
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

903
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Improving Map Reduce Performance in Heterogeneous Distributed System using

HDFS Environment-A Review

Shraddha Thakkar

M.E. Scholar, Dept. of CE

LDRP-ITR, Gandhinagar Gujarat

thakkarshradhdha@gmail.com

Prof. Sanjay Patel
Associate Professor, Dept. of CE
LDRP-ITR, Gandhinagar Gujarat

sanjaypatel54@gmail.com

Abstract:- Hadoop is a Java-based programming framework which supports for storing and processing big data in a distributed computing
environment. It is using HDFS for data storing and using Map Reduce to processing that data. Map Reduce has become an important distributed
processing model for large-scale data-intensive applications like data mining and web indexing. Map Reduce is widely used for short jobs requiring
low response time. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. Unfortunately, both

the homogeneity and data locality assumptions are not satisfied in virtualized data centers. Hadoop’s scheduler can cause severe performance
degradation in heterogeneous environments. We observe that, Longest Approximate Time to End (LATE), which is highly robust to heterogeneity.
LATE can improve Hadoop response times by a factor of 2 in clusters.

Keywords: Hadoop, HDFS, Map-reduce, Scheduling Algorithm, LATE.

__*****___

1. Introduction

 Cloud computing groups together numbers of commodity

hardware servers and other resources to offer their combined

capacity on an on-demand, pay-as-you-go basis. The users of a

cloud have no idea where the servers are physically located

and can start working with their applications. That is the

primary advantage [4] of cloud computing which

distinguishes it from grid or utility computing.

A main advantage of Map Reduce is that it automatically

handles failures, hiding the complexity of fault-tolerance from

the programmer. If a node crashes, Map Reduce reruns its

tasks on a different machine. Same as, if a node is available

but is performing poorly, a condition that we call a straggler,

Map Reduce runs a speculative copy of its task (also called a

“backup task”) on another machine to finish the computation

faster. Without this mechanism of speculative execution, a job

will be as slow as the misbehaving task. Stragglers can arise

for many reasons, including faulty hardware and

misconfiguration. Google [8] has noted that speculative
execution can improve job response times by 44%.

Here the problem is that how speculative execution can be

done to maximize performance. Scheduler starts speculative

tasks based on a simple heuristic comparing each task’s

progress to the average progress. Although it works well in

homogeneous environments where stragglers are obvious,

which can lead to severe performance degradation when its

heterogeneous.

Hadoop’s homogeneity assumptions lead to incorrect and
often more speculative execution in heterogeneous

environments, and can even degrade performance

observations. In some cases, as many as 80% of tasks were

speculatively executed.one might expect speculative execution
to be a simple matter of replicating tasks that are sufficiently

slow. In reality, it is a complex issue for several reasons.

(1) Speculative tasks are not free – they compete for certain

resources, such as the network, with other running tasks.

(2) Choosing the node to run a speculative task on is as

important as choosing the task. (3) In a heterogeneous

environment, it may be difficult to distinguish between nodes

that are slightly slower than the mean and stragglers. Finally,

stragglers should be identified as early as possible to reduce

response times.

LATE is based on three principles:

Prioritizing tasks to speculate, selecting fast nodes to run on,

and capping speculative tasks to prevent thrashing. We show

that LATE can improve the response time of Map Reduce jobs

by a factor of 2 in large clusters.[3]

This paper is organized as follows.

Section 1 Introduction

Section 2 Describes Hadoop’s introduction and the

architectures

Section 3 Scheduling in hadoop
Section 4 Assumptions to be held in hadoop’s scheduler and

Shows how these assumptions break in heterogeneous

environments.

Section 5 Discussion

Finally, we conclude in Section 6.

2. HADOOP

Hadoop is Popular open source Implementation. Hadoop has

been used by many companies (AOL,

Amazon,Facebook,Yahoo and New York Times) in

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

904
IJRITCC | March 2015, Available @ http://www.ijritcc.org

production for large scale data analysis in cloud computing.

[10]

Hadoop hides the details of parallel processing, including data

distribution to processing nodes, restarting failed subtasks, and

consolidation of results after computation. Hadoop framework

allows developers to write parallel processing programs which

focus on their computation problem, in place of parallelization

issues. Hadoop [9] includes 1) Hadoop Distributed File

System (HDFS): a distributed file system that store large

amount of data with high throughput access to data on clusters

and 2) Hadoop Map Reduce: a software framework for

distributed processing of data on cluster. Further classification

is as per shown in figure 1

Fig.1.Hadoop Components

2.1 Hadoop Distributed File System

HDFS is the file system component of Hadoop. While the

interface to HDFS is patterned after the UNIX file system,

Faithfulness to standards was sacrificed in favor of improved
performance for the applications at hand

A. Name Node

The Name Node [10] manages the namespace tree and the

mapping of file blocks to Data Nodes (the actual location of

file data). An HDFS client wanting to read a file first asks the

Name Node for the addresses of data blocks which will

comprising the file and then reads block contents from the

Data Node closest to the client. When writing data, the client

requests the Name Node to nominate a suite of three Data
Nodes to host the block replicas. The client then writes data to

The Data Nodes in a pipeline fashion as per shown in fig 2.

The existing record of the image stored in the local host’s

home files system which is called a Checkpoint. The Name

Node also saves the Modification log of the image known as

the journal in the local host’s home file system. For improving

durability, duplicate copies of the checkpoint and journal can

be made at other servers.

Fig 2.HDFS Architecture

B. Data Nodes

For starting any process Data Node contacts to the Name

Node and performs a handshake. The reason of the handshake

is to verify the namespace ID and the software version of the

Data Node. If either does not match, the Name Node the Data

Node automatically shuts down as per shown block. After the

handshake the Data Node registers with the Name Node.

2.2 Map-Reduce Architecture

Map Reduce framework (Refer Figure 3) splits the job into

various blocks of chunks which the Map the tasks process in

parallel. The outputs from the map tasks are sorted by the

framework and given to Reduce tasks as input. Both the input

and output of the tasks are stored in a file system. The

Hadoop
Components

HDFS

Name Node Data Node

Map Reduce

Job Tracker Task Tracker

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

905
IJRITCC | March 2015, Available @ http://www.ijritcc.org

framework takes care of scheduling, monitoring the tasks and re executing the failed tasks.

Fig.3 Map-Reduce Architecture

3. Scheduling in Hadoop

During normal operation Data Nodes send heartbeats to the

Name Node. The default heartbeat interval is three seconds. If

the Name Node does not receive a heartbeat from a Data Node

in ten minutes the Name Node considers the Data Node to be

out of service. The Name Node schedules creation of new

replicas of those blocks on other Data Nodes. These all
process done via Job tracker and Task tracker by scheduler

which has been discussed as follows and depicts in fig.4

Fig 4.Scheduling in Hadoop

A. Job Tracker

Each cluster has only one Job Tracker which is actually a

daemon service for submitting and Tracking Map Reduce jobs

in Hadoop. So it is a single point of failure for Map Reduce

service and hence if it goes down all running jobs is halted.

The slaves are configured to the node location of the Job

Tracker and perform tasks as directed by the Job Tracker.

B. Task Tracker

Each slave node has only one Task Tracker (Refer Figure 4)

which keeps track of task instances and notifies the Job

Tracker about the status.

3.1 Scheduling Algorithms in Hadoop

As per above discussion in Hadoop schedules are run on the

basis of scheduling algorithms. It has three existing algorithm
like FIFO, FAIR, CAPACITY which is also known as native

or core scheduling algorithm. Many researchers have also

improved scheduling policies as per the requirement. They are

depicted as follow Fig.5

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

906
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Fig 5.Classification of Hadoop Scheduling

Algorithms

3.2 Comparison of different Scheduling Algorithms of

Hadoop:

Schedul

ing

Algorig

hm

Taxono

my

Idea to

Implement

ation

Advantag

es

Disadvant

ages

Fifo adaptive

schedule

jobs based

on their

priorities in

first-come

first- out.

1. cost of

entire

cluster

schedulin

g process

is less. 2.

simple to

implement

and

efficient.

1. designed

only for

single type

of job. 2.
Low

performan

ce when

run

multiple

types of

jobs. 3.

poor

response

times for

short jobs

compared
to large

jobs.

Fair

Scheduli

ng

adaptive

do a equal

distribution

of compute

resources

among the

users/jobs in
the system.

1. less

complex.

2. works

well when

both small

and large

clusters.

3. it can

provide

fast
response

times for

small jobs

mixed

with

1. does not

consider

the job

weight of

each node.

larger

jobs.

Capicity adaptive

Maximizati

on the

resource
utilization

and

throughput

in multi-

tenant

cluster

environment

.

1. ensure

guarantee

d access

with the

potential
to reuse

unused

capacity

and

prioritize

jobs

within

queues

over large

cluster .

1. The
most

complex

among

three

schedulers.

Dynami

c

priority

Schedul

er

adaptive

designed for
data

intensive

workloads

and tries to

maintain

data locality

during job

execution

1. is a fast

and

flexible
scheduler.

2.

improves

response

time for

multi-user

Hadoop

environme

nts.

LATE adaptive
Fault

Tolerance

1.

robustness

to node

heterogen

eity. 2.

address

the

problem

of how to

robustly

perform
speculativ

e

execution

to

maximize

performan

ce.

1. only

takes

action on
appropriate

slow tasks.

2.

However it

does not

compute

the

remaining

time for

tasks

correctly,
and cannot

find real

slow tasks

in the end.

3. poor

performan

ce due to

the static

manner in

computing

Scheduling
algorithm in

hadoop

Existing
Algorithm

FIFO
Sceduler

Fair
Sceduler

Capacity
Scheduler

Improved
Algorithm

LATE
Scheduler

Delay
Sceduler

Dynamic
Priority

Sceduling

Deadline
Constraint

Sceduler

Resource
Aware

Scheduling

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

907
IJRITCC | March 2015, Available @ http://www.ijritcc.org

the

progress of

the tasks.

Deadlin

e
Constrai

nt

Schedul

er

adaptive

To improve

Map Reduce

in terms of

saving the
time of the

execution

and the

system’s

resources.

1.

decreases

the

execution

time of

map

reduce

job. 2.
improve

the overall

Map

Reduce

performan

ce in the

heterogen

eous

environme

nts.

1. do not

consider

the data

locality
manageme

nt for

launching

backup

tasks.

Delay

Scheduli
ng

adaptive

To address

the conflict

between
locality and

fairness.

1.

Simplicity

of
Schedulin

g

1. No
particular

Resourc

e-aware

Schedul

er

adaptive

To

optimization

s for jobs

using the

same dataset

1.

optimizati

ons for

jobs using

the same

dataset.

3.3 Speculative Execution of Hadoop

In scheduling policy if any node has an empty task slot,

Hadoop chooses a task for it as following.(1) Any failed tasks
are given highest priority. This is done to detect when a task

fails repeatedly due to a bug and stop the job. (2) Non-running

tasks are considered. For maps, tasks with data local to the

node are chosen first.

Finally, Hadoop [3] executes task speculatively. To choose

speculative tasks, Hadoop considers progress score between 0

and 1. For a map, the progress score is the fraction of input

data read. For a reduce task, the execution is divided into three

phases, each of which accounts for 1/3 of the score:

Sr

No.
Phase Function

1 Copy Task fetches Map outputs

2 Sort Map outputs are sorted by key

3 Reduce User-defined function is applied to the list

of map outputs with each key.

Table 1.Phases of speculative execution

In each phase, the score is the instance of data processed.

For example [5], a task halfway through the copy phase has a

progress score of 1
2 ·

1
3 = 1

6 , while a task halfway through the

reduce phase scores 1
3 + 13 + (1

2 ·
1

3) = 56

Hadoop considers at the average progress score of each phase

to define a threshold for speculative execution: When a task’s

progress score is less than the average for its category minus

0.2, and the task has run for at least one minute, it is marked as

a straggler. All tasks beyond the threshold are considered
“equally slow,” and ties between them are broken by data

locality. The scheduler guarantees that at most one speculative

copy of each task is running at a time. Hadoop works

reasonably well in homogenous environments because tasks

tend to start and finish in “waves” at roughly the same times

and speculation only starts when the last wave is running.

Hadoop uses a FIFO discipline where the earliest submitted

job is asked for a task to run, then the second etc.

4. Assumptions to be held in Hadoop’s Scheduler

Hadoop’s [3] scheduler makes several implicit assumptions:

1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a node

that would otherwise have an idle slot.

4. A task’s progress score is representative of fraction of its

total work that it has done. Specifically, in a reduce task, the

copy, sort and reduce phases each take about 1/3 of the total

time.

5. Tasks tend to finish in waves, so a task with a low progress

score is likely a straggler.
6. Tasks in the same category (map or reduce) require roughly

the same amount of work.

Assumptions 1 and 2 break down in a virtualized data center

due to heterogeneity.

Assumptions 3, 4 and 5 can break down in a homogeneous

and may cause Hadoop to perform poorly.

In fact, Yahoo disables speculative execution on some jobs

because it degrades performance, and monitors faulty

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

908
IJRITCC | March 2015, Available @ http://www.ijritcc.org

machines through other means. Facebook disables speculation

for reduce tasks [17].

Assumption 6 is inherent in the Map Reduce paradigm. Tasks

in Map Reduce should be small, otherwise a single large task

will slow down the entire job.

When Assumptions break down:

4.1 Heterogeneity

The first two assumptions are about homogeneous. Hadoop

assumes that any detectably slow node is faulty. In a non-

virtualized data center, there may be multiple generations of

hardware. In a virtualized data center where multiple virtual

machines run on each physical host, such as Amazon EC2, co-

location of VMs may cause heterogeneity [14].

For resolving degradation of Map reduce performance in

heterogeneous environments and found solutions to improve

its performance. Each approach improves one of the Map

reduce features in a heterogeneous cluster. The algorithms that

represent improved feature are divides into two categories as

follows:

4.1.1. Data Locality Algorithms.

4.1.2. Fault Tolerance Algorithms.

4.1.1. Data Locality Algorithms

Data locality is a decision parameter for the Map reduces
performance. Here, the algorithm that has been developed to

improve data locality management in a heterogeneous Hadoop

cluster has describes.

A. Data Placement in Heterogeneous Hadoop

Clusters

Data placement strategy is efficient for a homogeneous

environment having same computing and disk capacity. In

heterogeneous Hadoop cluster, a high-performance node can

complete processing local data faster than low-performance

node. After the fast nodefinished processing data residing in
its local disk, the fast node has to handle the unprocessed data

in remote slow node. The overhead of transferring

unprocessed data from slow node to fast node is high if the

amount of transferred data is huge. An approach to improve

Map Reduce performance in heterogeneous environments is to

reduce the amount of data moved between slow and fast nodes

in a heterogeneous clustering

J. Xie et al. [2] developed a data placement mechanism in

HDFS that distributed and stored a large data set across

multiple heterogeneous nodes in accordance to the computing

capacity of each node. In other words, the number of file.

This data placement algorithm implemented and incorporated

two algorithms into Hadoop’s HDFS. First, the initial data

placement algorithm which initially distributed the file

fragments to the heterogeneous nodes according to their com-

putting capacities. Second, the data redistribution algorithm

which reorganized the file fragments to solve the data skew
problem.

B. Initial Data Placement

The initial data placement [4] algorithm starts first by dividing

a large input file into a number of even-sized fragments. The

responsibility of distributing the file fragments across the

nodes of the cluster is handled by a data distribution server. It

applies the round-robin algorithm to assign the input file

fragments to the heterogeneous nodes based on their

computing ratios. A small value of computing ratio indicates a

high speed of node, meaning that the fast node must process a
large number of fragments. Also a large value of computing

ratio of a node indicates a low speed of the node, meaning that

the slow node must process a small number of file fragments.

C. Data Redistribution

Input file fragments distributed by the initial data placement

algorithm [6] might be disrupted due to the following reasons:

(1) New data is appended to an existing input file.

(2) Data blocks are deleted from the existing input File

(3) New data computing nodes are added into an existing
cluster. To address this dynamic data load-balancing problem,

we implemented a data redistribution algorithm to reorganize

file fragments based on computing ratios.

D. Data Locality Aware Task Scheduling Method for

Heterogeneous Environments

In this research, the work is built upon the method to improve

data locality of Map reduce in homogeneous computing

environments [10]. The method assumed that all nodes

processing tasks have similar speed when selecting the node to
issue the request. If the input data of a task is stored on the

node, the method reserves the task for the node .However, this

assumption cannot be held in the cloud computing, because

there are many factors that can change the processing speed of

the processors such as, the heterogeneity of the computational

resources and its dynamic workload.

X. Zhang et al. [7] introduced a data locality aware scheduling

method for heterogeneous Hadoop cluster. There are two

factors affect the efficiency of map tasks execution waiting

time is the shortest time that the task has to wait before it can
be scheduled to one of the nodes that have the input data,

transmission time is the time needed to copy the input data of

the task to the requesting node.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

909
IJRITCC | March 2015, Available @ http://www.ijritcc.org

The goal is to make a tradeoff between the waiting time and

transmission time at runtime when schedule a task to a node to

obtain the optimal task execution time. After receiving a

request from a requesting node, the method first schedules the

task whose input data is stored on the requesting node. If there

is no such kind of tasks, the method first selects the task
whose input data is stored in the nearest node with respect to

the requesting node. Then the method computes the waiting

time and the transmission time of the selected task. If the

waiting time is shorter than the transmission time, the method

reserves the task for the node having the input data.

Otherwise, it schedules the task to the requesting node.

4.1.2. Fault Tolerance Algorithms

A main advantage of Map reduce is that it automatically

manages failures and hides the complexity of the fault

tolerance from the programmers. Hadoop’s performance is
closely tied to its task scheduler, which assumes that the

cluster nodes are homogeneous and tasks make progress

linearly. Hadoop’s scheduler uses these assumptions to decide

when to speculatively re-execute tasks that appear to be

stragglers. Hadoop’s scheduler starts specu-lative tasks based

on a simple heuristic comparing each task’s progress to the

average progress. This heuristic works well in the

homogeneous environments where the stragglers are obvious.

Hadoop’s scheduler can cause server performance degradation

in heterogeneous environments because the underlying

assumptions are broken.[6]

Here, the algorithms that have been developed to improve

fault tolerance support in the heterogeneous Hadoop cluster

will be discussed.

4.2.2.1 LATE: Longest Approximate Time to End

Algorithm

Here if the node has an empty task slot, Hadoop chooses a task

for it from one of three categories. First, any failed tasks are

given the highest priority. Second, non-running tasks are

considered, specially the map tasks that have local data on this
node. Third, the tasks which need to execute speculatively.

Hadoop observes task progress using progress score between 0

and 1 to select speculative tasks. For a map task, the progress

score is the fraction of the input data read. For a re-duce task,

the execution is divided into three phases (copy phase, sort

phase, reduce phase), each of which represents 1/3 of the

progress score. Hadoop defines a threshold for speculative

execution using the average progress score of each category of

tasks (maps and reduces). When a task’s progress score is less

than the average off its category minus 0.2,and the task has
run at least one minute, it is marked as a straggler.

LATE always speculatively executes the task which will finish

farthest in the future. LATE estimates the task’s finish time

based on the progress score provided by Hadoop. Hadoop

estimates the progress rate of each task as Progress Score/T ,

where T is the amount of time the task has been running for,

and then estimate the task’s finish time as (1−ProgressScore)/

ProgressRate. [6]

It assumes that tasks make progress at a roughly constant rate.
There are cases where

this heuristic can fail, which we describe later, but it is

effective in typical Hadoop jobs. To really get the best chance

of beating the original task with the speculative task, we

should also only launch speculative tasks on fast nodes --not

stragglers. We do this through a simple heuristic -don't launch

speculative tasks on nodes that are below some threshold,

Slow Node Threshold, of total work performed (sum of

progress scores for all succeeded and in progress

tasks on the node). This heuristic leads to better performance

than assigning a speculative task to the 1st available node.

Another option would be to allow more than one speculative
copy of each task, but this wastes resources needlessly.

Finally, to handle the fact that speculative tasks cost resources,

we augment the algorithm with two heuristics:

 A cap on the number of speculative tasks that can be

running at once, which we denote Speculative Cap.

 A Slow Task Threshold that a task's progress rate is

compared with to

Determine whether it is \slow enough" to be speculated upon.

This prevents needless speculation when only fast tasks are

running.[3]

In summary, the LATE algorithm [2] works as follows:

If a node asks for a new task and there are fewer than

Speculative Cap Speculative tasks running then following has

been takes place:

 Ignore the request if the node's total progress is below

Slow Node Threshold.

 Rank currently running tasks that are not currently

being speculated by estimated time left.

 Launch a copy of the highest-ranked task with
progress rate below

Slow Task Threshold.[2]

As Hadoop's scheduler [5] , we also wait until a task has run

for 1 minute before evaluating it for speculation. In practice,

we have found that a good choice for the three parameters

to LATE are to set the Speculative Cap to 10% of available

task slots and set the Slow Node Threshold and Slow Task

Threshold to the 25th percentile of node progress and task

progress rates respectively.

 Advantages of LATE

The LATE algorithm [5] has several advantages.

It is robust to node heterogeneity, because it will re-launch

only the slowest tasks, and only a small number of tasks.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 903 - 910

910
IJRITCC | March 2015, Available @ http://www.ijritcc.org

LATE prioritizes among the slow tasks based on how much

they affect job response time.

LATE also caps the number of speculative tasks to limit

contention for shared resources. Comparatively, Hadoop's

native scheduler has a fixed threshold, beyond which all tasks
that are slow enough and have an equal chance of being

launched. This fixed threshold can cause excessively many

tasks to be speculated upon.

LATE takes into account node heterogeneity when deciding

where to run speculative tasks. Whereas, Hadoop's core

scheduler assumes that any node which finishes a task and

asks for a new one is likely to be a fast node, i.e. that slow

nodes will never finish their original tasks and never be

member for running speculative tasks.

At last but not least, by focusing on estimated time left instead
of progress rate, LATE speculatively executes only those

many tasks that will improve job response time, rather than

any slow tasks.

5. Discussion

1. Decreases decisions Time: Instead of waiting to base

decisions on measurements of mean and variance.

2. Use estimated time left: prioritize among tasks to speculate

instead of considering Progress Rate.

3. Nodes are Heterogeneous: Ignore assigning speculative

tasks to slow nodes.
4. Resources are Limited: Caps should be used to protect

against overloading the system.

6. Conclusion

Efficiency to re-design Hadoop scheduler resource aware is

most critical research problem This paper summarizes

advantages and disadvantages as well as working comparison

of various Scheduling policies of Hadoop Schedulers

developed by different communities. Scheduler considers the

resources like CPU, Memory, Job deadlines and IO etc.

Schedulers discussed in this paper pointing out one or more
problem(s) in scheduling in Hadoop. All the schedulers

discussed above assume homogeneous Hadoop clusters.

Future work will consider scheduling in Hadoop in

Heterogeneous Clusters.

7. Future Work

We will upgrade a Scheduling algorithm, Longest

Approximate Time to End (LATE) that is highly robust to

heterogeneity.

References
[1] A Comprehensive View of Hadoop Map Reduce Scheduling

Algorithms- Seyed Reza Pakize .Department of Computer,

Islamic Azad University, Yazd Branch, Yazd, Iran--
International Journal of Computer Networks and
Communications Security-- VOL. 2, NO. 9, SEPTEMBER
2014, 308–317

[2] Improving Map Reduce Performance through Data Placement

in Heterogeneous Hadoop Clusters- Jiong Xie, Shu Yin,
Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin -Department of Computer Science
and Software Engineering Auburn University, Auburn, AL
36849-5347

[3] M. Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica.
Improving Map reduce prformance in heterogeneous
environments. In OSDI’08: 8th USENIX Symposium on

Operating Systems Design and Implementation, October 2008.
[4] B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy, L.S.S.Reddy

“Performance Issues of Heterogeneous Hadoop Clusters in
Cloud Computing” Global Journal of Computer Science and
Technology Volume 11 Issue 8 Version 1.0 May 2011

[5] Andy Konwinski--Improving MapReduce Performance in
Heterogeneous Environments Technical Report No.
UCB/EECS-2009-183

[6] An Empirical Analysis of Scheduling techniques for Real-time
cloud based data processing-linh T.X. Phan Zhuoyao zhang, Qi
Zheng Boon Thau Loo Unniversity of pennsylvania

[7] S. Khalil, S.A. Salem, S. Nassar and E.M. Saad, “ Mapreduce
Performance in Heterogeneous Environments: A Review ”,
International Journal of Scientific & Engineering Research,
Vol. 4, NO. 4, April - 2013, pp. 410-416.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Communications of the ACM,
51 (1): 107-113, 2008.

[9] “Hadoop home page.” http://hadoop.apache.org/.
[10] Critical study of hadoop Implementation and performance

issue-Conference: Research In IT: Exploring the Horizon"
National Conference, At Patkar College

[11] Hadoop’s FIFO Scheduler
http://hadoop.apache.org/common/docs/r0.20.2/fifo_scheduler.
html

[12] Hadoop’s Fair Scheduler
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.
html

[13] Hadoop’s Capasity Scheduler
http://hadoop.apache.org/common/docs/r0.20.2/capasity_sched
uler.html

[14] Dynamic Proportional share Scheduling in Hadoop Thomas
sandholm and Kevin Springer Berlin Heidelberg Volume 6253,

2010, pp 110-131
[15] Hadoop Preemptive Deadline Constraint Scheduler-IEEE

Explorer Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2014 International
Conference on 13-15 OCT 2014

[16] Coupling task progress for Map Reduce resource-aware
scheduling-IEEE Explorer-INFOCOM, 2013 Proceedings
IEEE

[17] Personal communication with the Yahoo! Hadoop team and
with Joydeep Sen Sarma from Facebook.

[18] “Hadoop home page.” http://hadoop.apache.org/.
[19] White, T., 2012, “ Hadoop: The Definitive Guide ”, ed. Third,

Tokyo: Yahoo press.

http://www.ijritcc.org/
http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/r0.20.2/fifo_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/fifo_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/capasity_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/capasity_scheduler.html
http://hadoop.apache.org/

