805 research outputs found

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    Railway timetabling from an operations research

    Get PDF
    In this paper we describe Operations Research (OR) models andtechniques that can be used for determining (cyclic) railwaytimetables. We discuss the two aspects of railway timetabling: (ii)the determination of arrival and departure times of the trains atthe stations and other relevant locations such as junctions andbridges, and (iiii) the assignment of each train to an appropriateplatform and corresponding inbound and outbound routes in everystation. Moreover, we discuss robustness aspects of bothsubproblems.

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    Operations Research Modeling of Cyclic Train Timetabling, Cyclic Train Platforming, and Bus Routing Problems

    Get PDF
    Public transportation or mass transit involves the movement of large numbers of people between a given numbers of locations. The services provided by this system can be classified into three groups: (i) short haul: a low-speed service within small areas with high population; (ii) city transit: transporting people within a city; and (iii) long haul: a service with long trips, few stops, and high speed (Khisty and Lall, 2003). It can be also classified based on local and express services. The public transportation planning includes five consecutive steps: (i) the network design and route design; (ii) the setting frequencies or line plan; (iii) the timetabling; (iv) the vehicle scheduling; and (v) the crew scheduling and rostering (Guihaire and Hao, 2008; SchĂśbel, 2012). The first part of this dissertation considers three problems in passenger railway transportation. It has been observed that the demand for rail travel has grown rapidly over the last decades and it is expected that the growth continues in the future. High quality railway services are needed to accommodate increasing numbers of passengers and goods. This is one of the key factors for economic growth. The high costs of railway infrastructure ask for an increased utilization of the existing infrastructure. Attractive railway services can only be offered with more reliable rolling stock and a more reliable infrastructure. However, to keep a high quality standard of operations, smarter methods of timetable construction are indispensable, since existing methods have major shortcomings. The first part of this dissertation, comprising Chapters 1-6, aims at developing a cyclic (or periodic) timetable for a passenger railway system. Three different scenarios are considered and three mixed integer linear programs, combined with heuristics for calculating upper and lower bounds on the optimal value for each scenario, will be developed. The reason of considering a periodic timetable is that it is easy to remember for passengers. The main inputs are the line plan and travel time between and minimum dwell time at each station. The output of each model is an optimal periodic timetable. We try to optimize the quality of service for the railway system by minimizing the length of cycle by which trains are dispatched from their origin. Hence, we consider the cycle length as the primary objective function. Since minimizing travel time is a key factor in measuring service quality, another criterion--total dwell time of the trains--is considered and added to the objective function. The first problem, presented in Chapter 3, has already been published in a scholarly journal (Heydar et al., 2013). This chapter is an extension of the work of Bergmann (1975) and is the simplest part of this research. In this problem, we consider a single-track unidirectional railway line between two major stations with a number of stations in between. Two train types--express and local--are dispatched from the first station in an alternate fashion. The express train stops at no intermediate station, while the local train should make a stop at every intermediate station for a minimum amount of dwell time. A mixed integer linear program is developed in order to minimize the length of the dispatching cycle and minimize the total dwell time of the local train at all stations combined. Constraints include a minimum dwell time for the local train at each station, a maximum total dwell time for the local train, and headway considerations on the main line an in stations. Hundreds of randomly generated problem instances with up to 70 stations are considered and solved to optimality in a reasonable amount of time. Instances of this problem typically have multiple optimal solutions, so we develop a procedure for finding all optimal solutions of this problem. In the second problem, presented in Chapter 4, we present the literature\u27s first mixed integer linear programming model of a cyclic, combined train timetabling and platforming problem which is an extension of the model presented in Chapter 3 and Heydar et al. (2013). The work on this problem has been submitted to a leading transportation journal (Petering et al., 2012). From another perspective, this work can be seen as investigating the capacity of a single track, unidirectional rail line that adheres to a cyclic timetable. In this problem, a set of intermediate stations lies between an origin and destination with one or more parallel sidings at each station. A total of T train types--each with a given starting and finishing point and a set of known intermediate station stops--are dispatched from their respective starting points in cyclic fashion, with one train of each type dispatched per cycle. A mixed integer linear program is developed in order to schedule the train arrivals and departures at the stations and assign trains to tracks (platforms) in the stations so as to minimize the length of the dispatching cycle and/or minimize the total stopping (dwell) time of all train types at all stations combined. Constraints include a minimum dwell time for each train type in each of the stations in which it stops, a maximum total dwell time for each train type, and headway considerations on the main line and on the tracks in the stations. This problem belongs to the class of NP-hard problems. Hundreds of randomly generated and real-world problem instances with 4-35 intermediate stations and 2-11 train types are considered and solved to optimality in a reasonable amount of time using IBM ILOG CPLEX. Chapter 5 expands upon the work in Chapter 4. Here, we present a mixed integer linear program for cyclic train timetabling and routing on a single track, bi-directional rail line. There are T train types and one train of each type is dispatched per cycle. The decisions include the sequencing of the train types on the main line and the assignment of train types to station platforms. Two conflicting objectives--(1) minimizing cycle length (primary objective) and (2) minimizing total train journey time (secondary objective)--are combined into a single weighted sum objective to generate Pareto optimal solutions. Constraints include a minimum stopping time for each train type in each station, a maximum allowed journey time for each train type, and a minimum headway on the main line and on platforms in stations. The MILP considers five aspects of the railway system: (1) bi-directional train travel between stations, (2) trains moving at different speeds on the main line, (3) trains having the option to stop at stations even if they are not required to, (4) more than one siding or platform at a station, and (5) any number of train types. In order to solve large scale instances, various heuristics and exact methods are employed for computing secondary parameters and for finding lower and upper bounds on the primary objective. These heuristics and exact methods are combined with the math model to allow CPLEX 12.4 to find optimal solutions to large problem instances in a reasonable amount of time. The results show that it is sometimes necessary for (1) a train type to stop at a station where stopping is not required or (2) a train type to travel slower than its normal speed in order to minimize timetable cycle time. In the second part of this dissertation, comprising Chapters 7-9, we study a transit-based evacuation problem which is an extension of bus routing problem. This work has been already submitted to a leading transportation journal (Heydar et al., 2014). This paper presents a mathematical model to plan emergencies in a highly populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features a two-level operational framework. The first level operation guides evacuees through urban streets and crosswalks (referred to as the pedestrian network ) to designated pick-up points (e.g., bus stops), and the second level operation properly dispatches and routes a fleet of buses at different depots to those pick-up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so-called vehicular network. An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in the two networks. Since the large instances of the proposed model are mathematically difficult to solve to optimality, a two-stage heuristic is developed to solve larger instances of the model. Over one hundred numerical examples and runs solved by the heuristic illustrate the effectiveness of the proposed solution method in handling large-scale real-world instances

    An exact decomposition approach for the real-time Train Dispatching problem (v.2)

    Get PDF
    -Trains movements on a railway network are regulated by official timetables. Deviations and delays occur quite often in practice, demanding fast re-scheduling and re-routing decisions in order to avoid conflicts and minimize overall delay. This is the real-time train dispatching problem. In contrast with the classic ""holistic"" approach, we show how to decompose the problem into smaller subproblems associated with the line and the stations. The decomposition is the basis for a master-slave solution algorithm, in which the master problem is associated with the line and the slave problem is associated with the stations. The two subproblems are modeled as mixed integer linear programs, with their specific sets of variables and constraints. Similarly to the classical Bender's decomposition approach, the slave and the master communicate through suitable feasibility cuts in the variables of the master. By applying our approach to a number of real-life instances from single and double-track lines in Italy, we were able to (quickly) find optimal or near-optimal solutions, with impressive improvements over the performances of the current operating control systems. The new approach will be put in operation in such lines for an extensive on-field test-campaign as of April 2013. Follows SINTEF Technical Report A2327

    Railway timetabling from an operations research

    Get PDF
    In this paper we describe Operations Research (OR) models and techniques that can be used for determining (cyclic) railway timetables. We discuss the two aspects of railway timetabling: (ii) the determination of arrival and departure times of the trains at the stations and other relevant locations such as junctions and bridges, and (iiii) the assignment of each train to an appropriate platform and corresponding inbound and outbound routes in every station. Moreover, we discuss robustness aspects of both subproblems

    Shunting of Passenger Train Units in a Railway Station

    Get PDF
    In this paper we introduce the problem of shunting passenger trainunits in a railway station. Shunting occurs whenever train units aretemporarily not necessary to operate a given timetable. We discussseveral aspects of this problem and focus on two subproblems. Wepropose mathematical models for these subproblems together with asolution method based on column generation. Furthermore, a newefficient and speedy solution technique for pricing problems in columngeneration algorithms is introduced. Finally, we present computationalresults based on real life instances from Netherlands Railways.logistics;column generation;railway optimization;real world application

    Evaluating the Applicability of Advanced Techniques for Practical Real-time Train Scheduling

    Get PDF
    AbstractThis paper reports on the practical applicability of published techniques for real-time train scheduling. The final goal is the development of an advanced decision support system for supporting dispatchers’ work and for guiding them toward near-optimal real-time re-timing, re-ordering and re-routing decisions. The paper focuses on the optimization system AGLIBRARY that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The system outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. Experiments on a British railway nearby London demonstrate that AGLIBRARY can quickly compute near-optimal solutions

    A mixed-integer linear program for real-time train platforming management

    Get PDF
    Unexpected events may perturb operations and generate conflicts that must be addressed promptly to limit delay propagation and other negative impacts on the network. The real-time railway traffic management problem deals with disruptions in railway networks, including tracks, junctions and stations. When they happen in station areas, new decisions involving train platforming, rerouting, ordering and timing must be made in real time. This paper explores a mesoscopic approach to deal with disruptions at rail stations. A mathematical programming-based model is proposed to determine re-routing and re-scheduling decisions for railway traffic in a station area. The key steps of the approach, which simulate what happens in real-time traffic management, are: i) an initial off-line preprocessing stage of the set of feasible routes originally planned, ii) a second preprocessing stage which analyses the disruption and sets the necessary parameters for the last step iii), which consists of an integer programming model that seeks solutions which minimise deviations from planned train schedules and assigns new and appropriate platforms (if necessary). Computational experiments show that realistic instances can be solved near to optimality using CPLEX in very short times. This allows to consider this methodology for solving real time traffic management problems.Peer ReviewedPostprint (published version

    Railway freight node capacity evaluation: A timetable-saturation approach and its application to the Novara freight terminal

    Get PDF
    Abstract This paper presents a timetable-based approach to assess the capacity of a railway freight node, based on the microscopic simulation and saturation of the timetable. Saturation is done by scheduling additional saturation train paths without introducing any traffic conflict, while respecting the required technical and operational constraints, until no more paths can be added. The approach is applied to analyze the potential effects on capacity of some infrastructure improvements planned by Rete Ferroviaria Italiana (RFI) for the rail freight node of Novara, Italy. The capacity is evaluated by means of two KPIs computed on saturated timetables: the number of daily pairs of saturation freight trains and the infrastructure Occupancy Time Rate (OTR). The first KPI represents an absolute estimation of the capacity (theoretical or practical, depending on the presence of buffer times). Instead, the OTR is computed by the UIC 406R compression method and it is used to identify local bottlenecks. For the analysis, we use SASTRE, an analysis environment for railway systems developed at Politecnico di Torino, which combines a MILP formulation for the timetable saturation problem with a saturation strategy layer. The saturation strategy considers a given set of priorities between the different network areas and the train types to be used during the saturation process. The results reveal that using a microscopic model to schedule traffic flows on a complex railway node allows for a good accuracy of the timetable, but at a high computational cost
    • …
    corecore