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ABSTRACT 

Lung cancer is the leading cause of death from cancer in the world. First, 

we hypothesized that microRNA expression is altered in the bronchial epithelium 

of patients with lung cancer and that incorporating microRNA expression into an 

existing mRNA biomarker may improve its performance.  

Using bronchial brushings collected from current and former smokers, we 

profiled microRNA expression via small RNA sequencing for 347 patients with 

available mRNA data. We found that four microRNAs were under-expressed in 

cancer patients compared to controls (p<0.002, FDR<0.2). We explored the role 

of these microRNAs and their gene targets in cancer. In addition, we found that 

adding a microRNA feature to an existing 23-gene biomarker significantly 

improves its performance (AUC) in a test set (p<0.05). 

Next, we generalized the biomarker discovery process, and developed a 

visualization tool for biomarker selection. We built upon an existing biomarker 

discovery pipeline and created a web-based interface to visualize the 

performance of multiple predictors. The “visualization” component is the key to 
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sorting through a thousand potential biomarkers, and developing clinically useful 

molecular predictors. 

Finally, we explored the molecular events leading to the development of 

COPD and ILD, two heterogeneous diseases with high mortality. We 

hypothesized that integrative genetic and expression networks can help identify 

drivers and elucidate mechanisms of genetic susceptibility.  

We utilized 262 lung tissue specimens profiled with microRNA 

sequencing, microarray gene expression and SNP chip genotyping. Next, we 

built condition specific integrative networks using a causality inference test for 

predicting SNP-microRNA-mRNA associations, where the microRNA is a 

predicted mediator of the SNP’s effect on gene expression. We identified the 

microRNAs predicted to affect the most genes within each network. Members of 

miR-34/449 family, known to promote airway differentiation by repressing the 

Notch pathway, were among the top ranked microRNAs in COPD and ILD 

networks, but not in the non-disease network. In addition, the miR-34/449 gene 

module was enriched among genes that increase in expression over time when 

airway basal cells are differentiated at an air-liquid interface and among genes 

that increase in expression with the airway wall thickening in patients with 

emphysema. 
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CHAPTER ONE 

Introduction 

 

1.1 Lung cancer 

Lung cancer remains the leading cause of cancer death in the world due, 

in large part, to our inability to detect the disease at its earliest and curable stage. 

The high mortality rate (80–85% within 5 years) (Siegel, Naishadham, and Jemal 

2013) results, in part, from a lack of effective diagnostic options to detect this 

disease at an early stage. Symptoms of early stage lung cancer are mild and 

non-specific, such as a cough, shortness in breathing and tiredness, which can 

be associated with other benign conditions. Therefore, most patients are 

diagnosed at late stages associated with poor prognosis (Novaes et al. 2008). 

About 224,000 new diagnoses and 160,000 deaths were recorded in 2014, 90% 

of which are due to smoking (“Cancer of the Lung and Bronchus - SEER Stat 

Fact Sheets” 2016). Lung cancer is classified in two main histological subtypes, 

such as small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). 

SCLC develops in the upper airways and it is the most aggressive type of lung 

cancer that metastasizes quickly to other parts of the body (“Lung Cancer - Small 

Cell: MedlinePlus Medical Encyclopedia” 2016). However, SCLC represents only 

15% of all lung cancer cases. Most lung cancers are NSCLC, and they are 

further classified into adenocarcinoma, squamous cell carcinoma and large cell 

carcinoma (Ginsberg, Grewal, and Heelan 2007). 
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Like most of other cancers, lung cancer is a heterogeneous disease with 

complex molecular profiles (Collisson et al. 2014; Hammerman et al. 2012). 

Recently, targeted therapies have worked successfully in patients with activated 

somatic oncogenes. For example, patients with EGFR mutations are showing 

response to EGFR targeted compounds, such as Erlotinib and Gefitinib 

(Greenhalgh et al. 2015; Wang, Schmid-Bindert, and Zhou 2012; Kim et al. 

2011). Also, BRAF and ERBB2 genes are currently being investigated as 

potential therapeutic targets (Collisson et al. 2014; Stephens et al. 2004). 

Mutational profiles of lung cancer may also depend on the exposure to different 

carcinogenic compounds. For example, EGFR mutations are more common in 

never-smokers (Govindan et al. 2012). The complex molecular mechanisms of 

lung cancer are still poorly understood and there is a tremendous need to 

develop better diagnostic and therapeutic strategies. 

 

1.2 Using the airway molecular field of injury to predict lung cancer  

Chronic inflammation has been previously associated with tumorigenesis 

in different tissue types, such as lung (Zhai et al. 2008; Fujimoto et al. 2012), 

colon (Terzić et al. 2010) and skin (Maru et al. 2014). The airway is constantly 

affected by the exposure to different carcinogens and toxins, leading to chronic 

inflammation and ultimately to lung disease. Our laboratory has previously shown 

that the alterations that may occur in the distal part of the lung tissue are also 

reflected in the normal airway epithelial cells. The ability to identify gene 
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expression changes associated with smoking and cancer status in the normal 

appearing airway supports the idea of an airway molecular field of injury 

spanning the respiratory tract (Spira et al. 2007; Brody 2012; Beane et al. 2011; 

Steiling, Lenburg, and Spira 2009). Recently, a gene expression biomarker for 

lung cancer detection has been developed, a test that is now used clinically 

(Whitney et al. 2015; Silvestri et al. 2015).  

In this work, we extend the field of injury concept to microRNAs. We 

characterize the microRNA expression changes associated with the presence of 

lung cancer in bronchial epithelium from the mainstem bronchus and show that 

these alterations can be used to improve lung cancer detection. 

 

1.3 Biomarker discovery 

High throughput technologies have been used to profile genes in multiple 

different dimensions, such as gene and protein expression, genetic variation, 

copy number and epigenetics. An important use of gene expression data is the 

classification of cancer patients with respect to genes that are either up or down 

regulated in a specific tissue. Gene expression classifiers have been developed 

for lung cancer detection (Silvestri et al. 2015; Whitney et al. 2015), breast 

cancer tumors (van ’t Veer et al. 2002; Popovici et al. 2010), or prognosis of colo-

rectal cancer (Bertucci et al. 2004).  In 2006, Micro Array Quality Control (MAQC) 

project (MAQC Consortium et al. 2006), a community-wide effort involving 137 

participants from 51 organizations, established the best practices of developing 
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molecular classifiers.  Multiple statistical and machine learning algorithms have 

been tested and compared. Using bootstrapping, they have shown that a 

genomic predictor’s accuracy is determined largely by an interplay between 

sample size and data heterogeneity, and that multiple feature selection and 

classification algorithms may produce statistically equally good predictors 

(Popovici et al. 2010; MAQC Consortium et al. 2006). Based on the methods 

described by MAQC project, our lab has developed a new tool for biomarker 

discovery. This thesis presents a methodology of visually selecting the best 

combination of methods that can leverage a clinically useful biomarker in a given 

dataset. 

 

1.4 Chronic obstructive pulmonary disease and interstitial lung disease 

Chronic obstructive pulmonary disease (COPD) is a progressive lung 

disease and the fourth leading cause of death worldwide (Osei et al. 2015), with 

an incidence of 2.8 cases per 1,000 population per year (Raherison and Girodet 

2009). COPD is a very heterogeneous disease, with the two most common types 

of COPD being chronic bronchitis and emphysema. COPD consists of narrowing 

of the small airways and breakdown of lung tissue and it is mainly caused by 

tobacco smoking. Although biological processes, such as chronic inflammation, 

apoptosis, and oxidative stress, have been found to play a role in COPD 

pathogenesis, knowledge remains limited about the molecular mechanisms of 

this disease (Steiling et al. 2013).  
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Interstitial lung disease (ILD) is another heterogeneous group of chronic 

respiratory disorders, with the most common ILD being idiopathic pulmonary 

fibrosis (IPF). ILD has a lower incidence (6.8-8.8 per 100,000 population per year 

(Nalysnyk et al. 2012)) than COPD, but it is a disease with high mortality 

characterized by an interstitial fibrotic process (Gribbin et al. 2006; Raghu et al. 

2006; Raghu et al. 2011). ILD is characterized by a progressive scarring of lung 

tissue, that may cause lung stiffness (Nathan et al. 2015). The most common 

symptom of ILD is shortness of breath. These diseases may be caused by an 

infection with bacteria (Mycoplasma pneumonia), viruses or fungi, or the cause 

may be unknown, as it is the case of IPF. There are no effective therapies for IPF 

(Bjoraker et al. 1998; Carrington et al. 1978; Stack, Choo-Kang, and Heard 

1972), therefore understanding the molecular drivers underlying this condition 

may improve therapeutic strategies and patients outcome. 

This thesis addresses three chronic lung diseases, such as ILD, COPD 

and lung cancer, by leveraging expression profiles and complex molecular 

interactions.  

 

1.5 Integrative genetic and genomic networks to identify drivers of disease 

Integrative network approaches have been used extensively to study 

complex diseases, such as cancer, diabetes, neurological and respiratory 

disorders, and other pathologies with underlying genetic causes. Models of 

regulatory networks have been developed to identify disease specific drivers and 
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recover the broken molecular pathways. For example, an integrative network 

approach has been used to identify genetic nodes important to late-onset 

Alzheimer’s disease, highlighting an immune- and microglia-specific module (B. 

Zhang et al. 2013). Furthermore, regulators of genetic risk of breast cancer have 

been discovered by integrative network analysis (Castro et al. 2016) and the 

regulatory landscape of cancer hallmarks has been previously explored (Emmert-

Streib et al. 2014). In addition, integrative networks have been used to improve 

tumor stratification (Hofree et al. 2013) or identify hyper-mutated pathways 

(Vandin, Upfal, and Raphael 2011; Leiserson et al. 2015). Inferring causality from 

molecular data is a difficult problem, particularly because correlation does not 

imply causality. However, incorporating multiple sources of information may lead 

to a better understanding of the biological mechanisms. 

MicroRNAs are a class of small, noncoding RNAs that repress gene 

expression and protein translation. MicroRNAs (miRNAs) play important roles in 

complex cellular pathways by targeting multiple messenger RNAs (mRNAs) of 

protein coding genes (J. Zhang et al. 2014; Sass et al. 2011; Zafari et al. 2015). 

Inferring condition-specific microRNA activity, may reveal new drivers of disease. 

We aim to characterize the microRNA-mRNA disease-specific regulatory 

networks and identify the underlying genetic factors that lead to this 

dysregulation. 
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1.6 microRNA Sequencing 

This thesis provides new data generated via Next Generation Sequencing 

technology. Particularly, by profiling microRNA expression, new disease 

associated microRNAs are revealed. microRNAs are small RNA molecules (~22 

nucleotides), that are highly conserved across species. In addition, these 

molecules are less degraded than mRNAs due to their shorter length, making 

them a good source of biomarkers (Etheridge et al. 2011). 

Mature microRNAs are single stranded. They originate from a double-

stranded stem-loop structure with two arms, 3p and 5p (Figure 1). The 

endonuclease Dicer cleaves the precursor, generating two mature microRNAs 

that may target different mRNAs and provide different biological functions. 

 

 

Figure 1. The microRNA stem-loop structure. This figure was imported from 

https://en.wikipedia.org/wiki/MicroRNA. 

 

microRNAs present a seed sequence that binds specifically to the 3’ UTR 

region of their mRNA targets, inhibiting protein translation. The seed sequence is 
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a conserved heptametrical sequence, located at positions 2-8 from the mature 

microRNA 5´-end (Figure 2). 

Using the sequencing technology, the abundance level of known 

microRNAs can be estimated. The microRNA reads are aligned to human 

genome using short reads aligners, such as Bowtie (Langmead et al. 2009), and 

annotated using existing databases, such as miRBase (Kozomara and Griffiths-

Jones 2011). However, the microRNA sequences can present small variations 

that can also be detected by sequencing (Figure 2).  

 

Figure 2. Examples of microRNA sequences: the seed sequence and potential 

position variants.  

 

A sequencing alignment pipeline has been proposed by (Campbell et al. 

2015). This tool aligns and normalized the short reads, providing several 
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statistics to evaluate the quality of the data. Details about the sequencing 

protocol and sequencing data analysis are provided in the following chapters. 

However variability in microRNA expression can be caused by different technical 

artifacts of the sequencing protocol or platform. Therefore, it is very important to 

use proper control in microRNA expression analysis (Baker 2010). 

Previous studies have also used small RNA sequencing to reveal disease 

associated microRNAs and characterized their role in cancer and other important 

cellular processes (Farazi et al. 2011; Sandhu and Garzon 2011; He and Hannon 

2004; Bartel 2004). This thesis provides new molecular insights of microRNA 

profiles in lung cancer, ILD and COPD. 

 

1.7 Dissertation Aims 

1.7.1 Aim 1: Alterations in bronchial airway microRNA expression for lung cancer 

detection 

First, we aim to characterize the microRNA expression field in the airways 

of ever smokers with lung cancer, and identify disease associated microRNAs.  

In addition, we explore the clinical utility of bronchial microRNA data for 

lung cancer detection in ever smokers. By incorporating microRNA expression 

into an existing mRNA biomarker we significantly improve the performance 

(AUC) in an independent test set. 

The results and the methods of aim 2 are presented in detail in Chapter 2. 
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1.7.2 Aim 2: Biomarker discovery and visualization   

We generalized the biomarker discovery process, and developed a 

visualization tool for biomarker selection. We built upon an existing biomarker 

discovery pipeline, rabbit: an R Application for Building Biomarkers in 

Transcriptomic data, and created a web-based interface to visualize the 

performance of multiple predictors.  

The “visualization” component is the key to sorting through a thousand 

potential biomarkers, and developing clinically useful molecular predictors.  

The proposed visualization software was developed using R-Shiny and it 

is currently available as an open source tool 

(https://github.com/anabrandusa/rabbitGUI). This project is presented in detail in 

Chapter 3. 

 

1.7.3 Aim 3: Integrative analysis to identify microRNA drivers of COPD and ILD 

The molecular events leading to the development of COPD and ILD are 

poorly understood. We hypothesized that integrative genetic and expression 

networks may reveal novel miRNA mediators of genetic factors.  

We built condition specific integrative networks using a causality inference 

test for predicting SNP-miRNA-mRNA interactions, and identified potential 

microRNA drivers of these lung diseases. 

Chapter 4 describes the methodology and the results of this aim. 
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CHAPTER TWO 

Alterations in bronchial airway microRNA expression for lung cancer 

detection 

 

2.1 Introduction 

Based on the National Lung Cancer Screening Trial (NLST) results (Team 

2011), we are currently screening high-risk smokers with annual CT scans of the 

chest, which is leading to an increase in the number of pulmonary lesions being 

discovered. Once a pulmonary lesion is identified, physicians must decide 

between CT surveillance vs. airway/lung biopsy, an assessment that is based on 

pretest risk of disease, comorbidities and patient preference. When biopsy is 

required, the approach can include bronchoscopy, transthoracic needle biopsy 

(TTNB), or surgical lung biopsy (SLB). The choice among these procedures is 

determined on the basis of considerations such as lesion size and location, the 

presence of adenopathy, the risk associated with the procedure, and local 

expertise.  

While bronchoscopy is relatively safe (less than 1% of procedures 

complicated by pneumothorax (Tukey and Wiener 2012)), this procedure is 

limited by its sensitivity (from 34 to 88%), depending on the location and size of 

the lesion (Rivera, Mehta, and Wahidi 2013). Even with newer bronchoscopic 

guidance techniques, the sensitivity for the detection of lung cancer is below 70% 

for peripheral lesions (Wang Memoli, Nietert, and Silvestri 2012).  
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A nondiagnostic bronchoscopy in this setting leads to a clinical dilemma 

as to which of these patients should undergo further invasive diagnostic testing 

(TTNB or SLB). To facilitate this clinical decision, a gene expression-based 

classifier that distinguishes between smokers with and without lung cancer using 

mRNA isolated from cytologically normal cells in the mainstem bronchus has 

been proposed (Whitney et al. 2015; Silvestri et al. 2015).  

In this work, we extend the airway molecular field of injury concept to 

microRNA expression. MicroRNAs are a class of small, noncoding RNAs that 

repress gene expression and protein translation of their target genes by binding 

to the 3’ UTR complementary strands. This regulatory role is key to cellular 

function and can be leveraged to gain insight into the response to exposures and 

even pathogenesis of disease. In addition, compared to mRNAs, microRNAs are 

thought to be more stable molecules, making them more easily measured in 

degraded tissues (Etheridge et al. 2011).  

Previous studies have shown that smoking alters the expression of 

microRNAs in the bronchial airway epithelium (Perdomo et al. 2013; Schembri et 

al. 2009). We hypothesize that bronchial microRNA expression changes may 

also be associated with the presence of lung cancer and that integrating 

microRNA with gene expression could improve lung cancer detection. 
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2.2 Results 

2.2.1 Patient population 

Over 1000 current and former smokers with suspected lung cancer were 

enrolled in the Airway Epithelial Gene Expression in the Diagnosis of Lung 

Cancer (AEGIS) trials (Whitney et al. 2015; Silvestri et al. 2015). 

microRNA expression was profiled via small RNA sequencing for 347 

patients (194 cancer-positive and 153 cancer-negative subjects) from AEGIS-1 

and AEGIS-2 trials. Of the 347 samples, 341 passed the sequencing quality 

control filter. Details about the sequencing protocol and quality control are 

provided in subsections 2.3.2 and 2.3.3.   

We assigned 138 (~ 40%) samples from AEGIS-1 to be used as a 

discovery set (Table 1); these samples were drawn exclusively from the training 

set previously used to develop the gene expression classifier (Whitney et al. 

2015; Silvestri et al. 2015). The remaining 203 samples comprise our test set 

(Table 1) and consist exclusively of samples from the AEGIS-1 (n = 133) and 

AEGIS-2 (n=70) test sets that were previously used to validate the gene 

expression classifier (Silvestri et al. 2015).  

The demographics data for the discovery cohort (138 samples) and the 

test set (203 samples) is presented in Table 1. Except for cancer status, the 

other clinical variables are not significantly different between the two datasets. 

Furthermore, cancer status is significantly associated with age in the discovery 

set and pack-years in the test set (Table 2).  
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 Discovery set 
n=138 

Test set 
n=203 

Cancer Status (n) * Lung Cancer 88 103 
Benign Disease 50 100 

Gender (n) 
Females 62 84 
Males 76 119 

Age (SD; n) 59 (11; 138) 59 (10; 203) 

Smoking Status (n) 
Current 46 88 
Former 92 115 

Cumulative Smoke Exposure - pack-yr. (SD; n) 36 (24; 137) 37 (29; 199) 

 
Race (n) 

White 109 149 
Black 24 46 
Unknown 5 8 

 
Lesion Size (n) 

<3cm 52 71 
>=3cm 58 91 
Infiltrate 15 31 
Unknown 13 10 

 
 
 
 
 
Histology (n) 

NSCLC 72 79 
 
NSCLC 
Stage 

I 11 16 
II 3 5 
III 15 19 
IV 29 26 
Not specified 14 13 

NSCLC 
Subtype 

Adenocarcinoma 31 34 
Squamous 27 25 
Large-cell 2 4 
Not specified 78 140 

SCLC 16 21 
SCLC Stage Limited 4 8 

Extensive 8 12 
Not specified 4 1 

Uncertain Histology 0 3 

 
Diagnosis of Benign 
Disease (n) 
 
 

Resolution or Stability 11 26 
Alternative Diagnosis 39 74 
 
Type of 
Alternative 
Diagnosis 

Sarcoidosis  9 17 
Inflammation  3 2 
Fibrosis 1 1 
Infection 8 14 
Other Alternative 
Diagnosis 

18 40 

Table 1. Patient demographics table. n indicates number of patients with 

available clinical data; SD indicates standard deviation; * p-value < 0.05 by 

Fisher’s Exact Test.  
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Discovery set 
n=138 

Test set  
n=203 

Lung 
Cancer 
n=88 

Benign  
n=50 

p 
Lung 
Cancer 
n=103 

Benign  
n=100 

p 

Gender 
Females 25 37 

0.84 
38 46 0.2 

Males 63 13 65 54  

Age (SD; n) 
61  
(10; 88) 

56 
(13; 50) 

0.01 
60  
(9; 103) 

58  
(12; 100) 

0.29 

Smoking 
Current 32 14 

0.35 
47 41 

0.57 Former 56 36 56 59 
Cumulative Smoke 
Exposure - pack-yr. (SD; 
n) 

38  
(22; 88) 

33  
(27; 49) 

0.2 
40  
(28; 102) 

32  
(30; 97) 

0.05 

Race 
White 69 40 

0.98 
74 75 

0.8 Black 15 9 26 20 
Unknown 4 1 3 5 

 
Lesion 
Size 

<3cm 30 22  
 
4∙10-4 

20 51  
 
8∙10-14 

>=3cm 47 11 73 18 
Infiltrate 4 11 6 25 
Unknown 7 6 4 6 

Table 2. The association of cancer status with other clinical variables. p-values 

indicating the association of cancer with gender and smoking status were 

computing using a Fisher’s exact test; p-values indicating the association of 

cancer with age and cumulative smoke exposure were computed using a 

Student’s t-test; n indicates number of patients with clinical data available; SD 

indicates standard deviation. 

 

2.2.2 Identifying smoking-associated microRNAs in airway epithelium 

Previous work has shown that cigarette smoke creates a molecular field of 

injury throughout the airway, and specifically that microRNA expression is altered 

with tobacco smoke exposure (Schembri et al. 2009; Powell et al. 1999; Wistuba 

et al. 1997; Franklin et al. 1997; Guo et al. 2004; Miyazu 2005; Spira et al. 2004). 
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We therefore used the ability to detect microRNAs with smoking associated 

expression as a positive control for the quality of the microRNA expression data.  

A set of 28 microRNAs were previously proposed as modulators of gene 

expression changes in airway epithelium (Schembri et al. 2009), with most of 

them (n=23) being down-regulated in current smokers compared to never 

smokers. We found that these down-regulated microRNAs induced by smoking 

were significantly negatively enriched among current smokers (q<0.001), in both 

the discovery (n=138) and the test (n=203) sets (Figure 3). 

 

Figure 3. Enrichment of known smoking related microRNAs by GSEA. The set of 

23 known smoking-induced down-regulated microRNAs are significantly 

negatively enriched among current smokers (q<0.001). 
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In addition, we identified significantly differentially expressed microRNAs 

between current and former smokers by linear regression. The top 30 

differentially expressed microRNAs in the discovery set (q<0.01) are shown in 

Figure 4. Among these, we found microRNAs whose expression has been 

previously associated with smoking, such as miR-218, miR-365, miR-30a and 

miR-99a (Schembri et al. 2009). 

 

Figure 4. Significantly differentially expressed microRNAs between current and 

former smokers (q<0.01). Some of these microRNAs have been previously 

associated with smoking status, such as miR-218, miR-365, miR-30 and miR-

99a. 



 

 18 

 

2.2.3 Identifying cancer-associated microRNAs in airway epithelium 

Using the discovery set (n=138), we identified four significantly 

differentially expressed microRNA isoforms between patients with and without 

cancer by linear regression (p<0.002, q<0.2), miR-146a-5p, miR-324-5p, miR-

223-3p, 5p. The expression profiles of these microRNAs are shown in Table 3 

and Figure 5. Each of these miRNA has previously been shown to have tumor-

suppressor-like activity (Chen et al. 2013; Labbaye and Testa 2012; Li et al. 

2013; Nian et al. 2013). Consistent with these previous observations, we find that 

these microRNAs were down-regulated in the bronchial airway of patients with 

cancer. 

 

microRNA miRBase ID p-value q-value t-statistic 
direction in 
cancer 

hsa-miR-324-5p 
MI0000813_MIMA
T0000761 

0.0007 0.125 -3.49 DOWN 

hsa-miR-223-3p 
MI0000300_MIMA
T0000280 

0.0007 0.125 -3.47 DOWN 

hsa-miR-146a-5p 
MI0000477_MIMA
T0000449 

0.0008 0.125 -3.43 DOWN 

hsa-miR-223-5p 
MI0000300_MIMA
T0004570 

0.0016 0.184 -3.23 DOWN 

Table 3. Cancer-associated bronchial microRNAs (p<0.002, q<0.2). 
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Figure 5. Bronchial microRNAs significantly differentially expressed between 

cancer-positive and cancer-negative patients. (a) Expression of hsa-miR-146a-5p 

(p=0.0008, q=0.125) (b) Expression of hsa-miR-324-5p (p=0.0007, q=0.125) (c) 

Expression of hsa-miR-223-3p (p=0.0007, q=0.125) (d) Expression of hsa-miR-

223-5p (p=0.0016, q=0.184). 

 

2.2.4 Identifying microRNA-mRNA relationships 

MicroRNAs generally lead to the degradation of the mRNAs to which they 

bind. Therefore, we expect a microRNA with functional variation in expression to 

(a) (b)

(c) (d)

hsa-miR-324-5p
p=0.0007

hsa-miR-146a-5p
p=0.0008

hsa-miR-223-3p
p=0.0007

hsa-miR-223-5p
p=0.0016
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be negatively correlated with the expression of its gene targets. We found that 

the distribution of the correlation coefficients of each cancer-associated 

microRNA and its predicted mRNA targets (binding site predicted targets from 

Targetscan) is significantly more negative than the null distribution (p<10-9) 

(Figure 6). 

To begin to understand the potential biological impact of the cancer-

associated expression of the microRNA, we further evaluated the relationships 

between their gene targets and cancer. From the binding site predicted targets 

(Targetscan), we identified the genes whose expression is significantly negatively 

correlated (correlation q<0.1) with the cognate microRNA. These negatively 

correlated targets of each of the four microRNA isoforms were significantly 

positively enriched with cancer status (q<0.001) by Gene Set Enrichment 

Analysis (GSEA) (Subramanian et al. 2005) (Figure 7). In addition, the set of 

genes regulated by these microRNAs (254 in total) is enriched by DAVID 

(Huang, Sherman, and Lempicki 2009) for cancer-associated pathways, such as 

signaling pathways regulating pluripotency of stem cells (p=0.001), pathways in 

cancer (p=0.007), TGF-beta signaling pathway (p=0.035), Ras signaling pathway 

(p=0.043).  

Furthermore, we were able to validate in the test set the microRNA-mRNA 

relationships identified in the discovery set for all four isoforms. The correlation 

coefficients of each cancer-associated microRNA and its predicted mRNA targets 

(binding site predicted targets from Targetscan) are significantly more negative 
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than the null distribution (p<10-7) (Figure 8). In addition, the negatively correlated 

and predicted targets identified in the discovery set were significantly positively 

enriched with cancer status in the test set for each of the four isoforms; GSEA 

results are shown in Figure 9. 

 

Figure 6. The correlation with the predicted targets in the discovery set is 

significantly negative by a Kolmogorov-Smirnov test. The null distribution is 

represented in blue; the distribution of microRNA-mRNA correlations for each 

microRNA is represented in magenta. 
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Figure 7. The negatively correlated and predicted gene targets of the four 

differentially expressed microRNA isoforms are enriched in the discovery set by 

GSEA. (a) miR-146a-5p (50 genes, GSEA q<0.001); (b) miR-324-5p (43 genes, 

GSEA q<0.001) (c) miR-223-3p (89 genes, GSEA q<0.001) (d) miR-223-5p (72 

genes, GSEA q<0.001). 
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Figure 8. The correlation with the predicted targets in the test set is significantly 

negative by a Kolmogorov-Smirnov test. The null distribution is represented in 

blue; the distribution of microRNA-mRNA correlations for each microRNA is 

represented in magenta. 
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Figure 9. The negatively correlated and predicted gene targets of the four 

differentially expressed microRNA isoforms in the discovery set are also enriched 

in the test set by GSEA. (a) miR-146a-5p (50 genes, GSEA q<0.001); (b) miR-

324-5p (43 genes, GSEA q<0.001) (c) miR-223-3p (89 genes, GSEA q<0.001) 

(d) miR-223-5p (72 genes, GSEA q<0.01). 
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2.2.5 Bronchial miR-146a-5p improves lung cancer diagnosis 

We next sought to assess whether bronchial microRNA expression could 

add to the performance of a mRNA biomarker for lung cancer we previously 

identified (Whitney et al. 2015). Using the training set samples, we used logistic 

regression to build five cancer-prediction models:  one model contained the 

mRNA biomarker score alone, the other four models contained the mRNA 

biomarker score in combination with one of the four microRNAs we identified as 

having significant cancer-associated expression.  

Next, we compared the ROC-curve AUC of the mRNA biomarker alone to 

the four microRNA-containing models using a test set comprised of AEGIS-1 and 

AEGIS-2 samples that are independent of the AEGIS-1 samples used to identify 

the four microRNAs with cancer associated expression. The demographic data of 

the test cohort is provided in Table 1 and Supplementary Table 1.  We found that 

adding miR-146a-5p to the mRNA biomarker improved the AUC from 0.66 to 

0.71 (p=0.025), as shown in Figure 10.  

The AUC of biomarkers incorporating either miR-324-5p or either of the 

two isoforms of miR-223 was not significantly different than the AUC of the 

mRNA biomarker alone (p>0.25). 
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Figure 10. ROC AUC. miR-146a-5p significantly improves prediction of the gene-

expression biomarker (p=0.025). The AUC increases from 0.66 (green) to 0.71 

(blue). 

 

2.3 Methods 

2.3.1 Selection of patients 

As previously described, over 1000 current and former smokers 

undergoing bronchoscopy for suspected lung cancer were enrolled in the Airway 

Epithelial Gene Expression in the Diagnosis of Lung Cancer (AEGIS) trials, two 

independent, prospective, multicenter, observational studies (registered as 

NCT01309087 and NCT00746759) (Whitney et al. 2015; Silvestri et al. 2015). 

Exclusion criteria for patients enrolled in AEGIS trials were age less than 21 

years, no history of smoking (defined as having ever smoked <100 cigarettes), 
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and a concurrent cancer diagnosis or history of lung cancer. All study protocols 

were approved by the institutional review board at each medical center and 

written informed consent was obtained from all patients prior to enrollment. 

In this study, we profiled microRNA expression via small RNA sequencing 

for 347 patients. We were limited by patients with a benign diagnosis and 

matched them approximately 1:1 with patients diagnosed with lung cancer. 

Moreover, we attempted to balance the groups for smoking status, cumulative 

smoke exposure (pack-years), gender, and age. For all of the samples selected 

for small RNA sequencing, gene expression profiling of the large RNA fraction 

had been performed previously using Affymetrix Human Gene 1.0 ST arrays 

(Whitney et al. 2015; Silvestri et al. 2015) and was available for data integration. 

2.3.2 High-throughput sequencing of small RNA 

Based on previous work on the effect of multiplexing on microRNA 

expression quantitation (Campbell et al. 2015), we sequenced 347 samples in 

three batches by multiplexing 12 samples per lane on an Illumina HiSeq 2000.  

200 ng of total RNA from each sample was used for library preparation.  

The TruSeq Small RNA Sample Prep Kit (Illumina) was used for the first 

batch, while the NEBNext Multiplex Small RNA Library Prep Set (Illumina) was 

used for the second and third batches. RNA adapters were ligated to 3’ and 5’ 

ends of the RNA and the adapter-ligated RNA was reverse transcribed into 

single-stranded cDNA. The RNA 3’ adapter was designed to target microRNAs 

and other small RNAs that have a 3’ hydroxyl group resulting from enzymatic 
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cleavage by Dicer or other RNA processing enzymes. The adapter used for the 

first batch has the following sequence: TGGAATTCTCGGGTGCCAAGG, while 

the one used for the second and the third batches has the following sequence: 

AGATCGGAAGAGCACACGTCT. 

The cDNA was then amplified by PCR, using a common primer and a 

primer containing one of 12 index sequences. The introduction of the six-base 

index tag at the PCR step allowed multiplexed sequencing of different samples in 

a single lane of a flowcell. A 0.5% PhiX spike-in was also added in all lanes for 

quality control.  Each multiplexed library was hybridized to one lane of the two 8-

lane High-Output single-read flow cells on a cBot Cluster Generation System 

(Illumina) using TruSeq Single-Read Cluster Kit (Illumina).  The clustered flowcell 

was loaded onto a HiSeq 2000 sequencer for a multiplexed sequencing run 

which consists of a standard 36-cycle sequencing read with the addition of a 7-

cycle index read. 

2.3.3 MicroRNA alignment and quality control 

To estimate microRNA expression we used a small RNA sequencing 

pipeline previously described (Campbell et al. 2015). Briefly, the 3′ adapter 

sequence was trimmed using the FASTX toolkit. Reads longer than 15 nt were 

aligned to hg19 using Bowtie v0.12.7 (Langmead et al. 2009) allowing up to one 

mismatch and alignment to up to 10 genomic locations.  
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MicroRNA expression was quantified by counting the number of reads 

aligning to mature microRNA loci (miRBase v20) using Bedtools v2.9.0 (Griffiths-

Jones 2004; Quinlan and Hall 2010). 

Figure 11 illustrates the number of reads and Figure 12 shows the 

mismatch distribution of aligned reads. 

 
Figure 11. Alignment overview. An overview plot showing the total number of 

reads, the number of reads after filtering out adapter-only reads, the number of 

reads after size selection, the number of reads aligned, and the number of reads 

aligning to microRNA precursors for each sample. 
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Figure 12. Mismatch distribution. The different number of mismatches are 

indicated by the different colors (red is 0; orange is 1). 

 

MicroRNA counts within each sample were normalized to log2 RPM values 

by adding a pseudocount of one to each microRNA, dividing by the total number 

of reads that aligned to all microRNA loci within that sample, multiplying by 1 × 

106, and then applying a log2 transformation (Campbell et al. 2015). 

Next, we examined the distribution of read lengths present in each sample 

to ensure that the sequences we observed were of the proper length for 

microRNA. The read length distribution ought to follow a normal distribution with 

a mean of 22 bases. We filtered out samples whose distribution had an 

abundance of reads well below or above the mean of 22 bases (with less than 

one million reads aligned to 22 read length), indicating that the sample was not 
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properly sequenced, the adapters were improperly trimmed, or the sample was of 

poor quality (Figure 13). Six such samples were removed, leaving 341 samples 

included in the downstream analysis.  

 
Figure 13. The distribution of lengths of aligned reads. Most aligned reads are 

between 20 and 24 nucleotides long and predominantly align to microRNA loci. 

Reads that were not trimmed (35 nucleotides) aligned to mostly to predicted 

tRNA or snoRNA loci. The distribution of lengths of aligned reads of the high 

quality samples shows that most reads are ~22 nucleotides long which is the 

average microRNA length. For the low quality samples, the distribution of aligned 

reads is not centered on the 22 nucleotides length. 

 

Additionally, we removed microRNA loci with a low number of aligned 

reads (less than 20 on average). A total of 463 microRNA loci passed our filter 

and were included in the analysis.  
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Lastly, we applied ComBat (Johnson, Li, and Rabinovic 2007) to 

normalize the microRNA expression in the three different batches. Large scale 

variability in microRNA expression was examined by Principal Components 

Analysis (PCA). No outlier samples were detected using the first two principal 

components. 

2.3.4 Differential expression analysis 

To identify smoking-associated microRNAs, while correcting for 

covariates, we applied an F-test (anova R function) (Chambers 1992) between a 

multiple linear regression (lm R function), with microRNA expression as the 

response variable, and smoking status, age, gender, cancer status, and pack-

years as independent variables, and another multiple linear regression that did 

not include the smoking status as an independent variable. 

Similarly, to identify microRNAs with cancer-associated expression 

patterns in the discovery cohort, while correcting for covariates, we applied an F-

test between a multiple linear regression, with microRNA expression as the 

response variable, and cancer status, age, gender, smoking status, and pack-

years as independent variables, and another multiple linear regression that did 

not include the cancer status as an independent variable. 

The p-values were adjusted for false discovery rate using Benjamini-

Hochberg FDR  (Benjamini and Hochberg 1995), and were denoted with q-value. 
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2.3.5 Identifying microRNA-mRNA relationships 

We analyzed the correlations between the differentially expressed 

microRNAs and their targets as predicted in the Targetscan database (Lewis, 

Burge, and Bartel 2005). Correlation coefficients were calculated using Pearson’s 

product-moment coefficient. For each microRNA, we compared the resulting 

distribution of correlation coefficients to the distribution of correlation coefficients 

between the microRNA and all the genes that have not been predicted to be 

targeted by it in Targetscan using the Kolmogorov-Smirnov (KS) test.  

Next, we tested whether the negatively correlated targets (correlation 

FDR<0.1) of each differentially expressed microRNA are enriched among the 

genes whose expression is associated with cancer status by Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al. 2005). The genes were ranked 

by the t-statistic of a linear regression, with gene expression as the response 

variable and cancer status, age, gender, smoking status, and pack-years as the 

independent variables. 

2.3.6 Improving the gene-expression classifier by incorporating the expression of 

microRNA 

First, we calculated the prediction scores of the mRNA classifier (Whitney et al. 

2015; Silvestri et al. 2015) using the subset of samples with matched mRNA and 

microRNA data. Then, for each cancer-associated microRNA, we integrated the 

mRNA classifier score with the microRNA’s expression using logistic regression 

(cv.glmnet function from glmnet R package,  
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https://cran.r-project.org/web/packages/glmnet/index.html). Figure 14 

summarizes the method. 

The coefficients of the logistic regression were determined in the 

discovery set and the performance of fully specified models was evaluated in the 

independent test set samples.  

Classification performance was assessed using the area under the 

receiver operating characteristic curve (ROC AUC). The statistical significance of 

the AUC improvement was computed by DeLong test (DeLong, DeLong, and 

Clarke-Pearson 1988) from the pROC R package (Robin et al. 2011).  

 

Figure 14. miR-146a-5p expression is integrated with the clinico-genomic score 

of the existing gene expression classifier by logistic regression. The logistic 

regression model was implemented using cv.glmnet() function from glmnet R 

package. By training the weights of the logistic regression in the discovery set, 

we obtained the following values: β0 = 1.85, β1 = 4.39, β2 = -0.37. 
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2.4 Discussion 

CT screening of high-risk smokers for lung cancer has led to an increase 

in the number of lesions detected. When routine clinical diagnostic workup is 

inconclusive, profiling mRNA in the bronchial airway epithelium has been shown 

to improve detection (Whitney et al. 2015; Silvestri et al. 2015; Spira et al. 2007). 

In this study, we expanded on this concept by profiling microRNA expression in 

the bronchial airway to identify lung cancer associated microRNAs that, in 

combination with mRNA, have the potential to aid in the detection of disease.  

Prior studies have demonstrated that microRNAs have aberrant 

expression, mostly down-regulated, in tumors compared to normal tissue, and 

have been associated with tumor suppression, cell differentiation, cell signaling, 

and apoptosis (Lu et al. 2005).  Furthermore, profiling microRNA in the bronchial 

airway, a less invasive site than tumor tissue, has revealed microRNA expression 

alterations associated with exposure to tobacco cigarette smoke10. In this study, 

we confirm that microRNA expression changes occur in the airway of current 

smokers when compared to formers, and importantly, show that the airway field 

of injury for lung cancer is reflected in microRNA expression differences. 

We identified four microRNA isoforms (miR-146a-5p, miR-324-5p, miR-

223-3p, miR-223-5p) that have altered expression in the airway epithelium of 

patients with lung cancer.  Similar to findings in tumor tissue, these microRNAs 

were all down-regulated in cancer patients.  Intriguingly, all these microRNAs 

have previously been implicated in tumor suppressive pathways. Specifically,  
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miR-146a has been previously shown to inhibit cell growth, migration and EGFR 

signaling (Labbaye and Testa 2012; Kumaraswamy et al. 2015; Chen et al. 

2013), while inducing apoptosis. Furthermore, miR-146a/b expression levels 

have been shown to be significantly elevated during senescence (a cellular 

program that irreversibly arrests the proliferation of damaged cells) (Bhaumik et 

al. 2009). miR-223 has been shown to function as a tumor suppressor in the 

Lewis lung carcinoma cell line by targeting insulin-like growth factor-1 receptor 

and cyclin-dependent kinase-2 (Nian et al. 2013); and miR-324 has been 

associated with nasopharyngeal cancer (Li et al. 2013). While microRNA 

expression differences have already been well documented in tumors, we are 

showing for the first time that the expression of microRNAs with cancer-related 

functions is altered in the bronchial airway of lung cancer patients. 

To begin to determine if the altered expression of these cancer-associated 

microRNAs has a functional impact on the airway epithelium, we demonstrated 

that the expression of mRNAs which are predicted targets of these microRNAs is 

significantly negatively correlated with the expression of the cancer-associated 

microRNAs suggesting that the expression of downstream genes is induced as a 

consequence of the cancer-dependent loss of microRNA expression.   

Moreover, predicted targets with negatively correlated expression profiles 

are enriched for genes involved in processes important for cancer, such as the 

pluripotency of stem cells, TGF-beta and Ras signaling pathways. Among the 50 

significantly negatively correlated predicted targets of miR-146a-5p, we found 
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APPL1 (adaptor protein, phosphotyrosine interaction, PH domain and leucine 

zipper, DCC-interacting protein 13-alpha). The protein encoded by APPL1 gene 

binds to many other proteins, including PIK3CA, RAB5A, DCC, AKT2, 

adiponectin receptors, and proteins of the NuRD/MeCP1 complex, which are 

involved in cell proliferation and crosstalk between adiponectin and insulin 

signaling pathways. Interestingly, we also observed a significantly negative 

correlation between miR-146a-5p and PIK3CA, suggesting that miR-146a-5p 

interacts with PI3K/AKT pathway. In addition to the important role of PI3K/AKT 

pathway in cell death/survival, an increased activity of PI3K has been shown to 

be an early and potentially reversible event in the airway of smokers with 

premalignancy and lung cancer (Singh et al. 2002; Gustafson et al. 2010).  

The correlation of these differentially expressed bronchial microRNAs with 

cancer-associated mRNA targets suggest their role as lung cancer-associated 

regulators of gene expression, and potentially could serve as biomarkers of 

disease. 

We assessed each differentially expressed microRNA’s ability to enhance 

the performance of an mRNA biomarker that had been developed and validated 

using samples from the same cohort5.  We integrated miR-146a-5p expression 

into the mRNA classifier from Whitney et al. (Whitney et al. 2015), and have 

shown that it significantly improves the performance of the lung cancer 

biomarker.  
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In addition, we examined the added value of the other three cancer-

associated microRNA isoforms and found that they did not improve the 

performance. Interestingly, we believe that miR-223-3p and miR-223-5p did not 

add to the biomarker performance because one of their targets (SNCA) is a 

member of the mRNA classifier, thus miR-223 expression might be redundant 

with SNCA expression levels and not capable of adding new information about 

the likelihood of lung cancer to the biomarker. If this hypothesis is correct, it 

would suggest that miR-146a adds to the biomarker’s performance because the 

mRNA biomarker does not already capture miR-146a-related information.  

In this study we demonstrate for the first time the presence of a microRNA 

field of injury in the bronchial airway for lung cancer. We identified microRNA that 

are known to play a role in cancer-related processes, and importantly, we 

demonstrate that a multi ‘omics data integration approach may improve 

prediction. Future work includes extending this biomarker development approach 

to even less invasive sampling sites (e.g. nasal brushings), which has the 

potential to expand the clinical impact of molecular biomarkers. 
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CHAPTER THREE 

Biomarker discovery and visualization 

 

3.1 Introduction 

Based on the methods described by MAQC project (MAQC Consortium et 

al. 2006), our group has proposed a pipeline for biomarker discovery, rabbit: an 

R Application for Building Biomarkers in Transcriptomic data (J. Perez-Rogers, 

PhD Thesis, 2016; https://github.com/jperezrogers/rabbit). The software runs 

several combinations of binary class predictors in cross-validation on a given 

normalized gene-expression dataset. Figure 15 illustrates the four modules of the 

biomarker pipeline that correspond to the main steps of the biomarker discovery 

process:  

1. feature filtering (unsupervised); 

2. feature ranking (supervised); 

3. biomarker size selection; 

4. classification. 

This tool has been developed using a modular approach based on object 

oriented programming paradigm. Therefore, the framework can be extended to 

other algorithms as well. The current version of the pipeline includes 840 

combinations of methods, tested in cross-validation. However selecting the best 

biomarkers from almost a thousand potential predictors remains an open 

question. Some combinations of models may be biased towards noisy patterns 
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that are specific to a particular dataset. By simply selecting the predictor with the 

highest ROC AUC, the user may deal with overfitting and not necessarily with the 

most robust biomarker. In this work we propose a methodology to sort through 

almost a thousand potential biomarkers. Our approach is based on a graphical 

interface that visually guides the user through the entire biomarker selection 

process. 

 

Figure 15. The biomarker discovery pipeline runs all available combinations of 

feature filters, feature ranking, biomarker sizes and classifiers in cross-validation. 
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We propose rabbitGUI a new web-based graphical interface that helps to 

evaluate the performance of all statistical and machine learning methods tested 

in cross-validation by rabbit. This tool has been implemented as an R-Shiny 

application and the code is available as open-source 

(https://github.com/anabrandusa/rabbitGUI). The functionalities of rabbitGUI will 

be detailed in the following sections. 

 

3.2 Results 

3.2.1 rabbitGUI: a web-based interface for biomarker discovery 

In this section, a detailed description of rabbitGUI functionalities is 

provided. As a case study, a publicly available dataset from MAQC project (ER+/- 

breast cancer patients (Popovici et al. 2010)) is used. 

 3.2.1.1 Model selection 

Model selection tab is designed to guide the user through the selection of 

the best combination of models in a step-wise manner, following the four main 

steps in the biomarker discovery process: feature filtering, feature ranking, 

biomarker size selection and classification.  

The user can navigate through the four steps using a radio button menu. 

In each step, each method is evaluated across all the possible predictors that 

incorporate that method. If a method performs generally well across all the 

methods in all the other steps, it is considered robust and less likely to over-fit.  



 

 42 

To provide an evaluation of the prediction results and compare them 

across the different models, the following statistical procedure is applied. 

In each step, we compare the performance (mean ROC AUC) of each 

model across all the possible predictors by ANOVA. If the p-value is significant, 

then we apply a Tukey HSD test to identify the top model groups. The models 

that perform significantly lower than any other models are excluded, and the top 

remaining models are colored in red. The adjusted p-values from the Tukey HSD 

test are provided in a table displayed below the boxplots. 

Figures 16, 17, 18 and 19 illustrate each of the four steps along with a 

summary of the results from the Tukey HSD test.  

Based on these four steps, multiple combination of models may be 

selected. Previous studies have shown that multiple feature selection and 

classification algorithms may produce statistically equally good predictors 

(Popovici et al. 2010; MAQC Consortium et al. 2006). Therefore, the GUI 

provides a table with all selected biomarkers (Figure 20).  

In addition, the GUI displays a summary of the boxplots displayed at each 

step, including the mean, standard deviation, median, minimum and maximum 

values, and 1st and 3rd interquartile values. This information is displayed if the 

user accesses the link below the boxplots: “Boxplot summary (click to display)”. 

This information can be used to further filter the final list of model combinations. 

 

 



 

 43 

 
 

 
 

 
 
 

Figure 16. Feature filtering. In this example, all four feature filtering methods 

perform similarly well across all the predictors that incorporate them (ANOVA 

p=0.87). 
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Figure 17. Feature ranking. The top feature ranking methods in this case are t-

test, pAUC and signal-to-noise (colored in red). 
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Figure 18. Biomarker size selection. The best biomarker sizes in this case are 

50, 200, 500 features (colored in red). However, we recommend the user to 

consider the minimal size biomarker, since fewer features can be more easily 

translated in a clinically useful test. 



 

 46 

 

 
 

 
 
Figure 19. Selection of the classifier. The best classifiers in this case are random 

forest, naïve bayes, svm and weighted voting (colored in red). 
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Figure 20. Best selected predictors. In this case we found 48 equivalently good 

biomarkers (20 of them are shown above). For the biomarker size we include 

only the smallest set of features that performs the best (in this case 50 features).  
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3.2.1.2 Comparison with random predictions 

The Random mean AUC tab displays the performance of each method in 

each step compared to a random. For the random experiments we apply the 

same methods, using a random shuffle class label of the samples. The results 

generated using the random class label represent a quality control step, 

confirming that the real performance is not a technical artifact. For each step, we 

display the random results below the real performance for each method (Figure 

21).  

 

 
 
Figure 21. Real performance vs. random performance for each method in a step 

(this example shows the feature ranking step). 

 

3.2.1.3 Visualize sample-level prediction scores 

The Prediction scores tab allows the user to navigate through all potential 

biomarkers and visualize the sample-level prediction scores of all cross-

validation runs (Figure 22). The models are sorted by the highest ROC AUC and 

the distribution of the scores are colored differently for the two classes. A 
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selection menu is available for the user to visualize a particular predictor by its 

index or name. 

 

 

 
 

 
 
Figure 22. Visualize sample-level prediction scores for each predictor, for both 

the real and the random shuffle class label tests. 
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3.2.1.4 Visualize heatmap 

 
This tab allows the user to visualize any heatmap, by uploading the 

following files: 

 a .csv file with the expression matrix (samples on the columns and genes 

on the rows); 

 a .csv file indicating the sample phenotype (a column vector with 0/1 for 

each sample, assuming the samples are in the same order as in the 

expression matrix); 

 a .txt file with a list of features (the same format as the feature files 

generated by rabbit). 

Bash scripts that collect the features for each model, across all cross-

validation runs, have been implemented. To visualize all potentially relevant 

features based on the cross-validation results, the union of all selected features 

is considered. More details can be found in the section 3.3.2. 

However, this tab is general and any heatmap can be displayed by the 

user, if the proper inputs are provided (Figure 23). 
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Figure 23. Visualize the heatmap of biomarker features. 

 

3.3 Methods 

3.3.1 Shiny applications 

Shiny is a new package from RStudio that makes it easy to build 

interactive web applications with R (http://rstudio.github.io/shiny/tutorial/). It 

provides automatic binding of inputs and outputs and pre-built widgets that 

facilitates the process of developing user-friendly, interactive, and powerful 

applications.  

The main features of Shiny apps are the following: 

 Build useful web applications with only a few lines of code; 

 Shiny applications are automatically interactive; 

 Outputs change instantly as users modify inputs, without requiring a 

reload of the browser; 



 

 52 

 Shiny user interfaces can be built entirely using R, or can be written 

directly in HTML, CSS, and JavaScript for more flexibility; 

 Shiny works in any R environment (Unix, Windows or Mac); 

 Pre-built output widgets for displaying plots, tables, and R objects. 

A Shiny app is based on client-server architecture, where the client issues 

requests to the server based on the user inputs. The information provided by the 

server is then displayed by the client. 

In this work leverage the flexibility of Shiny package and develop a usr-

friendly GUI to evaluate and interact with the outputs of rabbit biomarker 

discovery package. 

3.3.2 Installing rabbit, rabbitGUI and dependencies 

rabbit pipeline is based on caret package, and it requires R>=3.2.3. In 

order to run rabbit pipeline with all the default models, the following R 

dependencies are required: pbkrtest (R >= 3.2.3); car (R >= 3.2.0); nlme (R >= 

3.0.2); devtools; multtest; impute; samr; e1071; randomForest; klaR; kernlab; 

glmnet; limma; genefilter. 

After these dependencies are installed, the user can install rabbit from 

github, as following: install_github("jperezrogers/rabbit", ref="master"). 

rabbitGUI does not require the installation of rabbit package, as long as 

the proper inputs are provided (see subsection 3.3.3 for more details). However, 

it requires that the following database of model names and indices is present in 

the directory specs, under the local directory of rabbit source code. 
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This database can be saved from rabbit: stockPipeline$getModelSpecs(). 

Alternatively, if rabbit package is not installed, the file specs.csv can be 

found from the following web address: 

https://github.com/anabrandusa/rabbitGUI/tree/master/rabbitGUI_code/specs. 

In addition, in order to run rabbitGUI, the following R dependencies need 

to be installed: shiny; DT; pROC; ROCR; markdown; gplots. 

The Shiny app can be downloaded from the following web address: 

https://github.com/anabrandusa/rabbitGUI/tree/master/rabbitGUI_code, and 

launched by running app.R script. 

The application can run on any system with an R environment (Unix, 

Windows or Mac). Online details about the GUI are available at the following web 

address: https://github.com/anabrandusa/rabbitGUI/blob/master/README.md. 

3.3.3 Processing and aggregating the classification results from rabbit pipeline 

rabbit biomarker discovery tool is able to run multiple models in cross-

validation in parallel environment. It has been configured to run in parallel on an 

SGE cluster using qsub. The function run takes as inputs an object that defines 

the pipeline’s configuration, an expression matrix, a binary phenotype vector, the 

current cross-validation iteration, the output directory, and other parameters 

(https://github.com/jperezrogers/rabbit/tree/master/vignettes). The function is 

submitted an available computing node for each iteration, using qsub.  

The output consists of n directories (corresponding to n cross-validation 

iterations). Each of these directories contain m other directories (corresponding 
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to the outputs of m tested predictors). For each predictor two output files are 

generated: predictions.txt (the sample-level prediction scores) and features.txt 

(the list of features used for classification). 

The role of rabbitGUI is to summarize the overall performance of all 

models and iterations. To standardize the inputs of the web-based interface, the 

outputs from rabbit pipeline are processed as following. For each iteration and 

each model, ROC AUC is computed. This can be done in parallel for each 

iteration, by running process.rabbit.outputs.sh. The results are then merged into 

one file by create.shiny.inputs.sh. The ROC AUC across n cross-validation 

iterations is computed in two different ways: 

 mean AUC across all iterations; 

 AUC of all test samples in all iterations. 

 The getFeaturesInParallel.sh submits a qsub job for each model, 

collecting all features from all cross-validation iterations for that model. Then by 

running getFeatureUnion.sh, a file containing the union of all features from all 

iterations is generated for each model. This file can be uploaded into rabbitGUI to 

visualize the heatmap all features selected in cross validation for a particular 

model.  

All the Bash and R scripts that collect the results from rabbit, compute the 

performance and prepare the inputs for rabbitGUI are available as open source 

(https://github.com/anabrandusa/rabbitGUI/tree/master/prepare_inputs_rabbitGU

I).  
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rabbitGUI inputs are stored under the local directory of the application, in 

data_clasified and data_random folders. Each of these two directories contain 

alldata.csv and aucmeans.csv files.  

The results from data_random are obtained by running rabbit with a 

randomly assigned class of the samples, serving as a quality control of the data 

and methods used. Examples of rabbitGUI input files are provided on github and 

in Figures 24 and 25. 

 

 

Figure 24. alldata.csv file is an input for rabbitGUI and contains the sample-level 

prediction scores of all predictors and all iterations merged in one csv file. 
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Figure 25. aucmeans.csv file is an input for rabbitGUI and contains the ROC 

AUC values of all models, computed across all cross-validation iterations as a 

mean AUC and as the AUC of all test samples in all iterations. The models in the 

table are sorted in descending order by ROCRAUC values. 

 

3.3.4 Biomarker discovery methods available from rabbit and rabbitGUI 

rabbitGUI displays and evaluates the results from all methods tested by 

rabbit pipeline. rabbit is flexible and allows the user to activate and deactivate 

specific methods. In addition, new algorithms can be added to the collection. 

However, this section briefly describes the default models integrated in rabbit 

package and evaluated by rabbitGUI. 
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3.3.4.1 Feature filtering 

This step consists of unsupervised feature filtering methods. The following 

methods select the features that present the most variability across samples, 

having the highest potential to discriminate the data. 

 Median Absolute Deviation (MAD) 

o ranks each feature X by the absolute median deviation across 

samples i=1,…,n: 

MAD(X) = median(abs(Xi-median(X))); 

o selects the top q features; 

o MAD is ran three times independently by default, assigning the 

following q values: 25%, 50% and 75%. 

 Mean-expression 

o compares each feature vector with the vector of mean expression 

across all features; 

o genes with p<0.05 are selected. 

3.3.4.2 Feature selection 

This step is a supervised gene ranking. The features are ranked by their 

ability to discriminate between the two classes. 

 Significance Analysis of Microarrays (SAM) 

o non-parametric statistics; 
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o computes a test statistic for the relative difference in gene 

expression between the two groups, based on permutation analysis 

of expression data, and calculates a false discovery rate; 

o samr() function from samr R package. 

 Moderated t-test and fold change (FC+P) 

o genes are first scored by moderated t-statistic (Smyth 2004), using 

eBayes function from limma R package; 

o genes with a p-value less than 0.05 are selected and then ranked 

by log2 fold-change. 

 T-test 

o standard two-sample t-test assuming equal variances. 

 Partial AUC (pAUC) 

o integrates AUC to a limit p given as parameter (default p=0.1); 

o rowpAUCs() function from genefilter R package; 

 Signal-to-noise 

o defined by (Golub et al. 1999): each feature is ranked by the 

difference in means between the two groups relative to the 

standard deviations within the two groups; 

3.3.4.3 Biomarker size selection 

Using the features ranking described previously, this step selects the top n 

features. In case there are fewer than n features, all features are included. 
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3.3.4.4 Classification 

This step uses the set of features selected by the previous steps applies 

different supervised algorithms for binary classification. 

 Linear discriminant analysis (LDA) 

o finds a linear combination of features that characterizes or 

separates two or more classes; 

o assumes continuous independent variables and categorical 

dependent variable; 

o included in caret R package (method="lda"). 

 Weighted Voting 

o defined by (Golub et al. 1999): this procedure uses a fixed subset 

of genes and  makes  a  prediction on the basis of the expression 

level of these genes in a new sample; each informative gene 

generates a “weighted vote” for one of the classes, with the 

magnitude of each vote dependent on the expression level in the 

new sample and the degree of that gene’s correlation with the class 

distinction; the votes are summed to determine the winning class,   

as   well   as   the prediction score; 

o included in caret R package (function wv.model()). 

 Support Vector Machines (SVM) 

o discriminative classifier defined by a separating hyperplane; an 

SVM model is a representation of the samples as points in space, 
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mapped so that the separate categories are divided by a clear gap 

that is as wide as possible; 

o included in caret R package (method="svmRadial"). 

 Naïve Nayes 

o probabilistic classifier based on applying Bayes' theorem, under the 

assumption that features are independent; 

o included in caret R package (method="nb"). 

 Elastic Net 

o regularized regression method that linearly combines the penalties 

of the lasso and ridge methods for a logistic regression model; 

o included in caret R package (method="glmnet"). 

 K-Nearest Neighbors 

o assigns a sample to the class of its closest neighbor in the feature 

space, based on a defined distance, such as the Euclidian 

distance; 

o included in caret R package (method="knn"). 

 Random Forest 

o selects random subsets of the feature-variables and creates a 

decision tree on each subset by maximizing information gain 

o it classifies the test samples using all trees; the class is assigned 

based on the prediction of the majority of the trees; 

o included in caret R package (method="rf"). 
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3.4 Discussion 

rabbitGUI is an open source GUI for biomarker discovery. The visual 

component is designed to guide the user to select the best predictors from a pool 

of about one thousand model combinations.  

rabbit and rabbitGUI can serve as a user-friendly framework for biomarker 

discovery. The main advantages of this software system are the following: 

 standardized tool for biomarker discovery; 

 provides an easy-to-use GUI for evaluating and interpreting the 

results; 

 availability: free and open source; 

 flexibility: it can be extended by adding new methods and 

visualization components; 

 multi-platform: it can run on different platforms (Unix, Windows or 

Mac); 

 parallelized for SGE cluster. 

 

The framework has been designed to be a user-friendly resource for 

researchers in all fields, including both computational and experimental 

biologists. We plan to further extend both rabbit and rabbitGUI by integrating new 

methods and visualization features.  

Currently, rabbitGUI is a powerful visual resource to interpret and display 

the results generated by rabbit pipeline.  
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In future work, we plan to extend the web-based interface to provide a 

configuration menu for rabbit pipeline and the option to run the application 

interactively from the GUI. 

In addition, we plan to extend this software system to run on a cloud 

computing platform, such as Amazon or Google Cloud Platform, providing quick 

and user-friendly access. We believe this tool will be a valuable resource for the 

translational bioinformatics research community. 
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CHAPTER FOUR 

Integrative microRNA networks reveal potential roles for miR-449/34 family 

in COPD and ILD 

 
 

4.1 Introduction 

Complex diseases arise from a heterogeneous molecular interplay 

between genetic and genomic alterations. Although biological processes, such as 

chronic inflammation, apoptosis, and oxidative stress, have been found to play a 

role in COPD and ILD pathogenesis, knowledge remains limited about the key 

molecular interactions of these diseases (Steiling et al. 2013).  

Several computational approaches have been applied to infer causality 

from biological data, including Bayesian networks (Vignes et al. 2011; Aliferis et 

al. 2010; Dondelinger, Husmeier, and Lèbre 2012), factor graphs (Ng et al. 2012; 

Vaske et al. 2010) and ridge and least absolute shrinkage and selection operator 

(Omranian et al. 2016).  

In 2009, E. Schadt’s group proposed a data driven statistical framework to 

infer mediators of genetic factors associated with quantitative traits. The causality 

is modeled as a “chain” of mathematical conditions that test the strength of the 

associations (Millstein et al. 2009). This approach has been applied to 

characterize the role of microRNAs (miRNAs) within gene regulatory networks 

(Su, Kleinhanz, and Schadt 2011). In this work, we take a similar approach to 
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unravel the miRNA dysregulations that mediate the genetic factors of COPD and 

ILD.  

We profiled miRNA expression from 351 patients from the Lung Genomics 

Research Consortium (LGRC). Previous LGRC GWAS studies have found 

associations of genetic factors with adult lung function (Tang et al. 2014) and 

idiopathic pulmonary fibrosis (Noth et al. 2013). We integrate miRNA expression 

with publicly available SNP and mRNA data.  We first infer causality of the 

molecular associations between SNP, miRNA and mRNA using show that there 

is a difference in the connectivity between the disease networks compared to 

control. The networks capture the differences in miRNA regulation, revealing new 

miRNA drivers of disease.  

 

4.2 Results 

4.2.1 eQTL analysis 

Using the LGRC cohort, we profiled miRNA expression via small-RNA 

sequencing from 351 lung tissue samples from patients with COPD, ILD and 

controls (Table 4).  

By “anchoring” expression data with genetic information, we can identify 

key miRNA regulators of gene expression associated with COPD. Therefore, we 

utilized a subset of the 262 lung tissue samples with profiled miRNA expression, 

as well as publicly available SNP and mRNA data (Table 5). 
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Covariates Control (n=62) ILD (n=144) COPD (n=145) 
Smoking Status ˦ ǂ 2 current,  

38 former,         
19 never,  
3 NA 

5 current,  
85 former,  
50 never,  
4 NA 

8 current,  
129 former,  
6 never,  
2 NA 

Age ǂ 63.1 (12.0) 61.2 (10.2) 64.4 (9.9) 
Pack Years * ˦ ǂ 41.1 (36.6) 26.3 (19.9) 55.9 (39.0) 
Gender 31 males, 

31 females 
78 males, 
66 females 

86 males, 
59 females 

FEV1/FVC * ˦ ǂ 0.77 (0.1) 0.83 (0.1) 0.5 (0.2) 
Percent Emphysema ˦ ǂ 0.7 (1.0) 0.8 (1.7) 16.6 (18.0) 

Table 4. Demographics table of samples with available miRNA and mRNA data. 

*Significantly different between ILD and Control (p<0.05); ˦Significantly different 

between COPD and Control (p<0.05); ǂSignificantly different between ILD and 

COPD (p<0.05); p-values for gender and smoking status were calculated by 

using Fisher’s exact test; p-values for age, pack years, FEV1/FVC and Percent 

Emphysema were calculated by using Student’s t-test. 

 

Covariates Control (n=38) ILD (n=113) COPD (n=111) 
Smoking Status ˦ ǂ 2 current,  

24 former,         
12 never 

4 current,  
71 former,  
38 never 

7 current,  
99 former,  
5 never  

Age 65.5 (11.5) 62.2 (9.2) 63.8 (9.2) 
Pack Years * ǂ 49.9 (40.8) 26.3 (20.4) 55.1 (37.8) 
Gender 22 males,  

16 females 
61 males,   
52 females 

65 males,  
46 females 

FEV1/FVC * ˦ ǂ 0.76 (0.06) 0.83 (0.07) 0.49 (0.24) 
Percent Emphysema ˦ ǂ 0.7 (1.0) 0.74 (1.7) 17.0 (18.3) 

Table 5. Demographics table of samples with available miRNA and mRNA data. 

*Significantly different between ILD and Control (p<0.05); ˦Significantly different 

between COPD and Control (p<0.05); ǂSignificantly different between ILD and 

COPD (p<0.05); p-values for gender and smoking status were calculated by 

using Fisher’s exact test; p-values for age, pack years, FEV1/FVC and Percent 

Emphysema were calculated by using Student’s t-test. 
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Using PLINK (Purcell et al. 2007) we performed an eQTL (expression 

quantitative trait loci) analysis, considering both CIS and TRANS interactions, 

where CIS was defined as <1MB, and including both miRNA and mRNA features. 

We identified all genes and miRNAs associated with a SNP by ANOVA 

while correcting for age, gender, smoking status, and population structure 

(p<0.0005). The number of significant CIS and TRANS eQTLs (p<0.05) identified 

within each group are presented in Figure 26. Most of the associations between 

SNPs and miRNAs are TRANS, and very few are CIS (see section 4.3.4 for the 

definition of CIS/TRANS associations). 

The QQ-plots show significant p-values for both CIS (local) and TRANS 

(distant) associations, in all three groups: COPD (Figure 27), and ILD (Figure 

28), control (Figure 29). 

 

Figure 26. Number of significant eQTLs (p<0.05). 
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Figure 27. QQ-plot in COPD patients. 

 

 

Figure 28. QQ-plot in ILD patients. 
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Figure 29. QQ-plot in control patients. 

 

4.2.1 miR-34/449 family is differentially connected in disease compared to control 

Next, we built integrative networks within the COPD, ILD, and control 

patients using the causality inference test (CIT) (Millstein et al. 2009). CIT 

assesses the hypothesis that a potential mediator between an initial randomized 

variable and an outcome variable is causal for that outcome. Causal and 

independent relationships are defined as series of conditions of associations 

between the three variables, corresponding to SNP, microRNA and mRNA nodes 

(Figure 30).  

Then, we explored the scale-free property of the networks (Barabási and 

Oltvai 2004; Barabasi and Bonabeau 2003) by computing the frequency of node 
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degree in log-scale. As expected, the networks are biologically meaningful, 

presenting a negative linear relationship between the node degree and the 

frequency of node degree in log scale (Figure 31). 

 

Figure 30. Network construction; we select those SNP-miRNA-mRNA triplets 

where the SNP-mRNA relationship is defined by a miRNA mediator. We filter out 

independent relationships and those triplets where the SNP is not associated 

with the miRNA. 

 

 

Figure 31. The CIT networks follow a power law. The negative correlation 

between the frequency of node degree and the node degree indicates that the 

networks are scale-free. 
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Furthermore, we identified the miRNAs predicted to interact with the most 

genes in each network (Table 6).  

 
Top mostly connected 
miRNAs in COPD 

Top mostly connected 
miRNAs in ILD 

Top mostly connected 
miRNAs in Control 

hsa-miR-27a-5p * 
hsa-miR-190b * 
hsa-miR-449b-5p * 
hsa-miR-449a * 
hsa-miR-449c-5p * 
hsa-miR-4423-5p * 
hsa-miR-92b-3p * 
hsa-miR-34c-3p  
hsa-miR-205-5p 
hsa-miR-23a-5p * 
hsa-miR-509-3p-2 
hsa-miR-509-3p-3 
hsa-miR-509-3p-1 
hsa-miR-30a-3p 
hsa-miR-34b-3p * 
hsa-miR-1185-1-3p 
hsa-miR-125b-1-3p 
hsa-miR-654-5p 
hsa-miR-485-5p 
hsa-miR-34c-5p 
 
 

hsa-miR-92b-3p * 
hsa-miR-449a * 
hsa-miR-200a-5p * 
hsa-miR-31-5p * 
hsa-miR-92b-5p * 
hsa-miR-449c-5p 
hsa-miR-200b-3p * 
hsa-miR-31-3p * 
hsa-miR-190b * 
hsa-miR-449b-5p * 
hsa-miR-511-1 * 
hsa-miR-511-2 * 
hsa-miR-34c-5p 
hsa-miR-34c-3p 
hsa-miR-146b-5p * 
hsa-miR-2110 * 
hsa-miR-34b-5p 
hsa-miR-450b-5p 
hsa-miR-200a-3p 
hsa-miR-34b-3p 
 

hsa-miR-21-5p * 
hsa-miR-4802-3p * 
hsa-miR-146a-5p * 
hsa-miR-378c * 
hsa-miR-142-3p * 
hsa-miR-146b-5p * 
hsa-miR-421 * 
hsa-miR-30a-3p 
hsa-miR-378a-5p * 
hsa-miR-378a-3p * 
hsa-miR-330-5p * 
hsa-miR-425-5p * 
hsa-miR-378i * 
hsa-miR-26a-5p-1 * 
hsa-miR-26a-5p-2 * 
hsa-miR-223-5p * 
hsa-miR-191-5p * 
hsa-miR-30a-5p 
hsa-miR-509-3p-2 
hsa-miR-509-3p-3 
hsa-miR-509-3p-1 
hsa-miR-5571-3p 
hsa-miR-301b * 
hsa-miR-766-3p * 
hsa-miR-199b-5p * 
hsa-miR-34a-5p * 

Table 6. Top 20 mostly connected miRNAs in each phenotype. * indicates the 

significant FDR-adjusted p-values (q<0.2) by a Fisher’s exact test that 

determines the difference in the connectivity frequencies between the two 

phenotypes for each miRNA. 
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Dysregulated miRNAs that interact with large gene modules are more 

likely to cause important phenotypic changes. Members of the miR-449/34 family 

were found to be among the top ranked in COPD and ILD networks (Figure 32), 

indicating that miR-449/34 family has a greater impact on gene expression 

regulation in disease compared to control group. 

miR-449 members are located on chromosome 5 and miR-34 members, 

on chromosome 11. However, these miRNAs are known to be co-expressed, 

presenting similar biological functions (Fededa et al. 2016). Members of miR-

34/449 family can promote airway differentiation by repressing the Notch 

pathway (Chevalier et al. 2015; Bae et al. 2012; Lizé, Klimke, and Dobbelstein 

2011). In addition, these miRNAs were found to share an increased number of 

associated genes, as illustrated in Figure 33. 

 

 

Figure 32. Top differentially connected microRNAs in COPD (right) and ILD (left). 
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Figure 33. miR-449/34 modules present an increased number of shared genes 

by Jaccard index. 

 

Furthermore, we observed that the combined set of genes that positively 

correlated with these miRNAs were enriched among genes that increase in 

expression over time when airway basal cells are differentiated at an air-liquid 

interface (ALI) (Ross et al. 2007). Gene enrichment results were significant by 

both GSVA, p<10-3 (Figure 34a) and GSEA, q<0.001 (Figure 35).  
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This set of genes was also associated with genes that are positively 

correlated with airway wall thickening in patients with emphysema, by both 

GSVA, p<10-4 (Figure 34b) and GSEA, q<0.001 (Figure 36). All these results 

suggest that the miR-449/34 family is playing a role in differentiation associated 

with the airway wall thickening phenotypes.  

 

 

Figure 34. Enrichment of miR-449/34 modules by GSVA. (a) Enrichment of miR-

449/34 gene set family with airway cells differentiation by GSVA. The set of 

genes that positively correlated with miR-449/34 family (406 genes) were 

enriched among genes that increase in expression with the airway epithelial cells 

differentiation in COPD; (b) Enrichment of miR-449/34 gene set family with 

increasing airway wall thickness in patients with emphysema by GSVA. The set 

of genes that positively correlated with miR-449/34 family were enriched among 

genes that increase in expression with airway wall thickening of patients with 

emphysema in COPD. 
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Figure 35. Enrichment of miR-449/34 associated genes with airway differentiation 

by GSEA. The set of genes that positively correlated with miR-449/34 family 

were enriched among genes that increase in expression with the airway epithelial 

cells differentiation (q≈0), both in (a) COPD and (b) ILD. Genes were ranked from 

those that increased in expression with time of differentiation (red) to those that 

decreased in expression with time of differentiation (blue) in a publicly available 

dataset (Ross et al. 2007).  
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Figure 36. Enrichment of miR-449/34 associated genes with increasing airway 

wall thickness in patients with emphysema by GSEA. The set of genes that 

positively correlated with miR-449/34 family were enriched among genes that 

increase in expression with airway wall thickening of patients with emphysema 

(q≈0), both in (a) COPD and (b) ILD. Genes were ranked from those that 

increased in expression with thicker airway walls (red) to those that decreased in 

expression with thicker airway walls (blue) in an independent dataset of 60 

airway samples from 8 different patients with emphysema.  
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4.2.2 SNPs associated with disease that regulate miR-34/449 

Using the causality inference test (Millstein et al. 2009), we found 75 

SNPs in COPD and 60 SNPs in ILD that may regulate miR-449/34 family. Some 

of these SNPs have been previously associated with asthma, inflammation, 

cancer and other degenerative diseases by GRASP (Leslie, O’Donnell, and 

Johnson 2014). Top significantly associated SNPs with COPD or ILD by a 

Fisher’s exact test (q<0.25) are shown in Figure 37. 

To illustrate the association of the SNP data with miRNA and mRNA 

expression, an example is provided. We considered the following triplet obtained 

by the causality inference test: rs525770_C → miR-449a → CLUAP1. Figure 38 

shows the association of miR-449a with CLUAP1 expression (p<0.001). Figure 

39 illustrate the association of rs525770_C variant with miR-449a expression 

(p<1e-05) and CLUAP1 expression (p<0.002), respectively.  

Interestingly, using UCSC Genome Browser (Kent et al. 2002), we 

determined that rs525770_C falls in the genomic region of HS6ST3 gene. This 

gene is a Heparan sulfate (HS) sulfotransferase that modifies HS to generate 

structures required for interactions of HS with a variety of proteins. The protein 

coded by HS6ST3 is implicated in proliferation and differentiation, adhesion, 

migration, inflammation, blood coagulation, and other diverse processes. In 

addition, CLUAP1 (Clusterin associated protein 1) is known to be associated with 

immunoglobulin IgG1 (Gardin and White 2011). 
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Figure 37. SNPs that are significantly associated with COPD and ILD. (a) SNPs 

that are significantly associated with COPD by a Fisher’s exact test (q<0.25). (b) 

SNPs that are significantly associated with ILD by a Fisher’s exact test (q<0.25). 
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Figure 38. The association between miR-449a and CLUAP1 expression. 

 

 
Figure 39. The association of rs525770_C variant with (a) miR-449a expression 

and (b) CLUAP1 expression. 
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4.2.3 Differential connectivity of miRNA-mRNA regulatory networks 

Next, we hypothesized that miRNA-mRNA regulatory networks are also 

differently connected between disease and normal states, independently of the 

associations with the SNP data. To test this hypothesis, a new approach to 

compute the module differential connectivity (MDC) of miRNA/mRNA association 

networks, is proposed. Each miRNA is assigned an MDC score, that captures the 

overall difference in the pairwise microRNA-gene correlation strengths between 

case and control networks (Figure 40). Then, we applied a permutation test by 

shuffling the class labels of the samples to determine the significance of real 

MDC scores. The computed p-values were adjusted by FDR correction. 

 

 

Figure 40. The differential connectivity of a miRNA is computed as the total 

squared difference between the edge weights of the two networks, scaled by the 

number of edges. 
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Using a 500-permutation test we identified 159 DC miRNAs in COPD and 

595 in ILD (FDR<0.1). Therefore, we found significant differences between case 

and control miRNA-mRNA regulatory networks in both COPD and ILD. Figure 41 

illustrates the significant difference between the real MDC score and the 

distribution of the random MDC scores obtained by 500 permutations, for miR-

30a-5p (FDR=0.002), the top DC miRNA in COPD. This miRNA has been 

previously associated with COPD (Steiling, Lenburg, and Spira 2009; Stephanie 

A Christenson et al. 2013).  

 

 

Figure 41. The permutation test assigns a p-value to each miRNA, by counting 

how many times the random MDC score is greater than the real MDC score. This 

example shows the real MDC score vs. the distribution of 500 random 

permutations for miR-30a-5p (FDR=0.002). 

 
Interestingly, members of miR-449/34 family were also found to be among 

the top ranked DC miRNAs (Table 7). 
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 miRNA DC FDR 

ILD 

miR-449c-5p 0.004 
miR-449b-5p 0.01 
miR-34c-5p 0.05 
miR-449a 0.07 
miR-34b-3p 0.09 
miR-34b-5p 0.1 
miR-34c-3p 0.13 

COPD 
miR-34c-5p 0.08 
miR-449c-5p 0.14 
miR-449b-5p 0.18 
miR-34b-3p 0.19 

Table 7. Differentially connected members of miR-449/34 family. 

 

In addition, the scale-free property of the disease-specific miRNA-mRNA 

regulatory networks was also evaluated. All three networks are scale-free (Figure 

42), however the correlation coefficient of the log-log plots increases when SNP 

data is incorporated as previously described in subsection 4.2.1 (Figure 29). 

 

Figure 42. The miRNA-mRNA regulatory networks follow a power law. The 

negative correlation between the frequency of node degree and the node degree 

indicates that the networks are scale-free. 

 

Control, r = -0.87 COPD, r = -0.86 ILD, r = -0.87
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4.3 Methods 

4.3.1 High-throughput sequencing of small RNA 

45 samples were prepared with Small RNA Sample Prep Kit v1.5 

(Illumina) and sequenced on the Genome Analyzer IIx (Illumina) according to the 

manufacturer’s protocol.  Multiplexed small RNA sequencing was conducted on 

the Illumina HiSeq 2000 for 319 lung tissue samples.  Briefly, one microgram of 

total RNA from each sample was used for library preparation with a TruSeq 

Small RNA Sample Prep Kit (Illumina).   

RNA adapters were ligated to 3’ and 5’ end of the RNA molecule and the 

adapter-ligated RNA was reverse transcribed into single-stranded cDNA. The 

RNA 3’ adapter was specifically designed to target miRNAs and other small 

RNAs that have a 3’ hydroxyl group resulting from enzymatic cleavage by Dicer 

or other RNA processing enzymes.   

The cDNA was then PCR amplified using a common primer and a primer 

containing one of 10 index sequences. The introduction of the six-base index tag 

at the PCR step allowed multiplexed sequencing of different samples in a single 

lane of a flowcell. Ten individual PCR-enriched cDNA libraries with unique 

indices in equal amount were pooled and gel purified together.  A 0.5% PhiX 

spike-in was also added in all lanes for quality control.   

Each library was hybridized to one lane of the 8-lane single-read flowcell 

on a cBot Cluster Generation System (Illumina) using TruSeq Single-Read 

Cluster Kit (Illumina).  The clustered flowcell was loaded onto HiSeq 2000 
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sequencer for a multiplexed sequencing run that consists of a standard 36-cycle 

sequencing read with the addition of a 7-cycle index read. 

4.3.2 miRNA alignment and quality control 

To estimate miRNA expression we used a small RNA sequencing pipeline 

previously described (Campbell et al. 2015). Similarly to the procedure described 

in 2.3.3, the 3′ adapter sequence was trimmed using the FASTX toolkit. Reads 

were aligned to hg19 using Bowtie v0.12.7 (Langmead et al. 2009).  

miRNA expression was quantified by the number of reads aligned to 

mature miRNA loci (miRBase v20) using Bedtools v2.9.0 (Griffiths-Jones 2004; 

Quinlan and Hall 2010).  

miRNA counts within each sample were RPM normalized, as previously 

described in section 2.3.3.  

The batch effects of the two sequencing protocols were removed by 

Combat (Johnson, Li, and Rabinovic 2007) and 13 outliers were removed by 

PCA; 351 patients were included in the downstream analysis. 

4.3.3 Quality control of the SNP data 

Using flashpca (Abraham et al. 2014) principal components of the SNP 

data were computed, for those patients with overlapping miRNA and mRNA data. 

As expected, race is clearly separated into two groups, corresponding to African-

American and Caucasian (Figure 43). This observation confirms that the SNP 

data is sound. 
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In addition, we can observe that the population structure may be a 

significant covariate of the eQTL analysis. However, this can be corrected by 

including the principal components into the model. 

 
Figure 43. PCA of the SNP data shows the separation of the African-American 

and Caucasian groups.  

 

4.3.4 eQTL analysis 

eQTLs (expression quantitative trait loci) are regions of the genome 

containing DNA sequence variants that cause expression changes of one or 

more transcripts. eQTL interactions can be either CIS or TRANS, based on the 

proximity between the SNP and the transcript (Figure 44).  

We utilized the subset of 262 lung tissue samples with miRNA expression 

profiled by sequencing, as well as publicly available Agilent gene expression 

array and Affymetrix SNP chip.  
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Genes and miRNAs associated with a SNP were identified by ANOVA 

(p<0.0005), while correcting for age, gender, smoking status, and population 

structure (the first three principal components). We considered both CIS and 

TRANS interactions, where CIS was defined as <1MB.  

 
Figure 44. This figure illustrates the molecular interaction of CIS and TRANS 

SNPs with an RNA transcript. In this example, the CIS SNP affects the promoter 

of gene A, while the TRANS SNP affects a transcription factor located upstream 

gene A. The figure was imported from (Wolen and Miles 2006), 

http://pubs.niaaa.nih.gov/publications/arcr343/306-317.htm  

 

4.3.5 Building causal disease specific networks using SNP, microRNA and 

mRNA data 

After we identified all genes and miRNAs associated with a SNP, as 

described in section 4.3.4,  we built integrative networks within the COPD, ILD, 

and control patients using the causality inference test (CIT) (Millstein et al. 2009). 
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This test is a previously established method for predicting SNP-miRNA-mRNA 

triplets where the SNP is regulating the expression of the miRNA and the miRNA 

is regulating the expression of the gene (Millstein et al. 2009).  

CIT assesses the hypothesis that a potential mediator between an initial 

randomized variable and an outcome variable is causal for that outcome. Causal 

and reactive models are defined as series of conditions of associations between 

the three variables, corresponding to SNP, microRNA and mRNA nodes. The 

significance of the test is computed for both the causal and reactive models. If 

the causal p-value is lower than 0.05 and the reactive higher than 0.05 then the 

call is considered causal. If both p-values are greater than 0.05 then the call is 

independent, and if both p-values are lower than 0.05, then the causality cannot 

be inferred.  

We selected those SNP-miRNA-mRNA triplets where the SNP-mRNA 

relationship is defined by a miRNA mediator, filtering out independent 

relationships and those triplets where the SNP is not associated with the miRNA. 

The number of connections at each step of the network construction are shown 

in Figure 45. 

Next, we compared the disease networks with the control network and 

evaluated those miRNAs that were differentially connected with their targets 

between the two states. For each microRNA in a CIT triplet, we counted how 

many genes were connected in each state. To assign significance, we applied a 

Fishers’s exact test the ratio of connected genes between disease and control. 
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Figure 45. Number of significant interactions at each step of network construction 

in COPD, ILD and control groups. 

 

4.3.6 Validation of the gene modules by gene enrichment 

Using two independent datasets, we validated the miR-449/34 gene 

module by gene enrichment using GSVA (Hänzelmann, Castelo, and Guinney 

2013) and GSEA (Subramanian et al. 2005).  

First we performed gene enrichment of the gene module in a publically 

available dataset that provides gene expression measurements over time when 

airway basal cells are differentiated at an air-liquid interface (ALI) (Ross et al. 

2007). First, the time points were correlated with the GSVA scores of the gene 

set corresponding to miR-449/34 gene module. The results were confirmed by 
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GSEA, where genes were ranked from those that increased in expression with 

time of differentiation to those that decreased in expression with time of 

differentiation in the ALI data, using a linear mixed-effects model (lme() R 

function). 

The second validation dataset was generated by our laboratory, providing 

60 airway gene expression samples profiled from 8 patients with emphysema 

(Campbell et al. 2012). We performed a GSVA analysis by correlating the airway 

wall thickness measure with the GSVA scores of the gene set that corresponds 

to the miR-449/34 gene module. These results were also confirmed by GSEA, 

where the genes were ranked from those that increased in expression with 

thicker airway walls to those that decreased in expression with thicker airway 

walls, using a linear mixed-effects model (lme() R function). 

 

4.4 Discussion 

 This work presents novel insights about the complex mechanisms of lung 

pathogenesis. Using the causality inference test, we identified potential miRNA 

drivers of COPD and ILD. We show that there exists a significant number of 

different miRNA-mRNA interactions between disease and normal states. In 

addition, the networks obtained by this methodology are biologically meaningful, 

with a significant scale-free profile.  

Among the top differentially connected miRNAs in COPD and ILD we 

found miR-449/34 family. Members of this family have been previously 
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associated with inflammatory lung diseases. Previous studies have shown that 

miR-449/34 family regulates mucociliary differentiation by directly targeting the 

NOTCH pathway (Marcet et al. 2011; Lizé, Klimke, and Dobbelstein 2011; Bae et 

al. 2012; Liu et al. 2015; Chevalier et al. 2015). In addition, we validated the 

association of these miRNAs with gene modules implicated in the airway 

epithelial cell differentiation. Besides miR449/34 family, we also found miR-4423 

to be differentially connected in COPD. Expression of this miRNA has been 

previously associated with airway differentiation in smokers with lung cancer 

(Perdomo et al. 2013).  

We generated a novel small-RNA sequencing dataset and highlighted the 

most dysregulated miRNAs in COPD and ILD by an integrative network 

approach. This work is a step forward in understanding the complex mechanisms 

of lung pathogenesis and developing new therapeutic strategies. 
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CHAPTER FIVE 

Conclusions and future directions 

 

This work provides new data and methods for biomarker discovery. We 

demonstrate for the first time the presence of a microRNA expression field in the 

bronchial epithelium of patients with lung cancer. While microRNA expression 

changes have already been associated with human cancers, we show for the first 

time that these alterations are measurable from bronchial epithelial tissue. 

A bronchial biomarker for lung cancer detection has been developed by 

integrating microRNA and mRNA expression. By incorporating microRNA data, 

the proposed biomarker improves the performance of an existing bronchial 

mRNA predictor in an independent test set. This study is a proof of concept 

showing that bronchial microRNAs can be used to predict the presence of lung 

cancer. Building upon an existing clinical test, this work has important clinical 

implications. In future work we propose to profile nasal microRNAs and integrate 

them with nasal mRNAs to develop a robust and less invasive biomarker for lung 

cancer detection.  

In addition, miR-146a has been characterized in many cancer tissues and 

its role as a tumor suppressor has been previously established (Labbaye and 

Testa 2012). Knockdown experiments in human breast cancer cells have shown 

that BRCA1/EGFR interaction is regulated by miR-146a, miR-146a expression 

being positively correlated with the expression of BRCA1 tumor suppressor. We 
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plan to further investigate the role of this miRNA in bronchial tissue and lung 

cancer development.  

The second part of this work proposes a new graphical tool for binary 

classification problems, with application in biomarker discovery. Clinical data is 

limited, and most of the times the number of samples is much smaller than the 

number of molecular features, making it difficult to train different prediction 

algorithms. The results of different classifiers may differ based on the number of 

samples, the number of features or the class prevalence of a dataset. The goal of 

this software tool is to standardize the biomarker discovery process, when 

multiple algorithms are tested in cross-validation on the same dataset.  

A web-based user-interface has been developed to facilitate the biomarker 

selection process and sort through a thousand potential biomarkers. This 

interface is user-friendly and guides the user through the entire process of 

biomarker selection and interpretation. This software may serve as a useful 

resource for the translational bioinformatics research community. Future work 

includes incorporating the biomarker pipeline and the GUI into a more accessible 

web-based system that can run on a cloud computing platform. In addition, other 

methods will be added to the existing collection of algorithms. Ensemble methods 

will be tested and compared with individual methods. 

Finally, COPD and ILD disease-specific networks were analyzed. 

Interestingly, both the microRNA-mRNA regulatory networks and those that 
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incorporate genetic data (SNP) with microRNA and mRNA expression were 

significantly differentially connected between disease and normal states.  

Using a causality inference test to infer SNP-microRNA-mRNA causal 

relationships, potential drivers of COPD and ILD, such as miR-449/34 family, 

were identified. These interesting molecular associations will further be 

investigated and validated by in-vitro experiments. This study is a step forward 

understanding the complex molecular mechanisms underlying chronic 

inflammatory lung diseases. 

This thesis addresses three major health problems, such as lung cancer, 

COPD and ILD. In addition, it proposes new integrative approaches for biomarker 

discovery and provides new insights into the complex molecular mechanisms 

underlying smoking related lung diseases. 



 

 93 

BIBLIOGRAPHY 

 
Abraham, Gad, Michael Inouye, AL Price, NJ Patterson, RM Plenge, ME 

Weinblatt, N Patterson, et al. 2014. “Fast Principal Component Analysis of 

Large-Scale Genome-Wide Data.” Edited by Yu Zhang. PLoS ONE 9 (4). 

Public Library of Science: e93766. doi:10.1371/journal.pone.0093766. 

 

Aliferis, Constantin F., Alexander Statnikov, Ioannis Tsamardinos, Subramani 

Mani, and Xenofon D. Koutsoukos. 2010. “Local Causal and Markov Blanket 

Induction for Causal Discovery and Feature Selection for Classification Part 

I: Algorithms and Empirical Evaluation.” The Journal of Machine Learning 

Research 11. JMLR.org: 171–234. 

 

Bae, Yangjin, Tao Yang, Huan-Chang Zeng, Philippe M Campeau, Yuqing Chen, 

Terry Bertin, Brian C Dawson, Elda Munivez, Jianning Tao, and Brendan H 

Lee. 2012. “miRNA-34c Regulates Notch Signaling during Bone 

Development.” Human Molecular Genetics 21 (13): 2991–3000. 

doi:10.1093/hmg/dds129. 

 

Baker, Monya. 2010. “MicroRNA Profiling: Separating Signal from Noise.” Nature 

Methods 7 (9). Nature Research: 687–92. doi:10.1038/nmeth0910-687. 

 

 



 

 94 

Barabasi, A L, and E Bonabeau. 2003. “Scale-Free Networks.” Scientific 

American. http://www.ncbi.nlm.nih.gov/pubmed/12701331. 

 

Barabási, Albert-László, and Zoltán N. Oltvai. 2004. “Network Biology: 

Understanding the Cell’s Functional Organization.” Nature Reviews. 

Genetics 5 (2). Nature Publishing Group: 101–13. doi:10.1038/nrg1272. 

 

Bartel, David P. 2004. “MicroRNAs: Genomics, Biogenesis, Mechanism, and 

Function.” Cell 116 (2): 281–97. doi:10.1016/S0092-8674(04)00045-5. 

 

Beane, Jennifer, Jessica Vick, Frank Schembri, Christina Anderlind, Adam 

Gower, Joshua Campbell, Lingqi Luo, et al. 2011. “Characterizing the Impact 

of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq.” 

Cancer Prevention Research 4 (6): 803–17. doi:10.1158/1940-6207.CAPR-

11-0212. 

 

Benjamini, Y, and Y Hochberg. 1995. “Controlling the False Discovery Rate: A 

Practical and Powerful Approach to Multiple Testing.” Journal of the Royal 

Statistical Society Series B 57, 289–300. 

 

Bertucci, François, Sébastien Salas, Séverine Eysteries, Valéry Nasser, Pascal 

Finetti, Christophe Ginestier, Emmanuelle Charafe-Jauffret, et al. 2004. 



 

 95 

“Gene Expression Profiling of Colon Cancer by DNA Microarrays and 

Correlation with Histoclinical Parameters.” Oncogene 23 (7): 1377–91. 

doi:10.1038/sj.onc.1207262. 

 

Bhaumik, Dipa, Gary K Scott, Shiruyeh Schokrpur, Christopher K Patil, Arturo V 

Orjalo, Francis Rodier, Gordon J Lithgow, and Judith Campisi. 2009. 

“MicroRNAs miR-146a/b Negatively Modulate the Senescence-Associated 

Inflammatory Mediators IL-6 and IL-8.” Aging 1 (4). Impact Journals, LLC: 

402–11. doi:10.18632/aging.100042. 

 

Bjoraker, J. A., J. H. Ryu, M. K. Edwin, J. L. Myers, H. D. Tazelaar, D. R. 

Schroeder, and K. P. Offord. 1998. “Prognostic Significance of 

Histopathologic Subsets in Idiopathic Pulmonary Fibrosis.” American Journal 

of Respiratory and Critical Care Medicine 157 (1): 199–203. 

doi:10.1164/ajrccm.157.1.9704130. 

 

Brody, Jerome S. 2012. “Transcriptome Alterations Induced by Cigarette 

Smoke.” International Journal of Cancer. Journal International Du Cancer 

131 (12): 2754–62. doi:10.1002/ijc.27829. 

 

Campbell, Joshua D, Gang Liu, Lingqi Luo, Ji Xiao, Joseph Gerrein, Brenda 

Juan-Guardela, John Tedrow, et al. 2015. “Assessment of microRNA 



 

 96 

Differential Expression and Detection in Multiplexed Small RNA Sequencing 

Data.” RNA 21 (2). Cold Spring Harbor Laboratory Press: 164–171. 

doi:10.1261/rna.046060.114. 

 

Campbell, Joshua D, John E McDonough, Julie E Zeskind, Tillie L Hackett, Dmitri 

V Pechkovsky, Corry-Anke Brandsma, John V Masaru Suzuki, et al. 2012. 

“A Gene Expression Signature of Emphysema-Related Lung Destruction 

and Its Reversal by the Tripeptide GHK.” Genome Medicine 4 (67). 

doi:10.1186/gm367. 

 

“Cancer of the Lung and Bronchus - SEER Stat Fact Sheets.” 2016. Accessed 

December 18. https://seer.cancer.gov/statfacts/html/lungb.html. 

 

Carrington, C. B., E. A. Gaensler, R. E. Coutu, M. X. FitzGerald, and R. G. 

Gupta. 1978. “Natural History and Treated Course of Usual and 

Desquamative Interstitial Pneumonia.” The New England Journal of 

Medicine 298 (15): 801–9. doi:10.1056/NEJM197804132981501. 

 

Castro, Mauro A A, Ines de Santiago, Thomas M Campbell, Courtney Vaughn, 

Theresa E Hickey, Edith Ross, Wayne D Tilley, Florian Markowetz, Bruce A 

J Ponder, and Kerstin B Meyer. 2016. “Regulators of Genetic Risk of Breast 

Cancer Identified by Integrative Network Analysis.” Nature Genetics 48 (1): 



 

 97 

12–21. doi:10.1038/ng.3458. 

 

Chambers, JM. 1992. Linear Models. Edited by JM Chambers and T Hastie. 

Pacific Grove: Wadsworth & Brooks/Cole. 

Chen, Gang, Ijeoma Adaku Umelo, Shasha Lv, Erik Teugels, Karel Fostier, Peter 

Kronenberger, Alex Dewaele, Jan Sadones, Caroline Geers, and Jacques 

De Grève. 2013. “miR-146a Inhibits Cell Growth, Cell Migration and Induces 

Apoptosis in Non-Small Cell Lung Cancer Cells.” PLoS One 8 (3): e60317. 

doi:10.1371/journal.pone.0060317. 

 

Chevalier, Benoît, Anna Adamiok, Olivier Mercey, Diego R Revinski, Laure-

Emmanuelle Zaragosi, Andrea Pasini, Laurent Kodjabachian, Pascal Barbry, 

and Brice Marcet. 2015. “miR-34/449 Control Apical Actin Network 

Formation during Multiciliogenesis through Small GTPase Pathways.” 

Nature Communications 6. Nature Publishing Group: 8386. 

doi:10.1038/ncomms9386. 

 

Collisson, Eric A., Joshua D. Campbell, Angela N. Brooks, Alice H. Berger, 

William Lee, Juliann Chmielecki, David G. Beer, et al. 2014. 

“Comprehensive Molecular Profiling of Lung Adenocarcinoma.” Nature 511 

(7511). Nature Research: 543–50. doi:10.1038/nature13385. 

 



 

 98 

 

DeLong, Elizabeth R., David M. DeLong, and Daniel L. Clarke-Pearson. 1988. 

“Comparing the Areas under Two or More Correlated Receiver Operating 

Characteristic Curves: A Nonparametric Approach.” Biometrics 44 (3): 837. 

doi:10.2307/2531595. 

 

Dondelinger, Frank, Dirk Husmeier, and Sophie Lèbre. 2012. “Dynamic Bayesian 

Networks in Molecular Plant Science: Inferring Gene Regulatory Networks 

from Multiple Gene Expression Time Series.” Euphytica 183 (3). Springer 

Netherlands: 361–77. doi:10.1007/s10681-011-0538-3. 

 

Emmert-Streib, Frank, Ricardo de Matos Simoes, Paul Mullan, Benjamin Haibe-

Kains, and Matthias Dehmer. 2014. “The Gene Regulatory Network for 

Breast Cancer: Integrated Regulatory Landscape of Cancer Hallmarks.” 

Frontiers in Genetics 5. Frontiers: 15. doi:10.3389/fgene.2014.00015. 

 

Etheridge, Alton, Inyoul Lee, Leroy Hood, David Galas, and Kai Wang. 2011. 

“Extracellular microRNA: A New Source of Biomarkers.” Mutation Research 

717 (1–2): 85–90. doi:10.1016/j.mrfmmm.2011.03.004. 

 

Farazi, Thalia A, Jessica I Spitzer, Pavel Morozov, and Thomas Tuschl. 2011. 

“miRNAs in Human Cancer.” Journal of Pathology 223 (2). NIH Public 



 

 99 

Access: 102–15. doi:10.1002/path.2806. 

 

Fededa, Juan Pablo, Christopher Esk, Beata Mierzwa, Rugile Stanyte, Shuiqiao 

Yuan, Huili Zheng, Klaus Ebnet, Wei Yan, Juergen A Knoblich, and Daniel 

W Gerlich. 2016. “MicroRNA‐34/449 Controls Mitotic Spindle Orientation 

during Mammalian Cortex Development.” EMBO Journal 35 (22): 2386–

2398. doi:10.15252/embj.201694056. 

 

Franklin, W A, A F Gazdar, J Haney, I I Wistuba, F G La Rosa, T Kennedy, D M 

Ritchey, and Y E Miller. 1997. “Widely Dispersed p53 Mutation in 

Respiratory Epithelium. A Novel Mechanism for Field Carcinogenesis.” The 

Journal of Clinical Investigation 100 (8): 2133–2137. doi:10.1172/JCI119748. 

 

Fujimoto, Junya, Humam Kadara, Melinda M Garcia, Mohamed Kabbout, 

Carmen Behrens, Diane D Liu, J Jack Lee, et al. 2012. “G-Protein Coupled 

Receptor Family C, Group 5, Member A (GPRC5A) Expression Is 

Decreased in the Adjacent Field and Normal Bronchial Epithelia of Patients 

with Chronic Obstructive Pulmonary Disease and Non-Small-Cell Lung 

Cancer.” Journal of Thoracic Oncology 7 (12): 1747–1754. 

doi:10.1097/JTO.0b013e31826bb1ff. 

 

Gardin, A, and J White. 2011. “The Sanger Mouse Genetics Programme: High 



 

 100 

Throughput Characterisation of Knockout Mice.” Acta Ophthalmologica 89 

(s248). Blackwell Publishing Ltd: 0–0. doi:10.1111/j.1755-3768.2011.4451.x. 

 

Ginsberg, Michelle S., Ravinder K. Grewal, and Robert T. Heelan. 2007. “Lung 

Cancer.” Radiologic Clinics of North America, Update on Radiologic 

Evaluation of Common Malignancies, 45 (1): 21–43. 

doi:10.1016/j.rcl.2006.10.004. 

 

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, 

H. Coller, et al. 1999. “Molecular Classification of Cancer: Class Discovery 

and Class Prediction by Gene Expression Monitoring.” Science 286 (5439). 

 

Govindan, Ramaswamy, Li Ding, Malachi Griffith, Janakiraman Subramanian, 

Nathan D. Dees, Krishna L. Kanchi, Christopher A. Maher, et al. 2012. 

“Genomic Landscape of Non-Small Cell Lung Cancer in Smokers and Never 

Smokers.” Cell 150 (6): 1121–1134. doi:10.1016/j.cell.2012.08.024. 

 

Greenhalgh, Janette, Adrian Bagust, Angela Boland, Kerry Dwan, Sophie Beale, 

Juliet Hockenhull, Christine Proudlove, et al. 2015. “Erlotinib and Gefitinib for 

Treating Non-Small Cell Lung Cancer That Has Progressed Following Prior 

Chemotherapy (Review of NICE Technology Appraisals 162 and 175): A 

Systematic Review and Economic Evaluation.” Health Technology 



 

 101 

Assessment 19 (47): 1–134. doi:10.3310/hta19470. 

 

Gribbin, J, R B Hubbard, I Le Jeune, C J P Smith, J West, and L J Tata. 2006. 

“Incidence and Mortality of Idiopathic Pulmonary Fibrosis and Sarcoidosis in 

the UK.” Thorax 61 (11): 980–985. doi:10.1136/thx.2006.062836. 

 

Griffiths-Jones, Sam. 2004. “The microRNA Registry.” Nucleic Acids Research 

32 (Database issue): D109-11. doi:10.1093/nar/gkh023. 

 

Guo, Mingzhou, Michael G House, Craig Hooker, Yu Han, Elizabeth Heath, 

Edward Gabrielson, Stephen C Yang, Stephen B Baylin, James G Herman, 

and Malcolm V Brock. 2004. “Promoter Hypermethylation of Resected 

Bronchial Margins: A Field Defect of Changes?” Clinical Cancer Research 

10 (15): 5131–5136. doi:10.1158/1078-0432.CCR-03-0763. 

 

Gustafson, Adam M, Raffaella Soldi, Christina Anderlind, Mary Beth Scholand, 

Jun Qian, Xiaohui Zhang, Kendal Cooper, et al. 2010. “Airway PI3K Pathway 

Activation Is an Early and Reversible Event in Lung Cancer Development.” 

Science Translational Medicine 2 (26): 26ra25. 

doi:10.1126/scitranslmed.3000251. 

 

Hammerman, Peter S., Michael S. Lawrence, Douglas Voet, Rui Jing, Kristian 



 

 102 

Cibulskis, Andrey Sivachenko, Petar Stojanov, et al. 2012. “Comprehensive 

Genomic Characterization of Squamous Cell Lung Cancers.” Nature 489 

(7417). Nature Research: 519–525. doi:10.1038/nature11404. 

 

Hänzelmann, Sonja, Robert Castelo, and Justin Guinney. 2013. “GSVA: Gene 

Set Variation Analysis for Microarray and RNA-Seq Data.” BMC 

Bioinformatics 14. BioMed Central: 7. doi:10.1186/1471-2105-14-7. 

 

He, Lin, and Gregory J. Hannon. 2004. “MicroRNAs: Small RNAs with a Big Role 

in Gene Regulation.” Nature Reviews. Genetics 5 (7). Nature Publishing 

Group: 522–531. doi:10.1038/nrg1379. 

 

Hofree, M, J P Shen, H Carter, A Gross, and T Ideker. 2013. “Network-Based 

Stratification of Tumor Mutations.” Nature Methods. 

doi:10.1038/nmeth.2651. 

 

Huang, Da Wei, Brad T Sherman, and Richard A Lempicki. 2009. “Systematic 

and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics 

Resources.” Nature Protocols 4 (1): 44–57. doi:10.1038/nprot.2008.211. 

 

Johnson, W Evan, Cheng Li, and Ariel Rabinovic. 2007. “Adjusting Batch Effects 

in Microarray Expression Data Using Empirical Bayes Methods.” Biostatistics  



 

 103 

8 (1): 118–127. doi:10.1093/biostatistics/kxj037. 

 

Kent, W James, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H 

Pringle, Alan M Zahler, and David Haussler. 2002. “The Human Genome 

Browser at UCSC.” Genome Research 12 (6). Cold Spring Harbor 

Laboratory Press: 996–1006. doi:10.1101/gr.229102. Article published 

online before print in May 2002. 

 

Kim, E S, R S Herbst, Wistuba  II, J J Lee, G R Blumenschein  Jr., A Tsao, D J 

Stewart, et al. 2011. “The BATTLE Trial: Personalizing Therapy for Lung 

Cancer.” Cancer Discovery. doi:10.1158/2159-8274.CD-10-0010. 

 

Kozomara, Ana, and Sam Griffiths-Jones. 2011. “miRBase: Integrating 

microRNA Annotation and Deep-Sequencing Data.” Nucleic Acids Research 

39 (Database issue). Oxford University Press: D152-157. 

doi:10.1093/nar/gkq1027. 

 

Kumaraswamy, E, K L Wendt, L A Augustine, S R Stecklein, E C Sibala, D Li, S 

Gunewardena, and R A Jensen. 2015. “BRCA1 Regulation of Epidermal 

Growth Factor Receptor (EGFR) Expression in Human Breast Cancer Cells 

Involves microRNA-146a and Is Critical for Its Tumor Suppressor Function.” 

Oncogene 34 (33): 4333–4346. doi:10.1038/onc.2014.363. 



 

 104 

 

Labbaye, Catherine, and Ugo Testa. 2012. “The Emerging Role of MIR-146A in 

the Control of Hematopoiesis, Immune Function and Cancer.” Journal of 

Hematology & Oncology 5: 13. doi:10.1186/1756-8722-5-13. 

 

Langmead, Ben, Cole Trapnell, Mihai Pop, and Steven L Salzberg. 2009. 

“Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the 

Human Genome.” Genome Biology 10 (3): R25. doi:10.1186/gb-2009-10-3-

r25. 

 

Leiserson, M D, F Vandin, H T Wu, J R Dobson, J V Eldridge, J L Thomas, A 

Papoutsaki, et al. 2015. “Pan-Cancer Network Analysis Identifies 

Combinations of Rare Somatic Mutations across Pathways and Protein 

Complexes.” Nature Genetics. doi:10.1038/ng.3168. 

 

Leslie, R., C. J. O’Donnell, and A. D. Johnson. 2014. “GRASP: Analysis of 

Genotype-Phenotype Results from 1390 Genome-Wide Association Studies 

and Corresponding Open Access Database.” Bioinformatics 30 (12): i185–

194. doi:10.1093/bioinformatics/btu273. 

 

Lewis, Benjamin P, Christopher B Burge, and David P Bartel. 2005. “Conserved 

Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of 



 

 105 

Human Genes Are microRNA Targets.” Cell 120 (1): 15–20. 

doi:10.1016/j.cell.2004.12.035. 

 

Li, Guo, Yong Liu, Zhongwu Su, Shuling Ren, Gangcai Zhu, Yongquan Tian, and 

Yuanzheng Qiu. 2013. “MicroRNA-324-3p Regulates Nasopharyngeal 

Carcinoma Radioresistance by Directly Targeting WNT2B.” European 

Journal of Cancer 49 (11): 2596–2607. doi:10.1016/j.ejca.2013.03.001. 

 

Liu, Xiang-Dong, Lian-Yun Zhang, Tie-Chui Zhu, Rui-Fang Zhang, Shu-Long 

Wang, and Yan Bao. 2015. “Overexpression of miR-34c Inhibits High 

Glucose-Induced Apoptosis in Podocytes by Targeting Notch Signaling 

Pathways.” International Journal of Clinical and Experimental Pathology 8 

(5): 4525–4534. http://www.ncbi.nlm.nih.gov/pubmed/26191142. 

 

Lizé, Muriel, Alexander Klimke, and Matthias Dobbelstein. 2011. “MicroRNA-449 

in Cell Fate Determination.” Cell Cycle. doi:10.4161/cc.10.17.17181. 

 

Lu, Jun, Gad Getz, Eric A. Miska, Ezequiel Alvarez-Saavedra, Justin Lamb, 

David Peck, Alejandro Sweet-Cordero, et al. 2005. “MicroRNA Expression 

Profiles Classify Human Cancers.” Nature 435 (7043). Nature Publishing 

Group: 834–838. doi:10.1038/nature03702. 

 



 

 106 

“Lung Cancer - Small Cell: MedlinePlus Medical Encyclopedia.” 2016. Accessed 

December 10. https://medlineplus.gov/ency/article/000122.htm. 

 

MAQC Consortium, MAQC, Leming Shi, Laura H Reid, Wendell D Jones, 

Richard Shippy, Janet A Warrington, Shawn C Baker, et al. 2006. “The 

MicroArray Quality Control (MAQC) Project Shows Inter- and Intraplatform 

Reproducibility of Gene Expression Measurements.” Nature Biotechnology 

24 (9). NIH Public Access: 1151–1161. doi:10.1038/nbt1239. 

 

Marcet, Brice, Benoît Chevalier, Guillaume Luxardi, Christelle Coraux, Laure-

Emmanuelle Zaragosi, Marie Cibois, Karine Robbe-Sermesant, et al. 2011. 

“Control of Vertebrate Multiciliogenesis by miR-449 through Direct 

Repression of the Delta/Notch Pathway.” Nature Cell Biology 13 (6): 693–

699. doi:10.1038/ncb2241. 

 

Maru, Girish B., Khushboo Gandhi, Asha Ramchandani, and Gaurav Kumar. 

2014. “The Role of Inflammation in Skin Cancer.” In Advances in 

Experimental Medicine and Biology, 816:437–469. doi:10.1007/978-3-0348-

0837-8_17. 

 

Millstein, Joshua, Bin Zhang, Jun Zhu, and Eric E Schadt. 2009. “Disentangling 

Molecular Relationships with a Causal Inference Test.” BMC Genetics 10 



 

 107 

(1). BioMed Central: 23. doi:10.1186/1471-2156-10-23. 

 

Miyazu, Y. M. 2005. “Telomerase Expression in Noncancerous Bronchial 

Epithelia Is a Possible Marker of Early Development of Lung Cancer.” 

Cancer Research 65 (21): 9623–9627. doi:10.1158/0008-5472.CAN-05-

0976. 

 

Nalysnyk, Luba, Javier Cid-Ruzafa, Philip Rotella, and Dirk Esser. 2012. 

“Incidence and Prevalence of Idiopathic Pulmonary Fibrosis: Review of the 

Literature.” European Respiratory Review 21 (126): 355–361. 

doi:10.1183/09059180.00002512. 

 

Nathan, Nadia, Harriet Corvol, Serge Amselem, and Annick Clement. 2015. 

“Biomarkers in Interstitial Lung Diseases.” Paediatric Respiratory Reviews 

16 (4): 219–224. doi:10.1016/j.prrv.2015.05.002. 

 

Ng, Sam, Eric A Collisson, Artem Sokolov, Theodore Goldstein, Abel Gonzalez-

Perez, Nuria Lopez-Bigas, Christopher Benz, David Haussler, and Joshua M 

Stuart. 2012. “PARADIGM-SHIFT Predicts the Function of Mutations in 

Multiple Cancers Using Pathway Impact Analysis.” Bioinformatics 28 (18). 

Oxford University Press: i640–646. doi:10.1093/bioinformatics/bts402. 

 



 

 108 

 

Nian, Weiqi, Xujun Ao, Yongzhong Wu, Yi Huang, Jianghe Shao, Yiming Wang, 

Zhengtang Chen, Fanglin Chen, and Donglin Wang. 2013. “miR-223 

Functions as a Potent Tumor Suppressor of the Lewis Lung Carcinoma Cell 

Line by Targeting Insulin-like Growth Factor-1 Receptor and Cyclin-

Dependent Kinase 2.” Oncology Letters 6 (2): 359–366. 

doi:10.3892/ol.2013.1375. 

 

Noth, Imre, Yingze Zhang, Shwu-Fan Ma, Carlos Flores, Mathew Barber, Yong 

Huang, Steven M Broderick, et al. 2013. “Genetic Variants Associated with 

Idiopathic Pulmonary Fibrosis Susceptibility and Mortality: A Genome-Wide 

Association Study.” The Lancet. Respiratory Medicine 1 (4). NIH Public 

Access: 309–317. doi:10.1016/S2213-2600(13)70045-6. 

 

Novaes, Fabiola Trocoli, Daniele Cristina Cataneo, Ruiz Junior, Raul Lopes, Júlio 

Defaveri, Odair Carlito Michelin, and Antonio José Maria Cataneo. 2008. 

“Lung Cancer: Histology, Staging, Treatment and Survival.” Jornal Brasileiro 

de Pneumologia 34 (8): 595–600. doi:10.1590/S1806-37132008000800009. 

 

Omranian, Nooshin, Jeanne M. O. Eloundou-Mbebi, Bernd Mueller-Roeber, 

Zoran Nikoloski, J. López-Barneo, R. Pardal, P. Ortega-Sáenz, et al. 2016. 

“Gene Regulatory Network Inference Using Fused LASSO on Multiple Data 



 

 109 

Sets.” Scientific Reports 6 (February). Nature Publishing Group: 20533. 

doi:10.1038/srep20533. 

 

Osei, Emmanuel T., Laura Florez-Sampedro, Wim Timens, Dirkje S. Postma, 

Irene H. Heijink, and Corry-Anke Brandsma. 2015. “Unravelling the 

Complexity of COPD by microRNAs: It’s a Small World after All.” European 

Respiratory Journal 46 (3). 

 

Perdomo, Catalina, Joshua D Campbell, Joseph Gerrein, Carmen S Tellez, Carly 

B Garrison, Tonya C Walser, Eduard Drizik, et al. 2013. “MicroRNA 4423 Is 

a Primate-Specific Regulator of Airway Epithelial Cell Differentiation and 

Lung Carcinogenesis.” Proceedings of the National Academy of Sciences of 

the United States of America 110 (47): 18946–18951. 

doi:10.1073/pnas.1220319110. 

 

Popovici, Vlad, Weijie Chen, Brandon G Gallas, Christos Hatzis, Weiwei Shi, 

Frank W Samuelson, Yuri Nikolsky, et al. 2010. “Effect of Training-Sample 

Size and Classification Difficulty on the Accuracy of Genomic Predictors.” 

Breast Cancer Research 12 (1): R5. doi:10.1186/bcr2468. 

 

Powell, C A, S Klares, G O’Connor, and J S Brody. 1999. “Loss of 

Heterozygosity in Epithelial Cells Obtained by Bronchial Brushing: Clinical 



 

 110 

Utility in Lung Cancer.” Clinical Cancer Research  5 (8): 2025–2034. 

http://www.ncbi.nlm.nih.gov/pubmed/10473082. 

 

Purcell, Shaun, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel A R 

Ferreira, David Bender, Julian Maller, et al. 2007. “PLINK: A Tool Set for 

Whole-Genome Association and Population-Based Linkage Analyses.” 

American Journal of Human Genetics 81 (3): 559–575. doi:10.1086/519795. 

 

Quinlan, Aaron R, and Ira M Hall. 2010. “BEDTools: A Flexible Suite of Utilities 

for Comparing Genomic Features.” Bioinformatics 26 (6): 841–842. 

doi:10.1093/bioinformatics/btq033. 

 

Raghu, Ganesh, Harold R Collard, Jim J Egan, Fernando J Martinez, Juergen 

Behr, Kevin K Brown, Thomas V Colby, et al. 2011. “An Official 

ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-

Based Guidelines for Diagnosis and Management.” American Journal of 

Respiratory and Critical Care Medicine 183 (6): 788–824. 

doi:10.1164/rccm.2009-040GL. 

 

Raghu, Ganesh, Derek Weycker, John Edelsberg, Williamson Z Bradford, and 

Gerry Oster. 2006. “Incidence and Prevalence of Idiopathic Pulmonary 

Fibrosis.” American Journal of Respiratory and Critical Care Medicine 174 



 

 111 

(7): 810–816. doi:10.1164/rccm.200602-163OC. 

 

Raherison, C., and P-O Girodet. 2009. “Epidemiology of COPD.” European 

Respiratory Review 18 (114). 

 

Rivera, M Patricia, Atul C Mehta, and Momen M Wahidi. 2013. “Establishing the 

Diagnosis of Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd 

Ed: American College of Chest Physicians Evidence-Based Clinical Practice 

Guidelines.” Chest 143 (5 Suppl): e142S–165S. doi:10.1378/chest.12-2353. 

 

Robin, Xavier, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique 

Lisacek, Jean-Charles Sanchez, and Markus Müller. 2011. “pROC: An 

Open-Source Package for R and S+ to Analyze and Compare ROC Curves.” 

BMC Bioinformatics 12 (1): 77. doi:10.1186/1471-2105-12-77. 

 

Ross, Andrea J, Lisa A Dailey, Luisa E Brighton, and Robert B Devlin. 2007. 

“Transcriptional Profiling of Mucociliary Differentiation in Human Airway 

Epithelial Cells.” American Journal of Respiratory Cell and Molecular Biology 

37 (2): 169–185. doi:10.1165/rcmb.2006-0466OC. 

 

Sandhu, Sukhinder, and Ramiro Garzon. 2011. “Potential Applications of 

MicroRNAs in Cancer Diagnosis, Prognosis, and Treatment.” Seminars in 



 

 112 

Oncology 38 (6): 781–787. doi:10.1053/j.seminoncol.2011.08.007. 

 

Sass, Steffen, Sabine Dietmann, Ulrike Burk, Simone Brabletz, Dominik Lutter, 

Andreas Kowarsch, Klaus F Mayer, et al. 2011. “MicroRNAs Coordinately 

Regulate Protein Complexes.” BMC Systems Biology 5 (1): 136. 

doi:10.1186/1752-0509-5-136. 

 

Schembri, Frank, Sriram Sridhar, Catalina Perdomo, Adam M Gustafson, 

Xiaoling Zhang, Ayla Ergun, Jining Lu, et al. 2009. “MicroRNAs as 

Modulators of Smoking-Induced Gene Expression Changes in Human 

Airway Epithelium.” Proceedings of the National Academy of Sciences of the 

United States of America 106 (7): 2319–2324. 

doi:10.1073/pnas.0806383106. 

 

Siegel, Rebecca, Deepa Naishadham, and Ahmedin Jemal. 2013. “Cancer 

Statistics, 2013.” CA: A Cancer Journal for Clinicians 63 (1): 11–30. 

doi:10.3322/caac.21166. 

 

Silvestri, Gerard A., Anil Vachani, Duncan Whitney, Michael Elashoff, Kate Porta 

Smith, J. Scott Ferguson, Ed Parsons, et al. 2015. “A Bronchial Genomic 

Classifier for the Diagnostic Evaluation of Lung Cancer.” New England 

Journal of Medicine 373 (3): 243–251. doi:10.1056/NEJMoa1504601. 



 

 113 

 

Singh, Bhuvanesh, Pabbathi G Reddy, Andy Goberdhan, Christine Walsh, Su 

Dao, Ivan Ngai, Ting Chao Chou, et al. 2002. “p53 Regulates Cell Survival 

by Inhibiting PIK3CA in Squamous Cell Carcinomas.” Genes & Development 

16 (8): 984–993. doi:10.1101/gad.973602. 

 

Smyth, Gordon K. 2004. “Linear Models and Empirical Bayes Methods for 

Assessing Differential Expression in Microarray Experiments.” Statistical 

Applications in Genetics and Molecular Biology 3 (1): 1–25. 

doi:10.2202/1544-6115.1027. 

 

Spira, Avrum, Jennifer E Beane, Vishal Shah, Katrina Steiling, Gang Liu, Frank 

Schembri, Sean Gilman, et al. 2007. “Airway Epithelial Gene Expression in 

the Diagnostic Evaluation of Smokers with Suspect Lung Cancer.” Nature 

Medicine 13 (3): 361–366. doi:10.1038/nm1556. 

 

Spira, Avrum, Jennifer Beane, Vishal Shah, Gang Liu, Frank Schembri, Xuemei 

Yang, John Palma, and Jerome S Brody. 2004. “Effects of Cigarette Smoke 

on the Human Airway Epithelial Cell Transcriptome.” Proceedings of the 

National Academy of Sciences of the United States of America 101 (27): 

10143–10148. doi:10.1073/pnas.0401422101. 

 



 

 114 

 

Stack, B. H., Y. F. Choo-Kang, and B. E. Heard. 1972. “The Prognosis of 

Cryptogenic Fibrosing Alveolitis.” Thorax 27 (5): 535–542. 

 

Steiling, Katrina, Marc E Lenburg, and Avrum Spira. 2009. “Airway Gene 

Expression in Chronic Obstructive Pulmonary Disease.” Proceedings of the 

American Thoracic Society 6 (8): 697–700. doi:10.1513/pats.200907-076DP. 

 

Steiling, Katrina, Maarten van den Berge, Kahkeshan Hijazi, Roberta Florido, 

Joshua Campbell, Gang Liu, Ji Xiao, et al. 2013. “A Dynamic Bronchial 

Airway Gene Expression Signature of Chronic Obstructive Pulmonary 

Disease and Lung Function Impairment.” American Journal of Respiratory 

and Critical Care Medicine 187 (9): 933–942. doi:10.1164/rccm.201208-

1449OC. 

 

Stephanie A Christenson, Corry-Anke Brandsma, Joshua D Campbell, Darryl A 

Knight, Dmitri V Pechkovsky, James C Hogg, Wim Timens, Dirkje S Postma, 

Marc Lenburg, and Avrum Spira. 2013. “miR-638 Regulates Gene 

Expression Networks Associated with Emphysematous Lung Destruction.” 

Genome Medicine 5 (114). doi:10.1186/gm519. 

 

Stephens, Philip, Chris Hunter, Graham Bignell, Sarah Edkins, Helen Davies, 



 

 115 

Jon Teague, Claire Stevens, et al. 2004. “Lung Cancer: Intragenic ERBB2 

Kinase Mutations in Tumours.” Nature 431 (7008): 525–526. 

doi:10.1038/431525b. 

 

Su, Wan-Lin, Robert R Kleinhanz, and Eric E Schadt. 2011. “Characterizing the 

Role of miRNAs within Gene Regulatory Networks Using Integrative 

Genomics Techniques.” Molecular Systems Biology 7 (May): 490. 

doi:10.1038/msb.2011.23. 

 

Subramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, 

Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, et al. 2005. “Gene 

Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting 

Genome-Wide Expression Profiles.” Proceedings of the National Academy 

of Sciences of the United States of America 102 (43): 15545–15550. 

doi:10.1073/pnas.0506580102. 

 

Tang, Wenbo, Matthew Kowgier, Daan W Loth, María Soler Artigas, Bonnie R 

Joubert, Emily Hodge, Sina A Gharib, et al. 2014. “Large-Scale Genome-

Wide Association Studies and Meta-Analyses of Longitudinal Change in 

Adult Lung Function.” PLoS One 9 (7): e100776. 

doi:10.1371/journal.pone.0100776. 

 



 

 116 

Team, The National Lung Screening Trial Research. 2011. “Reduced Lung-

Cancer Mortality with Low-Dose Computed Tomographic Screening.” New 

England Journal of Medicine 365 (5): 395–409. 

doi:10.1056/NEJMoa1102873. 

 

Terzić, Janoš, Sergei Grivennikov, Eliad Karin, and Michael Karin. 2010. 

“Inflammation and Colon Cancer.” Gastroenterology 138 (6): 2101–2114.e5. 

doi:10.1053/j.gastro.2010.01.058. 

 

Tukey, Melissa H, and Renda Soylemez Wiener. 2012. “Population-Based 

Estimates of Transbronchial Lung Biopsy Utilization and Complications.” 

Respiratory Medicine 106 (11): 1559–1565. doi:10.1016/j.rmed.2012.08.008. 

 

van ’t Veer, Laura J., Hongyue Dai, Marc J. van de Vijver, Yudong D. He, 

Augustinus A. M. Hart, Mao Mao, Hans L. Peterse, et al. 2002. “Gene 

Expression Profiling Predicts Clinical Outcome of Breast Cancer.” Nature 

415 (6871): 530–36. doi:10.1038/415530a. 

 

Vandin, F, E Upfal, and B J Raphael. 2011. “Algorithms for Detecting 

Significantly Mutated Pathways in Cancer.” Journal of Computational 

Biology. doi:10.1089/cmb.2010.0265. 

 



 

 117 

 

Vaske, Charles J, Stephen C Benz, J Zachary Sanborn, Dent Earl, Christopher 

Szeto, Jingchun Zhu, David Haussler, and Joshua M Stuart. 2010. 

“Inference of Patient-Specific Pathway Activities from Multi-Dimensional 

Cancer Genomics Data Using PARADIGM.” Bioinformatics 26 (12): i237-

245. doi:10.1093/bioinformatics/btq182. 

 

Vignes, Matthieu, Jimmy Vandel, David Allouche, Nidal Ramadan-Alban, 

Christine Cierco-Ayrolles, Thomas Schiex, Brigitte Mangin, et al. 2011. 

“Gene Regulatory Network Reconstruction Using Bayesian Networks, the 

Dantzig Selector, the Lasso and Their Meta-Analysis.” Edited by Magnus 

Rattray. PLoS One 6 (12): e29165. doi:10.1371/journal.pone.0029165. 

 

Wang, Yongsheng, Gerald Schmid-Bindert, and Caicun Zhou. 2012. “Erlotinib in 

the Treatment of Advanced Non-Small Cell Lung Cancer: An Update for 

Clinicians.” Therapeutic Advances in Medical Oncology 4 (1). SAGE 

Publications: 19–29. doi:10.1177/1758834011427927. 

 

Wang Memoli, Jessica S, Paul J Nietert, and Gerard A Silvestri. 2012. “Meta-

Analysis of Guided Bronchoscopy for the Evaluation of the Pulmonary 

Nodule.” Chest 142 (2): 385–393. doi:10.1378/chest.11-1764. 

 



 

 118 

 

Whitney, Duncan H, Michael R Elashoff, Kate Porta-Smith, Adam C Gower, Anil 

Vachani, J Scott Ferguson, Gerard A Silvestri, Jerome S Brody, Marc E 

Lenburg, and Avrum Spira. 2015. “Derivation of a Bronchial Genomic 

Classifier for Lung Cancer in a Prospective Study of Patients Undergoing 

Diagnostic Bronchoscopy.” BMC Medical Genomics 8 (1): 18. 

doi:10.1186/s12920-015-0091-3. 

 

Wistuba, I I, S Lam, C Behrens, A K Virmani, K M Fong, J LeRiche, J M Samet, 

S Srivastava, J D Minna, and A F Gazdar. 1997. “Molecular Damage in the 

Bronchial Epithelium of Current and Former Smokers.” Journal of the 

National Cancer Institute 89 (18): 1366–1373. 

http://www.ncbi.nlm.nih.gov/pubmed/9308707. 

 

Wolen, Aaron, and Michael Miles. 2006. “Identifying Gene Networks Underlying 

the Neurobiology of Ethanol and Alcoholism.” Alcohol Research: Current 

Reviews 34 (3). 

 

Zafari, Sachli, Christina Backes, Petra Leidinger, Eckart Meese, and Andreas 

Keller. 2015. “Regulatory MicroRNA Networks: Complex Patterns of Target 

Pathways for Disease-Related and Housekeeping MicroRNAs.” Genomics, 

Proteomics & Bioinformatics 13 (3): 159–168. 



 

 119 

doi:10.1016/j.gpb.2015.02.004. 

 

Zhai, Yuxin, Zhenping Zhong, Chyi-Ying A Chen, Zhenfang Xia, Ling Song, 

Michael R Blackburn, and Ann-Bin Shyu. 2008. “Coordinated Changes in 

mRNA Turnover, Translation, and RNA Processing Bodies in Bronchial 

Epithelial Cells Following Inflammatory Stimulation.” Molecular and Cellular 

Biology 28 (24): 7414–7426. doi:10.1128/MCB.01237-08. 

 

Zhang, Bin, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee, 

Alexei A. Podtelezhnikov, Chunsheng Zhang, et al. 2013. “Integrated 

Systems Approach Identifies Genetic Nodes and Networks in Late-Onset 

Alzheimer’s Disease.” Cell 153 (3): 707–720. doi:10.1016/j.cell.2013.03.030. 

 

Zhang, Junpeng, Thuc Duy Le, Lin Liu, Bing Liu, Jianfeng He, Gregory J Goodall, 

and Jiuyong Li. 2014. “Inferring Condition-Specific miRNA Activity from 

Matched miRNA and mRNA Expression Data.” Bioinformatics 30 (21): 

3070–3077. doi:10.1093/bioinformatics/btu489. 



 

 120 

CURRICULUM VITAE 



 

 121 



 

 122 



 

 123 



 

 124 



 

 125 




