
RESEARCH Open Access

Profit-oriented task scheduling algorithm in
Hadoop cluster
Xu-qing Chai1*, Yong-liang Dong2 and Jun-fei Li3

Abstract

Nowadays, many enterprises provide cloud services based on their own Hadoop clusters. Because the resources of
a Hadoop cluster are limited, the Hadoop cluster must select some specific tasks to allocate limited resources in
order to get the maximal profit. In this paper, we study the maximal profit problem for a given candidate task set.
We describe the candidate task set with a valid sequence and propose a sequence-based scheduling strategy. In
order to improve the efficiency of finding a valid sequence, we design some pruning strategies and give the
corresponding scheduling algorithm. Finally, we propose a timeout handling algorithm when some task runs
timeout. Experiments show that the total profit of the proposed algorithm is very close to the ideal maxima and is
obviously bigger than related scheduling algorithms under different experimental settings.

Keywords: MapReduce, Scheduling algorithm, Profit, Big data

1 Introduction
With the rapid development of computer networks and
sensor networks, data are exponentially increased, espe-
cially on the Internet. In order to deal with large-scale data
efficiently, a parallel and distributed cluster with good scal-
ability, flexibility, and fault tolerance is needed. The MapRe-
duce architecture [1], proposed by Google, applies a divide
and conquer method to deal with data-intensive tasks and
is a de facto standard in big data field. The researches on
MapReduce have attracted more and more researchers and
engineers. In Google, it uses a large-scale cluster running
MapReduce and its related techniques, such as GFS [2] and
Bigtable [3], to handle hundreds of petabyte data every
week. Based on the analyzing results upon these data, it
provides a series of services to people around the world,
such as searching, Google earth, advertisements, and so on.
Hadoop [4, 5], contributed by Yahoo!, is the opensource

implementation of MapReduce and its related techniques.
Hadoop is studied extensively in both academia and indus-
try and has been deployed in many enterprises. Currently,
a lot of IT enterprises build their Hadoop/MapReduce clus-
ters and provide all kinds of cloud services to customers.
While paying only a little money, the customers can use

the powerful Hadoop/MapReduce cluster on demand. Dur-
ing this kind of service process, the service details between
enterprises and customers are usually described by a ser-
vice level agreement (SLA) [6, 7]. The SLAs usually include
two kinds, pricing for quantity and pricing for effectiveness.
The pricing for quantity SLAs charges the customers pro-
portional to the scale of hardware and the service time.
The pricing for effectiveness SLAs charges the customers
according to the service effectiveness. Taking the spam
email detection service [8] for example, the service must be
finished in a certain time, so if only the service finishes
within the required time, money would be paid.
In this paper, we study how to schedule customers’ tasks

to maximize the total profit of a Hadoop cluster. In our re-
search, we mainly focus on the timed MapReduce tasks,
which are priced for effectiveness of time, i.e., tasks must be
finished within the given time. Here, we abstract each task
with four parts, i.e., user-defined Map/Reduce functions,
time to complete, profit, and penalty, and we try to find a
scheduling algorithm that maximizes the total profit of the
Hadoop cluster.
The rest of the paper is organized as follows. In Section

1.1, we briefly describe the MapReduce programming
environment and review related works about scheduling
algorithms in MapReduce/Hadoop. In Section 1.2, we
formalize the problem of maximal profit. In Section 1.3, we
propose a sequence-based scheduling strategy and present

* Correspondence: cxq@htu.edu.cn
1Network Center of Henan Normal University, Xinxiang City, Henan Province
453000, China
Full list of author information is available at the end of the article

© 2016 Chai et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6
DOI 10.1186/s13639-016-0026-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81862102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0026-x&domain=pdf
mailto:cxq@htu.edu.cn
http://creativecommons.org/licenses/by/4.0/

a corresponding scheduling algorithm. Experiments and
conclusions are given in Sections 1.4 and 2, respectively.

1.1 Background and related works
In this section, we give a short introduction to MapReduce
and then review related works about task scheduling in
MapReduce.

1.1.1 Background
MapReduce is a popular programming model for data-
intensive tasks and has been widely used in many fields
[9–14]. Hadoop is an opensource implementation of
MapReduce, and a Hadoop cluster can be made up of
thousands of commodity computers. The Hadoop clus-
ter runs on top of the Hadoop distributed file system
(HDFS). In the HDFS, data are partitioned into many
small chunks and each chunk has multiple backup cop-
ies. The multiple backup copy mechanism of HDFS
makes the running MapReduce tasks fault-tolerant.
Another advantage of Hadoop is that it is easy to pro-

gram for programmers. Programmers only need to imple-
ment the Map and Reduce functions while processing their
massive data, and the details of computing, such as data
partitioning, fault tolerance, and communication, are exe-
cuted automatically by the underlying MapReduce frame-
work. The MapReduce framework is illustrated in Fig. 1. In
the user-defined Map function, the input is a key-value pair
and the output is zero or more key-value pairs. In the group
step, the system group key-value pairs with the same key
and they are sent to the same Reduce node. In the user-
defined Reduce function, the grouped key-value pairs are
handled to generate the results. MapReduce tasks usually
need several Map/Reduce iterations.

1.1.2 Related works
In MapReduce, there are some general task schedulers,
such as FIFO scheduler [15], capacity-based scheduler
[16], and fairness-based scheduler [17]. Concerning the
specific applications, Sandholm and Lai [18] proposed a
scheduling algorithm, which allows users to adjust the

required computing resources dynamically according to
the importance of MapReduce tasks, Zaharia et al. [19]
proposed a scheduling algorithm for heterogeneous clus-
ter environments, and Kwon et al. [20] proposed the
Skewtune algorithm for dealing with skewness in the
processes of MapReduce tasks.
In addition, there are some scheduling algorithms,

which concern the MapReduce tasks to be finished within
a given time. Polo et al. [21] proposed a performance-
driven task co-scheduling algorithm, which estimates the
required finish time for each task and allocates resources
prior for the tasks that cannot be completed timely. Kc
and Anyanwu [22] proposed a deadline constraint (DC)
scheduler, which tries to allocate a fixed number of Map
jobs to each task according to the size of tasks and as-
sumes that each task can utilize all job slots in the Reduce
step. However, the workload complementary (WC) sched-
uling mechanism, proposed by Verma et al. [23, 24], tries
to allocate a fixed number of both Map and Reduce jobs
to each task according to the size of tasks and to minimize
the number of job slots for each task.

1.2 Problem statement
In this paper, we aim to maximize the total profit of a
homogeneous Hadoop cluster, where the computing
abilities of all nodes are the same. In a Hadoop cluster
with M Map jobs and M Reduce jobs, for each submit-
ted task j, we assume the following parameters:

� j. Nm, the number of Map jobs in j.
� j. Nr, the number of Reduce jobs in j. In order to get

high efficiency, both j. Nm and j. Nr are the integer
multiples of M.

� j. deadline, the required time or deadline of j.
� j. profit, the profit of j if finished before deadline.

Here, we must note that if j does not finish before
deadline, then the penalty of j is j. profit. α.

When a lot of customers submit their tasks to a
Hadoop cluster at the same time, these tasks form a

HDFS HDFSM1

M2

M3

c11
c12

c21
c22

c31
c32

Map

c11
c21
c31

c12
c22
c32

R1

R2

Group

Reduce

Fig. 1 The MapReduce framework

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 2 of 8

candidate task set J = {j1, j2,…, j|J|}. The Hadoop cluster

needs to select an acceptable task set J ¼ j′1; j
′
2;…; j′Jj j

n o

from J and schedules the selected tasks via a suitable algo-
rithm to finish them. For each task j′i∈A , if j′i finishes be-
fore j′i , then j′i is effective, and the profit is j′i :profit ; if j

′
i

does not finish before j′i :deadline, then j′i is not effective,
and the penalty is j′i :profit:α , i.e., the profit is −j′i :profit:α.
So, the total profit of the Hadoop cluster is

P ¼
X

j∈A;E jð Þ
j:profit−

X
j′∈A;E j′ð Þ

j′i :profit:α ð1Þ

where E(⋅) indicates whether or not the given task is
effective.

1.3 The proposed scheduling algorithm
In this section, we first propose a sequence-based task
scheduling strategy and then propose a scheduling algo-
rithm based on that strategy and finally present an ap-
proach for handling timeout.

1.3.1 Sequence-based scheduling strategy
For each task j ∈ J, we can estimate its average process-
ing time for Map jobs, j. Tm, and its average processing
time for Reduce jobs, j. Tr. If all task slots are used to
process task j, then it needs TCm(j) = ⌈j. Nm/M⌉ × j. Tm time
to finish all Map jobs and needs TCr(j) = ⌈j. Nr/M⌉ × j. Tr

time to finish all Reduce jobs.

1.3.1.1 Definition 1. Sequence For a task set JS (the
number of tasks is |JS|), a sequence S is a permutation of
all tasks in JS, and it specifies the order or jobs according to
their finished times. If the finished time of j in the Map step
is COTm(j), then for a given sequence S = {j1, j2,…, j|JS|}, let
COTm(ji) <COTm(ji+ 1) for ∀ ji ∈ S(0 < i < |JS|).
Based on a given sequence S, we propose a scheduling

strategy as follows:

� Map: When an idle task slot requires a Map job,
select a Map job of the first task in sequence S.
When all Map jobs of the first task in S are
allocated, remove the first task from S.

� Reduce: Sort the tasks in JS increasingly according
to their times to finish and then get a sorted queue
La ¼ j ′1; j

′
2;…; j ′JSj j

n o
. When an idle task slot

requires a Reduce job, search in Ld orderly for a task
whose Map jobs have all finished and then select a
Reduce job of the selected task.

According to the above scheduling strategy, for a given
sequence S, we can compute the finished time of the
Map step, COTm(j), and the finished time of the Reduce

step, COTr(j), for any COTm(j). The computation of
COTm(j) and COTr(j) is as follows:

� Given a sequence S = {j1, j2,…, j|JS|}, for ∀ ji∈ S,
COTm(ji) = COTm(ji − 1) + TCm(j) = ∑k∈ [1,i]TCm(jk).

� Given JS and Ld, for the first task j ′1 in Ld, its finished
time of the Map step can be calculated out, i.e., COTm

j ′1
� �

, using the above method, then COTr j ′1
� � ¼ CO

Tm j ′1
� �þ TCr j ′1

� �
. We tag the time slice

COTm j ′1
� �

;COTr j ′1
� �� �

as occupied. For the ith task
in Ld, we first computed COTm j ′i

� �
and then find a

series of unoccupied time slices, whose sum to be TCr

j ′i
� �

, beginning with the moment COTm j ′i
� �

, and tag
these time slices as occupied. Then, the finished time
of the Reduce step of j ′i , i.e., COTr j ′i

� �
, is the finished

time of the latest time slices.

Based on the above scheduling strategy and the com-
putation of finished time, we give the definition of a
valid sequence.

1.3.1.2 Definition 2. Valid sequence Given a task set JS
and for any sequence S, if for ∀ ji ∈ JS, we have COTr(j) ≤ j.
deadline based on the above scheduling strategy; then, S is
a valid sequence.

1.3.1.3 Theorem 1 For a task set JS and a sequence S,
the proposed scheduling strategy can make sure that, for
∀ ji ∈ JS, ji can finish its Map step with minimal time
under the constraint of S.
Proof. Given the sequence S = {j1, j2,…, j|JS|} and its ith

task ji, S ensures that the Map step of ji starts after all
Map steps of jk(1 ≤ k < i) finish, i.e., the earliest finished
time of the Map step of ji is ∑k ∈ [1,i]TCm(jk). At the same
time, allocating jobs based on the proposed scheduling
strategy, the finished time of the Map step of ji,
COTm(ji), also equals to ∑k ∈ [1,i]TCm(jk). For ∀ ji ∈ S, we
can have the same conclusion.

1.3.1.4 Theorem 2 For a task set JS and a sequence S, if
task timeout occurs when using the proposed scheduling
strategy, then whatever scheduling strategy is used, it is
impossible to finish all tasks in JS on time, and thus, S
must be not a valid sequence.
Proof. From theorem 1, we know that the proposed

scheduling strategy is optimal in the Map step. Here, we
only consider the Reduce step. Assuming that j is a
timeout task based on the proposed scheduling strategy,
it can be classified into two situations:

� COTm(j) + TCr(j) > j. If the Reduce step of j run
immediately when its Map jobs finish and still
cannot finish on time, then whatever scheduling
strategy is used, j cannot finish on time.

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 3 of 8

� COTm(j) + TCr(j) ≤ j. deadline and COTr(j) > j.
deadline. The finished time of the Reduce step of j is
later than deadline. According to the proposed
scheduling strategy, there must be some period in time
slice [COTm(ji),COTr(ji)] occupied by other tasks’
Reduce jobs, whose time to finish is less than j.
deadline. Select the task with minimal time required to
finish its Map step and denote it as j′. For all tasks,
whose Reduce steps run in time slice
COTm j ′1

� �
;COTr j ′1

� �� �
, judge whether or not the

tasks, whose time to finish is less than j. deadline, exist.
If the tasks exist, repeat the above progress until we
find a final task jf, such that all tasks, whose Reduce
step runs in time slice [COTm(jf),COTr(j)], and finish
later than j. deadline. Obviously, there is no any idle
time slice in time slice [COTm(jf),COTr(j)]. So, if we
use other scheduling strategies to make j finish on
time, then there must be some other tasks that will be
timeout.

In both of the above situations, it is impossible to finish
all tasks in JS on time, so S must be not a valid sequence.
Based on theorems 1 and 2, we can conclude that the

proposed scheduling strategy is optimal for a fixed se-
quence S. That means if timeout tasks under the pro-
posed strategy exist, then they must exist in any other
scheduling strategy.

1.3.2 Scheduling algorithm
Based on the proposed sequence-based scheduling strat-
egy, we propose a scheduling algorithm. Firstly, when
the candidate task set is static, we use a scoring strategy
to specify priorities for all tasks, apply an efficient prun-
ing strategy to find the set of acceptable tasks, and then
find a valid sequence. Secondly, when the candidate task
set is updated dynamically, we implement an incremen-
tal method for judging the set of acceptable tasks and
update the valid sequence when necessary.
For a candidate task set c, we need to find the set of

acceptable tasks A ¼ j′1; j
′
2;…; j′Aj j

n o
, ascertain the valid

sequence of A, and then maximize the total profit. How-
ever, there are 2|J| different acceptable sets for J, and for

an acceptable set A ¼ j′1; j
′
2;…; j′Aj j

n o
, there are still |A| !

different sequences.
In order to improve the efficiency of judging an accept-

able set, we first sort all tasks in J and then determine the
priority for each task. Upon the features of MapReduce
tasks, we mainly consider the following two aspects:

� As the ability of Hadoop cluster is limited, in order
to maximize the total profit, the tasks with a bigger
profit ratio should be accepted prior. For ∀ j∈ J, the
consumed time of the system can be quantified as

STC(j) = TCm(j) ⋅M/(M + R) + TCr(j) ⋅ R/(M + R) and
then the profit ratio of j is Pr(j) = j. profit/STC(j), i.e.,
the profit per second when running j.

� In MapReduce, if some task j is too long, then most
task slots will be idle when running Map/Reduce
jobs of j. This would waste lots of resources and
affect the accept of other tasks.

Based on the above aspects, we propose a scoring
function aiming to maximize the total profit. For a task
j, the score is

Score jð Þ ¼ j:profit
STC jð Þ⋅Ad jð Þ ð2Þ

where Ad(j) is the adjusting coefficient of j and STC(j) ⋅
Ad(j) is the adjusting time of j. By Eq. 2, the task with a
higher score would be given a higher priority.
Let the total consumed time of Map jobs for all j ∈ J

be Total TCm = ∑j ∈ JTCm(j). For task j, compute the
average consumed time of all Map jobs for other tasks,
�T �Cm jð Þ ¼ Total TCm−TCm jð Þð Þ= Jj j−1ð Þ . Given a pen-
alty threshold β(β > 1), if TCm jð Þ > �T �Cm⋅β , then we
think that the Map step of j is too long, and with the
same reason, if TCr jð Þ > �T �Cr⋅β, then we think that the
Reduce step of j is too long. The computation of the
adjusting coefficient Ad(j) for task j is as follows:
If TCm jð Þ > �T �Cm jð Þ⋅β, TCr jð Þ > �T �Cr jð Þ⋅β,
then TCm jð Þ−�T �Cm jð Þ⋅β

TCm jð Þ ⋅ M
MþR þ TCr jð Þ−�T �Cr jð Þ⋅β

TCr jð Þ ⋅ M
MþR þ 1;

if TCm jð Þ > �T �Cm jð Þ⋅β, TCr jð Þ≤�T �Cr jð Þ⋅β,
then TCm jð Þ−�T �Cm jð Þ⋅β

TCm jð Þ ⋅ M
MþR þ 1;

if TCm jð Þ≤�T �Cm jð Þ⋅β, TCr jð Þ > �T �Cr jð Þ⋅β,
then TCr jð Þ−�T �Cr jð Þ⋅β

TCr jð Þ ⋅ M
MþR þ 1;

and if TCm jð Þ≤�T �Cm jð Þ⋅β, TCr jð Þ≤�T �Cr jð Þ⋅β,
then Ad(j) = 1.
Now, we analyze how to improve the efficiency of finding

a valid sequence. Assuming that the candidate set is sorted
by Eq. 2, i.e., ∀ j ∈ J, Score (ji) ≤ Score (ji+ 1). The brute
force searching method needs (|A| + 1) ! complexity to
traverse all candidate sequences. In order to improve the
searching speed, we give the following two approaches.

1.3.2.1 Theorem 3 Given a task set A and one of its
valid sequences S = {j1, j2,…, jn}, for a new task jnew, there
are n + 1 locations that can be inserted by jnew. If
TCm(jnew) +COTm(ji) + TCr(ji) > ji. deadline, then jnew
cannot be inserted into locations [1, i].
Proof. Obviously, if jnew is inserted into any location of

[1, i], then jnew will be timeout.

1.3.2.2 Theorem 4 Given a task set A and one of its
valid sequences S = {j1, j2,…, jn}, for a new task jnew, if

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 4 of 8

TCm(jnew) +COTm(ji) + TCr(jnew) > ji. deadline, then jnew
cannot be inserted into locations [i + 1, n + 1].
Proof. Assuming that jnew can be inserted into one lo-

cation in [i + 1, n + 1], according to the proposed sched-
uling strategy, we have that the earliest finished time of
jnew is equal to or larger than TCm(jnew) + COTm(ji) +
TCr(jnew). So, jnew must be timeout.
Based on theorems 3 and 4, we proposed an algorithm

for rapidly finding the acceptable set and its correspond-
ing valid sequence, and the details are in algorithm 1.
With the proposed algorithm, the maximum profit for
the candidate task set can be got.

1.3.3 Timeout handling approach
We propose the above scheduling algorithm in the
homogeneous Hadoop cluster, and in most cases, the
estimation values of j. Tm and j. Tr are close to real
values. However, in some abnormal situations, such as
network congestion and node crashes, some accepted
tasks cannot finish on time. In these situations, we
must adjust the running tasks in order to get the max-
imum profit.
According to Eq. 1, in order to get the maximum

profit, we should drop the task with the lowest profit
while making other tasks finish on time. Based on this
idea, we propose a timeout handling algorithm, and
the details of the algorithm are in algorithm 2.

1.4 Experiments
1.4.1 Experimental setting
In the experiments, the Hadoop cluster contains one
master node and 40 slave nodes, and each node contains
an Intel Core i3 3.1 GHz CPU, 8 GB memory, and
500 GB storage and runs Redhat Linux 6.1. In the slave
nodes, each node is configured with two Map task slots
and two Reduce task slots.
The dataset we use in the experiments is the enwiki

(https://dumps.wikimedia.org/enwiki/20150204/), and we
run three classical tasks on the dataset, i.e., statistics of
word frequencies, inverted index, and distributed grep.
The dataset is stored on the Hadoop file system (HDFS),
each chunk is 64 MB, and each data chunk has three cop-
ies. For a candidate task set J, we mainly consider the fol-
lowing three parameters that affect the performance:

� Average task size L, i.e., the average size (number of
chunks) of all tasks in L;

� Task number N, i.e., the number of tasks in L;
� Average deadline D, i.e., the average deadline (time

to finish) of all tasks in L.

The computation of total profit is in Eq. 1. In addition,
we define receive rate and finish rate as follows:

Receive rate ¼ Size of received task set
Size of candidate task set

Finish rate ¼ Number of finished tasks
Number of accepted tasks

ð3Þ

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 5 of 8

https://dumps.wikimedia.org/enwiki/20150204/

1.4.2 Results
The baseline algorithms we use in the experiments are
DC [22] and WC [24].
Firstly, we evaluate the effect of task number on the

total profit, and the results are in Fig. 2. In Fig. 2a, the

ideal curve is the ideal profit, and with the increasing of
average task size, all profit values decrease, but our
proposed approach is close to the ideal value. In Fig. 2b,
all of the three receive rates decrease gradually, but our
approach has the highest value, which means that our
approach can receive the most candidate tasks. In

a

b

c

Fig. 2 a–c Effect of task number on the total profit

a

b

c

Fig. 3 a–c Effect of task number

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 6 of 8

Fig. 2c, the proposed approach has a much higher fin-
ish rate than the other two. As our approach not only
receives the most candidate tasks but also finishes most
of them, so it can bring the most total profit.
Meanwhile, we observe the effects of task number

and average deadline on the total profit, and the results
are shown in Figs. 3 and 4, respectively. With the same

reason, our approach not only receives the most candi-
date tasks but also finishes most of them, so it can
bring the most total profit. In addition, the total profits
of our approach for three situations are very close the
ideal values.

a

b

c

Fig. 4 a–c Effect of average finish time

a

b

c

Fig. 5 a–c Observation of dynamic tasks

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 7 of 8

Finally, we dynamically submit the tasks to the
Hadoop cluster and observe the changes of the total
profit. In Fig. 5, the horizontal axis is the elapsed time
and the vertical axes are the total profit, receive rate,
and finish rate, respectively. As we can see from the
figure, our approach not only receives the most candi-
date tasks but also finishes most of them, so it can
bring the most total profit. This illustrates that the
proposed approach is also suitable to tasks that are
submitted dynamically.

2 Conclusions
In this paper, we study the problem of maximal profit in
a Hadoop cluster, where the resources are not enough
for the whole candidate task set. In order to maximize
the total profit, we select some high-profit ratio tasks
based on the valid sequence of a candidate task set. Fur-
thermore, in order to improve the efficiency of finding a
valid sequence, we design some pruning strategies and
give the corresponding scheduling algorithm. We also
propose a timeout handling algorithm. Experiments
show that the total profit of the proposed algorithm is
very close to the ideal maxima and is obviously bigger
than related scheduling algorithms under different ex-
perimental settings.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported by the following funds: Department of Science and
Technology of Henan (9412012Y0004, 9412012Y0005) and Education
Department of Henan (13A510520, 2013-gh-12, 14A520053, SKL-2014-795).

Author details
1Network Center of Henan Normal University, Xinxiang City, Henan Province
453000, China. 2XinLian Collage of Henan Normal University, zhengzhou City,
Henan Province 453000, China. 3Shanghai Jing Sheng Communication
Technology Co Ltd, Shanghai City 021, China.

Received: 25 November 2015 Accepted: 24 February 2016

References
1. J Dean, S Ghemawat, MapReduce: simplified data processing on large

clusters. Commun ACM 51(1), 107–113 (2008)
2. S. Ghemawat, H. Gobioff, S.-T. Leung, in ACM SIGOPS Operating Systems

Review. The Google file system, vol. 37 (ACM, 2003), pp. 29–43
3. F Chang, J Dean, S Ghemawat, WC Hsieh, DA Wallach, M Burrows, T Chandra,

A Fikes, RE Gruber, Bigtable: a distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

4. D Borthakur, The Hadoop distributed file system: architecture and design.
Hadoop Project Website 11(2007), 21 (2007)

5. K. Shvachko, H. Kuang, S. Radia, R. Chansler, in Mass Storage Systems and
Technologies (MSST). The Hadoop distributed file system. 2010 IEEE 26th
Symposium On, (IEEE, 2010), pp. 1–10.

6. J.M. Peha, F. Tobagi et al., in INFOCOM’91. Proceedings. Tenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Networking
in the 90s. A cost-based scheduling algorithm to support integrated
services, (IEEE, 1991), pp. 741–753.

7. Y Chi, HJ Moon, H Hacigümüs, iCBS: incremental cost-based scheduling
under piecewise linear SLAs. Proceedings of the VLDB Endowment 4(9),
563–574 (2011)

8. M.T.B. Aun, B.-M. Goi, V.T.H. Kim, in Sustainable Utilization and Development
in Engineering and Technology (STUDENT), 2011 IEEE Conference On. Cloud
enabled spam filtering services: challenges and opportunities, (IEEE, 2011),
pp. 63–68.

9. A McKenna, M Hanna, E Banks, A Sivachenko, K Cibulskis, A Kernytsky, K
Garimella, D Altshuler, S Gabriel, M Daly et al., The genome analysis toolkit:
a MapReduce framework for analyzing next-generation DNA sequencing
data. Genome Res 20(9), 1297–1303 (2010)

10. R.L. Ferreira Cordeiro, C. Traina Junior, A.J. Machado Traina, J. López, U. Kang,
C. Faloutsos, in Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Clustering very large multi-dimensional
datasets with MapReduce, (ACM, 2011), pp. 690–698.

11. K Wiley, A Connolly, J Gardner, S Krughoff, M Balazinska, B Howe, Y Kwon,
Y Bu, Astronomy in the cloud: using MapReduce for image co-addition.
Stronomy 123(901), 366–380 (2011)

12. M.F. Husain, P. Doshi, L. Khan, B. Thuraisingham, in Cloud Computing.
Storage and retrieval of large RDF graph using Hadoop and MapReduce,
(Springer, 2009), pp. 680–686.

13. W Dou, X Zhang, J Chen, KASR: a keyword-aware service recommendation
method on MapReduce for big data application. IEEE Transactions on
Parallel & Distributed Systems 1, 1 (2014)

14. D Dahiphale, R Karve, AV Vasilakos, H Liu, Z Yu, A Chhajer, J Wang, C Wang, An
advanced MapReduce: cloud MapReduce, enhancements and applications.
Network and Service Management, IEEE Transactions on 11(1), 101–115 (2014)

15. RB Thirumala, Survey on improved scheduling in Hadoop MapReduce in
cloud environments. Int J Comput Appl 34(9), 29–33 (2011)

16. M. Yong, N. Garegrat, S. Mohan, in Proceedings of the 2009 IEEE International
Conference on Web Services. Towards a resource aware scheduler in Hadoop,
(Los Angeles, CA, USA, 2009), pp. 102–109

17. M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Stoica, in
Proceedings of the 5th European Conference on Computer Systems. Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling, (ACM, 2010), pp. 265–278.

18. T. Sandholm, K. Lai, in Job Scheduling Strategies for Parallel Processing. Dynamic
proportional share scheduling in Hadoop, (Springer, 2010), pp. 110–131.

19. M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, I. Stoica, in OSDI. Improving
MapReduce performance in heterogeneous environments, vol. 8 (2008), p. 7

20. Y. Kwon, M. Balazinska, B. Howe, J. Rolia, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. Skewtune:
mitigating skew in MapReduce applications, (ACM, 2012), pp. 25–36.

21. J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Steinder, I.
Whalley, in Network Operations and Management Symposium (NOMS).
Performance-driven task co-scheduling for MapReduce environments,
(IEEE, 2010), pp. 373–380.

22. K. Kc, K. Anyanwu, in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference On. Scheduling Hadoop jobs to
meet deadlines, (IEEE, 2010), pp. 388–392.

23. A. Verma, L. Cherkasova, R.H. Campbell, in Proceedings of the 8th ACM
International Conference on Autonomic Computing. Aria: automatic resource
inference and allocation for MapReduce environments, (ACM, 2011), pp. 235–244.

24. A. Verma, L. Cherkasova, V.S. Kumar, R.H. Campbell, in Network Operations an
d Management Symposium (NOMS). Deadline-based workload management
for MapReduce environments: Pieces of the performance puzzle, (IEEE, 2012),
pp. 900–905.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Chai et al. EURASIP Journal on Embedded Systems (2016) 2016:6 Page 8 of 8

	Abstract
	Introduction
	Background and related works
	Background
	Related works

	Problem statement
	The proposed scheduling algorithm
	Sequence-based scheduling strategy
	Scheduling algorithm
	Timeout handling approach

	Experiments
	Experimental setting
	Results

	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

