264 research outputs found

    Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy

    Full text link
    [EN] The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 'Clementina de Nules' citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430-1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430-750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction.This work is co-financed by the PNDR and GVA-IVIA (projects 52203, 52204 and by the EU through the ERDF of GVA 2021-2027). Maylin Acosta thanks IFARHU-SENACYT for the Professional Excellence Scholarships, contract No. 270-2021-020. Sandra Munera thanks the Juan de la Cierva-Formación contract (FJC2021-047786-I) co-funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR.Acosta, M.; Quiñones, A.; Munera, S.; De Paz, JM.; Blasco, J. (2023). Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy. Sensors. 23(14):1-11. https://doi.org/10.3390/s23146530111231

    Detecting and mapping forest nutrient deficiencies: eucalyptus variety (Eucalyptus grandis x and Eucalyptus urophylla) trees in KwaZulu-Natal, South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Abstract available in PDF

    Estimation of nutrient contents in wolfberry (Lycium barbarum L.) based on hyperspectral analysis

    Get PDF
    Rapid and accurate determination of the nutrient contents in wolfberry (Lycium barbarum L.) is of great significance for identifying the quality and origin of the fruit. Compared to traditional chemical analysis methods, hyperspectral remote sensing has the advantages of high speed and low cost. In this study, the dried fruits of wolfberry (cultivar ‘Ningqi No. 7’) taken from the Huinong, Yinchuan, Zhongning, and Tongxin regions of Ningxia, China, in 2020 were selected as samples. Two methods, the variable importance measure (VIM) under random forest and the successive projection algorithm (SPA), were applied to select the hyperspectral characteristic variables. The test set coefficient of determination (R2p), root mean square error of prediction (RMSEP), and relative percent deviation (RPD) for different pre-treatments and characteristic variable selection methods were compared. Finally, the optimal estimation models of partial least squares regression (PLSR) for the contents of eight nutrients in wolfberry were established. The results were as follows: (1) The variation trends of the original hyperspectral reflectance curves of wolfberries from different yield areas and harvest dates were similar, and the spectral characteristic absorption bands were significantly enhanced after first-order differential transformation. (2) After extracting the characteristic bands using SPA, the RPD values were all above 2.0, and the estimation performance was significantly better than that of the full bands. (3) The optimal estimation model for total sugar (TS), crude protein (CP), and Ca was found to be SG-MSC-SPA-PLSR; the optimal estimation model for Lycium barbarum polysaccharide (LBP), Mn, and Zn was found to be SG-2ndD-SPA-PLSR; and the optimal estimation model for Cu and Fe was found to be SG-1stD-SPA-PLSR. The results have important reference value for the quality evaluation and origin traceability of wolfberry

    Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy

    Get PDF
    The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 ‘Clementina de Nules’ citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430–1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430–750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction

    High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

    Get PDF
    Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively

    Development of an effective and sustainable system to monitor fruit tree water status with precision devices

    Get PDF
    In recent years, sustainable water resource management has become a significant and debated issue in the agro-environmental context. Agriculture, as one of the major water-consuming sectors, plays a crucial role in water resource management. Indeed, global climate change is leading to a general temperature rising, with a consequent increase in drought phenomena. As a result, this leads to an overuse of water resources for irrigation. Therefore, understanding tree crop responses to water availability is becoming increasingly urgent, aiming to increase their water use efficiency.In this regard, one of the primary objectives of scientific research today is to optimize the use of water resources, minimizing inputs without compromising outputs. Water resource savings alone will lead to increased profits. In recent years, deficit irrigation methods, such as regulated deficit irrigation (RDI) and partial rootzone drying (PRD), have allowed farmers to save water while increasing profit by irrigating only during specific phenological stages or with reduced volumes on alternated sides of the rootzone, inducing the plant to activate physiological mechanisms (partial stomatal closure) useful for maximizing water use efficiency. However, real-time knowledge of fruit tree water requirements with consequent automation of precise irrigation applications would allow farmers to further increase water use efficiency. In this regard, last-generation sensors allow continuous data acquisition directly from the plant, greatly increasing the level of information. The combined use of plant-based proximal sensors can provide highly precise information about its water status. Furthermore, remote sensing technologies allow strategic use of proximal sensors, taking into account the spatial variability of the orchard.Based on these premises, the main objective of this dissertation was to develop an effective and sustainable system for monitoring the water status of fruit trees using proximal and remote sensing technologies. Firstly, the use of plant-based proximal and remote sensing technologies, as well as the combination of the two techniques, was reviewed. Subsequently, some techniques for assessing the water status of young olive trees placed in a growth chamber were tested. In the subsequent trial, fruit growth sensors (fruit gauges) were used to study responses of fruit growth from five different species (peach, mango, olive, orange, and loquat) to vapor pressure deficit. In the last trial, the combined use of proximal and remote sensing technologies was tested for estimating the water status of 'Calatina' olive trees under open field conditions

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

    Get PDF
    Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions
    • …
    corecore