
Global Convergence Analysis of the Bat Algorithm Using a
Markovian Framework and Dynamical System Theory

Si Chen, Guo-Hua Peng

College of Natural and Applied Sciences, Northwestern Polytechnical University,
127 West Youyi Road, Beilin District, Xi’an, Shaanxi, 710072, P. R. China.

(emails: chen1991si@126.com, penggh@nwpu.edu.cn)

Xing-Shi He

College of Science, Xi’an Polytechnic University,
No. 19 Jinhua South Road, Xi’an, Shaanxi, 710048, P. R. China.

(email: xsh1002@126.com)

Xin-She Yang∗

School of Science and Technology, Middlesex University,
The Burroughs, London NW4 4BT, United Kingdom

(email: x.yang@mdx.ac.uk)

Abstract

Citation detail:

Si Chen, Guo-Hua Peng, Xing-Shi He, Xin-She Yang, Global convergence analysis of
the bat algorithm using a markovian framework and dynamical system theory, Expert
Systems with Applications, vol. 114, 173-182 (2018).

Accepted: 16 July 2018, Published online at https://doi.org/10.1016/j.eswa.2018.07.036

The bat algorithm (BA) has been shown to be effective to solve a wider range of
optimization problems. However, there is not much theoretical analysis concerning its
convergence and stability. In order to prove the convergence of the bat algorithm, we
have built a Markov model for the algorithm and proved that the state sequence of the
bat population forms a finite homogeneous Markov chain, satisfying the global con-
vergence criteria. Then, we prove that the bat algorithm can have global convergence.
In addition, in order to enhance the convergence performance of the algorithm and to
identify the possible effect of parameter settings on convergence, we have designed an
updated model in terms of a dynamic matrix. Subsequently, we have used the stability
theory of discrete-time dynamical systems to obtain the stable parameter ranges for the
algorithm. Furthermore, we use some benchmark functions to demonstrate that BA can
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indeed achieve global optimality efficiently for these functions.

Keywords: Bat algorithm, Global convergence, Markov chain theory, Dynamical
system theory, Parameters selection, Optimization, Swarm intelligence.

1. Introduction

The developments of computational intelligence and swarm intelligence have shown
that nature-inspired algorithms can be effective (Engelbrecht, 2007; Yang, 2014; Jain
et al., 2008; Akerkar and Sajja, 2009), and thus become widely used for various op-
timization problems (Kennedy and Eberharht, 1995; Yang, 2014; Deb et al. 2002;
Leung and Wang 2001; Koziel and Yang, 2011). However, there is still a significant
gap between theory and practice. Though the applications of algorithms are very suc-
cessful, the relevant fundamental theory lacks behind. For example, the bat algorithm
(BA), developed by Xin-She Yang in 2010 (Yang, 2010; Yang, 2011), has been shown
to be very efficient in practice, but there is no mathematical theory for analyzing this
algorithm. In fact, it lacks a general framework for systematical analysis of all swarm
intelligence based algorithms. Though we know these algorithms can work well in
practice, we rarely understand why they work so well and under what conditions or
parameter ranges. These key challenges require further in-depth theoretical studies.

An encouraging trend is that researchers have realized the importance of theoretical
analysis of algorithms and new studies start to emerge in recent years. Some analyses
of nature-inspired algorithms used a dynamical system approach. For example, the
stability analysis of particle swarm optimization (PSO) by Clerc and Kennedy (2002)
generalized the parameters of the standard PSO, developed by Kennedy and Eberhardt
(1995). In this work, Clerc and Kennedy (2002) analyzed the trajectory of a particle in
the discrete-time space and then discussed a set of coefficients controlling the system’s
convergence tendencies. They also identified a critical bifurcation point, leading to
different stable and oscillatory characteristics. In addition, Jiang et al. (2007) consid-
ered each particle’s position in PSO as a stochastic vector using the standard stochastic
process theory, and they derived the stochastic convergent conditions for PSO. On the
other hand, Ren et al. (2012) used a Markov chain approach to study the convergence
of PSO by first identifying the convergence conditions and then constructing a suitable
Markov chain.

For the analysis of the bat algorithm, some recent preliminary results have been
obtained. For example, Sheng et al. (2013) analyzed the convergence of a simplified
variant of the BA according to the global convergence criterion of stochastic optimiza-
tion algorithms, but there is no parametric analysis in their study. In addition, Li et
al. defined the two modes of speeds and positions updating for the bat algorithm, fol-
lowed by the analysis of the two modes defined by the characteristic equation (Li et
al., 2013), but they have not considered the frequency variation in the bat algorithm.
Huang et al. (2013) constructed a class of globally convergent BA variants to prove
their global convergence, while applying it to solve large-scale optimization problems.
But the version by Huang et al. was a modified variant, which is no longer the standard
bat algorithm. To some extent, all the above studies have focused on the modified vari-
ants of the bat algorithm with further assumptions so as to simplify their mathematical
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analyses. Therefore, there still lacks rigorous results about the standard bat algorithm,
concerning both its convergence and stability.

Therefore, the main purpose of this paper to prove the convergence of the standard
bat algorithm with new insight on parameter ranges and stability. The contribution
of this paper is twofold: the convergence of the BA is analyzed using a Markovian
framework in terms of finite-state, discrete-time Markov chains, while the stability and
parameter ranges are obtained by the theory of dynamical systems. The paper is thus
organized as follows. We will first introduce the basics of the BA in Section 2, followed
by a brief review of the related work on its application and current theoretical analy-
ses. Then, we introduce the global convergence criteria of random search algorithms in
Section 3, and we will subsequently build a proper Markov model for the BA, followed
by the main steps of proof of convergence in the same section. In Section 4, we use a
dynamical system approach to study parameter variations and stability conditions for
the bat algorithm. After theoretical analyses, we carry out some numerical experiments
in Section 5 using a subset of 15 benchmark functions with diverse modality and prop-
erties to study the convergence behaviour of the algorithm during iterations. Finally,
we draw some brief conclusions in Section 6.

2. Bat Algorithm and its Applications

2.1. Standard Bat Algorithm
The standard bat algorithm was developed by Yang in 2010 to solve continuous

optimization problems (Yang, 2010). It has been extended to multiobjective optimiza-
tion with many different applications (Yang, 2011; Gandomi et al., 2013; Natarajan
et al., 2012). The BA, inspired by the echolocation behavior of microbat species, is
a population-based algorithm using the frequency tuning with varying pulse emission
rates and loudness so as to mimic the main nature of bats’ echolocation when hunting
for prey. The intention of BA is to act as a global optimizer using sufficient random-
ization and auto-switching between local and global moves, controlled by the actual
emission rates and loudness of individuals (Yang, 2014).

Based on the original bat algorithm (Yang, 2010), each bat has a position vector
xt

i and a flying velocity vt
i at iteration t in a D-dimensional search space. Their main

algorithmic equations can be written as follows:

wi = wmin + (wmax − wmin)β, (1)
vt+1

i = ωvt
i + (p − xt

i)wi, (2)
xt+1

i = xt
i + vt+1

i , (3)

where wi is the acoustic frequency of the i-th bat in the range of [wmin,wmax]. Here, ω
indicates the inertia weight in the update of velocity, and in the standard bat algorithm
ω = 1 was used. For generality, we can use ω ∈ (0, 1]. In addition, β ∈ [0, 1] is a
uniformly distributed random variable and p corresponds to the current best solution
found by all the bats.

In a local search move, a new solution will be generated randomly around the old
solution, often the current best solution. That is

Xnew = Xold + εAt, (4)
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where Xold is a solution chosen from the current best solution set, At is the mean of
the bats’ loudness at t, and ε is a random number in [−1, 1]. The loudness Ai and the
velocity ri of the bats can be updated as follows:

At+1
i = αAt

i, rt+1
i = r0

i [1 − exp(−γt)], (5)

where α and γ are constants (0 < α < 1, 0 < γ).
For the convenience of the discussions below, we can rewrite the above equations

[Eqs. (1)–(3)] in the following form:

vt+1
i = ωvt

i + (p − xt
i)wi, (6)

which is valid for each individual bat. The position vectors can be updated iteratively
as

xt+1
i = xt

i + vt+1
i = (1 − wi)xt

i + ωvt
i + pwi (7)

The stopping condition is usually the maximum number of iterations, or when the
optimal value obtained by the population is sufficiently close to the known minimum
fitness value.

2.2. Related Work
Since the appearance of the bat algorithm in 2010, it has been applied to solve a

wide range of optimization problems (Yang and Gandomi 2012; Akhtar et al. 2012;
Khan et al. 2011; Tsai et al. 2011; Bora et al. 2012; Ramesh et al. 2013). In addition,
Mishra et al. (2012) used the bat algorithm for micro-array data classification, while
Bazier et al. (2014) used the bat algorithm to solve economic load dispatch problems.
The diverse applications were initially reviewed by Yang and He (2013), then a survey
of the state-of-the-art developments was carried out by Chawla and Duhan (2015).
There are more recent studies in this active area of research. Here, we will briefly
highlight some of most recent developments.

Some new variants have been also been developed. For example, Kang et al. (2015)
used a binary bat algorithm for fault diagnosis, while Jaddi et al. (2015) applied a mod-
ified bat algorithm to neural networks. Niknam et al. (2014) used the self-adaptive bat
algorithm to solve unit commitment problems. Gandomi and Yang (2014) developed a
chaotic bat algorithm to solve global numerical optimization problems, while Adarsh
et al. (2016) used the chaotic bat algorithm to solve economic dispatch problems.
More recently, Osaba et al. (2017) developed an improved discrete bat algorithm to
solve symmetric and asymmetric travelling salesman problems. Banati and Chaud-
hary (2017) developed a multi-modal bat algorithm with improved search. Chakri et
al. (2017) developed a new directional bat algorithm by incorporating the echolocation
directions so as to enhance the search efficiency for continuous optimization problems.
Alsalibi et al. (2017) developed a membrane-inspired bat algorithm to recognize faces
in unconstrained scenarios. Furthermore, Gan et al. (2018) developed a new variant
of the bat algorithm by using stochastic inertia weight and iterative local search. Al-
Betar and Awadlallah (2018) developed an island bat algorithm for solving function
optimization and economic load dispatch problems.
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Another area of the state-of-the-art developments is the hardware implementation
and specialization. For example, the hardware implementation of specialized robotic
swarm has been carried out by Suárez et al. (2018). Ameur and Sakly (2017) provided
an FPGA-based hardware implementation of the bat algorithm to make it suitable for
solving large scale computing capabilities.

Even with the most recent developments concerning new variants and new applica-
tions, theoretical analysis still lags behind. Rigourous mathematical analysis is highly
needed. This paper is such an attempt to analyze the bat algorithm using the Markov
chain theory and dynamical system theory.

3. Global Convergence Analysis

3.1. Recent Studies using Markov chains

The analysis of algorithms can be carried out from different perspectives. Different
methods can describe different properties and thus can gain different insight into the
studied algorithms (Yang 2014). For the convergence analysis, the theory of Markov
chains has been applied to the standard particle swarm optimization (Pan et al. 2013;
Xu and Yu 2018). Pan et al. (2013) used a Markov chain approach to analyze PSO by
defining the state sequence of a particle and swarm state sequences, and then proved
that the standard PSO algorithm could converge with a certain probability. They also
explain the effect of the inertia weight and acceleration factor on premature conver-
gence. Xu and Yu (2018) used a supermartingale approach to analyze the evolutionary
sequences of a particle swarm with the best fitness values, and they concluded that the
standard PSO could reach the global optimum in probability.

Furthermore, a Markovian framework has been applied to study the convergence
behaviour of simulated annealing and its variants. Meise (1998) considered a parallel
simulated annealing algorithm as multiple independent Markov chains using different
selection strategies, and concluded that the selection strategies by best-wins did not in
general converge to the set of global optima. Gerber and Bornn (2018) provided a set
of conditions which could ensure the almost sure convergence of a class of simulated
annealing algorithms based on a time-varying Markov kernel. For the classical differ-
ential evolution (DE) algorithm, Hu et al. (2014) showed that DE could not conver-
gence to the global optimal set with probability one. Then, they modified the algorithm
by introducing two additional operators to increase the diversity of the population, and
then proved its convergence. For the cuckoo search (CS) algorithm, He et al. (2018)
used a discrete-time Markov chain approach and introduced a simplified CS algorithm
by focusing on the main updating equation in CS. They then showed that the simplified
CS algorithm could converge with probability one.

However, there is no analysis of the convergence of the bat algorithm (BA). There-
fore, this work is new in the sense that we analyze the convergence of the BA rigorously
for the first time. In addition, the ways of constructing Markov chains are different, and
consequently the transition probability for the bat algorithm is very different. A key dif-
ference of our present work is that we use a full version of the bat algorithm (BA) and
construct Markov chains based on the updating equations of the BA.
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In the rest of this section, we will first state the conditions for global convergence,
followed by the construction of proper Markov chains from the bat algorithm. Then,
we will prove the convergence of the bat algorithm.

3.2. Global Convergence Criteria
Depending on the actual algorithms and the framework of theoretical analysis, the

convergence of an algorithm can be tested by certain criteria. One of the commonly
used criteria is based on the two conditions outlined by Solis and Wets (1981).

Let 〈H, f 〉 be the optimization problem with a fitness function and a feasible solu-
tion space H. A stochastic optimization S iterates for t iterations and the new solution
xt+1 can be obtained from solution xt by

xt+1 = S (xt, ζ), (8)

where ζ is the solution set found by the algorithm S during the iterative process.
Let us define the bounds of the search on the Lebesgue metric space as the infinum

θ = inf{k : v[x ∈ H| f (x) < k] > 0}, (9)

where v[X] is the measure on set X, which means that there are non-empty subsets in the
search space and the fitness value corresponding to the element in the non-empty subset
can be infinitely close to θ. Thus, the neighbourhood or region of optimal solutions can
be defined as

Rε,M =

{x ∈ H | f (x) < θ + ε}, −∞ < θ < ∞,

{x ∈ H | f (x) < M}, θ = −∞,
(10)

where ε > 0 and M < 0. If a stochastic algorithm finds a point in Rε,M , then we can
consider that the algorithm finds the global optimal solution or an approximation to the
global optimal solution.

In general, two conditions are necessary to guarantee the global optimality is achiev-
able during iterations:

Condition 1: An optimization algorithm S should guarantee that the sequence
{ f (xt)}∞t=0 is decreasing. Also, there is ζ ∈ H such that

f (S (x, ζ)) ≤ f (ζ). (11)

Condition 2: For all subsets ∀B ∈ H subject to v(B) > 0, we have

∞∏
t=0

(1 − ut(B)) = 0, (12)

where ut(B) represents the probability measure of the t-th iterative result of the random
algorithm S on B.

Mathematically speaking, a stochastic optimization algorithm that can have a guar-
anteed global convergence is based on the following lemma or criterion (Solis and
Wets, 1981; Jiang et al., 2007; Villobos-Arias, 2005).
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Criterion 1. For f is measurable and the feasible solution space H is a measurable
subset on Rn, if the stochastic algorithm S satisfies both Condition 1 and Condition 2,
sequence {xt}∞t=0 is generated by the algorithm S will lead to

lim
t→∞

P(xt ∈ Rε,M) = 1, (13)

where P(xt ∈ Rε,M) represents the probability that the best solution obtained by algo-
rithm S after t iterations belongs to Rε,M .

In other words, the above criterion means that the algorithm will converge with
a probability one as the number of iterations is sufficiently large, which equivalently
means that the algorithm can have almost guaranteed global convergence.

3.3. Global Convergence Analysis of the Bat Algorithm

In order to prove the convergence of the bat algorithm, we will introduce some
preliminaries. If the position of each bat individual in the BA is considered as a state x,
then the process of states xt with pseudotime or iteration counter t can be considered as
a random process. For such a stochastic process, the Markov chain can be an effective
tool to analyze its convergence in a probability sense.

3.3.1. Preliminaries
Let us first define the state, state space and other relevant concepts that will be used

later for proving the global convergence of the BA.
The states of bats and the state space can be defined as follows:

Definition 1. The position of a bat individual x with velocity v and historical best
position p forms its state or status, denoted by a = (x, v, p), where x, p ∈ H.

In addition, we have f (p) ≤ f (x) and v ∈ [vmin, vmax]. All possible states of all bats
form a state space for bats, denoted by

A =
{
a = (x, v, p)|x, p ∈ H, f (p) ≤ f (x), v ∈ [vmin, vmax]

}
. (14)

Furthermore, the states and state space of the bats population or group can be de-
fined as follows:

Definition 2. The set of all N bat individuals is called the bat group, and the states of
this bat group can be denoted by b = (a1, a2, . . . , aN). The collection of all possible bat
group status or states forms the bat group status space, denoted by

B =
{
b = (a1, a2, . . . , aN), ai ∈ A (1 ≤ i ≤ N)

}
. (15)

From the above definitions, it is obvious that the definition of bat group status B
already contains the best position (or the best solution vector) in the group history.
Furthermore, the state transition for the positions of bats representing solutions can be
defined as follows:
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For ∀a1 = (x1, v1, p1) ∈ A and ∀a2 = (x2, v2, p2) ∈ A during the iterations of the
BA, the state transition from a1 to a2 can be denoted by

FA(a1) = a2, (16)

where FA is the transition function from a1 to a2 in the state space A.
Similarly, for ∀bi = (ai,1, ai,2, . . . , ai,N) ∈ H and ∀b j = (a j,1, a j,2, . . . , a j,N) ∈ H, the

iterative process of the BA in essence transfers the bat group states from bi to b j. That
is

Fb(bi) = b j. (17)

3.3.2. Markov Chain Model for BA
In order to prove the convergence using a Markov chain framework, we have to

build a Markov chain model for the bat algorithm. Let us first start with a theorem:

Theorem 1. In the BA, the bat status a1 is essentially shifted in one step to the status
a2, and its transition probability is the joint probability

P(FA(a1) = a2) = P(x1 → x2)P(v1 → v2)P(p1 → p2), (18)

where P(x1 → x2) is the transition probability of the bat position from x1 to x2, P(v1 →

v2) is the transition probability of the bat velocity from v1 to v2, and P(p1 → p2) is the
transition probability of the best position (in the whole history) from p1 to p2.

Proof. The status of a bat is transferred via a1(x1, v1, p1) → a2(x2, v2, p2). That is,
x1 → x2, v1 → v2, and p1 → p2 are carried out simultaneously. The joint probability
of FA(a1)→ a2 is

P(FA(a1) = a2) = P(x1 → x2)P(v1 → v2)P(p1 → p2). (19)

From the updating equations for velocities and positions (see Eqs.(2) and (3)), it is
easy to see that the transition probability of the positions of bats can be calculated by

P(x1 → x2) =


1

| f (pg−x1)| , v2 ∈ [x1 + ωv1, ωv1 + wi(pg − x1)],

0, v2 < [x1 + ωv1, ωv1 + wi(pg − x1)].
(20)

Similarly, the transition probability concerning the velocities of bats can be calculated
by

P(v1 → v2) =


1

| f (pg−x1)| , v2 ∈ [ωv1, ωv1 + wi(pg − x1)],

0, v2 < [ωv1, ωv1 + wi(pg − x1)].
(21)

In addition, the transition probability of the best position p of all bats is

P(p1 → p2) =

1, f (p2) < f (p1),

0, f (p2) ≥ f (p1).
(22)

It is worth pointing out that we treat the optimization problem as a minimization prob-
lem. Thus, p2 is better than p1 if f (p2) < f (p1).

�
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With these results, we can now prove the following theorem:

Theorem 2. In the iterative process of the BA, the transition probability of the bat
group status from bi to b j is given by

P(Fb(bi) = b j) =

tN∏
t=1

P(FA(ait) = a jt), (23)

where tN is the total number of iterations so far.

Proof. As Fb(bi) = b j indicates that each state in the bat group state bi is simultane-
ously transferred to group state b j; that is

FA(ai1) = a j1, FA(ai2) = a j2, . . . , FA(aitN ) = a jtN .

Then, the transition probability of a group transition of the bat group should be the joint
probability of each iteration step. Thus, we have

P(Fb(bi) = b j) = P(FA(ait) = a jt)P(FA(ait) = a jt) . . . P(FA(aitN ) = a jtN )

=

tN∏
t=1

P(FA(ait) = a jt),
(24)

which concludes the proof. �

Now we have to show that the state sequence a is a finite, homogeneous Markov
chain.

Theorem 3. In the BA, the bat group state sequence a is indeed a finite homogeneous
Markov chain.

Proof. For any optimization algorithm, its search space during the whole iterative pro-
cess is finite because both the population size and the number of iterations are finite,
so each of the bat state a = (x, v, p) among the x, v, p are finite, which leads to the fact
that the bat state space is finite.

From the algorithmic equations outlined in Section 2, the position updates of each
bat individual is an iterative equation, so the random process of positions of the BA
changes with time, which is not the Markov process. However, if we can group the
position, velocity and global optimal values together as one state B, then state B(t + 1)
is only related to state B(t), not its history. Then, sequence B has proper Markov chain
properties.

From Eqs.(1)-(3), β ∈ [0, 1] is a random vector that is uniformly distributed, and
the algorithmic equations [i.e., (1) to (3)] form a stochastic system. It is straightforward
to show that the state B(t − 1) of the system at time t transferring to the new state B(t)
is completely determined by its state at time t. In addition, the factor γ and ω as well
as the pseudotime t in the iterative formulas are independent of the state of the system
before time t.

From B(t − 1) to B(t) of bats group state sequence {B(t); t ≥ 0}, the transition
probability P(FB(B(t − 1)) = B(t)) of the two states is determined by the transition
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probability of all individuals in the bats group, and the probability of transition can
be calculated by the joint probability of P(x(t − 1) → x(t)), P(v(t − 1) → v(t)), and
P(p(t − 1)→ p(t)), according to Theorem 1.

In addition, P(x(t − 1) → x(t)) and P(v(t − 1) → v(t)) are only related to x, v, p at
time t − 1. Thus, P(FB(B(t − 1)) = B(t)) is only related to the state ai(t − 1), 1 ≤ i ≤ N
of all bats at time t − 1. Therefore, the Markov chains are finite.

Furthermore, from Theorem 1, P(FA(a(t − 1)) = a(t)) is independent of time t − 1.
A similar argument also indicates that P(FB(B(t − 1)) = B(t)) is also independent of
t − 1. Therefore, the finite Markov chains are homogeneous. �

3.3.3. Global Convergence of the BA
With the above definitions and theorems, let us proceed to prove the convergence

of the bat algorithm.
For the true optimal solution g for an optimization problem 〈H, f 〉with an objective

function f (x) where x is a vector, the optimal state set can be defined as

L = {a = (x, v, p)| f (p) = f (g), a ∈ A}. (25)

Obviously we have L ⊆ A as L should be a subset of A. If in any case L = A, any
solution in A is equally optimal, which means that the objective landscape is flat (thus it
is equivalent to a feasibility problem in which the objective does not exert any selection
pressure on different solutions). This is just a special case and the optimal solution is
already achieved, and thus we will not discuss this case any further.

In addition, for the optimal solution g to an optimal problem 〈H, f 〉, the optimal bat
group state set can be defined as

U = {B = (a1, a2, . . . , aN)
∣∣∣∃ai ∈ L, 1 ≤ i ≤ N}, (26)

which means that the optimal bat groups state set U is the set of all bat groups such
that at least one bat individual in the population with its state belong to L.

Using the same methodology as outlined in He et al. (2018) (Theorems 7 and 8 in
their paper) and the results in Zhang and Li (2003), we can prove the following three
theorems:

Theorem 4. When U ⊂ B, there is no closed set I other than B such that I
⋂

U = ∅.

Theorem 5. If a Markov chain has a non-empty set Z with no closed set D satisfying
Z

⋂
D = ∅, then limt→∞ P(xt = j) = π j, only if j ∈ Z, and limt→∞ P(xt = j) = 0 only if

j < Z.

Theorem 6. If the number of iteration approaches infinity or sufficiently large, the
group state sequence will converge to the optimal state set U.

From the above four theorems, it is straightforward to prove the following global
convergence theorem:

Theorem 7. The bat algorithm with the Markov chain model defined in Section 3.3.2
has guaranteed global convergence.
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Proof. From the convergence criterion (Criterion 1), we know that if a stochastic op-
timization algorithm can satisfy both Condition 1 and Condition 2, it will converge
to the global optimality. In essence, the first condition (Condition 1) can guarantee
that the fitness value f (x) of the stochastic optimization algorithm is decreasing. From
the above discussions about the iterative process of the BA, we can conclude that it is
indeed f (p) ≤ f (xt).

Furthermore, the previous theorem means that the group state sequence will con-
verge towards the optimal set after a sufficiently large number of iterations, which
means that the probability of not reaching the globally optimal solution is asymptot-
ically zero. This means that the second convergence condition is also satisfied. As
a result, a conclusion can be drawn that the BA has guaranteed global convergence
towards its global optimality with a probability one. �

This proof is based on the Markov chain framework, and thus the convergence is in
a probabilistic sense. It is an important result because it shows that the bat algorithm
can indeed converge. However, there is no information about the rate of convergence
and how the parameters may affect the convergence behaviour of this algorithm.

It is worth pointing out that the above proof has been based on a simplified Markov
model for the bat algorithm. The standard bat algorithm also includes the variations of
pulse emission rate and loudness, and effects of such variations have not been consid-
ered here. However, the overall convergence behaviour can be very similar.

In order to gain further insight into the parameter values and their effect on the con-
vergence of the bat algorithm, we now use a completely different approach to analyze
the algorithm in terms of dynamic matrix theory.

4. Convergence Analysis Based on Dynamic Matrix Theory

4.1. Stability of Algorithms and Dynamical Systems
The advantage of the above algorithm analysis in terms of the Markovian frame-

work is that it provides important insights into the convergence of an algorithm in the
probability sense, and the convergence properties are less sensitive to the exact settings
of parameters. However, this approach does not give enough information about how
quickly the convergence can be achieved and how stable the algorithm can be under
given parameter settings. Dynamical system theories, on the other hand, provide an al-
ternative approach to analyze algorithms rigorously from a different perspective where
parameter settings are important. In this case, dynamic matrices can be constructed
from the updating equations of an algorithm, and the insight can be gained about the
possible parameter ranges and sufficient conditions for the algorithm to converge.

One of the earliest studies on the stability of the particle swarm optimizer is by
Clerc and Kennedy (2002) in which they showed that the stability and convergence
tendencies could largely depend on the coefficients of various terms in PSO such as
the inertia weight and learning rates. Later, Kadirkamanathan et al. (2006) analyzed
the particle swarm optimizer using the Lyapunov stability theory and derived sufficient
conditions for its stability. For differential evolution, Dasgupta et al. (2009) used
the dynamical system theory to analyze a one-dimensional DE population and they
analyzed its stability in the light of Lyapunov’s stability theorems. However, for the
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bat algorithm, there are no existing studies on its stability. Therefore, in the rest of
this section, we will analyze the stability of the bat algorithm by using the theory of
dynamical systems.

4.2. Bat Algorithm as a Dynamical System

For this purpose and for simplicity of calculations without losing generality, it is
assumed that the current optimal solution in the bat algorithm population is a constant
vector p (even though it is updated at each iteration). It is assumed that the frequency
wi is also a constant m ≥ 0. Within this framework, the velocities and positions of bats
during the iterations can be written as

vk+1 = lvk + (p − xk)m, (27)

xk+1 = cxk + uvk+1, (28)

where coefficient m is essentially the average of the frequencies, while l, c and u are
the weight coefficients so that we can analyze the algorithm in general. The attraction
point p in the D-dimensional space is the current optimal position. The algorithm
represented by the system of (27) and (28) now has four parameters to be tuned. They
are l,m, c, u. We will show that two of these parameters are key parameters.

4.3. Dynamic Matrix Model for the Bat Algorithm

From the algorithmic equations (27) and (28), we can rewrite (27) equivalently
using the previous iteration as

xk = cxk−1 + uvk.

Then multiplying its both sides by l and re-arranging it slightly, we have

luvk = lxk − clxk−1. (29)

Combining (27) and (28), we have

xk+1 = cxk + uvk+1 = cxk + u[lvk + (p − xk)m]

= cxk + ulvk + ump − umxk = cxk + [lxk − clxk−1] + ump − umxk, (30)

where we have used Eq. (29).
By re-arranging the above equation, we have a recursive relationship for xk

mup = xk+1 + (mu − c − l)xk + lcxk−1. (31)

It is obvious that m and u always appear as a single factor mu, not individually. This
means that only their product matters. Thus, for simplicity (without loss of generality),
we can set

u ≡ 1. (32)
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Therefore, we have a reduced system of algorithmic equations for the bat algorithm as

vk+1 = lvk + m(p − xk), (33)
xk+1 = cxk + vk+1. (34)

In addition, as the number of iterations k increases, it can be expected that the series
should converge to p (the current best solution found by all the bats). That is

lim
k→∞

xk = p, lim
k→∞

xk+1 = p, lim
k→∞

xk−1 = p. (35)

Taking the limit of (31) and using the above results, we have

mp = p + (m − c − l)p + lcp, (36)

which gives that
p(l − 1)(c − 1) = 0. (37)

Thus, it has three solutions: either p = 0, or l = 1, or c = 1. The case of p = 0 is either
a special case when the actual global minimization value is fmin = p = 0 for some
functions, or it is not possible to satisfy. Therefore, we have either l = 1 or c = 1.

Considering the role of c in the algorithm, it acts as an equivalent inertia weighting
factor so we can set c = 1 for the moment, which does not affect the update of the
position vectors.

Now we have finally obtained the reduced dynamic system for the bat algorithm

vk+1 = lvk + m(p − xk) = −mxk + lvk + mp, (38)
xk+1 = xk + vk+1 = xk + [−mxk + lvk + mp], (39)

which leads to

vk+1 = −mxk + lvk + mp, (40)
xk+1 = xk + lvk + mp − mxk. (41)

We can rewrite the above dynamic system in a matrix form as

Yk+1 = CYk + Mp, (42)

where

Yk =

[
xk

vk

]
, C =

[
1 − m l
−m l

]
, M =

[
m
m

]
. (43)

Here, the Yk column vector corresponds to the states of positions and velocities of the
bats at iteration k. Matrix C is the dynamic matrix that governs the main properties of
this dynamic system. M is the input of the frequencies and p is the current best solution
in the system.

As the iterations continue and the bat population move towards p, the velocity of
the bat population will approach zero. That is

lim
k→∞

vk = 0. (44)

13



Therefore, the final fixed point or point of convergence in the state space Yk is

Y∗ =

p

0

 . (45)

The final state of convergence is that limk→∞ xk = p and limk→∞ vk = 0 if there is no
perturbation.

4.4. Algorithm Convergence and Parameter Selection

The main properties of the dynamic system is now determined by the eigenvalues
of the dynamic matrix C. That is

det

∣∣∣∣∣∣1 − m − λ l
−m l − λ

∣∣∣∣∣∣ = 0, (46)

which gives
(1 − m − λ)(l − λ) + ml = 0, (47)

or simply
λ2 + λ(m − l − 1) + l = 0. (48)

Thus, their solutions are

λ =
−(m − l − 1) ±

√
(m − l − 1)2 − 4l

2
, (49)

which gives two eigenvalues λ1 and λ2. For the dynamic system to be stable (Bhatia and
Szegö 2002), the theory of discrete-time dynamical systems requires that the modulus
of the eigenvalues must be smaller than one; that is |λ| ≤ 1. From Vieta’s formulas for
polynomials, we know that λ1 · λ2 = l whose modulus should also be less than one, so
we have |l| ≤ 1 or −1 ≤ 1 ≤ 1.

In addition, Vieta’s formulas also indicates that

λ1 + λ2 = −(m − l − 1) = l − m + 1 ≤ 2, (50)

which must be less than 2 (i.e., λ1 + λ2 ≤ 2) so that each eigenvalue is potentially less
than 1. We have

l ≤ m + 1, (51)

For the conditions that the modulus of the biggest eigenvalue must be smaller than
one |λ| ≤ 1, we have

(l − m + 1) ±
√

(m − l − 1)2 − 4l
2

≤ +1, (52)

or

−1 ≤
(l − m + 1) ±

√
(m − l − 1)2 − 4l
2

. (53)
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The first equation (52) becomes

(l − m − 1) ≤ ∓
√

(m − l − 1)2 − 4l, (54)

or
(l − m − 1)2 ≥ (m − l − 1)2 − 4l, (55)

which gives
(l − m − 1)2 − [(m − 1 − 1)2 − 4l] = 4m ≥ 0, (56)

or simply m ≥ 0. Here, we have used the fact l ≤ m + 1 (or l − m − 1 ≤ 0), thus the
inequality should be reversed when taking the square.

Similarly, the other condition becomes

−(l − m + 3) ≤ ±
√

(m − l − 1)2 − 4l, (57)

or
(l − m + 3)2 ≥ (m − l − 1)2 − 4l, (58)

which gives

(l − m + 3)2 − [(m − l − 1)2 − 4l] = 4(2l + 2 − m) ≥ 0, or 2l + 2 ≥ m. (59)

Therefore, the conditions for stability and convergence are
−1 ≤ l ≤ +1,
m ≥ 0,
2l − m + 2 ≥ 0.

(60)

which form a triangular region in the parameter space of l and m, as shown in Fig. 1.
The above analysis shows that within the parameter ranges of m and l, the bat algorithm
will not only converge towards the optimality but also converge stably. In this case,
the algorithm is stable and can converge quickly in practice. However, it should be
emphasized that the dynamic model presented in this paper has not considered the
variation of pulse emission rate and loudness, thus the actual parameter ranges may
be different from the above results. Even so, this simplified model has enabled us to
understand the influence of parameter values for the bat algorithm.

In the rest of the paper, we will use some selected benchmarks to show the con-
vergence properties of the bat algorithm under different parameter settings. This will
allow us to validate that the above theoretical results are consistent with practical ob-
servations for functions with a diverse range of properties and modality.

5. Validation by Numerical Experiments

In order to verify the bat algorithm and show the convergence characteristics dis-
cussed above in this paper, we have conducted some numerical experiments using a
few selected benchmark functions with very different properties and modalities. These
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Figure 1: Parameter ranges for the bat algorithm to be stable.

Table 1: simulation benchmarks
Function name Function Range fmin

Sphere f1(x) =
∑D

i=1 x2
i [-5.12,5.12] 0

Griewank f2(x) =
∑D

i=1
x2

i
4000 −

∏D
i=1 cos( xi√

i
) + 1 [-600,600] 0

Schwefel f3(x) =
∑D

i=1 |xi| +
∏D

i=1 |xi| [-10,10] 0
Quartic f4(x) =

∑D
i=1 ix4

i + rand[0, 1] [-100,100] 0
Rosenbrock f5(x) =

∑D−1
i=1 [(xi − 1)2 + 100(xi+1 − x2

i )2] [-5,5] 0
Yang f6(x) =

∑D
i=1 |xi| exp[−

∑D
i=1 sin(x2

i )] [-2π, 2π] 0

Zakharov f7(x) =
∑D

i=1 x2
i +

(∑D
i=1

ixi
2

)2
+

(∑D
i=1

ixi
2

)4
[-5,5] 0

Step Function f8(x) =
∑D

i=1(bxi + 0.5c)2 [-100,100] 0
Rastrigin f9(x) =

∑D
i=1[x2

i − 10 cos(2πxi) + 10] [-5.12,5.12] 0

functions are listed in Table 1 where the dimensionality is chosen as D = 30 for all
functions.

For each function, the bat algorithm has been executed with a maximum number of
iterations tmax = 500 with a population size n = 12, m = 2 and l = 0.5. The dimensions
for all functions are D = 30.

The convergence curves for all the functions are shown in Fig. 2 where we can
clearly see that all functions can converge quickly, especially at the early stage of the
iterations. However, if the parameter ranges lie outside the stable domain, the rate of
convergence can be significantly lower, and the very slow convergence or even prema-
ture convergence can occur as can be seen in Fig. 3 where m = −3 and l = 4 are used,
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Figure 2: Plots of convergence for various functions.

even though all the other parameters remain the same.

Figure 3: Plot of convergence when the parameters lie outside the triangular domain.

To further test the convergence properties of the bat algorithm for more complex
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benchmarks, we have also used a subset of functions from the standard CEC2015
benchmark suite (Chen et al. 2014; Qu et al. 2016). We have selected six more
functions

• Rotated high conditioned elliptic function with F1,min = 100.

• Rotate cigar function with F2,min = 200.

• Rotated discus function with F3,min = 200.

• Shifted and rotated Ackley’s function with F4,min = 300.

• Shifted and rotated Rastrigin’s function with F5,min = 400.

• Shifted and rotated Schwefel’s function with F6,min = 500.

As the main purpose of these tests is to see the convergence behaviour, we have used
three different settings of parameters for each function. One setting is within the stable
region, one setting is on the boundary (solid line) and one setting is outside of the
normal parameter ranges. The results are shown in Fig. 4. As we can clearly see,
good convergence can be achieved for parameters inside the stable region and even on
its boundary. However, if the settings are outside the stable region, the convergence
is usually far worse than those with settings inside the right parameter region. Such
results confirm our theoretical results, and also highlight the importance of parameter
settings.

It is worth pointing out that the CEC2015 functions are more challenging to solve,
and the number of iterations needed to reach the optimality is much higher, at least
10000 (at least 20 times more than we used here). To some extent, the extensive simu-
lations of the bat algorithm have been carried out in the literature (Al-Betar et al. 2018;
Banati and Chaudhary 2017; Chakri et al. 2017; Chawla and Duhan 2015). However,
the main purpose of this part of tests is to compare the convergence behaviour with
different parameter settings, which clearly shows such effects.

All the above analyses and simulations have demonstrated that the algorithm can
converge both quickly and robustly. Thus, the algorithm can be suitable for difficult
optimization problems where optimal or nearly optimal solutions are needed quickly.

6. Conclusions

The bat algorithm has been shown to be effective in practice, but there is not much
theoretical analysis in the literature. This paper provides some theoretical analysis of
the standard bat algorithm using both a Markov chain model and a dynamic matrix
model. The Markov model shows that the algorithm can converge to the global op-
timality with probability one as the number of iterations becomes sufficiently large.
The dynamic model looks at the algorithm from a different perspective. By extending
the models with more parameters, we have then gained some insight and explained
why some parameters are not important, while others can be tuned. As a result, the
parameter ranges of some key parameters have been identified.
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Following the theoretical analyses, we have used some benchmark test functions to
validate the bat algorithm using the appropriate parameter settings. Good convergence
has been observed for all functions, which is consistent with the theoretical results.
Then we have used a set of benchmark functions to validate the theoretical results so as
to see how the convergence characteristics may be affected by the settings of algorithm-
dependent parameters. Simulation results confirm that good convergence and stability
can be obtained if the parameters are within the stable region in the parameter space.
However, convergence will be slowed down or premature convergence may appear
if the parameters are outside the stable region. These are clearly consistent with the
theoretical analysis carried out earlier in this paper.

It is worth pointing out that the models used in this paper are simplified models
without considering the variation of pulse emission rate and loudness. It will be useful
to investigate the effect of such factors in the convergence properties and stability of the
bat algorithm. In addition, even we now understand why the bat algorithm converge
with a clear parameter region, it still lacks the information on the rate of convergence
and how the parameter values will affect the rate of convergence. Future work will also
investigate this issue further with more rigorous analyses.
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Figure 4: Convergence behaviour of different parameter settings using CEC2015 benchmarks.
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