represented as gh; . . . ; g1
where, for each i = h, . . . , 1: (j, k) ∈ gi if there is j′ s.t. ψj′,i = φj and ψj′,i−1 = φk. So
in order to reconstruct the stack γi, one starts with the index of its head and follows the
connections through gh; . . . ; g1 from left to right. This representation technique is also used
in the determinisation of VPA [2] and in decision procedures [8].

To overcome the second obstacle of matching V’s winning condition as a stair parity
condition, we employ automata-theory. We define a new such alphabet

Σχ := {chf | f ∈ Sub∨(χ) → {0, 1}} ∪ {mod⟨a⟩ | ⟨a⟩ ∈ Sub(χ)}

s.t. chf ∈ Σχ
int for all f , and mod⟨a⟩ ∈ Σχ

x if a ∈ Σx. Note that any play of Gsat
tb (χ) can easily

be represented by a Σ′ω-word of the form chf0 ,mod⟨a0⟩, chf1 ,mod⟨a1⟩, . . .. The Σχ-symbols
uniquely determine the players’ alternating choices and, vice-versa, given such a symbolic
representation of a play and the initial configuration, all others can be reconstructed uniquely.

▶ Lemma 21. There is a VPA Athr
χ over Σχ of size O(|χ|) which accepts exactly those

(symbolic representations of) plays which contain a µ-thread.

Proof. Athr
χ stores the current head of a stack in its state, starting with χ. Its stack alphabet

is Sub(χ) × {0, 1}. Upon reading symbols from Σχ, it guesses which thread to follow in the
play encoded in the input word and maintains its stack accordingly. The additional bit in
its stack symbols is used to guess which positions are stair positions. It also guesses the
outermost µ-variable X which will presumably be seen infinitely often in stair positions.
Final states are those in which this variable is seen as the head of the stack it follows, when
the automaton’s internal stack shows that the current position is a stair position. Athr

χ fails
immediately, when it should pop a symbol from its internal stack which was marked to be
pushed in a stair position, and when a ν-variable Y is seen in a stair position s.t. X ≺χ Y . ◀

Putting all this together gives an upper bound for vpFLC’s satisfiability problem matching
the doubly exponential lower bound from Cor. 11.

▶ Corollary 22. The satisfiability problem for vpFLC is decidable in 2EXPTIME.

Proof. Thms. 14, 15, Lemma 18 constitute an exponential reduction from general satisfiability
games for vpFLC formulas to turn-based ones. Lemmas 19 and 20 show that the arena of
these turn-based games is a visibly pushdown frame. Lemma 21 states that the winning
condition for player R, i.e. the complement of that of player V can be recognised by a VPA.
The statement then follows from Cor. 6. ◀

5 Conclusion and Further Work

We have presented a decidable fragment of the otherwise undecidable modal fixpoint logic
FLC. It makes use of visibly-pushdown principles in order to achieve decidability. However,
these principles are built into the logic syntactically and mixed with modal operators unlike
similar program logics like PDL[VPL] where the visibly-pushdown principles are separated
from the modal part of the logic in the form of so-called (recursive) programs. Consequently,
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a logic like PDL[VPL] can only make use of such visibly-pushdown principles in expressing
properties of some or all paths. Unlike that, in vpFLC these principles can be used to
form genuine branching properties. This extends the expressive power notably, making
vpFLC a strict superlogic of both PDL[VPL] and the modal µ-calculus and thus pushing the
decidability border amongst modal fixpoint logics further up.

The strictness of this extension from PDL[VPL] to vpFLC is a simple consequence of the
fact that PDL[VPL] cannot express every Lµ-definable property. Hence, we have explicit
witnesses for the strictness of this inclusion in the form of regular properties like the one
mentioned in the introduction about winning two-player games and requiring an unbounded
nesting of diamond- and box-formulas in a PDL-like logic. We believe that there are also non-
regular properties separating vpFLC from PDL[VPL], for instance the ⟨a⟩n[c]⟨b⟩n-property
mentioned in the introduction. A detailed study classifying what properties are expressible
in vpFLC but not even in PDL[CFL] is left for further research.

There is no formal separation of vpFLC from general FLC in expressive power other than
the strong indication given by the decidability border between these two. We strongly believe
that vpFLC is in fact less expressive than FLC, and that something like “there is an n s.t.
⟨a⟩n⟨b⟩⟨a⟩np holds” is not expressible in the former (while it is an easy exercise to formulate
it in FLC). Again, in order to prove this formally, techniques need to be developed that
better capture the expressive power of such expressive modal fixpoint logics. As a starting
point, it seems not to be too difficult to separate vpFLC from FLC over the class of infinite
words where the former may only be able to express visibly-pushdown word languages, while
the latter can express all properties from the Boolean closure of ω-CFLs [18].

It is possible, albeit technically tedious, to encode multiple stacks in one when they are
k-aligned for some k > 1. This would allow the syntax of vpFLC to be a bit more relaxed,
enabling more formulas to be specified, without breaking the general proof structure. For
instance, it may be possible to include τ in the syntax of vpFLC as it can be useful to specify
particular properties like “there is an n ≥ 0 s.t. ⟨a⟩n[b]np holds” via (µX.τ ∨ ⟨a⟩;X; [b]); p.
There is no reason why the expressibility of such properties should break decidability, but
the free use of τ would require a stronger version of Lemma 19 for the decidability proof to
still be valid.
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A PDL over Recursive Programs

We give a brief overview of PDL[VPL]. The underlying action set is a visibly pushdown
alphabet Σ = Σint ⊎ Σcall ⊎ Σret. Formulas are built as in modal logic, with modalities over
VPLs:

φ ::= q | φ ∧ φ | ¬φ | ⟨L⟩φ

where q ∈ P and L is a (finite representation, for instance in the form of a VPA, of) a VPL.
By introducing ∨ and [·]· as primitives, formulas can also be given in negation normal form.

Formulas of PDL[VPL] are interpreted over states s of an LTS T = (S,−→, s0, λ) in the
following way. First we extend the transition relation −→ ⊆ S × Σ × S to a path relation
−→ ⊆ S × Σ∗ × S connecting states by words via

s ε−→ s for any s ∈ S, and
s aw−−→ t if there is u ∈ S s.t. s a−→u and u w−−→ t, for s, t ∈ S.

Then the semantics can be given as follows.

T , s |= q iff q ∈ λ(s)
T , s |= φ ∧ ψ iff T , s |= φ and T , s |= ψ

T , s |= ¬φ iff T , s ̸|= φ

T , s |= ⟨L⟩φ iff there is t ∈ S s.t. s w−−→ t for some w ∈ L and T , t |= φ

PDL[VPL] can then be used to formalise nested visibly-pushdown path properties like
[(L1)∗]⟨L1⟩tt with L1 = {anbn | n ≥ 1} as mentioned in the introduction. This formula
requires every state that is reachable under a (possibly empty) sequence of words from L1
to be the source of a path with labels from L1 again. In particular, it implies (but is not
equivalent to) the existence of an infinite path with labels of the form an1bn1an2bn2 . . . for
some ni ≥ i, i = 1, . . .

B Model Checking Games for FLC

We briefly present the essentials of the model checking games for FLC defined in [17] used in
the proofs of Thms. 14 and 15.

Given an LTS T = (S,−→, s0, λ) and an FLC-formula χ, the model checking game Gmc
T (χ)

is played by players V and R on configurations of the form s ⊢ γ where γ is a stack of
subformulas of χ just like those used in the satisfiability games. The game starts in the
initial configuration s0 ⊢ χ; tt. The rules are presented in Fig. 4.

Player V wins a finite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . , sn ⊢ φn; γn if
φn = tt,
φn = q for some q ∈ P and sn ∈ λ(q),
φn = q for some q ∈ P and sn ̸∈ λ(q),
φn = [a] for some a ∈ Σ and there is no t s.t. sn

a−→ t.
Player R wins a finite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . , sn ⊢ φn; γn if

φn = ff,
φn = q for some q ∈ P and sn ̸∈ λ(q),
φn = q for some q ∈ P and sn ∈ λ(q),
φn = ⟨a⟩ for some a ∈ Σ and there is no t s.t. sn

a−→ t.
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s ⊢ (φ0 ∨ φ1); γ
s ⊢ φi; γ

V : i ∈ {0, 1}
s ⊢ (φ0 ∧ φ1); γ

s ⊢ φi; γ
R : i ∈ {0, 1}

s ⊢ (φ0;φ1); γ
s ⊢ φ0;φ1; γ

s ⊢ τ ; γ
s ⊢ γ

s ⊢ σX.φ; γ
s ⊢ X; γ

s ⊢ X; γ
s ⊢ φ; γ

if fpχ(X) = σX.φ

s ⊢ ⟨a⟩; γ
t ⊢ γ

V : s a−→ t
s ⊢ [a]; γ
t ⊢ γ

R : s a−→ t

Figure 4 The rules of the FLC model checking games.

Additionally, the winner of an infinite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . is determined by
the outermost variable X occurring infinitely often amongst the sequence (φij )j≥0 where
i0, i1, . . . is the sequence of stair positions of the sequence of stacks γ0, γ1, . . .

1 If this variable
X is of fixpoint type ν, then V wins this play. Otherwise, if it is type µ, R wins the play.

▶ Proposition 23 ([17]). Let T be an LTS and χ be a closed FLC formula. Player V wins
Gmc

T (χ) iff T |= χ.

1 In [17], this variable is called stack-increasing. The terminology of stair positions was coined later in
[21].
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