404 research outputs found

    A direct procedure for interpolation on a structured curvilinear two-dimensional grid

    Get PDF
    A direct procedure is presented for locally bicubic interpolation on a structured, curvilinear, two-dimensional grid. The physical (Cartesian) space is transformed to a computational space in which the grid is uniform and rectangular by a generalized curvilinear coordinate transformation. Required partial derivative information is obtained by finite differences in the computational space. The partial derivatives in physical space are determined by repeated application of the chain rule for partial differentiation. A bilinear transformation is used to analytically transform the individual quadrilateral cells in physical space into unit squares. The interpolation is performed within each unit square using a piecewise bicubic spline

    Representation and application of spline-based finite elements

    Get PDF
    Isogeometric analysis, as a generalization of the finite element method, employs spline methods to achieve the same representation for both geometric modeling and analysis purpose. Being one of possible tool in application to the isogeometric analysis, blending techniques provide strict locality and smoothness between elements. Motivated by these features, this thesis is devoted to the design and implementation of this alternative type of finite elements. This thesis combines topics in geometry, computer science and engineering. The research is mainly focused on the algorithmic aspects of the usage of the spline-based finite elements in the context of developing generalized methods for solving different model problems. The ability for conversion between different representations is significant for the modeling purpose. Methods for conversion between local and global representations are presented

    Polynomial Meshes: Computation and Approximation

    Get PDF
    We present the software package WAM, written in Matlab, that generates Weakly Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d polynomial least squares and interpolation on compact sets with various geometries. Possible applications range from data fitting to high-order methods for PDEs

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Cubature rules based on bivariate spline quasi-interpolation for weakly singular integrals

    Get PDF
    In this paper we present a new class of cubature rules with the aim of accurately integrating weakly singular double integrals. In particular we focus on those integrals coming from the discretization of Boundary Integral Equations for 3D Laplace boundary value problems, using a collocation method within the Isogeometric Analysis paradigm. In such setting the regular part of the integrand can be defined as the product of a tensor product B-spline and a general function. The rules are derived by using first the spline quasi-interpolation approach to approximate such function and then the extension of a well known algorithm for spline product to the bivariate setting. In this way efficiency is ensured, since the locality of any spline quasi-interpolation scheme is combined with the capability of an ad--hoc treatment of the B-spline factor. The numerical integration is performed on the whole support of the B-spline factor by exploiting inter-element continuity of the integrand

    Developments and trends in three-dimensional mesh generation

    Get PDF
    An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation
    corecore