152 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Metaheuristic Optimization Techniques for Articulated Human Tracking

    Get PDF
    Four adaptive metaheuristic optimization algorithms are proposed and demonstrated: Adaptive Parameter Particle Swarm Optimization (AP-PSO), Modified Artificial Bat (MAB), Differential Mutated Artificial Immune System (DM-AIS) and hybrid Particle Swarm Accelerated Artificial Immune System (PSO-AIS). The algorithms adapt their search parameters on the basis of the fitness of obtained solutions such that a good fitness value favors local search, while a poor fitness value favors global search. This efficient feedback of the solution quality, imparts excellent global and local search characteristic to the proposed algorithms. The algorithms are tested on the challenging Articulated Human Tracking (AHT) problem whose objective is to infer human pose, expressed in terms of joint angles, from a continuous video stream. The Particle Filter (PF) algorithms, widely applied in generative model based AHT, suffer from the 'curse of dimensionality' and 'degeneracy' challenges. The four proposed algorithms show stable performance throughout the course of numerical experiments. DM-AIS performs best among the proposed algorithms followed in order by PSO-AIS, AP-PSO, and MBA in terms of Most Appropriate Pose (MAP) tracking error. The MAP tracking error of the proposed algorithms is compared with four heuristic approaches: generic PF, Annealed Particle Filter (APF), Partitioned Sampled Annealed Particle Filter (PSAPF) and Hierarchical Particle Swarm Optimization (HPSO). They are found to outperform generic PF with a confidence level of 95%, PSAPF and HPSO with a confidence level of 85%. While DM-AIS and PSO-AIS outperform APF with a confidence level of 80%. Further, it is noted that the proposed algorithms outperform PSAPF and HPSO using a significantly lower number of function evaluations, 2500 versus 7200. The proposed algorithms demonstrate reduced particle requirements, hence improving computational efficiency and helping to alleviate the 'curse of dimensionality'. The adaptive nature of the algorithms is found to guide the whole swarm towards the optimal solution by sharing information and exploring a wider solution space which resolves the 'degeneracy' challenge. Furthermore, the decentralized structure of the algorithms renders them insensitive to accumulation of error and allows them to recover from catastrophic failures due to loss of image data, sudden change in motion pattern or discrete instances of algorithmic failure. The performance enhancements demonstrated by the proposed algorithms, attributed to their balanced local and global search capabilities, makes real-time AHT applications feasible. Finally, the utility of the proposed algorithms in low-dimensional system identification problems as well as high-dimensional AHT problems demonstrates their applicability in various problem domains

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Optimization of Remote Sensing Image Attributes to Improve Classification Accuracy

    Get PDF
    Remote sensing technologies provide very important big data to various science areas such as risk identification, damage detection and prevention studies. However, the classification processes used to create thematic maps to interpret this data can be ineffective due to the wide range of properties that these images provide. At this point, there arises a requirement to optimize the data. The first objective of this study is to evaluate the performance of the Bat Search Algorithm which has not previously been used for improving the classification accuracy of remotely sensed images by optimizing attributes. The second objective is to compare the performance of the Genetic Algorithm, Bat Search Algorithm, Cuckoo Search Algorithm and Particle Swarm Optimization Algorithm, which are used in many areas of the literature for the optimization of the attributes of remotely sensed images. For these purposes, an image from the Landsat 8 satellite is used. The performance of the algorithms is compared by classifying the image using the K-Means method. The analysis shows a 10-22% increase in overall accuracy with the addition of attribute optimization

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Global convergence analysis of the bat algorithm using a markovian framework and dynamical system theory

    Get PDF
    The bat algorithm (BA) has been shown to be effective to solve a wider range of optimization problems. However, there is not much theoretical analysis concerning its convergence and stability. In order to prove the convergence of the bat algorithm, we have built a Markov model for the algorithm and proved that the state sequence of the bat population forms a finite homogeneous Markov chain, satisfying the global convergence criteria. Then, we prove that the bat algorithm can have global convergence. In addition, in order to enhance the convergence performance of the algorithm and to identify the possible effect of parameter settings on convergence, we have designed an updated model in terms of a dynamic matrix. Subsequently, we have used the stability theory of discrete-time dynamical systems to obtain the stable parameter ranges for the algorithm. Furthermore, we use some benchmark functions to demonstrate that BA can indeed achieve global optimality efficiently for these functions

    An application of modified adaptive bats sonar algorithm (MABSA) on fuzzy logic controller for dc motor accuracy

    Get PDF
    Controllers are mostly used to improve the control system performance. The works related to controllers attract researchers since the controller can be applied to solve many industrial problems involving speed and position. Fuzzy logic controller (FLC) gains popularity since it is widely used in industrial application. However, the FLC structure is still lacking in terms of the accuracy and time response. Although there are optimization technique used to obtain both accuracy and time response, it is still lacking. Therefore, this research presents works on the FLC system which is the fuzzy inference system that will be optimized by the modified adaptive bats sonar algorithm (MABSA) for the DC servo motor position control. The MABSA will be optimized with the range of the membership input in the FLC. The research aims are to achieve accuracy while minimizing the time response of the DC servo motor. This is done by designing the FLC using the Matlab toolbox. After the FLC is designed completely, the Simulink block diagram for the DC servo motor and FLC are built to see the performance of the controller. The range of the membership function for inputs and outputs will be optimized by the MABSA to get the best positional values. The performance of the developed FLC with the optimized MABSA is verified through the simulation and robustness tests with the system that did not use the FLC and also the system without MABSA. It was demonstrated from the study that the proposed FLC with optimization of MABSA algorithm was able to yield an improvement of 3.8% with respect to the rise time in comparison to other control schemes evaluated. When compared with PSO algorithm, proposed FLC optimized by MABSA showed improvement by 12.5% in rise time and 10% in settling time. PSO-FLC also give 0.6% steady state error compared to the MABSA-FLC. In conclusion, the results validate the better performance in terms of rise time and settling time of the developed FLC that has been optimized by the MABSA

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method
    • …
    corecore