-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Temporal Logic with Recursion

Florian Bruse
School of Electrical Engineering and Computer Science, University of Kassel, Germany
florian.bruse@uni-kassel.de

Martin Lange
School of Electrical Engineering and Computer Science, University of Kassel, Germany
martin.lange@uni-kassel.de

—— Abstract

We introduce extensions of the standard temporal logics CTL and LTL with a recursion operator that
takes propositional arguments. Unlike other proposals for modal fixpoint logics of high expressive
power, we obtain logics that retain some of the appealing pragmatic advantages of CTL and LTL,

yet have expressive power beyond that of the modal u-calculus or MSO. We advocate these logics by
showing how the recursion operator can be used to express interesting non-regular properties. We
also study decidability and complexity issues of the standard decision problems.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics; Theory of
computation — Program specifications

Keywords and phrases formal specification, temporal logic, expressive power

Digital Object Identifier 10.4230/LIPIcs. TIME.2020.6

1 Introduction

Temporal logic is a well-established formalism for the specification of the behaviour of dynamic
systems, typically separated into two classes: linear-time vs. branching-time, reflecting the
philosophical question of whether the future is determined of not [31]. There is a direct
correspondence in computer science: the linear-time view regards programs as being stand-
alone with input given at the beginning and a computation running without further interaction
with the program’s environment; in the branching-time view programs may be reactive, i.e.
able to react to input as it occurs during a computation. The most prominent member of the
linear-time family is LTL [29], the most prominent members of the branching-time family
are CTL [8] and CTL* [10].

The classification into linear-time and branching-time typically has consequences with
regards to expressiveness and computational complexity of the two major decision problems:
satisfiability and model checking. For genuine linear-time logics, these two are closely related
as model checking is a generalisation of validity checking, and validity checking can express
model checking of finite-state systems. For LTL, these problems are PSPACE-complete
[30]. The picture for branching-time logics is different: here, model checking is typically
easier than satisfiability checking, for instance P- vs. EXPTIME-complete for CTL [9] and
PSPACE- vs. 2EXPTIME-complete for CTL* [10, 11, 33].

Various extensions of these logics have been investigated for purposes of higher expressive-
ness: there are “semantic” extensions like action-based [21], dynamic logic [12], real-time [1],
metric [18] and probabilistic temporal logics [13] for instance, as well as combinations thereof.
Then there are “syntactic” extensions like the modal p-calculus (£,,) [19] with its explicit
least and greatest fixpoint operators. It extends the expressive power to full regularity, i.e.
that of Monadic Second-Order Logic [16] (up to bisimilarity).

Extensions in expressive power beyond that are possible, and sometimes even necessary
for particular purposes. For instance, £,— and therefore temporal logics embeddable into it —
have the finite model property [20]. Hence, they cannot be used to reason about inherent
?. Florian Bruse and .Martin Lange;)

5v icensed under Creative Commons License CC-BY
27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Mufioz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 6; pp. 6:1-6:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/343692987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:florian.bruse@uni-kassel.de
mailto:martin.lange@uni-kassel.de
https://doi.org/10.4230/LIPIcs.TIME.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Temporal Logic with Recursion

properties of infinite-state systems. Such an observation has led to the investigation of
Propositional Dynamic Logic of Non-Regular Programs (PDL[CFL]) [15] for instance. It
uses context-free instead of regular languages as in ordinary PDL and, thus, can express
some non-regular properties but not all regular ones. When restricted to visibly pushdown
languages (PDL[VPL]), it even becomes decidable [26]. Other extensions include Fixpoint
Logic with Chop (FLC) [28], integrating process-algebraic operations into the modal pu-
calculus, or Higher-Order Fixpoint Logic (HFL) [34] which incorporates a simply-typed
A-calculus into £,,.

High expressive power also comes at a high price in two regards. First, it is tightly
linked to high computational complexity including undecidability. In fact, the satisfiability
checking problems for all the logics mentioned above here, capable of expressing non-regular
properties, are (highly) undecidable. The second downside concerns pragmatics. Already
L, is commonly seen as unsuitable for a non-expert as writing temporal properties using
least and greatest fixpoints is cumbersome and error-prone. This holds even more so for
extensions like FLC and HFL.

We introduce extensions of LTL and CTL in order to make the formal specification of
non-regular properties more widely available through temporal logics with a more intuitive
syntax. We introduce a recursion operator, resulting the logics Recursive LTL, resp. CTL
(RecLTL, RecCTL). The standard temporal operators from LTL and CTL are preserved
even though the recursion operator is expressive enough to mimic these. Note that temporal
operators like Until can be seen as abbreviations of infinite Boolean combinations of basic
propositional and modal formulas. The recursion operator can be used to construct more
complex infinite Boolean connections and, thus, express interesting properties, including
non-regular ones. Semantically, it is defined via least fixpoints of monotone functions of order
1 over the powerset lattice of the underlying labelled transition systems. The model-theoretic
design of RecLTL and RecCTL is inspired by the machinery underlying a complex logic like
HFL, yet their pragmatics aims at more understandable and usable temporal specification
languages.

In Sect. 2 we introduce RecCTL and RecLTL formally but also try to build intuition
about what they can be used for and how to use them. In Sect. 3 we study the expressive
power of RecCTL and RecLTL formally by placing them into the hierarchy of the those logics
mentioned above. In Sect. 4 we show that model checking RecCTL is EXPTIME-complete
whereas model checking RecLTL and satisfiability checking for both is undecidable. We also
present a decidable fragment of RecCTL. The paper concludes with remarks on further work
in Sec. 5.

2 Designing Temporal Logics of Higher Expressiveness

We assume familiarity with the standard temporal logics CTL and LTL.

Labelled Transition Systems. Let P be a finite set of atomic propositions. A labeled
transition system (LTS) is a tuple T = (S, —,¥) where S is a (potentially infinite) set of
states, — C S x S is the transition relation that is assumed to be total in the sense that
for every s € S there is a t € S s.t. s—t. Finally, ¢/ : S — 2% labels each state with the
set of propositions that hold at this state. A path is an infinite sequence 7 = sg, s1, ... s.t.
$; — si+1 for all ¢ > 0. We write 7 (i) to denote the ith state on this path.

F. Bruse and M. Lange

Infinitary modal logic. Infinitary modal logic adds infinitary junctors A;.;, resp. /., for
arbitrary sets I to modal logic with the operators ¢ and [J or, EX and AX as they are usually
written in the temporal setting. Hence, formulas can become infinitely wide, but every path
in the syntax tree is still of finite length.

Over any set of LTS, any standard propositional temporal logic can be translated into
infinitary modal logic. For instance, the CTL formula EFg expressing reachability of a g-state
is equivalent to @1 :=\/ 5, EX’q, even uniformly over the class of all LTS.

Not every infinitary modal formula corresponds to a (finite) temporal formula, though.
For instance, ¢ := \/,5,AX"q is not expressible in CTL, or even the modal p-calculus [7].

Patterns of infinitary formulas expressible in temporal logics. The reason for the fact
that ¢; is expressible in CTL but ¢ is not, is given by the interplay of two principles:

First, the operator EX commutes with disjunctions — EXy V EX¢) = EX(p V ¢) — but AX
does not. Hence, we have

¢1=\/EX'g=qV \/ EX'q = qVEX \/ EX'q = ¢ VEXp; . (1)
>0 i>1 >0

Second, the fixpoint operators in CTL, LTL and £,, are propositional, i.e. (monadic) second-
order. In other words, they can only be used to define a least or greatest fixpoint recursion
over an operator that is a modal formula itself (disregarding nested fixpoints for the moment).
Eq. 1 shows that ¢y = uZ.q VEX Z in £,, terms with ¢ V EX Z for a propositional variable Z
describing the evaluation in each iteration of the fixpoint recursion.

Now consider o again. It is simply not possible to rewrite it in a way like 1, obtaining
an £, formula because AXy V AXtY) # AX(p V v). Most importantly, po # pZ.q V AX Z.

This is not to say that the infinitary modal formula representing o could not be built up
in a recursive way using fixpoints, as it is equivalent to the FLC formula (uZ.7 V (Z; AX)); q.
The syntax is not easily understood — see the literature on FLC for a detailed introduction
[28, 23] — especially with AX becoming a 0-ary operator. The main point to observe here,
though, is the structure of the formula 7V (Z; AX) defining the fixpoint iteration using a
recursion anchor Z. It is, in a sense, left-linear as opposed to the right-linear recursion
schemes definable in £,,.

Adding recursion to temporal logics. The aim of this paper is to design expressive exten-
sions of CTL and LTL that retain their nice pragmatic features, in particular an intuitive and
readable syntax. Likewise, the semantics needs to be — at the same time — mathematically
sound. We aim for a moderate increase in expressive power in the sense of the example above:
on top of standard CTL and LTL, it should be possible to express certain additional patterns
of infinitary modal formulas, for instance infinitary disjunctions over uniform families of
AX-formulas.

As an example, recall that two paths 7 = sg,s1,... and @’ = s(,s),... of an LTS
T = (S,—,¢) are called trace-equivalent iff £(s;) = £(s}) for all i > 0. The existence of two
non-trace-equivalent paths can be expressed in infinitary modal logic as

Pnonlin += \/ \/ EXiP A Exi_'p
pEP 120

In other words, —@noniin states that all paths beginning in the state of evaluation, are
trace-equivalent or, equivalently, that the LTS (from that state) is bisimilar to a word.

6:3

TIME 2020

6:4

Temporal Logic with Recursion

Note that in ¢noniin, the EX-operators are “guarded” by a conjunction. It is therefore not
possible to rewrite this formula into a least fixpoint recursion of £,, in the style of Eq. 1.
In order to capture such patterns of infinitary modal logic, a temporal logic would have to
provide operators which allow the build-up of modal formulas “behind” the recursion anchor,
similar to the FLC formula equivalent to ¢- above.

An appropriate mechanism for creating such effects can be borrowed from HFL: it lifts
the recursion anchor from the propositional level to a higher one. In HFL, this can be a
function of arbitrary order; here we restrict ourselves to order 1 to keep the resulting logic
reasonably simple. The recursion anchor then becomes a function whose arguments are
temporal formulas. In order to manipulate the arguments, we use propositional variables as
symbolic names for the argument values in each recursive call.

Thus, our recursive temporal logic should have a recursion operator which defines a
recursion anchor in the form of a variable, say F. At the same time, it needs to provide
symbolic names for some arguments to F, say x1,...,T,, and then the definition of the
recursion can use these as standard temporal formulas, as well as F applied to n formulas.
Likewise, the entire recursion formula would have to be applied to n propositional formulas,
which are just the initial arguments for the recursive iteration. Such a formula could look like

¢p = (rec F(y, 2).(y A z) V F(EXy,EXz)) (p, —p) .
v

From a pragmatic point of view, recursion can be read in a natural way using unfolding and
replacement of symbolic argument variables, i.e. using S-reduction. Here, we would get

vp =(p A —p) V U (EXp, EX—p) = (p A —p) V (EXp A EX—p) V U (EXEXp, EXEX—p)

=...=\/EXpAEX'~p.
i>0
In other words, such an extension of CTL (with appropriately defined semantics) would be
able to express @nonlin via vpeP ©Op-

The formal syntax. Let P = {p,q, ...} be a finite set of atomic propositions, V; = {z,y,...}
and Vo = {F,G,...} be sets of propositional, resp. recursion variables. Formulas of Recursive
CTL (RecCTL) are given by the grammar

et w= plale Ay] -¢ | EXp |E(eUY) [@(p,. ., 0)
¢ = FlrecF(r1,...,Tk).p

where p € P, k> 0, z,21,...,z; € V1 and F € V,. The formulas derived from ¢, are
called propositional, those derived from ® are called first-order.

Other Boolean and temporal operators are defined in the usual way, for instance AXy :=
—EX—p, EFp := E(tt U), AGy := —~EF—yp, and will be used freely henceforth. The notions of
a subformula, a free or bound occurrence of a variable are the usual ones.

The semantics of the recursion operator will be explained later on using least fixpoints in
complete function lattices. This makes the Beki¢ Lemma [5] available which allows formulas
with mutual dependencies between recursion variables to be written down in a more readable
form. A formula in vectorial form, cf. [3] for its use in £, is a

fl(Il,...,l‘kl) . ¥1
rec; (V1,...,)
Folx1, . xk,) - ©n

F. Bruse and M. Lange

st. 1 < i < nandk = k;. Informally, this defines not just one but several functions
Fi,...,F, which may all depend on each other in a mutually recursive way formalised in the
©;’s. In the end, the function named by F; is applied to the initial arguments 1, ..., 9.

We will also write fun(xy,...,zx).¢ instead of rec F(x1,...,2x).c0 when F does not
occur in (.

Well-formed formulas. Clearly, not every formula generated by the formal grammar above is
meaningful. For instance, in (rec F(z).x A F(EXx))(p, 7p) the number of formal parameters
of F does not match the number of given parameters. Such mistakes are easy to spot;
henceforth, we assume that all formulas are well-formed in this respect.

However, further restrictions need to be imposed before a formal semantics can be given,
since the addition of the recursion operator requires careful handling of negations.

Consider ¢, from above. Its subformula ¥ can be seen as a function mapping a pair
of propositions to a proposition. When interpreted over an LTS with state set S, such a

function is an object of type 25 x 25 — 25 =: M 2 (functions of order 1 with 2 arguments).

Note that M; 5 is a complete lattice when equipped with the point-wise order where f < g
iff f(z,y) < g(z,y) for all 2,y € 25. This also is true when restricted to just monotonic
functions from M; 5. Since recursion should be explained using least fixpoints, we are
interested in the function f: M; 2 — M 2 that maps a (monotonic) function F: M o2 to the
function (y, z) — (y N 2z) U F(EXy,EXz): M; 2. All operators used here are monotonic in the
usual powerset lattice 25 and, hence, if F is monotonic, so is f. Thus, the Knaster-Tarski
Theorem [32, 17] yields that f has a least fixpoint F', which is a natural candidate for the
semantics of .

Having negation in a specification logic is desirable, yet negation is clearly not a monotonic
operator. This is not problematic in CTL and LTL, where negation can only occur in places
where the implicit recursion in e.g. the operator U is not affected by negation in one of
its arguments. Already £, does not allow unrestricted use of negation, since uX.-X for
instance cannot be given a proper semantics. The solution is to restrict the syntax to only
allow negation in front of non-variable atoms, or to require that recursion variables only
occur under an even number of negations in the defining fixpoint formula.

The first way is also viable mathematically here, but it would restrict the pragmatics of
this logic strongly since one may often want to specify undesired properties, i.e. use negation
on top level for instance. Hence, we aim for a syntactic criterion that allows negation to be
used as freely as possible. Unfortunately, the comparatively simple rule used in £,, does not
generalise so easily.

Consider the toy example (rec F(z). (funy.—y)(F(z))) p. It appears to be harmless, since

negation occurs only in front of the propositional variable y but not any recursion variable.

However, unfolding and S-reducing this to (rec F(z). ~F(z)) p reveals that the negation in
front of F was simply hidden away in the anonymous function fun y.—y which is clearly not
monotonic.

While the use of this antitonic function violates the monotonicity requirement of the
function defined by F, functions that are antitonic in one of their arguments are not necessarily
problematic in general. In fact, much of the expressive power of RecCTL and RecLTL would
be lost if antitonic functions were forbidden in general. Consider

Punbound := —(Tec F(z,y).(x A —y) V F(EXz, EXy)) (p, EXp)

stating that there is no n such that p can be reached in n steps but not in n + 1. Clearly,
the function F is antitonic in its second argument. However, the function F — ((x,y) —
(z Ny) U F(EXz,EXy) is indeed monotonic in F and therefore has a least fixpoint which is

6:5

TIME 2020

6:6

Temporal Logic with Recursion

why the recursion in @ynpound i well-defined in this case. In this instance, we make use of the
fact that M; 5 stays a complete lattice when restricted to functions that are monotonic in
their first argument, and antitonic in the second argument, whence any monotonic function
that maps a function from this sublattice back into the sublattice has a least fixpoint. In
fact, this holds for all M; ; and all partitions of the arguments into monotonic and antitonic.

In the following we will devise a syntactic criterion that allows antitonic functions to be
used in a harmless way, i.e. such that a formal semantics can still be given via least fixpoints.
The criterion is necessarily more complex than the £,, one about occurrence under an even
number of negations as seen above; on the other hand we also do not require an entire type
system as it is the case in HFL.

We will call a formula well-formed if, in addition to the constraint on matching numbers
of arguments, it is possible to separate each list of formal and given parameters into two
parts of monotonically and antitonically used arguments, such that based on this separation
we can establish that the former ones are only used positively and the latter ones are only
used negatively. In the following we will make the meaning of this precise. For the moment,
suppose that recursive definitions and calls are written as

(rec F(z, ...,k | Y1, yw)- @) Tesp. Flo1,...,0n | V1, w) .

Either part of such a list can also be empty. For example, we woudl write @unbound as
ﬁ(rec Flx|y).(xA-y)V F(EX | E‘.Xy))(p | EXp)

declaring, in particular, x to be used monotonically and y to be used antitonically. The other
possibilities for separating the arguments would not pass the following check about positive,
resp. negative use. We say that x € V) is used positively in z and F € V, is used positively
in F(z1,...,2% | y1,..., Yk). Moreover, z, or F is used

positively, resp. negatively in ¢1Apa, EXp1, E(p1Ups) or rec F(z1, ..., Tk | Y1, -, Y’)- P1,

if it is used positively, resp. negatively in 1 or @o;

positively, resp. negatively in — if it is used negatively, resp. positively in ¢;

positively in G(@1,..., 0% | ¥1,...,) or (recG(...).) (P1,-- -, 0k | ¥1,... U) if it

is used positively in one of the ¢;, or negatively in one of the 1);;

negatively in G(o1,...,9k | ¥1,...,0x) or (rec G(...). <p)(<p1, ce 0k | U1,) i it

is used negatively in one of the ¢;, or positively in one of the ;.
Intuitively, the polarity of use switches at an actual negation, and when the subformula in
question is an argument right of the separator in a recursive call. Having defined a notion of
positive and negative occurrences, we can restrict the syntax accordingly to ensure that the
following semantics will be well-defined. Note that x or F can be used both positively and
negatively in a formula.

» Definition 1. A formula of RecCTL is called well-formed if it is possible to separate the
formal and given arguments of recursive definitions and calls into two lists each such that
the following conditions hold.
If (rec]—'(a:l, e Xk | Y1y YRr)- <p)(ap1, cey oL | W1,) is a recursive definition,
then k=1 and k' =1, and if F(o1,...,0m | ¥1,...,Um’) is a recursive call of the same
variable, then k = m and k' = m/,
Ifrec F(z1,...,xk | Y1,..., Yk). © s a recursive definition then none of the xz; is used
negatively in @, and none of the y; is used positively in ¢, and
Ifrec F(x1, ..., Tk | Y1,-- -, Yrr)- @ 18 a recursive definition then F is not used negatively
in .

F. Bruse and M. Lange

The formal semantics. Let 7 = (S, —,¢) be an LTS, let o be a well-formed formula of
RecCTL. An environment is a function from n: V; UV, — 25 U Uj>0 M, ; where the value
of a variable matches its type in ¢¢ and the declared monotonicity, resp. antitonicity of its
arguments. Here M, ; is the space of order-1 functions with j arguments.

The formal semantics assigns a proposition, i.e. set of states to each propositional
subformula ¢ of ¢y, and a first-order function to each first-order subformula ® of ¢ of as
follows.

[PI] ={s€S|pel(s)}
[«]; = n(z)
le A 9D = Loy NI
=Dy =S\ el
[[EX(p]]Z— ={s € S| thereexists t € [[go]]nT such that s —t}
[[E(@Uw)]]nT = {s € §| there exists path 7, integer ¢ such that
s=m(0),7(i) € [[w]]nT and 7(j) € [[4,0]],77’ for all 0 < j < i}

[F] = n(F)

[@(¢1, .- on)ly =217 (Leal7 - [kly)

Notions like satisfaction (7, s £ @), satisfiability and equivalence (¢ = 1) are defined as
usual.

The following lemma states that this semantics is well-defined, in particular, that least
fixpoints as used in the second to last clause do indeed exist. This is guaranteed by well-
formedness of g which in turn guarantees monotonicity of the function whose least fixpoint
is used to give meaning to the recursion operator in the penultimate clause.

» Lemma 2. Let ¢ be a well-formed RecCTL sentence, let n be an environment and let T
be an LTS. Then [[77/1]]2]— is well-defined.

Since [[goﬂ;r does not depend on 7, we simply write [¢]7 and drop the environment. The
lemma’s proof is purely technical but standard by induction on the structure of .

We also state a fundamental equivalence which is very helpful for understanding formulas.
The proof is simply by combining the well-known equivalence-preserving principles of fixpoint
unfolding and S-reduction, and is therefore omitted. As usual, ¢[t)1 /21, ... ¢ /xk] denotes
the simultaneous replacement of every free occurrence of z; by ;.

» Lemma 3. For any p,v1,...,%; we have
(rec F(x1, ..., 2k).0) (W1, ..., ¥k) = @[t1/x1, ..., /xK, Tec F(xy, ..., x5).0/F]

The linear-time case. RecLTL is obtained from RecCTL syntactically by removing the
path quantifiers E and A just like the syntax of LTL can be obtained from CTL in this way.
A RecLTL formula is interpreted over a linear-time structure , i.e. a transition system with
a single path only. The semantics is defined in the same way as for RecCTL. Given a RecLTL
formula ¢, an LTS 7 with state s, and a path 7, we write 7 |= ¢ to denote that the path 7
satisfies . We write T, s = iff all paths starting in s satisfy . In other words, the usual
for-all-paths semantics for linear-time formulas can also be applied to the richer language
RecL.TL.

It is not hard to see that Lemmas 2 and 3 as well as previously worked out concepts like
well-formedness etc. hold for RecLTL as well.

6:7

TIME 2020

6:8

Temporal Logic with Recursion

HFL!
| Thm. 5
RecCTL RecLTL
| Thm. 6
FLC triv.
| no finite model property
PDL[CFL] . Ly finite model property
| |
PDL[VPL] vpRecCTL CTL*
PDL CTL LTL

Figure 1 Placing RecCTL and RecLTL into the hierarchy of temporal logics w.r.t. expressive
power.

3 The Power of Recursion in Temporal Logics

Recall the RecCTL example @noniin @above and remember that —nonin states that all paths
emerging from the state under consideration are trace-equivalent, i.e. indistinguishable
through the sequence of their propositional labels. This gives an easy satisfiability-preserving
reduction from RecLTL into RecCTL.

» Theorem 4. For every ¢ € RecLTL there is an equi-satisfiable ¢’ € RecCTL such that
¥’ = O(l¢l).

Proof. Simply take ¢’ := @ A =@noniin Where @ results from ¢ by replacing every subformula
of the form Xt with AXt). The second conjunct requires a model of ¢’ to only have trace-
equivalent paths which are of infinite length by assumption. Thus, if ¢ has a model 7 then
this is clearly a model of ¢’. Moreover, any path of an LTS model for ¢’ is a model for ¢. <«

Next we place RecCTL and RecLTL into the expressiveness hierarchy of well-known
(and some lesser known) temporal and modal fixpoint logics. Note that the models under
consideration here are transition systems without edge labels, as they are usually used for
temporal logics like CTL and LTL. The results of this section are presented for this class
of structures, even though logics like £,, are typically interpreted over the richer class of
transition system with edge labels. The results can easily be extended to this richer class,
provided that the syntax of RecCTL and RecLTL is extended to speak about a-successors
rather than just successors, for example by replacing EX with EX, for any edge label.

This hierarchy is shown in Fig. 1. It contains the standard temporal logics CTL and LTL
as fragments of CTL"*, which in turn is known to be embeddable into £,,. Above, there are
the expressive logics mentioned in the introduction, namely

Fizpoint Logic with Chop (FLC): it interprets every formula as a predicate transformer

mapping a set of states to a set of states of an LTS. Predicates, the basic semantic objects

of £, can be seen as constant predicate transformers which explains why FLC extends

L, [28].

Higher-Order Fizpoint Logic (HFL): it allows functions of arbitrary higher-order to be

built from modal and Boolean operators as well as fixpoints. Its fragment HFL!' is

obtained by restricting all functions to first order. This includes predicate transformers as

they can be seen as unary functions of order 1. Hence, FLC is embeddable into HFL! [34].

F. Bruse and M. Lange

The graph also includes the dynamic logic PDL as it is closely related to CTL and its non-
regular extension PDL[CFL], in order to complete the picture of expressiveness of temporal
logics, in particular to give a better feeling for the power of RecCTL and RecLTL. The
embedding of PDL[CFL] into FLC was shown in [25]. At last, it includes the fragment
vpRecCTL of RecCTL which will be discussed in Sect. 4 in the context of decidability
questions.

The picture also draws the distinguishing line of regularity vs. non-regularity in terms
of possessing the finite model property (FMP). It is lost for all of these logics that are not
embeddable into £, [23].

RecCTL can be placed between FLC and HFL!. We refrain from presenting the full (and
sometimes cumbersome) syntax and semantics of these two logics here. Instead we refer to
the existing literature for full details [28, 34] and only give the main ideas here.

» Theorem 5. Every RecCTL formula can equivalently be expressed in HFL!.

Proof. (Sketch) Well-formed formulas can straight-forwardly be translated. The only inter-

esting case is that of a recursive first-order formula (rec F(z1,...,2% | y1,...,Yr).@). It is
equivalent to the HFL! formula puF7.\z3. Az}. with type annotation 7 = ¢+ — ... —
ot HeT .. e e <

For the lower bound we need to quickly recall FLC. Its formulas are built from basic
literals p, —p and the modal ¢ and . Note that they receive no fixed argument, as they
are being interpreted not as predicates but as predicate transformers, i.e. a function of type
28 — 25 over a state space S of some LTS.

The syntax has conjunctions and disjunctions and a chop operator “;” which is interpreted
as the functional composition of two predicate transformers, and another atomic formula
7 which is interpreted as the neutral element to composition, i.e. the identity predicate
transformer. On top of this, fixpoint quantifiers are added which are interpreted as fixpoints
in the complete lattice of pointwise-ordered predicate transformers.

» Theorem 6. Every FLC formula can equivalently be expressed in RecCTL.

Proof. We devise a translation * : FLC — RecCTL that preserves equivalence using, for
every FLC fixpoint variable X, a unique recursion variable Fx.

p:=funx.p gp\//\w = funz.p(x) V @(x) 0 := funz.EXz
=p = funz.—p m := funz.3(z) A ¥(z) 0 := funz.AXz
7T:=funx.x o1 = fun z.5(¢(z))
X=Fx pXg=recFxW) @) vX:=recFx(y)~glFx/Fxl)

where [Fx /Fx] denotes the substitution of any (Fx (y).1)(¢") with =((Fx (v).)(®")).

A straight-forward induction on the structure of an FLC formula ¢ shows that ¢ denotes
the same predicate transformer as ¢ under any variable assignment that maps X and Fx to
the same predicate transformer. We then get that the FLC formula ¢ is equivalent to the
RecCTL formula @(tt) by virtue of the way that the semantics of FLC turns a predicate
transformer into a predicate. |

» Corollary 7. Neither RecCTL nor RecLTL have the finite model property.

Proof. For RecCTL this is a consequence of Thm. 6 since FLLC does not have the finite
model property [28]. For RecLTL consider the formula ¢geps(p) to be defined next. It is
easily seen to be satisfiable, yet unsatisfiable on any finitely represented linear structure. <«

6:9

TIME 2020

6:10

Temporal Logic with Recursion

4 Satisfiability and Model Checking

In this section we investigate the issues of decidability and computational complexity of
the two most important reasoning problems for temporal logics: satisfiability and model
checking.

Undecidability results. Consider the RecLTL formula (scheme)

Osteps (V) 1= P A Xt A XX—) A XXXep
A G(q/) — X(recH(z).(¥ AXx) V (=) AXH (= AXz))) (—p A xw)) .

Dy

For brevity, let Xty abbreviate 1) AXx and X~ x abbreviate 1) A Xx. Note that the argument
to @3, is X1 in this respect, and that ®; can be written as rec H(z).(XTz) VX~ H (X z).
We also have X7 (x1 V x2) = X~ x1 VX X2 in general. Then consider ®3,(X1)). We have

Oy (X Y) =XTX Y VI Oy (X X 0)
=X VXT@XTXTXTY VE Py (XTXTXTY))
=XTX Y VXXX T VITX Py (XXX YY)
=SXTXT VXXX X T VX (XXX T VI Py (XXX)

=..=\/x_ . X x"x .. .x 9
—_——— —_———
n>0 n n+1

The first and second equivalence and every second after that uses Lemma 3. The others
simply use the the commutation of X~ with disjunctions.

The first conjuncts in @seps () fix the values of ¥ on a possible model in the first four
states, namely to hold at positions 0,1 and 3. Since 3 holds at positions 1 and 3 but not at
2, G(p = XDy (X ¢))) forces ¥ to furthermore hold at position 6 but not at 4 and 5. This can
be iterated now with position 3 to see that the next moment at which 1 holds is 10. Hence,
@steps (1) forces 9 to hold at the initial point of a model and then at distances increasing by
1 in each step. This can be used in the proof of the next result.

» Theorem 8. The satisfiability problem for RecLTL is undecidable (X}-hard).

Proof. The following problem, known as the recurrent octant tiling problem, is ¥1-hard [14]:
given a tiling system 7 = (T, H,V,ty,ts) where T is a finite set of tile types, H,V C T?
and o, teo € T, is there a tiling 7 : {(4,7) | 0 < i < j} — T of the octant plane, such that

7(0,0) = to, (initial tile set properly)
for all 4, j with j > 4: (7(¢,5),7(i+1,7)) € H, (no horizontal mismatch)
for all ¢, 7 with j >4 (7(4,5),7(4,5+1)) € V, (no vertical mismatch)
there are infinitely many j such that 7(0,j) = teo? (recurrence)

Such a tiling 7 can be represented straight-forwardly as a linear-time model over the set of
propositions T' by listing it row-wise:

7(0,0),7(0,1),7(1,1),7(0,2),7(1,2),7(2,2),7(0,3),...,7(3,3),7(0,4), ...

F. Bruse and M. Lange

Moreover, the conditions on a successful tiling can be formalised in RecLTL as follows, using
one additional proposition fst to mark the beginnings of each row.

o1 = to AG(\ t—= J\ ') A Quteps(fst) A G(X~fst — \/ t AXt))

teT t'#£t (t,t")eH
A G(fst — = \/ (rec H(z,y).(x AX(~fst U (fst A y))) v H(X(~fst A z), Xy)) (¢, t/))
(t,t")ET?\V

A GF(fst A o)

The first conjunct enforces the initiality condition, the second ensures that each position
is occupied by exactly one tile. The third conjunct ensures that exactly the positions of
the form 7(0, j) for any j are marked using fst, using @steps constructed above. The fourth
ensures horizontal matching by comparing adjacent positions apart from those where the
succeeding one is the beginning of the next row. The fifth conjunct states that it is impossible
to find the beginning of some row j, a vertically non-matching pair of tiles (¢,¢'), and an
i < j such that t is the tile i steps after that beginning of the row, and ¢’ is found ¢ steps
after the next state satisfying fst. Note that these are exactly the positions that are vertically
adjacent in the octant plane.

The last conjunct ensures the recurrence condition. Now a successful tiling 7 for 7
induces a linear time model for ¢ in the shape as described and vice-versa. <

An immediate consequence of Thms. 4 and 8 is the (high) undecidability of RecCTL.
» Corollary 9. The satisfiability problem for RecCTL is X1 -hard.

Also, it is well-known that model checking for linear-time logics under the usual all-paths-
semantics is closely related to the validity problem.

» Corollary 10. The model checking problem for RecLTL over transition systems is 111 -hard.

In contrast, the model checking problem for RecCTL over finite transition systems is
decidable.

» Theorem 11. The model checking problem for RecCTL over finite transition systems is
EXPTIME-complete.

Proof. A deterministic exponential-time upper bound can be derived from a naive bottom-
up algorithm that computes the semantics [¢]; of a given formula ¢ over a given LTS
T using fixpoint iteration. The EXPTIME upper bound also follows from the (linear)
embedding of RecCTL into HFL! (Thm. 5) whose model checking problem is known to be
EXPTIME-complete [4].

A matching lower bound is inherited from FLC using Thm. 6 since the model checking
problem for FLC is known to be EXPTIME-complete as well [24]. <

A natural question that arises concerns the decidability of model checking RecCTL over
classes of infinite-state transition systems. A consequence of Thm. 6 is the negative result
that this problem is already undecidable for the class BPA (Basic Process Algebra) [6] —
in some sense the smallest class of context-free processes — as this is undecidable for FL.C
28, 22].

» Corollary 12. The model checking problem for RecCTL over classes of infinite-state
transition systems subsuming BPA is undecidable.

6:11

TIME 2020

6:12

Temporal Logic with Recursion

A decidable fragment of RecCTL. The undecidability of the satisfiability problem for
temporal logics beyond regularity can often be seen by observing that such a logic, for
example FLC, can both express context-free properties, and is closed under conjunctions.
Since closure under Boolean operators is highly desirable, a restriction of the recursion process
to a class strictly below the context-free languages is unavoidable if one wants to recuperate
decidability. A natural candidate are the visibly pushdown languages (VPL) [2], which are
closed under intersection and complement and, hence, not problematic if mixed with full
closure under Boolean operators. In particular, it is known that PDL[VPL] is decidable and
2EXPTIME-complete [26]. We refer to the literature for a detailed introduction into VPL
and PDL[VPL].

» Definition 13. Let P be a set of propositions. We write B(P) for the set of all Boolean com-
binations of these variables. Let Be, By, B; C B(P) be mutually exclusive, i.e. the conjunction

of two formulas from these sets is satisfiable only if they are from the same set.

Formulas of the fragment vpRecCTL of RecCTL are given by the grammar

Fi(zr) -
o n= t|lpAp|p|rec; : (¥)
Fo(Tn) - n

where each ¥; is a disjunction of formulas of the forms x;, EX(8; A Fi(z;)) or EX(Bc A
Fi(EX(B, A]:k/(:vj)))), with Be € Be, By € B, and B; € B;. Note that formulas derived from ¢

contain no free variables from Vs.
» Theorem 14. The satisfiability problem for vpRecCTL is 2EXPTIME-complete.

Proof. (sketch) It is possible to devise a satisfiability-preserving linear translation from
vpRecCTL into PDL[VPL]. From B, B,, B; we construct a visibly pushdown alphabet A :=
AU A U A; with Ac :={ag | B € B.} and likewise for A, and A;.

The key is then to see that the structure of a functional formula ® = (rec;F(z1).¢1,. ..,
Fn(xy).40,) in vectorial form resembles a context-free grammar G with EX (ﬂc A Fi(EX(B, A
Fir(x;)))) in the definition of some F; for instance corresponding to a production of the
form F; — ag Frag, Fir. The structure of ® then ensures that the resulting grammar is in
fact a visibly-pushdown grammar G [2], and so ®(¢) can be translated into (Gg)(p) where
@ is the translation of .

The lower bound follows equally from PDL[VPL)’s 2EXPTIME-completeness [26], as the
translation can easily be reversed into one from PDL[VPL] to vpRecCTL. <

An equivalence-preserving translation from vpRecCTL into PDL[VPL] is not possible
since PDL[VPL] is defined over edge-labelled LTS, and the partition of edge labels into
a visibly pushdown alphabet plays a key role in the definition of the logic. Without the
shift from node- to edge-labels — keeping each [as a propositional formula rather than
transforming it into an alphabet symbol ag — the translation would indeed be equivalence
preserving but the resulting formula would “only” be in PDL[CFL].

» Corollary 15. Fvery vpRecCTL can equivalently be expressed in PDL[CFL].

F. Bruse and M. Lange

5 Conclusion & Further Work

We have presented an expressive extension of the framework of standard temporal logics.
The aim is to make the specification and verification of complex systems and properties
beyond regular ones more accessible through temporal logics with a reasonably intuitive
syntax and semantics, such as CTL and LTL are.

High expressive power is achieved through the introduction of a recursion operator which
takes formulas as arguments. The mathematical concepts underlying the formal semantics
are borrowed from higher-order logics like HFL without having to involve rather cumbersome
tools like proof systems. Instead, only a relatively simple monotonicity requirement for
recursion variables has to be obeyed. This way, RecCTL and RecLTL achieve a reasonable
balance between expressive power and pragmatic usability.

We have studied the computational complexities of the most important decision problems
of model and satisfiability checking of these logics. The increase compared to CTL and LTL
is in line with what one can expect to pay for additional expressiveness.

There are various routes for further work on such logics. For instance, model checking
procedures that are optimised for practical purposes need to be sought. There is also potential
in extending the fragment vpRecCTL by large amounts without losing the decidability
property. Take for instance the infinitary modal formula \/, -, 0"[(0"q, stating that for some
n there is a path of length n such that all successive paths of that same length end in a g-state.
This cannot be stated in PDL[VPL] even though it intuitively uses the VPL {a™b" | n > 1},
but PDL-based logics can only combine languages with a single modality. The property is,
however, easily formalisable in RecCTL as EX(rec F(x).x V EX F(AX z))(AX q).

We conjecture that it is possible to allow mixtures of EX- and AX-operators in vpRecCTL,
achieving higher expressiveness and yet not losing decidability. We believe that satisfiability in
such an extended fragment can also be reduced to the problem of solving a visibly-pushdown
game [27].

—— References

1 R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181-204,
1994.

2 R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. 36th Annual ACM Symp. on
Theory of Computing, STOC’04, pages 202-211. ACM, 2004. doi:10.1145/1007352.1007390.

3 A. Arnold and D. Niwinski. Rudiments of p-calculus, volume 146 of Studies in Logic and the
Foundations of Mathematics. North-Holland, 2001.

4 R. Axelsson, M. Lange, and R. Somla. The complexity of model checking higher-order fixpoint
logic. Logical Methods in Computer Science, 3:1-33, 2007.

5 H. Bekié¢. Programming Languages and Their Definition, Selected Papers, volume 177 of LNCS.
Springer, 1984.

6 J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Information
and Control, 60(1-3):109-137, 1984.

7 E. A. Emerson. Uniform inevitability is tree automaton ineffable. Information Processing
Letters, 24(2):77-79, 1987.

8 E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchron-
ization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

9 E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, 30:1-24, 1985.

10 E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching versus

linear time temporal logic. Journal of the ACM, 33(1):151-178, 1986. doi:10.1145/4904.4999.

6:13

TIME 2020

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/4904.4999

6:14

Temporal Logic with Recursion

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs.
SIAM Journal on Computing, 29(1):132-158, 2000.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18(2):194-211, 1979.

H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6:512-535, 1994.

D. Harel. Recurring dominoes: Making the highly undecidable highly understandable. Annals
of Discrete Mathematics, 24:51-72, 1985.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular programs. Journal
of Computer and System Sciences, 26(2):222-243, 1983.

D. Janin and I. Walukiewicz. On the expressive completeness of the propositional p-calculus
with respect to monadic second order logic. In CONCUR, pages 263-277, 1996. doi:10.1007/
3-540-61604-7_60.

B. Knaster. Un théoréme sur les fonctions d’ensembles. Annals Soc. Pol. Math, 6:133—-134,
1928.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255-299, November 1990.

D. Kozen. Results on the propositional p-calculus. T'CS, 27:333-354, December 1983. doi:
10.1007/BFb0012782.

D. Kozen. A finite model theorem for the propositional p-calculus. Studia Logica, 47(3):233-241,
1988.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872-923, 1994.

M. Lange. Local model checking games for fixed point logic with chop. In Proc. 13th Conf. on
Concurrency Theory, CONCUR’02, volume 2421 of LNCS, pages 240-254. Springer, 2002.
M. Lange. Temporal logics beyond regularity, 2007. Habilitation thesis, University of Munich,
BRICS research report RS-07-13.

M. Lange. Three notes on the complexity of model checking fixpoint logic with chop. R.A.L.R.O.
— Theoretical Informatics and Applications, 41:177-190, 2007.

M. Lange and R. Somla. Propositional dynamic logic of context-free programs and fixpoint
logic with chop. Information Processing Letters, 100(2):72-75, 2006.

C. Léding, C. Lutz, and O. Serre. Propositional dynamic logic with recursive programs. J.
Log. Algebr. Program, 73(1-2):51-69, 2007.

C. Léding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proc. 24th Int. Conf. on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS’04, volume
3328 of LNCS, pages 408-420. Springer, 2004.

M. Miller-Olm. A modal fixpoint logic with chop. In STACS’99, volume 1563 of LNCS, pages
510-520. Springer, 1999.

A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer
Science, FOCS’ 77, pages 4657, Providence, RI, USA, 1977. IEEE.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, 32(3):733-749, 1985.

C. Stirling. Comparing linear and branching time temporal logics. In B. Baniegbal, H. Barringer,
and A. Pnueli, editors, Proc. Conf. on Temporal Logic in Specification, volume 398 of LNCS,
pages 1-20, Berlin, 1989. Springer.

A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific Journal of
Mathematics, 5:285-309, 1955.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In Proc. 17th Symp. on Theory of Computing, STOC’85, pages 240-251, Baltimore,
USA, 1985. ACM.

M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In CONCUR’04,
volume 3170 of LNCS, pages 512-528. Springer, 2004.

https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/BFb0012782

	Introduction
	Designing Temporal Logics of Higher Expressiveness
	The Power of Recursion in Temporal Logics
	Satisfiability and Model Checking
	Conclusion & Further Work

