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Abstract

In this paper we describe Operations Research (OR) models and
techniques that can be used for determining (cyclic) railway timetables.
We discuss the two aspects of railway timetabling: (i) the determina-
tion of arrival and departure times of the trains at the stations and
other relevant locations such as junctions and bridges, and (ii) the as-
signment of each train to an appropriate platform and corresponding
inbound and outbound routes in every station. Moreover, we discuss
robustness aspects of both subproblems.

1 Introduction

In this chapter we describe Operations Research (OR) models and tech-
niques that can be used for determining (cyclic) railway timetables. A rail-
way timetable consists of two elements: (i) the arrival and departure times
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of the trains at the stations and other relevant locations such as junctions
and bridges, and (ii) the assignment of each train to an appropriate platform
and corresponding inbound and outbound routes in every station.

Preferably, the generation of the arrival and departure times and the
selection of the routes through the stations are carried out simultaneously.
However, when using a model based approach for generating a timetable,
this would lead to models that are too large to be solved by the currently
available optimization technology. Therefore, in a model based approach the
two steps are commonly split: the timetable is computed first, and then the
routings through the stations for this particular timetable are determined.
To get an overall feasible timetable, several iterations of this process may
be necessary. In this paper, we treat both aspects separately.

Of course, timetabling is not the only planning problem faced by a rail-
way operator. One also has to deal with rolling stock and crew (see Figure 1).
For a complete overview on the application of OR models in passenger rail-
way transportation, we refer to Huisman et al. (2005).

Timetabling

Rolling stock scheduling

Crew scheduling

Figure 1: Planning problems

Planning problems within the railway world are traditionally solved
based on the experience and the craftsmanship of the involved railway plan-
ners. However, in the nineties of the previous century, it was recognized
within the railway world that the application of OR models and techniques
for supporting the solution process of these problems may be beneficial along
various dimensions. On one hand, the application of such models and tech-
niques may lead to better solutions, and on the other hand it may lead to a
reduction in the throughput time of the involved planning processes.

This transition was stimulated from two directions. First, at least in Eu-
rope, railway companies are more and more confronted with competition,
due to recent changes in European legislation. Several railway companies
have to operate on a commercial or semi-commercial basis, which puts more
pressure on efficiency and operational excellence. The application of mathe-
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matical optimization models may help in realizing these objectives. Second,
the scientific community has spent a lot of effort to model the railway plan-
ning problems in the most appropriate way. Together with new optimiza-
tion techniques - often from the field of mathematical programming - and
increased computing power of the available hardware, those planning prob-
lems can nowadays be solved in a reasonable amount of computing time.
Twenty years ago this was not possible for many railway planning problems.

In this paper, we discuss the most important contributions in the field of
model based timetabling, which form the basis for the advanced tools used
by several railway operators nowadays. Moreover, we discuss an important
research direction in the field of timetabling, namely timetables that are as
robust as possible, i.e. timetables that have been constructed in such a way
that small disturbances during the operations have only a limited impact.

The structure of this paper is as follows. Section 2 describes mathemat-
ical optimization models for generating cyclic railway timetables. The most
commonly used model is explained in detail with an example. Thereafter,
in Section 3, we discuss how the robustness of a cyclic timetable can be im-
proved. Furthermore, results of an experiment in practice with such a robust
timetable are reported. Section 4 considers the other aspect of timetabling,
namely the routing of trains through railway stations. Robustness issues
are discussed here as well. Finally, in Section 5 we conclude this paper with
some perspectives on further developments.

2 Cyclic Timetabling

In many European countries, the passenger trains are operated according to
a cyclic or a periodic timetable. This means that each line of passenger trains
is operated in a cyclic pattern, e.g. the trains of the line run every 30, 60 or
120 minutes. Furthermore, if the passenger trains are operated according to
a cyclic timetable, then it is usual that the timetable that is planned for the
cargo trains is cyclic as well. However, in that case usually not all planned
time slots for the cargo trains are actually used in the operations.

One advantage of a cyclic timetable is that passengers can easily keep
in mind the departure time of their train at their station. Furthermore,
it is relatively easy to set up a large number of transfer possibilities for
passengers. However, a drawback is the fact that in a cyclic timetable it is
difficult to offer a large number of direct connections, since a cyclic timetable
is not quite flexible. Another drawback is the fact that a completely cyclic
timetable may be rather inefficient: trains may have to be operated even at
times with only a small number of passengers. Therefore, in practice there
are usually exceptions to the completely cyclic timetable. For example,
there may be some additional trains during rush hours, and frequencies may
be reduced during late evening hours. Only a few European countries (e.g.
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France and Spain) do not have any cyclicity or regularity in their timetables.
In this paper, we do not discuss models and solution approaches for this kind
of timetables. We refer the interested reader to Caprara et al. (2002).

In this paper, the infrastructure is assumed to be given, both between the
stations and within the stations. Although often seen by the general public as
part of the timetabling process, a line plan is assumed to be known a priori.
We use the following definition of a line: a line is a direct railway connection
between two end stations that is operated with a certain frequency and a
certain train type, e.g. Intercity or stoptrain. As was indicated earlier, the
timetabling step of determining arrival and departure times of the trains
at the stations and the step of routing the trains trough the stations are
considered separately in this paper. The first step is described in this section
and in Section 3, and the latter step is described in Section 4.

2.1 A mathematical formulation

Most cyclic timetabling models are based on the Periodic Event Scheduling
Problem (PESP), initially developed by Serafini and Ukovich (1989). The
PESP model aims at cyclically scheduling a number of events e = 1, . . . , E.
The cycle time of a timetable is denoted by T . Thus, if an event takes
place at time instant v, then a similar event takes place at all time instants
{. . . , v − 2T, v − T, v, v + T, v + 2T, . . .}.

Note that the PESP model is a pure scheduling model and not a routing
model. Thus, if there are several options for routing a train at the tracks
between the stations, then it is assumed that a selection for one of these
options has been made a priori. For example, if there are 4 parallel tracks
between two stations (that is, 2 in each direction), then for each train a
selection for one of the possible tracks has been made already.

In the case of a railway timetable, the events are the arrivals and depar-
tures of the trains at the stations and at the other relevant locations such
as junctions: the decision variable ve denotes the time at which event e is
scheduled within each cycle. It is common that all event times are inte-
ger. Then ve should have an integer value in the interval [0, T − 1], and all
computations are carried out modulo the cycle time T .

The event times are the start and end times of certain processes in the
timetable. For example, trains have to run from one station to another,
they have to dwell for a certain period of time in a station, there has to be
a certain headway time between two consecutive trains crossing the same
part of the infrastructure, two trains have to be split or combined, or they
have a passenger or a rolling stock connection, etc. Thus there are processes
related to single trains and processes related to pairs of trains.

The set of processes is denoted by P . If a process starts with event e and
ends with event e′, then this process is denoted by (e, e′). PESP assumes
that for each process (e, e′) a lower bound Le,e′ and an upper bound Ue,e′ for
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the corresponding process time are known. For example, the running time of
a train between two stations can be determined based on the details of the
infrastructure between the stations (including the safety system) and the
running time characteristics of the involved rolling stock. The parameters
Le,e′ and Ue,e′ preferably satisfy 0 ≤ Le,e′ ≤ Ue,e′ ≤ T − 1. Note that a
process with a process time exceeding the cycle time in principle does not
fit within a cyclic timetable. Now the event times ve and ve′ related to the
process (e, e′) are connected by the following constraint.

(ve′ − ve) mod T ∈ [Le,e′ , Ue,e′ ] for all (e, e′) ∈ P (1)

Here the modulo operator mod T indicates that the timetable is cyclic
with cycle time T . For example, time instant 55 is identical to time instant
175 in a cyclic timetable with cycle time T = 60. Moreover, if the departure
and the arrival time of a train on a certain trip are 55 and 12, respectively,
then the running time of the train on this trip equals (12−55) mod 60 = 17.

Since this modulo operator is difficult to handle in optimization models
due to its strongly non-linear character, the cyclic character of the timetable
is usually modeled by introducing binary decision variables Qe,e′ that indi-
cate whether the time interval between the events e and e′ crosses the end
of the cycle. That is, Constraint (1) is replaced by the following constraint.

Le,e′ ≤ ve′ − ve + T × Qe,e′ ≤ Ue,e′ for all (e, e′) ∈ P (2)

If the time interval between the events e and e′ crosses the end of the
cycle, then Qe,e′ = 1. If not, then Qe,e′ = 0. Loosely speaking, the decision
variables Qe,e′ determine the orders of certain pairs of events within each
cycle. In the example above, we get that the running time of the trip that
starts at 55 and ends at 12 equals 12− 55+60 = 17. A number of examples
of constraints of type (2) is given in Section 2.2.

2.2 Example

In this section, we illustrate the different aspects of timetabling with a simple
example. Moreover, we explain how these aspects can be modeled in the
PESP formulation. At the end of this section, we give some results.

The example considers the triangle Amersfoort (Amf) - Deventer (Dv) -
Zwolle (Zl) in the Netherlands, as depicted in Figure 2. The other relevant
stations are Apeldoorn (Apd), Harderwijk (Hd) and Olst (Ost).

Consider a line plan with a minimum frequency of one train per half an
hour. In Table 2.2, the details of the line plan and the minimum running
times are reported. Note that in practice the minimum running times may
depend on the applied rolling stock type.

Here “IC” stands for Intercity and “stop” stands for stoptrain. The
columns in the table should be read as follows: the IC Amf - Dv dwells in
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Amf Apd Dv

Hd

Ost

Zl

Figure 2: The triangle Amf - Dv - Zl

type route relevant stops min. running time freq. train

IC Amf - Dv Apd 24 + 10 1 1a,1b
IC Amf - Zl - 35 2 2a,2b,3a,3b
IC Zl - Dv Ost 14 + 6 1 4a,4b

stop Amf - Zl Hd 28 + 26 1 5a,5b

Table 1: Line plan

Apd with minimum running times of 24 minutes (Amf - Apd) and 10 minutes
(Apd - Dv), respectively. It runs once every half an hour. In the remainder
of this section, we denote this train with number 1a in the direction of Dv
and 1b in the opposite direction.

Stations that are not mentioned in Table 1 are not relevant. That is why
for the stoptrain Amf - Zl only the stop in Hd is listed in the table. The dwell
times for the other stops are included in the minimum running times. The
IC Amf - Zl does not stop in between Amf and Zl. However, to construct the
timetable one should know the time it passes Hd. The minimum running
times from Amf and Zl to Hd are 15 and 20 minutes, respectively.

In the following, we give a number of examples of Constraints (2) for
this instance of PESP. Because the timetable is repeated every 30 minutes,
we take the cycle time T equal to 30 minutes in the model. Furthermore, we
define arrt

s and dept
s as the arrival and departure event of train t at station

s. For the sake of simplicity, we remove the v from the notation and we
denote the arrival and departure time of train t at station s as At

s and Dt
s.

The first type of constraints, which need to be satisfied, are the so-called
running time constraints. Analogous to the general definition, dep1a

Amf is the
departure event related to the departure of train 1 (IC Amf-Dv) in Amf,
and arr1a

Apd is the arrival event of the same train at the subsequent station
Apd. To ensure the required running time of at least 24 minutes on this
trip, we get the following constraint.

24 ≤ A1a
Apd − D1a

Amf + 30 × Qdep1a
Amf

,arr1a
Apd

≤ 29 (3)

The upper bound of 29 has been included in this constraint since other-
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wise the constraint would be void. The next type of constraints that has to
be taken into account, are the so-called headway constraints. This means
that between two consecutive departures and arrivals on the same route,
there should be a minimum headway. For instance, consider the route Amf
- Zl, where the minimum time between the departures of an IC and a stop-
train in Amf is at least 3 minutes. This can be formulated as follows (Note
that this constraint holds for both ICs, but we describe it only for train 2a).

3 ≤ D5a
Amf − D2a

Amf + 30 × Qdep2a
Amf

,dep5a
Amf

≤ 14 (4)

The difference in the departure times should be less than 14 minutes,
because the stoptrain cannot be overtaken by the IC between Amf and Hd.
In other words, to guarantee a time difference of at least 3 minutes in Hd,
the difference in running time should be added to obtain the right difference
in departure time in Amf (30 - (3 + 28 - 15) = 30 - 16 = 14). Similarly,
other headway constraints can be formulated as well. This also holds for
other types of headway constraints, like single track and crossing constraints
at stations. An example of the first type is the single track between Dv and
Ost. The difference in the departure times of the IC Dv-Zl and the opposite
IC Zl-Dv should be at least 2 minutes on both sides of the single track
section. The constraint reads as follows.

2 ≤ D4b
Dv

− A4a
Dv

+ 30 × Qdep4b
Dv

,arr4a
Dv

≤ 16 (5)

The upper bound follows from the fact that the departure of train 4b
from Dv cannot be later than the cycle time minus two times the running
time on the single track line (6 minutes) plus the minimum headway time
in Ost after the arrival of train 4a in Dv.

The next type of constraints that we consider involves the dwell times.
Suppose that for every stop the minimum dwell time is 1 minute. For the
stop in Apd, this can be modeled as follows.

1 ≤ D1a
Apd

− A1a
Apd

+ 30 × Qdep1a
Apd

,arr1a
Apd

≤ 29 (6)

Finally, if a passenger connection between two trains (e.g. on a trip from
Apd to Zl, a transfer time between 2 and 5 minutes is required in Dv) has
to be scheduled, then this can be guaranteed as follows.

2 ≤ D4b
Dv − A1a

Dv + 30 × Qdep4b
Dv

,arr1a
Dv

≤ 5 (7)

Note that in this section only a subset of the relevant constraints is
described. A complete list of all relevant constraints is provided in the
appendix of this paper.
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2.3 Objectives

Any feasible solution to the PESP system of inequalities provides a timetable
satisfying all constraints. This is often an achievement in itself, but one likes
to get a good timetable. Here, good can have many meanings. We will give a
couple of examples of appropriate objectives, which may be conflicting. For
instance, passengers prefer running times that are as short as possible (both
on a single train and short transfer times from one train to another). This
is often conflicting with a robust timetable, which is the topic of Section 3.
The operator prefers short running times as well, since these running times
affect the required amounts of rolling stock and crew. Furthermore, they
like a timetable where short turn-around times for rolling stock and crew are
possible at the end stations of a line. This can conflict with good transfer
possibilities for the passengers.

2.4 Solving PESP

The decision variables Qe,e′ that determine the orders of certain pairs of
events in each cycle make PESP quite hard to solve by standard branch-and-
bound methods: due to the relatively large coefficient T in the Constraints
(2), the Linear Programming relaxations of models based on this formulation
are quite weak. This is a drawback in a branch-and-bound procedure.

Therefore Schrijver and Steenbeek (1994) developed a constraint prop-
agation algorithm for solving PESP. Their algorithm, called CADANS, has
been implemented in the DONS system. This system has become an in-
dispensable tool in the Dutch long term railway timetabling process in the
Netherlands, see Hooghiemstra et al. (1999). Schrijver and Steenbeek (1994)
also developed local optimization techniques to improve a feasible solution
for fixed values of the variables Qe,e′ in (2). Instances with up to 250 trains
(all trains running in one hour of the Dutch timetable) can be solved usually
within reasonable computing times.

Nachtigall and Voget (1996) use PESP to generate cyclic timetables with
minimal passenger waiting times. Odijk (1996) uses PESP at a strategic
level to determine the capacity of the infrastructure around railway stations.
Kroon and Peeters (2003) describe a PESP model with variable running
times. This results in a higher probability of obtaining a feasible solution.

In order to cope with the weak Linear Programming relaxation of models
based on Constraints (2), Nachtigall (1999), Lindner (2000), and Peeters
(2003) also describe a formulation of PESP based on cycle bases. This
formulation does not use the event times as the decision variables, but the
process times. Moreover, this formulation uses the fact that the sum of the
process times along each directed cycle of the so-called constraint graph is a
multiple of the cycle time. This constraint graph contains a node for each
event time e, and an arc from node e to node e′ for each process (e, e′).
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The cycle base formulation is somewhat easier to solve than the standard
PESP formulation based on Constraints (2), because of the lower number
of integer variables and the somewhat better Linear Programming relax-
ation. Several classes of cutting planes are described in the mentioned pa-
pers, which intend to further tighten the Linear Programming relaxation.
Liebchen (2006) gives a complete overview of these results.

2.5 Solution to the example

We conclude this section with the “optimized” timetable of the example
described in Section 2.2. To obtain this timetable, the PESP model has
been implemented and solved with the commercial modeling tool and solver
GAMS. As objective function we have chosen to minimize the total travel
time of the passengers, thereby assuming that each Origin/Destination pair
has the same number of passengers. Note that in the computations the
arrival and departure times in Amf were fixed a priori.

Tables 2 and 3 report the resulting timetable. In the intermediate sta-
tions Apd, Ost and Hd, we only report the departure times. Recall that all
event times are in the interval [0,29] due to the cycle time of 30 minutes.

train 2a 3a 5a 2b 3b 5b

Amf .04 .10 .13 .20 .23 .13
Hd .21 .25 .12 ↓ .04 .07 .15 ↑
Zl .11 .15 .08 .12 .15 .18

Table 2: “Optimized” timetable for Amf - Zl vv.

train 1a 1b

Amf .11 .23
Apd .06 ↓ .29 ↑
Dv .16 .18

train 4a 4b

Dv .18 .15
Ost .25 ↓ .09 ↑
Zl .09 .24

Table 3: “Optimized” timetable for Amf - Dv and Dv - Zl vv.

3 Robust timetabling

As was mentioned earlier, one of the objectives when creating a timetable
is to create a timetable that is as robust as possible. That means that
the timetable can deal as well as possible with relatively small external
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disturbances in the real-time operations. Thus robustness of a timetable
may lead to a high punctuality in the real-time operations.

Robustness of a timetable has one or more of the following effects: (i)
external disturbances can be absorbed to some extent so that they do not
lead to delays, (ii) there are few secondary delays from one train to another,
and (iii) delays disappear quickly, possibly with small measures of traffic
control only. Both (i) and (iii) are a consequence of appropriately placed
time supplements in the timetable, and (ii) is a consequence of appropriately
placed buffer times between consecutive trains at certain locations.

Note that, with small traffic control measures only, a timetable can only
be robust against small disturbances. If only small traffic control measures
are allowed, then it is impossible to create a timetable that is robust against
large disturbances, such as a track breakdown. In such cases, large measures
of traffic control (e.g. re-routing or canceling trains) are inevitable.

This section describes a Stochastic Optimization Model that can be used
to improve the robustness of a given cyclic timetable by modifying the time
supplements and the buffer times in this timetable. As a consequence, the
departure and arrival times of the trains are modified slightly. The model
allocates the time supplements and the buffer times to those spots where
they are as effective as possible for the robustness of the timetable.

The model requires an initial cyclic timetable as input and, based on
that, it constructs an improved one with a higher robustness. In this sec-
tion, we assume that this initial timetable has a cycle time T of one hour.
Therefore, we will talk about hours instead of cycles.

The model contains a timetabling part for determining the improved
timetable, and a simulation part for evaluating the improved timetable. In
order to simulate the timetable, R realizations of the trains in the timetable
are operated subject to a priori selected primary stochastic disturbances.
Here each realization covers H consecutive hours of the timetable. Each
realization can be considered as a single day.

Whereas the PESP model described in Section 2 includes the problem of
determining the cyclic order of the trains on each part of the infrastructure,
it is assumed in this section that these orders are given in the initial timetable
and cannot be modified by the model. This is not a fundamental assumption,
but it helps to keep the computation times within certain limits.

Moreover, it is assumed here that also in the realizations of the timetable
the order of the trains on each part of the infrastructure is identical to that
in the improved timetable (and thus to that in the initial timetable). Finally,
all passenger connections between trains that are defined in the timetable
are maintained in the realizations. In other words, the simulation part of the
model does not include traffic control measures. However, since robustness
deals with small disturbances only, traffic control measures are relatively
unimportant, as was explained earlier.
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3.1 Notation

As was described in Section 2, a timetable consists of a number of processes,
such as running from one station to another or dwelling at a station. A
process that starts with event e and ends with event e′ is denoted by (e, e′).

In the given cyclic timetable, the planned event time of event e is de-
scribed by the parameter Ve. This parameter denotes the offset of the event
time in each hour of the given cyclic timetable. Thus, in the given timetable,
process (e, e′) starts and ends at time instants Ve and Ve′ , respectively. A
process (e, e′) that completely falls within the hour has Ve < Ve′ , and a
process (e, e′) that crosses the end of the hour has Ve > Ve′ .

To describe such situations, we introduce for each process (e, e′) a bi-
nary parameter Ke,e′ that records whether or not the corresponding process
crosses the end of the hour in the initial timetable. In other words, Ke,e′ = 1
if and only if Ve′ < Ve. The model is not allowed to modify the given cyclic
orders of the events. Note that the role of the parameters Ke,e′ is similar to
that of the decision variables Qe,e′ described in Section 2.

In the improved timetable, the planned event time of event e is denoted
by the decision variable ve. The decision variable se,e′ denotes the planned
time supplement for the process time of process (e, e′). In order to make
sure that the end of the hour does not lead to undesirable restrictions for
the planned event times, the planned event times are not restricted to the
time interval [0, T − 1]: they may take any (integer) value.

As was mentioned before, the timetable is evaluated during its generation
by operating R realizations of the timetable subject to a priori selected
independent stochastic disturbances. Each realization covers H consecutive
hours of the cyclic timetable. Hour h + 1 of realization r takes place after
hour h of realization r. The stochastic disturbance of process (e, e′) in hour
h of realization r is denoted by the parameter δe,e′,r,h for all (e, e′) ∈ P ,
r = 1, . . . , R, and h = 1, . . . ,H. The realized event time of event e in hour
h of realization r is denoted by the variable ṽe,r,h. The realized event times
of each realization are assumed to occur on a linear time axis. Thus they
are not restricted to the time interval [0, T − 1].

Mainly the delays of the events corresponding to arrivals of trains are
evaluated, but also other delays can be taken into account. Arrival events
are, by definition, events whose delays are measured. The set of arrival
events is denoted by Ea. The delay of arrival event e in hour h of realization
r is denoted by the decision variable ∆e,r,h. The average weighted delay of
all trains is denoted by ∆. Certain events, such as a departure of a train,
should not start before their corresponding planned event times. Such events
are called departure events. The set of departure events is denoted by Ed.
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3.2 Timetabling part of the model

As was explained in Section 2, most of the constraints to be satisfied in a
cyclic timetabling model can be expressed in terms of the planned event
times and the planned process times. For each process (e, e′) that may
include a variable amount of time supplement se,e′, we get the following.

Me,e′ + se,e′ = ve′ − ve + T × Ke,e′ for all (e, e′) ∈ P (8)

The left-hand side of this equation describes the planned process time of a
process (e, e′) as the sum of the technically minimum process time Me,e′ and
the variable time supplement se,e′ . The right-hand side describes it as the
time difference between the planned completion time and the planned begin
time of process (e, e′), thereby taking into account a possible crossing of the
end of the hour by the term T × Ke,e′ .
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For certain processes also an upper bound Ue,e′ on the planned process
time may be specified. This results in the following constraints.

Me,e′ ≤ ve′ − ve + T × Ke,e′ ≤ Ue,e′ for all (e, e′) ∈ P (9)

Other relevant constraints specify that, at each part of the infrastructure,
the time difference between the last and the first planned event time within
each hour should be less than the cycle time T . To that end, let e be the first

planned event in an hour on a certain part of the infrastructure, and let e′

be the last planned event in an hour on the same part of the infrastructure.
Then the following constraint must be satisfied.

0 ≤ ve′ − ve ≤ T − 1 (10)

Constraints (10) are important since the event times are not restricted to
the time interval [0, T −1], as was explained earlier. These constraints guar-
antee that, after the optimization, all planned event times of the obtained
timetable can be transferred back into the time interval [0, T − 1].

Next, in order to allocate a certain total amount of time supplement
to the process times, Q subsets B1, . . . , BQ of processes are selected. Each
subset Bq of processes is connected with a certain given amount of time
supplement Sq to be allocated to the processes in the set Bq. Then the
following constraints are to be satisfied.

∑

(e,e′)∈Bq

se,e′ ≤ Sq for all q = 1, . . . , Q (11)

For example, such a constraint may indicate that a certain total amount
of running time supplement is to be allocated to the consecutive running
times along the line of a single train. However, a certain amount of time
supplement may also be allocated to a number of lines together.

Note that for modeling the processes that involve pairs of trains, the as-
sumption that the orders of the events should remain unchanged is essential.
Indeed, if the orders of the events would not be known a priori, then addi-
tional binary variables would be required to model these. However, given
the orders of the events, all constraints can be described as in (8) – (10).
Finally, non-negativity constraints have to be imposed on the variables se,e′,
and if the timetable has to be expressed in integer minutes, then integrality
constraints have to be imposed on the planned event times.

3.3 Simulation part of the model

Recall that the simulation part of the model does not include traffic control
decisions. The H hours of each realization are operated one after another.
A process (e, e′) with Ke,e′ = 0 has Ve < Ve′ . Thus it is planned within a
single hour. Therefore, we assume that in the realizations a process (e, e′)
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with Ke,e′ = 0 ends in the same hour as the hour it started in. However,
a process (e, e′) with Ke,e′ = 1 has Ve′ < Ve. Obviously, in the realizations
it is impossible that a process ends earlier than it started. Thus in the
realizations it is assumed that a process (e, e′) with Ke,e′ = 1 ends in a later
hour than the hour it started in. Thus, a process (e, e′) with Ke,e′ = 1 that
starts in hour h of realization r at time instant ṽe,r,h ends in hour h + 1 of
realization r at time instant ṽe′,r,h+1.

This implies that the following constraints link the event times of the
processes to the technically minimum process times and the disturbances.

me,e′ + δe,e′,r,h ≤ ṽe′,r,h+Ke,e′
− ṽe,r,h

for all (e, e′) ∈ P ; r = 1, . . . , R; h = 1, . . . ,H (12)

As a consequence, a delayed train in hour h of realization r may influence
the trains in hour h + 1 of realization r. Note that the realized process
times do not have an upper bound, in contrast with the planned process
times that may have one. Indeed, the realized process times should have
the freedom to be extended basically indefinitely, depending on the sizes of
the disturbances in (12). Note further that (12) is an inequality and not an
equality. Indeed, (12) only deals with process times that are enlarged due
to primary disturbances. However, trains may also pick up secondary delays
from interactions with other trains.

Departure events should not occur too early, and a delay corresponds to
a late arrival event. This results in the following constraints.

ve + h × T ≤ ṽe,r,h for all e ∈ Ed; r = 1, . . . , R; h = 1, . . . ,H (13)

ṽe,r,h − (ve + h × T ) ≤ ∆e,r,h

for all e ∈ Ea; r = 1, . . . , R; h = 1, . . . ,H (14)

Here we use the cyclic character of the timetable, since the planned event
time of event e in hour h of realization r equals ve + h × T .

Import delays of trains that enter the studied area can be modeled by
adding a disturbance term to the left-hand side of (13). Finally, all delay
variables ∆e,r,h are non-negative. Indeed, positive delays of trains should
not be compensated by negative delays of other trains.

As was indicated earlier, the objective is to minimize the weighted total
(or average) delay of the trains. Thus the objective is to

minimize ∆ =
∑

e∈Ea

R∑

r=1

H∑

h=1

we∆e,r,h (15)

Here the weights we indicate the weights of the different delays. Delays
are weighted, since a delay of one train at a certain location may be more
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harmful to the passengers than a delay of another train at another location.
Note that, besides average delays of trains, also several other aspects of the
timetable may be incorporated in the objective function.

3.4 Results and timetable experiment in practice

Computational results obtained with the Stochastic Optimization Model can
be found in Vromans (2005), Kroon et al. (2007a,b). These computational
results show that the punctuality of a railway system can often be improved
by minor modifications in the timetable.

In particular, with the same total amount of time supplements, the op-
timized timetables showed less knock-on delays in the real-time operations,
and once delays of trains did occur, these were absorbed more quickly. In
these papers it is also shown that the guideline of U.I.C. (2000) to allocate
an amount of running time supplement to each trip in the timetable that is
a fixed percentage of the technically minimum running time does not lead
to a timetable that is maximally robust against disturbances.

Moreover, during the weeks 22 to 29 of 2006 (May 28 until July 23),
a timetable generated by the Stochastic Optimization Model was tested in
practice on the so-called “Zaanlijn” in the Netherlands. The “Zaanlijn”
is part of the “Kop van Noord-Holland”: it is the north-south connection
between Den Helder and Amsterdam that is operated by Netherlands Rail-
ways. Note that a modified timetable was also operated on the “Zaanlijn”
during the weeks 30 and 31 of 2006, but this period was not representative
due to several other changes in the timetable at the same time.

The “Zaanlijn” has been notorious for its relatively low punctuality for
several years. That is, the punctuality of the “Zaanlijn” was always sig-
nificantly lower than the overall punctuality over all of the Netherlands.
For this reason, it was decided by the top management of Netherlands Rail-
ways to carry out a number of experiments by temporarily operating slightly
different timetables. To that end, the Stochastic Optimization Model was
applied to the 2006 timetable of the “Zaanlijn”. In the optimization, the to-
tal amount of running time supplement in the timetable remained the same,
and the dwell times were unchanged. As a consequence, the individual travel
times of the passengers changed only marginally.

Table 4 shows the average punctuality of the trains on the “Zaanlijn” as
well as the average overall punctuality in the Netherlands during the weeks
22 to 29 of 2006. This table shows that, during the timetable experiment,
the punctuality figures of the “Zaanlijn” are quite comparable with those
of the overall punctuality. Note that weeks 24, 27 and 29 had a relatively
large number of major disruptions of the railway infrastructure, which had a
negative effect on the punctuality. As a comparison, the average punctuality
of the “Zaanlijn” over the first 13 weeks of 2006 was 79.4%, and the average
overall punctuality in the Netherlands over this period was 86.5%. Thus the
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Table 4: Punctuality of the “Zaanlijn” and the overall punctuality

Week 22 23 24 25

“Zaanlijn” 89.7% 87.5% 80.5% 89.5%

Overall 88.6% 87.9% 82.6% 88.8%

Week 26 27 28 29 Average

“Zaanlijn” 85.3% 74.8% 90.2% 85.8% 85.4%

Overall 86.5% 75.4% 87.3% 81.2% 84.8%

figures in Table 4 indicate that the application of the Stochastic Optimiza-
tion Model had a positive effect on the punctuality of the “Zaanlijn”.

In fact, the effects of the improved timetable were quite similar to what
was expected. That is, at moments that there are only small primary dis-
turbances, the improved timetable is better able to deal with these small
disturbances. At moments that there are large disturbances, the improved
timetable does not give a clear advantage over the original timetable.

4 Routing Trains through Railway Stations

Routing trains through railway stations is an integral part of railway time-
tabling, in particular in dense railway systems. In other words, as long as
a detailed routing of the trains through the railway stations has not been
determined, one does not have a timetable yet.

Railway stations turn out to be the main source of delays in a dense
railway system. Therefore, focusing on a robust routing of trains through
railway stations is highly relevant for improving the punctuality of a railway
system. Note that robustness here again means insensitivity of the railway
processes to relatively small disturbances in the real-time operations.

A significant number of OR publications have been devoted to the train
routing problem in the past decades. Recent developments include Zwan-
eveld et al. (1996, 2001) who develop a model and solution approaches for
finding a feasible routing for a given timetable. Their model is based on the
concept of conflict graphs. This model, called STATIONS, was implemented
in the timetabling tool DONS, see Hooghiemstra et al. (1999). A similar ap-
proach is used by Billionet (2003). In Section 4.4 of this paper this model is
extended to take into account robustness issues as well. Fuchsberger (2007)
describes an alternative multicommodity-flow type of model for solving the
same problem. Caimi et al. (2005) present a heuristic algorithm for finding
delay tolerant routings based on an iterative fixed point method.
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4.1 The routing problem

The route of a train through a station is represented by the list of all infras-
tructure elements passed by the train. In particular, it includes the platform
tracks assigned to the train. Once one knows the acceleration and deceler-
ation capabilities as well as the planned arrival and departure times of a
train, one can determine the exact time intervals when the infrastructure
elements are occupied by the train according to the plan.

One major goal of routing trains through stations is to ensure that no
infrastructure element is occupied by two different trains within a certain
headway time. Robustness of the routing can be captured by reducing the
number of occasions when the time difference of two trains on an infrastruc-
ture element is just higher than the minimum headway time.
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D

r1

r2

(a)

A

B
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D

r1

r
′

2

(b)

Figure 3: Crossing and non-crossing routes

Figure 3a indicates the lay-out of a station and shows the routes of two
trains: train t from C to A and train t′ from B to D. Note that routes r and
r′ share a piece of the infrastructure. Therefore, they cannot be used both if
trains t and t′ pass through the station at the same time. If, however, train t

passes, say, more than 3 minutes earlier than train t′ does, then the routing
is feasible. However, in that case a small delay of train t will hinder train t′.
Figure 3b indicates an alternative routing for trains t and t′. This routing
is considered to be more robust than the previous one because routes r and
r′ are disjoint.

4.2 Platform assignment issues

The goal of routing trains through stations is, besides specifying the ap-
proach routes from and to the platforms, to assign the trains to the plat-
forms themselves. The platform assignment has to satisfy a number of mar-
ket requirements. For example, trains of the same line are to be assigned
to the same platform, while trains departing towards the same destination
are preferred to leave from the same platform. Then passengers can easily
remember the departure platforms of their trains.

Certain pairs of trains have so-called cross-platform connections. These
trains have short stops with overlapping time intervals, and are to be as-
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signed to neighboring platforms. Then passengers can easily change from
one of these trains to the other in that case.

The platforms of large stations may have different preference values when
being assigned to trains. For example, trains with many expected passengers
are preferred to arrive at platforms that can accommodate long enough
trains and that are located closer to the main station facilities.

4.3 Finding a feasible routing

Zwaneveld et al. (1996, 2001) describe a model for routing trains through
a railway station, given the arrival and departure times of the trains that
were determined in an earlier stage. The basic idea is as follows. First the
set of all possible routes is identified for each train. Next, one pre-computes
which train-route pairs are conflicting, since they lead to a violation of the
minimum headway time at one of the infrastructure elements. Then the
model makes sure that none of these conflicting train-route pairs appear
together in a solution. Note that Zwaneveld et al. (1996, 2001) distinguish
inbound routes from outbound routes, but this distinction is neglected here.

Let T be the set of trains. For each train t, let Rt denote the set of
all routes that can be assigned to train t. For train t and route r ∈ Rt,
the parameter pt,r is a penalty for this combination. These penalties may
indicate e.g. the train’s preference for the platforms. It may also reflect how
much of the station’s capacity is blocked by route r: real-time operations
can be easily disrupted if r has a conflict with many other possible routes.

The set C describes the possible conflicts between trains. The elements
of C are 4-tuples (t, r, t′, r′) with t, t′ ∈ T , r ∈ Rt, r′ ∈ Rt′ such that choosing
routes r and r′ for trains t and t′ violates the minimum headway time of one
of the infrastructure elements. Also, the market requirements discussed in
Section 4.2 are easily expressed by additional elements of C. For example,
the 4-tuple (t, r, t′, r′) is an element of C if trains t and t′ should have a cross-
platform connection, but routes r and r′ lead to non-neighboring platforms.

Binary decision variables Xt,r then describe whether route r is selected
for train r. With these notations, the model reads as follows.

minimize
∑

t∈T

∑

r∈Rt

pt,rXt,r (16)

subject to
∑

r∈Rt

Xt,r = 1 for all t ∈ T (17)

Xt,r + Xt′,r′ ≤ 1 for all (t, r, t′, r′) ∈ C (18)

Xt,r ∈ {0, 1} for all t ∈ T, r ∈ Rt (19)

Note that this model is similar to a Node Packing Model. Zwaneveld
et al. (1996, 2001) solve the model by first looking for dominated routing
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possibilities. For example, if routes r and r′ have the same start and end
point, but route r′ is a detour in comparison with route r, then all rout-
ing possibilities involving route r′ are dominated by the routing possibilities
involving route r. Moreover, the authors aggregate constraints (18) into gen-
uine clique-constraints, which usually provide a stronger Linear Program-
ming relaxation. The aggregated model is solved then by CPLEX, usually
within a couple of minutes, even for larger sized stations.

4.4 Robust routing

The model described in Section 4.3 does not deal with any robustness as-
pects. Therefore, the model is extended here by maximizing the time be-
tween crossing movements of trains. In this way, the probability of knock-on
delays is minimized. This fits with the robustness idea that consecutive uti-
lizations of a single resource by different users should be spread in time.

Let qt,r,t′,r′ be a non-negative penalty value for each pair of trains t, t′ and
for all routes r ∈ Rt and r′ ∈ Rt′ . These penalty values express the impact
of the assignment of routes r and r′ to trains t and t′, respectively, on the
robustness of the timetable. The penalty is zero if the simultaneous choice
of routes r and r′ for trains t and t′, respectively, does not jeopardize the
robustness. This happens if the routes are disjoint or if the time difference
between trains t and t′ is sufficiently large.

Then the robustness aspects are incorporated in the model (16) – (19)
by replacing (16) by the following quadratic objective function.

minimize
∑

t∈T

∑

r∈Rt

pt,rXt,r +
∑

t∈T

∑

r∈Rt

∑

t′∈T

∑

r′∈Rt′

qt,r,t′,r′Xt,rXt′,r′ (20)

In this extended model, all penalties qt,r,t′,r′ for selected pairs (t, r) and
(t′, r′) are accumulated in the objective function. Indeed, Xt,rXt′,r′ = 1 if
and only if Xt,r = 1 and Xt′,r′ = 1. The optimal solution is a feasible routing
which minimizes the sum of the involved penalties, thereby also taking into
account the robustness aspect.

4.4.1 Linearization of the robust routing model

The quadratic integer programming model described in the previous section
is too difficult to treat computationally. For example, the non-convex ob-
jective function rules out efficient convex optimization methods. However,
with an appropriate linearization of the model, one may use sophisticated
mixed integer linear programming algorithms.

An easy linearization method is to introduce non-negative continuous
decision variables Yt,r,t′,r′ , to replace the product Xt,rXt′,r′ by Yt,r,t′,r′ in the
objective function (20), and to impose the following additional constraints.

Xt,r + Xt′,r′ ≤ 1 + Yt,r,t′,r′ (21)
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This is indeed a sound method, since in any optimal solution the value
Yt,r,t′,r′ equals the product of Xt,r and Xt′,r′ , as one easily checks. A draw-
back of this method is, however, that it leads to a weak Linear Program-
ming relaxation. Therefore, other linearization methods will have to be used
for solving practical instances. However, a discussion of other linearization
methods falls out of the scope of this paper.

4.4.2 Aggregated routes

It turns out that the number of possible routes through a reasonably big
station is quite large, limiting the possibility of applying the routing model
for real-life problems. One way to deal with this is to work with a restricted
set of allowed routes. This way is followed by Zwaneveld et al. (1996, 2001).

However, here we suggest another possibility. Instead of using the fully
detailed routes through the station, we use the notion of aggregated routes,
as indicated in Figure 4. The bold lines in Figure 4a indicate the detailed
routes of two trains. An aggregated route arises by keeping the platform
and the destination (A, B or C in the figure) of a route fixed, and by
neglecting all intermediate infrastructure elements. The aggregated routes
are represented by the bold arrows in Figure 4b.

Conflicts between aggregated routes are defined as follows. Let the plat-
forms and the destinations be indexed from top to bottom. Then two ag-
gregated routes are conflicting if the route from a lower indexed platform
departs to a higher indexed destination, i.e. if the arrows in Figure 4b cross
each other.

A

B

C

(a)

A

B

C

(b)

Figure 4: Detailed and aggregated routes

Subsequently, we solve the robust routing problem with these aggregated
routes. The solution gives an indication of the detailed routing, which can
be found afterwards by existing “non-robust” routing algorithms by fixing
the platform assignment and looking for just a feasible routing.

Whenever the aggregated routes cross one another, the corresponding
routes in any feasible detailed routing cross one another, too. However, it
is not difficult to find examples where the opposite implication does not
hold. Therefore, the robust routing model with the aggregated routes yields
a lower bound on the penalty of any feasible detailed routing.
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Having split the robust detailed routing problem into two parts (namely
into robust aggregated routing and feasible detailed routing), there is a risk
that a robust aggregated routing does not give rise to any feasible detailed
routing. In such cases, it is vital to define more complex aggregated routes
by taking key infrastructure elements (such as fly-overs, long parallel tracks
without switches, etc.) into account. This enhances the probability of indeed
finding a feasible detailed routing.

4.4.3 Computational experience and conclusions

A linearized formulation of the robust routing model (17) – (20) was im-
plemented for the major Dutch railway node Utrecht Central Station in the
Netherlands. Since the cycle time of the periodic timetable of Netherlands
Railways is one hour, it suffices to compute the routes for a single hour only.
In order to reduce the computation times, the aggregated routes that were
described in Section 4.4.2 were used.

Utrecht Central Station is a busy station with about 55 trains passing
every hour, bound to 5 destinations. The passenger trains can arrive at 14
platforms; freight trains may use three additional dedicated tracks to pass
through the station. The aggregated routes regard the complex system of
fly-overs at the northern side of the station.

The mixed integer program was solved by CPLEX 9.0 to optimality
within an hour on a standard PC. The Linear Programming bounds of the
first few nodes in the Branch-and-Bound tree are very weak. Therefore it is
advantageous to instruct CPLEX to start the solution process with intensive
branching, and to look for feasible solutions later.

The test implementation computed the aggregated routes only. A further
manual step indicated that the model captured the key elements of the
infrastructure conflicts in an adequate way, since the aggregated routes could
be extended to a feasible detailed routing through the station.

The results showed that a manually planned routing usually can be
improved slightly. But more importantly, the model allows a direct and
quick evaluation of the effect of certain market requirements, such as cross-
platform connections, on the robustness of the routing. Cross-platform con-
nections have a negative effect on the robustness of the routing. Indeed,
whereas the robustness objective tries to separate trains from each other in
space and time, cross-platform connections do the opposite.

The model can also show the usefulness of minor changes of the arrival
and departure times. In fact, shifting the arrival time of a single cargo train
at Utrecht Central Station by one minute allows to decrease the optimal
objective value by about 50%. In further research, detailed simulations of
the processes inside the stations are to be carried out to investigate how well
the objective function (20) reflects the robustness of the obtained routings.
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5 Final remarks

An advantage of the application of optimization models is that it may lead
to better solutions in a shorter throughput time. Better solutions may be
the result of the fact that the application of optimization models enables one
to study several solutions instead of just a single one. For example, one may
compare the most cost-efficient solution with the solution that provides a
maximum service to the passengers. In this way, one may explicitly study the
trade-off between costs and service. Moreover, in several practical cases, the
application of optimization models lead to improvements in several criteria
at the same time. The latter results from the fact that manual planning
methods are usually heuristic approaches.

Optimization models play an increasing role in the planning processes of
railway systems. For example, the timetable of the Berlin metro that has
been in operation since December 2005 was created completely with the help
of optimization techniques based on the PESP model that was described in
Section 2. Further details on this case can be found in Liebchen (2006).

Similarly, within Netherlands Railways the models described in this pa-
per have developed into indispensable tools in the railway planning process.
As was mentioned earlier, these models have been implemented in the auto-
matic timetabling system DONS (=Designer Of Network Schedules). This
system has been used extensively in the development of the Dutch railway
timetable that has been in operation since December 2006. Also the simu-
lation model SIMONE (SImulation MOdel for NEtworks) was used in this
development process, see Middelkoop and Bouwman (2000). Whereas in
earlier years new timetables were usually created in an incremental way by
modifying an existing timetable, the current Dutch timetable was generated
completely from scratch with the help of the described models. Also the
available models for rolling stock circulation and crew scheduling played an
indispensable role in this planning process. More details on these models
can be found in Fioole et al. (2006) and Abbink et al. (2005).

One of the main objectives in the development of the current Dutch
timetable was to improve its robustness, which should translate into in-
creased punctuality figures in the operations. This was aimed at by allocat-
ing time supplements and buffer times in a different way, and by reducing
the number of crossing train movements in station areas as much as possible.
Although at the moment of writing (May 2007) the time that the current
timetable has been in operation is still too short for definitive conclusions,
a certain upward trend in the punctuality figures can be discovered.

A major challenge for further research is to find a better integration
between the models developed for solving the timetabling step described
in Sections 2 and 3 and the models developed for routing trains through
railway stations described in Section 4. A better integration between these
models will allow one to take into account more details of the routes through
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the stations already in the timetabling step. This may be beneficial for the
quality of the finally obtained timetable, in particular for its robustness.

Moreover, until now, the planning process of a railway system has been
the traditional application area for optimization models. Here one may apply
large optimization models that can be solved to near optimality without
caring too much about the computation time. However, decision support
for re-scheduling in case of a disruption in the real-time operations may be
even more relevant for increasing the quality of a railway system.

In particular, after a disruption of the railway system has occurred, de-
cision support is needed on which trains to cancel or to re-route in order
to uphold as much as possible of the service for the passengers, or on how
to adjust the rolling stock circulations and the crew schedules. Disruption
management is a re-active way of dealing with disruptions. It requires a fun-
damentally different focus of the involved optimization models: now a short
computation time is essential, and near optimality of the obtained solutions
is less relevant, but not at any price. This different focus requires still a lot
of research, which poses an enormous challenge for the research community.
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