6,208 research outputs found

    Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

    Get PDF
    BACKGROUND. Tuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma. / METHODS. We applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203). / RESULTS. We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low–molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≀ 1%, q ≀ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81). / CONCLUSION. We report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test. / FUNDING. Colciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research

    Cross platform standardisation and normalisation experimental pipeline for use in the biodiscovery of dysregulated human circulating miRNAs

    Get PDF
    Introduction. Micro RNAs (miRNAs) are a class of highly conserved small non-coding RNAs that play an important part in the post-transcriptional regulation of gene expression. A substantial number of miRNAs have been proposed as biomarkers for diseases. While reverse transcriptase Real-time PCR (RT-qPCR) is considered the gold standard for the evaluation and validation of miRNA biomarkers, small RNA sequencing is now routinely being adopted for the identification of dysregulated miRNAs. However, in many cases where putative miRNA biomarkers are identified using small RNA sequencing, they are not substantiated when RT-qPCR is used for validation. To date, there is a lack of consensus regarding optimal methodologies for miRNA detection, quantification and standardisation when different platform technologies are used. Materials and Methods. In this study we present an experimental pipeline that takes into consideration sample collection, processing, enrichment, and the subsequent comparative analysis of circulating small ribonucleic acids using small RNA sequencing and RT-qPCR. Results, Discussion, Conclusions Initially, a panel of miRNAs dysregulated in circulating blood from breast cancer patients compared to healthy women were identified using small RNA sequencing. MiR-320a was identified as the most dysregulated miRNA between the two female cohorts. Total RNA and enriched small RNA populations (<30 bp) isolated from peripheral blood from the same female cohort samples were then tested for using a miR-320a RT-qPCR assay. When total RNA was analysed with this miR-320a RT-qPCR assay, a 2.3-fold decrease in expression levels was observed between blood samples from healthy controls and breast cancer patients. However, upon enrichment for the small RNA population and subsequent analysis of miR-320a using RT-qPCR, its dysregulation in breast cancer patients was more pronounced with an 8.89-fold decrease in miR-320a expression. We propose that the experimental pipeline outlined could serve as a robust approach for the identification and validation of small RNA biomarkers for disease

    Multi-omics data integration for the detection and characterization of smoking related lung diseases

    Get PDF
    Lung cancer is the leading cause of death from cancer in the world. First, we hypothesized that microRNA expression is altered in the bronchial epithelium of patients with lung cancer and that incorporating microRNA expression into an existing mRNA biomarker may improve its performance. Using bronchial brushings collected from current and former smokers, we profiled microRNA expression via small RNA sequencing for 347 patients with available mRNA data. We found that four microRNAs were under-expressed in cancer patients compared to controls (p<0.002, FDR<0.2). We explored the role of these microRNAs and their gene targets in cancer. In addition, we found that adding a microRNA feature to an existing 23-gene biomarker significantly improves its performance (AUC) in a test set (p<0.05). Next, we generalized the biomarker discovery process, and developed a visualization tool for biomarker selection. We built upon an existing biomarker discovery pipeline and created a web-based interface to visualize the performance of multiple predictors. The “visualization” component is the key to sorting through a thousand potential biomarkers, and developing clinically useful molecular predictors. Finally, we explored the molecular events leading to the development of COPD and ILD, two heterogeneous diseases with high mortality. We hypothesized that integrative genetic and expression networks can help identify drivers and elucidate mechanisms of genetic susceptibility. We utilized 262 lung tissue specimens profiled with microRNA sequencing, microarray gene expression and SNP chip genotyping. Next, we built condition specific integrative networks using a causality inference test for predicting SNP-microRNA-mRNA associations, where the microRNA is a predicted mediator of the SNP’s effect on gene expression. We identified the microRNAs predicted to affect the most genes within each network. Members of miR-34/449 family, known to promote airway differentiation by repressing the Notch pathway, were among the top ranked microRNAs in COPD and ILD networks, but not in the non-disease network. In addition, the miR-34/449 gene module was enriched among genes that increase in expression over time when airway basal cells are differentiated at an air-liquid interface and among genes that increase in expression with the airway wall thickening in patients with emphysema.2019-07-31T00:00:00

    Integrative Analysis To Select Cancer Candidate Biomarkers To Targeted Validation

    Get PDF
    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.6414363543652Kulasingam, V., Diamandis, E.P., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies (2008) Nature clinical practice Oncology, 5, pp. 588-599Wu, C.C., Hsu, C.W., Chen, C.D., Yu, C.J., Chang, K.P., Tai, D.I., Liu, H.P., Yu, J.S., Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas (2010) Molecular & cellular proteomics: MCP, 9, pp. 1100-1117Chen, R., Pan, S., Brentnall, T.A., Aebersold, R., Proteomic profiling of pancreatic cancer for biomarker discovery (2005) Molecular & cellular proteomics: MCP, 4, pp. 523-533Shimwell, N.J., Bryan, R.T., Wei, W., James, N.D., Cheng, K.K., Zeegers, M.P., Johnson, P.J., Ward, D.G., Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma (2013) British journal of cancer, 108, pp. 1854-1861White, N.M., Masui, O., Desouza, L.V., Krakovska, O., Metias, S., Romaschin, A.D., Honey, R.J., Siu, K.W., Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma (2014) Oncotarget, 5, pp. 506-518Rifai, N., Gillette, M.A., Carr, S.A., Protein biomarker discovery and validation: the long and uncertain path to clinical utility (2006) Nature biotechnology, 24, pp. 971-983Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Gafken, P.R., A targeted proteomics-based pipeline for verification of biomarkers in plasma (2011) Nature biotechnology, 29, pp. 625-634Makawita, S., Diamandis, E.P., The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification (2010) Clinical chemistry, 56, pp. 212-222Picotti, P., Rinner, O., Stallmach, R., Dautel, F., Farrah, T., Domon, B., Wenschuh, H., Aebersold, R., High-throughput generation of selected reaction-monitoring assays for proteins and proteomes (2010) Nature methods, 7, pp. 43-46Picotti, P., Bodenmiller, B., Aebersold, R., Proteomics meets the scientific method (2013) Nature methods, 10, pp. 24-27Gillette, M.A., Carr, S.A., Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry (2013) Nature methods, 10, pp. 28-34Chang, K.P., Yu, J.S., Chien, K.Y., Lee, C.W., Liang, Y., Liao, C.T., Yen, T.C., Chi, L.M., Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology (2011) Journal of proteome research, 10, pp. 4935-4947de Jong, E.P., Xie, H., Onsongo, G., Stone, M.D., Chen, X.B., Kooren, J.A., Refsland, E.W., Carlis, J.V., Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions (2010) PloS one, 5Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wong, D.T., Salivary proteomics for oral cancer biomarker discovery (2008) Clinical cancer research: an official journal of the American Association for Cancer Research, 14, pp. 6246-6252Sepiashvili, L., Hui, A., Ignatchenko, V., Shi, W., Su, S., Xu, W., Huang, S.H., Kislinger, T., Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy (2012) Molecular & cellular proteomics: MCP, 11, pp. 1404-1415van der Post, S., Hansson, G.C., Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences (2014) Molecular & cellular proteomics: MCPSimabuco, F.M., Kawahara, R., Yokoo, S., Granato, D.C., Miguel, L., Agostini, M., Aragao, A.Z., Paes Leme, A.F., ADAM17 mediates OSCC development in an orthotopic murine model (2014) Molecular cancer, 13, p. 24Liu, N.Q., Braakman, R.B., Stingl, C., Luider, T.M., Martens, J.W., Foekens, J.A., Umar, A., Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue (2012) Journal of mammary gland biology and neoplasia, 17, pp. 155-164Granato, D.C., Zanetti, M.R., Kawahara, R., Yokoo, S., Domingues, R.R., Aragao, A.Z., Agostini, M., Silva, A.R., Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model (2014) PloS one, 9Kulasingam, V., Diamandis, E.P., Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets (2007) Molecular & cellular proteomics: MCP, 6, pp. 1997-2011Pham, T.V., Piersma, S.R., Warmoes, M., Jimenez, C.R., On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics (2010) Bioinformatics, 26, pp. 363-369Christin, C., Hoefsloot, H.C., Smilde, A.K., Hoekman, B., Suits, F., Bischoff, R., Horvatovich, P., A critical assessment of feature selection methods for biomarker discovery in clinical proteomics (2013) Molecular & cellular proteomics: MCP, 12, pp. 263-276Kim, Y., Ignatchenko, V., Yao, C.Q., Kalatskaya, I., Nyalwidhe, J.O., Lance, R.S., Gramolini, A.O., Drake, R.R., Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organconfined versus extracapsular prostate cancer (2012) Molecular & cellular proteomics: MCP, 11, pp. 1870-1884Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Mills, S.A., Parsa, A.T., Cancer and the complement cascade (2010) Molecular cancer research: MCR, 8, pp. 1453-1465Cho, M.S., Vasquez, H.G., Rupaimoole, R., Pradeep, S., Wu, S., Zand, B., Han, H.D., Dalton, H.J., Autocrine effects of tumor-derived complement (2014) Cell reports, 6, pp. 1085-1095Bensimon, A., Heck, A.J., Aebersold, R., Mass spectrometrybased proteomics and network biology (2012) Annual review of biochemistry, 81, pp. 379-405Bonne, N.J., Wong, D.T., Salivary biomarker development using genomic, proteomic and metabolomic approaches (2012) Genome medicine, 4, p. 82Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nature reviews Cancer, 11, pp. 9-22Argiris, A., Karamouzis, M.V., Raben, D., Ferris, R.L., Head and neck cancer (2008) Lancet, 371, pp. 1695-1709da Silva, S.D., Ferlito, A., Takes, R.P., Brakenhoff, R.H., Valentin, M.D., Woolgar, J.A., Bradford, C.R., Kowalski, L.P., Advances and applications of oral cancer basic research (2011) Oral oncology, 47, pp. 783-791Macor, P., Tedesco, F., Complement as effector system in cancer immunotherapy (2007) Immunology letters, 111, pp. 6-13Bjorge, L., Hakulinen, J., Vintermyr, O.K., Jarva, H., Jensen, T.S., Iversen, O.E., Meri, S., Ascitic complement system in ovarian cancer (2005) British journal of cancer, 92, pp. 895-905Kim, D.Y., Martin, C.B., Lee, S.N., Martin, B.K., Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle (2005) Cancer immunology, immunotherapy: CII, 54, pp. 1026-1037Gollapalli, K., Ray, S., Srivastava, R., Renu, D., Singh, P., Dhali, S., Bajpai Dikshit, J., Srivastava, S., Investigation of serum proteome alterations in human glioblastoma multiforme (2012) Proteomics, 12, pp. 2378-2390Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Ahn, B.J., Fang, S., Parsa, A.T., The complement cascade as a mediator of tissue growth and regeneration (2010) Inflammation research: official journal of the European Histamine Research Society, 59, pp. 897-905. , [et al]Markiewski, M.M., DeAngelis, R.A., Benencia, F., Ricklin-Lichtsteiner, S.K., Koutoulaki, A., Gerard, C., Coukos, G., Lambris, J.D., Modulation of the antitumor immune response by complement (2008) Nature immunology, 9, pp. 1225-1235Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674Paiva, J.G., Florian-Cruz, L., Pedrini, H., Telles, G.P., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE transactions on visualization and computer graphics, 17, pp. 2459-2468Rousseeuw, P.J., Silhouettes: A graphical aid to the interpretation and validation of cluster analysis (1987) Journal of Computational and Applied Mathematics, 20, pp. 53-65Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G., Diagnosis of multiple cancer types by shrunken centroids of gene expression (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 6567-6572Guyon, I.W., Barnhill, J., Vapnik, S., Gene Selection for Cancer Classification using Support Vector Machines (2002) Machine learning, 46, pp. 389-422Kuhn, M., Building Predictive Models in R Using the caret Package (2008) Journal of Statistical Software, 26, pp. 1-26Smit, S., Hoefsloot, H.C., Smilde, A.K., Statistical data processing in clinical proteomics (2008) Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 866, pp. 77-88Carazzolle, M.F., de Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS-Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-genedrug interactions by integrating a variety of data sources and tools (2014) PloS one, 9Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Yamanishi, Y., KEGG for linking genomes to life and the environment (2008) Nucleic acids research, 36, pp. D480-D484Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2, new features for data integration and network visualization (2011) Bioinformatics, 27, pp. 431-432Ponten, F., Schwenk, J.M., Asplund, A., Edqvist, P.H., The Human Protein Atlas as a proteomic resource for biomarker discovery (2011) Journal of internal medicine, 270, pp. 428-44

    Integrative analysis to select cancer candidate biomarkers to targeted validation

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOTargeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS6414363543652FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2009/54067-3; 2010/19278-0; 2011/22421-2; 2009/53839-2470567/2009-0; 470549/2011-4; 301702/2011-0; 470268/2013-

    Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    Get PDF
    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature

    Walking pathways with positive feedback loops reveal DNA methylation

    Get PDF
    Background: the search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential driver role in early stages of cancer. Methods: we have developed a method for finding potential causal relationships between epigenetic changes (DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene expression changes. This method also considers the topology of the involved signal transduction pathways and searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this method 'Walking pathways', since it searches for potential rewiring mechanisms in cancer pathways due to dynamic changes in the DNA methylation status of important gene regulatory regions ('epigenomic walking'). Results: in this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG islands (using Illumina methylation arrays) generated from a sample of tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease) (data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA methylation was performed using the fully automatic multi-omics analysis web service 'My Genome Enhancer' (MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFACÂź, the signal transduction pathways database TRANSPATHÂź, and software that employs AI (artificial intelligence) methods for the analysis of cancer-specific enhancers. Conclusions: the identified biomarkers underwent experimental testing on an independent set of blood samples from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43

    Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.

    Get PDF
    Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies
    • 

    corecore