22,677 research outputs found

    Smart Collaborative Mobile System for Taking Care of Disabled and Elderly People

    Full text link
    Official statistics data show that in many countries the population is aging. In addition, there are several illnesses and disabilities that also affect a small sector of the population. In recent years, researchers and medical foundations are working in order to develop systems based on new technologies and enhance the quality of life of them. One of the cheapest ways is to take advantage of the features provided by the smartphones. Nowadays, the development of reduced size smartphones, but with high processing capacity, has increased dramatically. We can take profit of the sensors placed in smartphones in order to monitor disabled and elderly people. In this paper, we propose a smart collaborative system based on the sensors embedded in mobile devices, which permit us to monitor the status of a person based on what is happening in the environment, but comparing and taking decisions based on what is happening to its neighbors. The proposed protocol for the mobile ad hoc network and the smart system algorithm are described in detail. We provide some measurements showing the decisions taken for several common cases and we also show the performance of our proposal when there is a medium size group of disabled or elderly people. Our proposal can also be applied to take care of children in several situations.This work has been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and by National Funding from the FCT - Fundacao para a Ciencia e a Tecnologia through the PEst-OE/EEI/LA0008/2011 Project.Sendra Compte, S.; Granell Romero, E.; Lloret, J.; Rodrigues, JJPC. (2014). Smart Collaborative Mobile System for Taking Care of Disabled and Elderly People. Mobile Networks and Applications. 19(3):287-302. doi:10.1007/s11036-013-0445-zS287302193Cisco Systems Inc. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2010–2015.” White Paper, February 1, 2011Pereira O, Caldeira J, Rodrigues J (2011) Body sensor network mobile solutions for biofeedback monitoring. J Mob Netw Appl 16(6):713–732Google. Galaxy nexus (2012). Available: http://www.google.com/nexus/E. Commission. “Demography report 2010.” Eurostat, the Statistical Office of the European Union, 2010. At http://ec.europa.eu/social/BlobServlet?docId=6824&langId=enThomas KE, Stevens JA, Sarmiento K, Wald MM (2008) Fall-related traumatic brain injury deaths and hospitalizations among older adults—United States, 2005. J Saf Res 39(3):269–272Fortino G, Giannantonio R, Gravina R, Kuryloski P, Jafari R, (2013) Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans Hum Mach Syst 43(1):115–133Bellifemine F, Fortino G, Giannantonio R, Gravina R, Guerrieri A, Sgroi M (2011) SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Softw Pract Exper 41(3):237–265Macias E, Lloret J, Suarez A, Garcia M (2012) Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices. Sensors 12(2):2062–2087Sendra S, Granell E, Lloret J, Rodrigues JJPC. Smart Collaborative System Using the Sensors of Mobile Devices for Monitoring Disabled and Elderly People, 3rd IEEE International Workshop on Smart Communications in Network Technologies, Ottawa, Canada, June 11, 2012Lane N, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell A (2010) A survey of mobile phone sensing. IEEE Commun Mag 48(9):140–150Muldoon C, OHare G, OGrady M (2006) Collaborative agent tuning: Performance enhancement on mobile devices Engineering Societies in the Agents World VI, Lecture Notes in Computer Science, Volume 3963/2006, pp 241–258Turner H, White J, Thompson C, Zienkiewicz K, Campbell S, Schmidt DC (2009) Building Mobile Sensor Networks Using Smartphones and Web Services: Ramifications and Development Challenges, Handbook of Research on Mobility and Computing, Hershey, PA. Available: http://lsrg.cs.wustl.edu/~schmidt/PDF/new-ww-mobile-computing.pdfKansal A, Goraczko M, Zhao F. Building a sensor network of mobile phones, 6th International Conference on Information Processing in Sensor Networks. Cambridge, Massachusetts, USA, April 24–27, 2007 pp 547–548Plaza I, Martín L, Martin S, Medrano C (2011) Mobile applications in an aging society: status and trends. J Syst Softw 84(11):1977–1988Camarinha-Matos L, Afsarmanesh H. Telecare: Collaborative virtual elderly support communities, 1st Workshop on Tele-Care and Collaborative Virtual Communities in Elderly Care, Porto, Portugal, 13 April, 2004Chen B, Pompili D (2011) Transmission of patient vital signs using wireless body area networks. J Mob Netw Appl 16(6):663–682Dai J, Bai X, Yang Z, Shen Z, Xuan D (2010) Mobile phone-based pervasive fall detection. Pers Ubiquit Comput 14(7):633–643Martin P, Sánchez MA, Álvarez L, Alonso V, Bajo J. Multiagent system for detecting elderly people falls through mobile devices, International Symposium on Ambient Intelligence (ISAmI’11), Salamanca (Spain) 6–8 April 2011Fahmi PN, Viet V, Deok-Jai C. “Semi-supervised fall detection algorithm using fall indicators in smartphone.” Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012, pp 122Sánchez M, Martín P, Álvarez L, Alonso V, Zato C, Pedrero A, Bajo J (2011) A New Adaptive Algorithm for Detecting Falls through Mobile Devices, Trends in Practical Applications of Agents and Multiagent Systems, pp 17–24Fahim M, Fatima I, Lee S, Lee YK. Daily Life Activity Tracking Application for Smart Homes using Android Smartphone, 14th International Conference on Advanced Communication Technology, Yongin, South Korea, 19–22 February 2012, pp 241–245Kaluža B, Mirchevska V, Dovgan E, Luštrek M, Gams M (2010) An agent-based approach to care in independent living, Ambient Intelligence, Lecture Notes in Computer Science, vol. 6439, pp 177–186Costa A, Barbosa G, Melo T, Novais P (2011) Using mobile systems to monitor an ambulatory patient. In: International Symposium on Distributed Computing and Artificial Intelligence, Advances in Intelligent and Soft Computing, vol. 91, pp 337–344Olfati-Saber R, Fax J, Murray R (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233Arcelus A, Jones MH, Goubran R, Knoefel F (2007) Integration of smart home technologies in a health monitoring system for the elderly, 21st International Conference on Advanced Information Networking and Applications Workshops, vol. 2, pp 820–825Kahmen H, Faig W (1988) Surveying. Walter de Gruyter & Co, New YorkSol LM870 mobile phone features. Available at: http://es.made-in-china.com/co_runrise/product_Dual-SIM-Card-Dual-Standby-GPS-Temperature-UV-Sensor-Pedometer-Sunrise-LM870-Mobile-Phone_hesighyiy.htmlSTLM20 temperature sensor features. Datashhet available at: http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00119601.pdfSendra S, Lloret J, Garcia M, Toledo JF (2011) Power saving and energy optimization techniques for wireless sensor networks. J Commun 6(6):439–459Matlab Website. Available at: www.mathworks.com/products/matlabPal A (2010) Localization algorithms in wireless sensor networks: current approaches and future challenges. Netw Protocol Algorithm 2(1):45–74Garcia M, Boronat F, Tomás J, Lloret J (2009) The development of two systems for indoor wireless sensors self-location. Ad Hoc Sensor Wirel Netw 8(3–4):235–258Lloret J, Tomás J, Garcia M, Cánovas A (2009) A hybrid stochastic approach for self-location of wireless sensors in indoor environments. Sensors 9(5):3695–3712Garcia M, Sendra S, Turro C, Lloret J (2011) User’s macro and micro-mobility study using WLANs in a university campus. Int J Adv Internet Technol 4(1&2):37–46Lloret J, Tomas J, Canovas A, Bellver I. GeoWiFi: A Geopositioning System Based on WiFi Networks, The Seventh International Conference on Networking and Services (ICNS 2011), Venice (Italy), May 6–10, 2011Yu W, Su X, Hansen J (2012) A smartphone design approach to user communication interface for administering storage system network. Netw Protoc Algorithm 4(4):126–15

    A Formal Framework for Modeling Trust and Reputation in Collective Adaptive Systems

    Get PDF
    Trust and reputation models for distributed, collaborative systems have been studied and applied in several domains, in order to stimulate cooperation while preventing selfish and malicious behaviors. Nonetheless, such models have received less attention in the process of specifying and analyzing formally the functionalities of the systems mentioned above. The objective of this paper is to define a process algebraic framework for the modeling of systems that use (i) trust and reputation to govern the interactions among nodes, and (ii) communication models characterized by a high level of adaptiveness and flexibility. Hence, we propose a formalism for verifying, through model checking techniques, the robustness of these systems with respect to the typical attacks conducted against webs of trust.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Mechanism design for spatio-temporal request satisfaction in mobile networks

    Full text link
    Mobile agents participating in geo-presence-capable crowdsourcing applications should be presumed rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we design a mechanism that takes into consideration this rationality for request satisfaction in such applications. We propose the Geo-temporal Request Satisfaction (GRS) problem to be that of finding the optimal assignment of requests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. The objective of the GRS problem is to maximize the total profit of the system subject to our rationality assumptions. We define the problem formally, prove that it is NP-Complete, and present a practical solution mechanism, which we prove to be convergent, and which we evaluate experimentally.National Science Foundation (1012798, 0952145, 0820138, 0720604, 0735974

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore