269 research outputs found

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Scheduling in Mapreduce Clusters

    Get PDF
    MapReduce is a framework proposed by Google for processing huge amounts of data in a distributed environment. The simplicity of the programming model and the fault-tolerance feature of the framework make it very popular in Big Data processing. As MapReduce clusters get popular, their scheduling becomes increasingly important. On one hand, many MapReduce applications have high performance requirements, for example, on response time and/or throughput. On the other hand, with the increasing size of MapReduce clusters, the energy-efficient scheduling of MapReduce clusters becomes inevitable. These scheduling challenges, however, have not been systematically studied. The objective of this dissertation is to provide MapReduce applications with low cost and energy consumption through the development of scheduling theory and algorithms, energy models, and energy-aware resource management. In particular, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce clusters. This research work is expected to have a breakthrough in Big Data processing, particularly in providing green computing to Big Data applications such as social network analysis, medical care data mining, and financial fraud detection. The tools we propose to develop are expected to increase utilization and reduce energy consumption for MapReduce clusters. In this PhD dissertation, we propose to address the aforementioned challenges by investigating and developing 1) a match-making scheduling algorithm for improving the data locality of Map- Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map- Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map- Reduce cluster. Advisers: Ying Lu and David Swanso

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    A Game-Theoretic Approach for Runtime Capacity Allocation in MapReduce

    Get PDF
    Nowadays many companies have available large amounts of raw, unstructured data. Among Big Data enabling technologies, a central place is held by the MapReduce framework and, in particular, by its open source implementation, Apache Hadoop. For cost effectiveness considerations, a common approach entails sharing server clusters among multiple users. The underlying infrastructure should provide every user with a fair share of computational resources, ensuring that Service Level Agreements (SLAs) are met and avoiding wastes. In this paper we consider two mathematical programming problems that model the optimal allocation of computational resources in a Hadoop 2.x cluster with the aim to develop new capacity allocation techniques that guarantee better performance in shared data centers. Our goal is to get a substantial reduction of power consumption while respecting the deadlines stated in the SLAs and avoiding penalties associated with job rejections. The core of this approach is a distributed algorithm for runtime capacity allocation, based on Game Theory models and techniques, that mimics the MapReduce dynamics by means of interacting players, namely the central Resource Manager and Class Managers

    Profit-oriented task scheduling algorithm in Hadoop cluster

    Get PDF

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    Improving Map Reduce Performance in Heterogeneous Distributed System using HDFS Environment-A Review

    Get PDF
    Hadoop is a Java-based programming framework which supports for storing and processing big data in a distributed computing environment. It is using HDFS for data storing and using Map Reduce to processing that data. Map Reduce has become an important distributed processing model for large-scale data-intensive applications like data mining and web indexing. Map Reduce is widely used for short jobs requiring low response time. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. Unfortunately, both the homogeneity and data locality assumptions are not satisfied in virtualized data centers. Hadoop’s scheduler can cause severe performance degradation in heterogeneous environments. We observe that, Longest Approximate Time to End (LATE), which is highly robust to heterogeneity. LATE can improve Hadoop response times by a factor of 2 in clusters. DOI: 10.17762/ijritcc2321-8169.15030

    Scheduling Data Intensive Workloads through Virtualization on MapReduce based Clouds

    Full text link
    MapReduce has become a popular programming model for running data intensive applications on the cloud. Completion time goals or deadlines of MapReduce jobs set by users are becoming crucial in existing cloud-based data processing environments like Hadoop. There is a conflict between the scheduling MR jobs to meet deadlines and "data locality" (assigning tasks to nodes that contain their input data). To meet the deadline a task may be scheduled on a node without local input data for that task causing expensive data transfer from a remote node. In this paper, a novel scheduler is proposed to address the above problem which is primarily based on the dynamic resource reconfiguration approach. It has two components: 1) Resource Predictor: which dynamically determines the required number of Map/Reduce slots for every job to meet completion time guarantee; 2) Resource Reconfigurator: that adjusts the CPU resources while not violating completion time goals of the users by dynamically increasing or decreasing individual VMs to maximize data locality and also to maximize the use of resources within the system among the active jobs. The proposed scheduler has been evaluated against Fair Scheduler on virtual cluster built on a physical cluster of 20 machines. The results demonstrate a gain of about 12% increase in throughput of Job
    • …
    corecore