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ABSTRACT 

Nutrient deficiencies in commercial forestry environments stunt plant growth and reduce 

survival, resulting in a loss of time, resources, and trees that can become more susceptible to a 

host of infections. Ineffective and inefficient nutrient screening methods could lead to the 

release of unhealthy trees for in-field planting, wasting functional space and inevitably 

impeding forest production. Therefore, the early detection and continuous monitoring of 

nutrient deficiencies are essential to support management decisions for an effective nutrient 

management regime. This study aimed to develop and explore innovative detection techniques 

to map nutrient deficiencies in commercial forest plantations. 

In the first part of this thesis, the focus is on reviewing existing literature on mapping nutrient 

deficiencies using operational near-infrared (NIR), remotely sensed data. The review provides 

a synopsis of the application of near-infrared spectroscopy (NIRS) for detecting foliar nutrients, 

focusing on the best spectral noise removal methods, data pre-processes, and statistical models. 

The primary outcomes suggest that NIRS provide reasonably accurate results by utilising 

carefully selected pre-processing data methods and statistical models that reduce spectral noise.  

In the second part of this study, the focus was on developing a forest nursery experiment to test 

the capability of remote sensing to detect macronutrient and micronutrient deficiencies rapidly 

using a non-destructive approach. This study entailed creating a pot trial experiment to acquire 

full-waveform hyperspectral data (350nm-2500nm) from 135 young trees in a controlled 

forestry nursery environment. This study quantified nitrogen (N), phosphorus (P), potassium 

(K), calcium (Ca), magnesium (Mg), sodium (Na), manganese (Mn), iron (Fe), copper (Cu), 

zinc (Zn), and boron (B) in a commonly planted commercial hybrid variety. Utilizing the 

robustness of the random forest (RF) algorithm, N and P produced R2 of 0.95 and 0.89, 

respectively, and for micronutrients such as Mn and Cu produced R2‘s of 0.90 and 0.86, 

respectively. This study identified the most effective regions (red-edge, NIR, visible (VIS) and 

short-wave infrared-2 (SWIR-2) for detecting macronutrients and micronutrients regions in this 

study.  

These positive results prompted the need to understand the distribution of nutrient content 

across the four vertical canopy positions (VCP) (Quartiles 1-4) and develop a rapid diagnostic 

tool for accurate nutrient detection using an in-field handheld NIRS device. As a result, 

quartiles two and four were the best positions to take a measurement for detecting 



x 

macronutrients, and micronutrients when sampling using NIRS and the partial least squares 

(PLS) algorithm. 

In the final section of this study, the focus was on upscaling the findings from the first part of 

the thesis. In the final section the focus was to test the capabilities of unmanned aerial system 

(UAS) imagery using a very high resolution Micasense sensor and satellite imagery 

(PlanetScope) in conjunction with an ANN to classify four nutrient regimes in live standing 

forestry compartment. Both images successfully classified the four nutrient regimes with an 

overall accuracy (OA) above 80%, with Kappa coefficient (KHAT) above 75 using four hidden 

layers and 30 epochs. Chapter 5 found that the UAS imagery performed slightly better than the 

satellite imagery; however, they were both seamlessly accurate. Lastly, the outcome of chapter 

5 was tested in chapter 6. Hence, in chapter 6 tested very high-resolution UAS imagery to 

predict macronutrients and micronutrients using a deep learning ANN in a compartment forest. 

Variable importance measures provided helpful information in the prediction model. The 

utilization of the NIR and red-edge wavebands highly contributed to the prediction model with 

R2’s for various nutrients ranging between 0.14 and 0.75. 

Overall, this study advocates for the potential use of advanced remote sensing technology to 

detect and map nutrient deficiencies in commercial forestry environments, at nursery and 

compartment levels. The results from this study provide an alternative nutrient screening 

framework for the commercial forestry industry that require quality planting material for long- 

and short-term resource sustainability on a large scale. 
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CHAPTER 1: General introduction 

1.1 Introduction  

The global commercial forestry industry is amongst the most critical contributors towards 

economic growth, generating approximately 600 billion US dollars per year from forest 

products and supports combatting the effects of food security; climate change; greenhouse gas 

reduction and creating green jobs (Boadi et al., 2014; FAO, 2016; Peña-Lévano et al., 2019). 

Hence, producing high quality and quantity trees is imperative for sustaining the industry’s 

growth and solving many auxiliary global impacts (Cipullo et al., 2019). The most significant 

factors affecting tree production and health are water and nutrients such as N, P and K (Porras-

Soriano et al., 2009; Silva & Uchida, 2000). However, determining these factors become a 

challenge over a large scale and across many heterogenous environments. Hence, research 

efforts need to focus on acquiring advanced technology for rapidly assessing forest health 

parameters to maximize productivity and improve health in the future (Porras-Soriano et al., 

2009).  

Recently, the inception of remote sensing technology as a valuable resource and tool for 

detecting and mapping discrete foliar biochemicals over large scale has made many 

breakthroughs (Watt et al., 2019). More specifically, previous research shows that both 

hyperspectral and multispectral remote sensing capabilities can detect and map foliar 

biochemicals such as Nitrogen, Phosphorous, Potassium (NPK) with relatively good accuracy 

(Xulu et al., 2019). This provides beneficial solutions for overcoming many commercial 

forestry challenges such as accurately estimating yield and forest health parameters (Rubilar et 

al., 2018). Furthermore, the planting of nutrient deficient trees decrease the economic 

performance of many forestry companies. Therefore, a rapid approach to monitoring the 

nutrient status of trees would benefit the commercial forestry industry by saving time, and 

economic resources within the commercial forestry value chain. 

Commercial forestry nurseries are high-throughput environments, producing hundreds to 

thousands of saplings for in-field planting, using standard nutrient regimes that focus on initial 

plant rooting and growth. Unproductive trees eventually increase pressure on the economic 

feasibility of forestry systems and nutrient cycles of the land. Hence, the optimal supply of 

nutrients plays a critical role in plant survival, growth, and overall productivity (Silva & 

Uchida, 2000). Conventional nutrient assessments are performed using wet chemistry 

laboratory-based techniques (Köhl et al., 2006). Whilst conventional nutrient assessments 
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provide highly accurate results; they become inefficient and ineffective when the demand for 

high-quality timber is imperative for the survival of many commercial forestry companies 

today. Hence, trees need to reach optimal levels of nutrient retention for their survival and rapid 

growth. However, maintaining sufficient levels of nutrient retention becomes problematic at a 

large scale, especially when traditional nutrient assessments are labour intensive and timely. 

Furthermore, the timeous assessment of nutrients is critical for avoiding nutrient deficiency or 

nutrient toxicity (Dordas, 2008). As a result, nutrient-deficient or toxic nutrient trees become 

susceptible to pests and diseases, which is usually only detected after in-field planting. This 

has a devasting effect on the performance of many commercial forestry companies that value 

time as an indicator of growth.  

Advancements in remote sensing to successfully detect and map key foliar biochemical 

information, mainly nutrient information, has been demonstrated across various applications 

using various statistical modelling techniques and imaging platforms. These applications have 

shown to be more efficient and effective in generating nutrient assessments by reducing the 

time and labour of acquiring a sample over a large area. Hyperspectral and multispectral 

imaging are two different types of remote sensing which differ in their spectral resolution. 

Generally, hyperspectral data contain narrower wavebands (high spectral resolution) whereas 

multispectral data contain wider wavebands (low spectral resolution) within the 

electromagnetic spectrum (Bioucas-Dias et al., 2013). Currently, there are three 

systems/platforms namely handheld/proximal, aerial and satellite which hyperspectral and 

multispectral data can be acquired. A handheld/proximal system is a small portable machine 

for example a analytical spectrometer device used mainly for laboratory experiments, an aerial 

system are aircrafts and UAS’s for example an aeroplane or drone used for larger scale (AOI’s 

>5 ha) experiments and a satellite system are orbital satellites for example NASA’s Landsat 

imagery used for large to global scale experiments (Bioucas-Dias et al., 2013). Many studies 

have explored the capabilities of hyperspectral data, which produces contiguous waveband 

information for the detection of discrete nutrient information such as NPK (Abdel-Rahman et 

al., 2017; Amirruddin et al., 2020; Ansari et al., 2016; Axelsson et al., 2013; Eshkabilov et al., 

2021; Knyazikhin et al., 2013; Li et al., 2018; Mahajan et al., 2014; Meacham-Hensold et al., 

2019; Mutanga et al., 2004b; Oliveira & Santana, 2020; Peterson et al., 1988; Pullanagari et 

al., 2018; Singh et al., 2017a; Wang et al., 2017; Yu et al., 2020). In addition, multispectral 

studies have shown benefits for large scale mapping, especially in many heterogeneous 

environments (Cai et al., 2019; Chemura et al., 2018; L. Chen et al., 2019; Dash et al., 2018; 

Gara et al., 2018; Kokaly & Clark, 1999; Osco et al., 2020a; Singh et al., 2017b; Walshe et al., 
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2020). Advancements in remote sensing technologies allow for more accurate macronutrient 

and micronutrient deficiencies using hyperspectral proximal and multispectral imaging 

techniques combined with highly sophisticated algorithmic modelling techniques. A 

combination of advanced remote sensing platforms and data modelling techniques make it 

possible to detect and map discrete nutrient information using non-destructive approaches. 

Currently, the South African forestry industry is highly sanctioned by climate and economic 

policies (adoption of sustainable development goals). Increased restrictions on access to arable 

land and water put pressure on the sustainability of the commercial forestry industry (McEwan 

& Steenkamp, 2014). However, many commercial forestry organizations still use past 

knowledge and practices to inform current day decision making. Hence, the survival of the 

South African forestry industry hinges on the development of novel, innovative, and 

modernized solutions to improve residue management, site preparation, establishment, coppice 

management, weed control and fire protection activities using science and technology 

(McEwan & Steenkamp, 2014). Reducing costs on fertilizer use and identifying nutrient 

deficient trees play a crucial role in the sustainability of the commercial forestry industry. 

Furthermore, improvement in the efficacy of remote sensing technologies can provide many 

foresters, forestry operation managers, forestry organizations executives, laboratory 

technicians, and forestry researchers with readily available nutrient information for proactive 

decision making. Decision-makers can use this information to inform the industry’s plant 

health and economic performance, such as forest mensuration, yield estimates, cost efficiency, 

productivity, and returns on investment within the forestry industry. Hence, the adoption of 

remote sensing technologies has the capabilities of providing forestry industries with timely 

nutrient assessments to improve plant survival. 

1.2 Aims and objectives 

This research aims to investigate the potential use of remote sensing to accurately detect and 

map foliar nutrient deficiencies occurring within commercial forestry environments in 

KwaZulu-Natal, South Africa. 

The objectives of the research are: 

1. To provide a synopsis of the application of remote sensing for detecting foliar nutrients. 

2. To investigate the ability of remote sensing to rapidly detect nutrient deficiencies of 

saplings in a nursery environment using hyperspectral data. 
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3. To investigate the influence of VCP in improving the detection accuracy of nutrients of 

saplings in a nursery environment using NIRS. 

4. To compare the classification accuracy of very-high-resolution UAS imagery and high-

resolution PlanetScope imagery in four field nutrient management regimes using a deep 

learning ANN. 

5. To provide a framework for predicating nutrients in a compartment forest using very-

high-resolution imagery and a deep learning ANN. 

1.3 Outline of thesis 

This thesis is presented as a set of research papers to address each objective outlined in section 

1.2 above. Each research paper is primarily self-contained with the following items: an 

introduction, materials and methods, results and discussion, and a conclusion. Two chapters (2 

& 3) have been published as research papers in International Scientific Indexing (ISI) journals, 

while the remaining three chapters (4, 5 & 6) are in preparation. Including the introduction and 

synthesis, this thesis consists of seven chapters. Figure 1.1 shows a graphical interpretation of 

the thesis. The thesis is divided into two parts: 

In the first part, this thesis reviews existing literature on mapping nutrient deficiencies. The 

literature review chapter provides a synopsis of the application of NIRS for detecting foliar 

nutrients, focusing on spectral noise, pre-processing data methods, and statistical models. The 

primary outcomes suggest that by carefully selecting pre-processing data methods and 

statistical models that reduce spectral noise, NIRS provide reasonably accurate results. The 

critical findings from the literature review were translated into research papers in chapters 3 

and 4 of this thesis. These chapters have a specific focus on investigating the capabilities of 

remote sensing to rapidly detect nutrient deficiencies of saplings in a nursery environment 

using hyperspectral and NIR data. A pot trial experiment was implemented to induce nutrient 

deficiencies in a nursery environment for N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn, and B in young 

commercially planted forest variety. Pre-processing techniques were used to understand the 

distribution of nutrient content across the four VCPs. 

In the second part of the thesis, the capabilities of airborne and satellite remote sensing were 

tested for detecting and classifying nutrient information in a heterogeneous compartment forest 

environment using multispectral data. These chapters have a specific focus on investigating the 

capabilities of remote sensing to rapidly detect nutrient deficiencies of saplings in a field 
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environment using very high-resolution multispectral data. These chapters tested the use of 

UAS data and satellite imagery in conjunction with deep learning approaches to predict and 

classify nutrient concentrations. Very-high-resolution 12-bit multispectral Red Edge-MX 

Micasense and PS2-PlanetScope imagery provided closely matched waveband competencies 

and spatial resolutions of 8cm and 3.7m, respectively. These chapters compared the capabilities 

of both platforms to predict and classify four nutrient management regimes (residue retention 

(RET), nutrient removal (REM), nutrient replacement (FERT), and rehabilitation (2RF)) in a 

commercial compartment forest. These chapters used a deep learning (ANN) approach as the 

optimal strategy for detecting and classifying nutrient data. 

Finally, a synthesis is presented in chapter 7. The synthesis is a formal summary of all the 

findings and conclusions from the preceding chapters. 
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CHAPTER 2: Literature review: Remote sensing for foliar nutrient detection in 

forestry: A near-infrared perspective 

 

A synopsis of the application of hyperspectral remote sensing for detecting foliar nutrients 

 

 

 

 

 

This chapter is based on: 

Singh L*, Mutanga O, Mafongoya P, Peerbhay KY, Crous J 2022. Hyperspectral remote sensing for 

foliar nutrient detection in Forestry: A near-infrared perspective. Remote Sensing Applications: 

Society and Environment 25 (2022), 1-12. 
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Abstract 

Over the past decade, hyperspectral remote sensing as a rapid, non-destructive technique for 

vegetation assessment has considerably contributed to the efficacy of remote sensing. This 

review paper provides a synopsis of the application of hyperspectral remote sensing for 

detecting foliar nutrients. The focus was to review spectral noise, pre-processing data methods, 

and NIR technology statistical models. This chapter used an integrative approach to critically 

analyse a decade (2010-2020) of research. The primary outcomes suggest that NIR technology 

provides reasonably accurate results by utilising strategically selected data pre-processing 

methods and statistical models that reduce spectral noise. Sample sizes, latent variables, and 

leaf water content were the main factors determining successful outcomes. The constraints 

presented motivate future research to understand the effects of epicuticle wax and trichomes 

on leaf optical properties.  

Keywords: hyperspectral, spectral noise, data pre-processing, statistical model, chemical 

compound, variable selection, foliar nutrients 
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2.1 Introduction 

The intensive management of forest plantations has significantly evolved to meet the global 

supply and demand for forest products (Rubilar et al., 2018). Advances in our understanding 

of silviculture practices combined with the progression of information technologies have 

revolutionized the forestry industry (Rubilar et al., 2018). Trees are given a strategic supply of 

nutrients at the nursery level to build up nutrient reserves for subsequent in-field planting for 

maximizing rooting and shoot production (Timmer, 1997). However, traditional nutrient 

assessment methods become inadequate to meet high demands when assessing large sample 

sizes. Operationally, the intensification of labour to meet this demand further exacerbates costs, 

deeming the process forfeited (Payn et al., 1999). An alternative is to reduce sample sizes and 

extrapolate nutrient assessments, saving initial costs. However, not all trees are homogeneous; 

hence nutrient concentrations are irregular. An ineffective nutrient regime could leave plants 

exposed to the intrusion of pests and diseases, and overfertilization leading to toxicity (Payn et 

al., 1999). 

Nutrient deficiencies plague plant production, significantly reducing industrial plantation 

output and productivity. Accurately diagnosing nutrient deficiencies at early stages of growth 

will substantially increase in-field survival on highly valued plantations (Mee et al., 2017). The 

timely assessment of plant nutrient status during the early stages of growth is critical for 

maintaining optimal nutrient levels to maximize shoot production and rooting (Turner & 

Lambert, 2017). Furthermore, ‘hidden’ nutrient deficiencies cannot be visually observed and 

interpreted with a human eye alone which could flaw diagnosis, disrupting remedial action for 

affected plants (Mee et al., 2017). The current advances in analytical techniques make the 

detection of hidden nutrient deficiencies more possible. The introduction of remotely sensed 

data, specifically NIRS, can provide almost instantaneous results for large-scale precision 

silviculture practice (Rubilar et al., 2018; Watt et al., 2019). NIRS is a type of high-energy 

vibrational spectroscopy which sensors in the wavelength range of 750-2500 nm (Pasquini, 

2018). However, the impact of spectral noise in highly dimensional data continues to implicate 

the development of efficient nutrient assessments. A recent review paper by Watt et al. (2019) 

concludes that early research has demonstrated the potential of remotely sensed data, 

particularly the NIR region, for diagnosing nutrient deficiencies; however, little research has 

used these models for this purpose. 

Three main objectives outline this review. The three main objectives provide the reader with 

(1) hyperspectral remote sensing (NIRS) and its relation to plant physiological traits, (2) the 
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impact of spectral noise in high dimensional data and (3) strategic data pre-processing and 

statistical modelling techniques. Also, this chapter presented variable selection methods and 

accuracy assessment used by most studies in this review. To accomplish the objectives in this 

review, this chapter critically examined a decade of research that used hyperspectral remote 

sensing (NIRS) to detect foliar nutrient deficiencies in a forestry environment. This chapter 

unpacked peer-reviewed scientific research articles between 2010 and 2020 using google 

scholars advanced search configurations in the ‘incognito mode. Using the ‘incognito mode’ 

prevents skewing the data to previous searched articles outside the scope of this article. This 

chapter used the following search configurations: (1) ‘with all the words’ = "near-infrared" & 

"forestry" & “tree” & "foliar" & "spectroscopy" & "nutrient" and "deficiency" & "remote 

sensing"; (2) ‘where my words occur’ = ‘anywhere in the article’; and (3) ‘return articles dated 

between’ = ‘2010’-‘2020’. The search results gathered approximately 61 results of journal 

articles on 31st March 2020. The structure of this review takes an integrative form similar to 

that of Varhola et al. (2010). 

2.2 Remote sensing and understanding the physiological basis of tree characteristics 

In the 1700s, Pierre Bouguer coined the Beer-Lambert law, which provided researchers with a 

physiological basis to understand the physical link between chemical compounds and 

electromagnetic radiation. In the 1800s, William Herschel, a musician and amateur astronomer, 

discovered “infrared (IR) radiation”, laying the foundation for modern NIRS (Ring, 2000). 

William Herschel studied the relationship between VIS and invisible light rays and found 

simple ways of examining absorption and reflection (Ring, 2000). This relationship established 

the way scientists experimented with IR radiation to discover a physical link to chemical 

compounds in the late 1900s (Curran, 1989; Dixit & Ram, 1985; Elvidge, 1990; Peterson et 

al., 1988; Sasaki et al., 1984; Wessman et al., 1989; Weyer, 1985). More specifically, the 

works of Karl Norris and Lois Weyer played a crucial role in developing a NIRS application 

for organic (molecular) sampling (Weyer, 1985; Williams & Norris, 1987). 

2.2.1 Past trends 

Karl Norris and Lois Weyer explored detecting organic compounds in a molecule during 

energy transitions (thermal radiation). These energy transitions occur during molecular 

bonding from the electrostatic force of attraction between oppositely charged ions (Weyer, 

1985; Williams & Norris, 1987). The authors used the magnitude of these energy transitions 

(excitation) to distinguish between different organic compounds known as vibrational states. 
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Weyer (1985) described three bond vibrations, namely: (1) carbon-hydrogen (C-H); (2) 

nitrogen-hydrogen (N-H); and (3) oxygen-hydrogen (O-H) (Table 2.1). For example, the 

excitation of the C-H bond links to aliphatic, aromatic, olefins, and oxygenated compounds. 

Table 2.1 provides a list of chemical compounds associated with each bond vibration. 

Researchers then aimed to understand which regions of the electromagnetic spectrum had 

known absorption features for detection of specific chemical compounds, for example, N, P 

and K (Cael et al., 1975; Curran, 1989; Elvidge, 1990; Sasaki et al., 1984). Their findings 

consolidate many studies using NIRS today. The introduction of NIR spectrometer devices 

revolutionized many commercial industries, scientific institutions, and organizations, mainly 

for its ability to rapidly assess large quantities of data (Weyer, 1985). 

Sasaki et al. (1984) developed methods for uniquely determining spectral curves to estimate 

xylene isomers and dyes in VIS and IR absorption regions. Dixit and Ram (1985) discovered 

that derivatives enhanced smaller peaks encapsulated by more massive peaks and the 

separation of overlapping wavebands. Huete (1986) suggested using a factor-analytical 

inversion model, which encouraged the decomposition of spectral mixtures into Eigenspectral 

and Eigenvector matrices. Peterson et al. (1988), Card et al. (1988), and Curran (1989) 

similarly investigated the use of absorption wavebands in the VIS and NIR region to predict 

foliar chemical concentrations in plant material.  

Table 2. 1: A list of bond vibrations with their chemical compounds 

Electron transition/bond 

vibration 
Chemical compound 

Absorption band 

C-H  

Aliphatic 1100 nm, 1250 nm, 1300 nm, 

1450 nm, 1600 nm, 1800 nm, 

2000 nm, 2400 nm. 

 
Aromatic 1143 nm, 1420-1450 nm, 

1685 nm, 2150 nm, 2460 nm. 

 
Olefins 1180 nm, 1620 nm, 1680 nm, 

2100 nm, 2150 nm.  

 
Oxygenated 1650 nm, 2200 nm, 2210 nm, 

2150 nm, 2250 nm. 

N-H 

Amines 1450 nm, 1500 nm, 1530 nm, 

1960 nm, 1990 nm, 2000 nm, 

2020 nm. 

 Amides 1500 nm, 2000 nm. 

O-H 
Alcohols and phenols 1000 nm, 1400-1440 nm, 

2000 nm. 

 

Water 960 nm, 1200 nm, 1440 nm, 

1450 nm, 1660 nm, 1940 nm, 

1960 nm, 2000 nm. 

 Silanols 1385 nm, 1900 nm, 2220 nm. 
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Acids and 

hydroperoxides 

1450 nm, 1505 nm, 1900 nm, 

2070 nm, 2100 nm. 

*The list of absorption bands was found in: (Curran, 1989; Dixit & Ram, 1985; Peterson et al., 

1988; Weyer, 1985) 

Peterson et al. (1988) investigated the use of remote sensing for estimating biochemical content 

of forest leaves and canopies using a Perkin-Elmer Model 360 laboratory spectrophotometer 

(400-2400 nm) and an airborne imaging spectrometer (AIS) satellite image (1100-2400 nm) on 

three heterogeneous sites in Alaska, Wisconsin, and Oregon in North America. The authors 

found significant correlations with the short-wave IR region and biochemical content, 

specifically N and lignin, produced standard prediction errors comparable to wet chemical 

laboratory assessments. Similarly, Card et al. (1988) predicted leaf chemistry using VIS and 

NIRS of dry, ground leaf material from deciduous and conifer tree species in Alaska, 

Wisconsin, and California in North America. The authors analysed seven chemical compounds 

(sugar, starch, protein, cellulose, total chlorophyll (Chl), lignin, and total N using reflectance 

spectra acquired from a Perkin-Elmer Model 330 laboratory spectrophotometer (400-2446 nm) 

and stepwise regression. The authors found the VIS and NIR regions to have high correlations 

with the chemical compounds analysed in their study using a stepwise regression. However, 

insufficient sample sizes did not allow prediction for all chemicals, and they suggest the 

implementation of techniques for reducing instrument error.  

Curran (1989) provided forty-two absorption features in the VIS (380-700 nm) and NIR (800-

2500 nm) spectral regions that are related to foliar chemical concentrations (lignin, cellulose, 

sugar, starch, and water). The authors located foliar wavebands using computer models such 

as stepwise multiple regression and deconvolution processes; and AIS I and II equipped with 

124 NIR wavebands; airborne VIS/IR imaging spectrometer (AVIRIS) equipped with 209 VIS 

and NIR wavebands; and high-resolution imaging spectrometer (HIRIS) equipped with 192 

VIS and NIR wavebands. Nonetheless, this study provided three accounts of criticism of using 

a stepwise regression: (1) overfitting of wavebands during modelling; (2) multi-collinearity of 

chemicals; and (3) waveband omissions. Subsequently, the use of more strategic portions of 

the electromagnetic spectrum became apparent. Hence, the strategic advancements of NIR 

spectrometers and various remote sensing devices are continually developing to enhance their 

functionality, utility, and capability. 
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2.2.2 Current trends 

Presently, there is a plethora of research that investigated the use of remote sensing for canopy 

chemistry and planted functional traits (Asner & Martin, 2009; Asner et al., 2011; Au et al., 

2020; Girard et al., 2020; Knyazikhin et al., 2013; Lepine et al., 2016; Martin et al., 2018; 

Rodrigues et al., 2020; Shi et al., 2019; Stein et al., 2014; Ustin, 2013; van der Meer, 2018; 

van der Tol et al., 2019; Watt et al., 2019; Windley & Foley, 2015; Zeng et al., 2019; Zhang 

et al., 2020). These studies consider remote sensing an alternative to wet chemistry assessments 

as it effectively reduces the time for adaptive management practices. Figure 2.1 shows a 

schematic workflow diagram for detecting foliar biochemicals using hyperspectral data. Many 

studies used hyperspectral data as the basis for their investigations. For example, earlier studies 

such as Zhao et al. (2005) explored the capabilities of hyperspectral reflectance (350 to 2500 

nm) properties to determine the effects of N deficiency on sorghum growth. The authors found 

linear correlations with reflectance ratios of R405/R715 (R
2 = 0.68) and R1075/R735 (R

2 = 0.64) for 

Leaf N and Chl concentrations, respectively.  

Zhang et al. (2013) investigated the potential of VIS and NIR hyperspectral imaging systems 

(380 to 1030 nm) for determining N, P, K in oilseed rape leaves using partial least squares 

regression (PLSR) and least-squares support vector machines (LS-SVM). The authors revealed 

that hyperspectral imaging is a promising technique for detecting macronutrients, with the 

PLSR and LS-SVM models predicting R2 accuracies above 0.70. Axelsson et al. (2013) 

explored the possibilities of retrieving N, P, K, Ca, Mg, and Na in mangroves of the Berau 

Delta, Indonesia, using hyperspectral data (450 to 2490 nm). Their model successfully detected 

N with an R2 of 0.67; however, P, K, Ca, Mg, and Na revealed slightly discouraging results 

(Axelsson et al., 2013). Similarly, Mahajan et al. (2014) detected N, P, K and Sulphur in wheat 

(Triticum aestivum L.) using hyperspectral imaging (350 to 2500 nm) and eight vegetation 

indices (VIs). Their study reported lower R2s of <0.42 using VIs; however, a combination of 

the short-wave infrared (SWIR), NIR and the VIS region was more effective in monitoring 

plant nutrient status.  

A later study by Osco et al. (2020a) presented  a framework based on a host of machine learning 

algorithms (k-Nearest Neighbour (kNN), Lasso Regression, Ridge Regression, SVM, ANN, 

Decision Tree (DT), and Random Forest (RF)) to predict a full range of macronutrients and 

micronutrients (N, P, K, Mg, S, Cu, Fe, Mn, and Zn) using a handheld hyperspectral 

spectrometer device (380 to 1020 nm). The authors assessed the training data using Cross-

Validation and Leave-One-Out and used the Relief-F metric of the algorithms for the 
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prediction. Using a host of algorithms, Osco et al. (2020a) produced higher R2 predictions of 

>0.72 for all macro-and micronutrients compared to Mahajan et al. (2014) and (Zhang et al., 

2013). Finally, Eshkabilov et al. (2021) successfully found optimal waveband regions between 

506–601 nm and 634–701 nm for detecting discrete nutrient content variables (nitrate (NO3–), 

Ca2+, K+, solid soluble content (SSC), pH, and total Chl) using hyperspectral images (400 to 

1000 nm) of the freshly cut lettuce leaves. The authors produced R2s between 0.78 and 0.99 

using (PLSR) and principal component analysis (PCA) techniques. With improvements in 

remote sensing technology and research knowledge, more studies have found correlations with 

specific regions of the electromagnetic region.  

Many studies found the NIR region of the electromagnetic spectrum capable and reliable for 

further investigation. For example, Windley and Foley (2015) measured foliar concentrations 

of total N, in vitro dry matter digestibility, and available N of a multi-species dataset of New 

Zealand trees. The authors found NIRS robust for measuring nutritional traits with R2’s ranging 

from 0.83-0.99 using modified-PLSR. Zeng et al. (2019) found the NIR spectral region resilient 

against soil background contamination, allowing for the robust calculation of Solar-induced 

Chl fluorescence (SIF). The authors estimated the fraction of total emitted NIR SIF (760 nm) 

photons that escape the canopy by combining the NIR reflectance of vegetation (NIRV) and the 

fraction of absorbed photosynthetically active radiation (fPAR) using a Soil Canopy 

Observation, Photochemistry and Energy (SCOPE) model. Their NIRV based approach could 

explain variations in the escape ratio with an R2 of 0.91, and an RMSE of 1.48% across various 

simulations where canopy structure, soil brightness, and sun-sensor-canopy geometry are 

varied. 

Au et al. (2020) used PLSR to model the relationship between NIR spectra and the foliar 

concentration of two ecologically critical chemical traits, available N, and total formylated 

phloroglucinol compounds, using a FOSS-NIR System 6500 (400-2498 nm) of Eucalyptus 

leaves. However, their study proposed using different cross-validation techniques for model 

fitting and selection for testing the variation in large chemical and spectral datasets of 80 

Eucalyptus species in eastern and southern Australia. The author’s main findings were: (1) 

geographic location influenced the predictability of N, (2) prediction error increased when 

assessing samples from different locations in Australia, (3) prediction accuracy of the available 

N model differed little whether 300 or up to 987 calibration samples and (4) merely relying on 

spectral variation (assessed by Mahalanobis distance) may misinform researchers into how 

many reference values are required.  
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Furthermore, Rodrigues et al. (2020) evaluated the use of visible–near-infrared (VIS-NIR) 

spectroscopy for predicting the production of leaf dry mass (LDM), as well as macronutrients 

and micronutrients contents of soybean leaves grown under limestone-mining coproducts using 

an analytical spectrometer device (ASD) FieldSpec 3 spectroradiometer (350-2500 nm) in 

Tietê, São Paulo, Brazil. As a result, the authors obtained R2p > 0.50 and RPDp > 1.50 for the 

variables LDM, P, K, Mg, S, and Zn using PLSR. Also, the authors found the following 

waveband regions 380- 400 nm, 500-530 nm, 600-690 nm, and 700-750 nm important in their 

prediction model. The latest NIRS technologies provide forestry stakeholders with a rapid and 

non-destructive approach to assess tree health (Cipullo et al., 2019). Subsequently, NIRS 

technology in large forestry nurseries can significantly competitively advantage. 

 

Figure 2. 1: Schematic flowchart showing the process of nutrient detection using a 

hyperspectral spectrometer device. 

2.3 Leaf nutrient distribution 

Early research has shown that trees relocate nutrients throughout the canopy leaves as a 

conservation mechanism; therefore, the sampling position of acquiring a representative sample 

is an integral part of more accurately determining nutrient content (Gara et al., 2018). 

Furthermore, studies have reported inconsistent spectral values to sample on the adaxial (top) 

surface compared to the abaxial (bottom) surface of the same leaf (Lu & Lu, 2015; Warburton 

et al., 2014). For example, Warburton et al. (2014) measured relative water content, leaf water 
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potential and stomatal conductance in Eucalyptus grandis leaves using Thermo-Scientific 

microPhazir NIR spectrometer (1600-2400 nm) and PLSR in a controlled environment facility 

in Australia. The authors acquired spectral reflectance data from the adaxial and abaxial leaf 

surfaces and the upper and lower leaves in the stem. As a result, R2’s using cross-validation 

were R2
CV = 0.85 for relative water content, R2

CV = 0.74 for leaf water potential and R2
CV = 

0.80 for stomatal conductance. Similarly, Lu and Lu (2015) estimated leaf Chl content using 

ASD FieldSpec 3 portable spectrophotometer (350-2500 nm) and vegetation indices in 

northeast China. The authors acquired reflectance spectra from both adaxial and abaxial leaf 

surfaces of white poplar (Populus alba) and Siberian Elm (Ulmus pumila var. pendula.). As a 

result, spectral reflectance values were higher on the abaxial surface than adaxial surfaces in 

the VIS wavelengths (400-700 nm), whereas the authors found the opposite for the NIR 

wavelengths (700-1000 nm) for both plant species. 

2.4 Spectranomics 

Additionally, “Spectranomics” is a newly developing concept that explores the relationship 

between plant canopy species and their functional traits to their spectral-optical properties 

(Asner & Martin, 2009). Asner and Martin (2009) combined chemical (N, P, Chl-a, Chl-b) and 

spectral remote sensing (400nm-2500nm) perspectives to facilitate canopy diversity mapping. 

Asner et al. (2011) further developed this concept by examining leaf hemispherical reflectance 

and transmittance spectra, along with a 21-chemical portfolio, in 6136 humid tropical forest 

canopies. They developed up-scaling methods using a combination of canopy radiative 

transfer, PLSR and high-frequency noise modelling techniques using a spectral range of 

400nm-2500nm. Similarly, Stein et al. (2014) aimed to determine the relationship between 

spectral reflectance (350nm–2500 nm) and foliar nutrient concentration (e.g. N, P, K, Calcium 

(Ca), Magnesium (Mg)) in loblolly pine, and to investigate the role of geographic scale in 

model accuracy. The authors found that localized loblolly pine nutrient studies are less likely 

to produce successful models than studies across a large geographic region.  McManus et al. 

(2016) discovered the link between foliar reflectance spectra (350nm–2500 nm) and the 

phylogenetic composition of tropical canopy tree communities using nine biochemical traits 

that relate to a wide range of leaf functions. Whilst Martin et al. (2018) tested the concept of 

the foliar trait (Leaf mass per area (LMA)) retrieval and chemical data (P, Ca, K, Mg, B, Fe) 

using imaging spectroscopy (Carnegie Airborne Observatory (CAO)) data (350nm–2510 nm) 

constrained with simultaneous light detection and ranging (LiDAR) measurements. 
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2.5 Spectral noise & high dimensional datasets 

This section delves into (a) the challenges of dealing with spectral noise in hyperspectral NIR 

data and (b) strategic methodologies for reducing spectral noise. Also, (c) explored the effects 

of moisture content and epicuticle wax on extracting a representative sample. 

2.5.1 Challenges of spectral noise 

Demetriades-Shah et al. (1990) define spectral noise as a signal of interest accompanied by 

background noise and other unwanted signals. Spectral noise is expressed as the Signal-to-

noise (S/N) ratio between the wanted signal and the unwanted background noise as: 

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 

The suspended particles cause scattering and increase absorption by lengthening the path of 

the analytical beam through the sample (Demetriades-Shah et al., 1990). In addition, spectral 

noise may occur when the sensor malfunctions; the sensor is affected by environmental 

constituents or the Bidirectional Reflectance Distribution Function (BDRF). A study by 

Knyazikhin et al. (2013) further exemplifies quantifying the retrieval of any biochemical 

information from spectral electromagnetic data is subject to leaf and canopy bidirectional 

reflectance factor (BRF). A conference paper by Ustin (2013) agrees with Knyazikhin et al. 

(2013) and states that future research should address these problems by quantifying the physical 

interactions. Hyperspectral sensors produce higher spectral noise than multispectral sensors 

through acquiring highly discrete spectral information (Agjee et al., 2018). As a result, large 

continuums of data become damaged or lost (Peerbhay et al., 2013).  

In practice, Lepine et al. (2016) tested the influence of spectral resolution, spatial resolution 

and sensor fidelity on relationships between observed patterns of foliar percentage Nitrogen 

(%N) and canopy reflectance. Their study revealed almost no reduction in the strength of 

relationships between reflectance and %N when using coarser bandwidths from AVIRIS 

imagery, but instead saw declines with increasing spatial resolution and loss of sensor fidelity. 

Signal processing is a continuously developing field with new signal denoising techniques 

available across many fields such as photogrammetry, bioinformatics and remote sensing 

(Koziol et al., 2018). The most standard denoising techniques are the Savitzky-Golay (SG) or 

Fourier-filtering, and the more advanced approaches are PCA and the Minimum Noise Fraction 

(MNF) (Koziol et al., 2018). 
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2.5.2 Strategic denoising methodologies 

As remote sensing scientists, the practice is encouraged to undertake best practice data 

acquisition methods to reduce noise whilst acquiring a representative sample. Hence, most of 

the studies in this review have used data pre-processing techniques to reduce spectral noise and 

normalize spectral reflectance values. For example, Asner et al. (2011) investigated the impact 

of high-frequency noise (sensor and residual artefacts noise following atmospheric correction) 

on PLSR predictions. They applied noise using data from AVIRIS imagery taken over tropical 

forests as a noise source for very SWIR simulations. The authors found that noise negatively 

affects PLSR results varying degrees depending on wavelength range and chemical constituent. 

Zhai et al. (2013) estimated N, P, and K contents in the leaves of different plants using 

laboratory-based VIS and NIRS using a FieldSpec Pro portable spectroradiometer (350-2500 

nm) in Jiangsu Province, China. The authors compared regression models PLSR and SVM 

regression methods for estimating the N, P, and K content present in leaves of diverse plants. 

As a result, the support vector machines regression (SVMR) method accounted for more than 

90% of N, P, and K variation compared to PLSR, which accounted for 59.1%, 50.9%, and 

50.6% of the variation using, respectively. 

Similarly, Amirruddin et al. (2017) quantified N status on various ages (maturity classes) of 

Tenera oil palm stands using a Geophysical and Environmental Research Corporation 1500 

model spectroradiometer (350-1050 nm) in Malacca, Malaysia. The authors compared machine 

learning algorithms: Discriminative Analysis (DA) feature selection and Support Vector 

Machine-Recursive Feature Elimination (SVM-RFE) to determine the best spectral wavebands 

needed for quantifying N status. As a result, their study found that DA outperformed SVM in 

all maturity classes of Tenera oil palms. Furthermore, the authors developed spectral signatures 

that illustrate 'deficient N' and 'optimum N' levels using the electromagnetic spectrum 

(Amirruddin et al., 2017). 

Koziol et al. (2018) investigated the spectral denoising efficiency and signal distortion 

properties of several spectral noise removal techniques such as Fourier transform, Mean Filter, 

Weighted Mean Filter, Gauss Filter, Median Filter, spatial Wavelets and Deep Neural 

Networks. The authors also tested spatial noise removal techniques such as SG, Fourier 

transforms, PCA, MNF, and spectral wavelets, using high-definition Fourier transform infrared 

(FT-IR) data (3900 cm-1 to 900 cm-1) as an input. As a result, their study showed that 

multivariate based techniques of PCA and MNF outperformed any other spatial and spectral 

denoising method (Koziol et al., 2018). Agjee et al. (2018) evaluated the influence of simulated 
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spectral noise on RF and oblique random forest (oRF) classification performance. The authors 

used two node-splitting models (ridge regression (RR) and support vector machines (SVM)) to 

discriminate healthy and infested vegetation using hyperspectral data (350-2500 nm). 

Advancements in remote sensing technology will produce more accurate sensors, enabling 

more precise acquisitions of remotely sensed data. Currently, there is no coherent framework 

for noise removal. However, the viability of using deep learning ANN to remove noise still 

needs further testing and assessment across many different IR spectrometers and materials 

(Koziol et al., 2018). Hence, future research should emphasize comparing numerous case 

studies and scenarios to provide suitable noise removal frameworks for analysis. 

2.5.3 Impact of moisture content & epicuticle wax 

Another common problem when acquiring spectra is the influence of moisture content 

(aquaphotomics) within the leaf. Previous research has shown that water is ubiquitous in 

biological samples, and its effect on chemical compounds change the intensity and shifts 

absorption wavebands which have been a long term challenge (Kokaly & Clark, 1999; 

Pasquini, 2018). Kokaly and Clark (1999) illustrate the effect of moisture content on spectra 

obtained from a leaf when dry and exposed to 10% moisture, with 25% soil background effects 

and 50 m residual atmosphere. As a result, a lower spectral curve is produced, which is an 

inaccurate account of the actual chemical concentration of the plant. The presence of leaf 

glaucousness (epicuticle wax) & trichomes (presence of hairs) have a considerable impact on 

leaf reflectance values (Holmes & Keiller, 2002; Vanderbilt & Grant, 1985). The two studies 

have hypothesized that the amount of light specularly reflected by a leaf depends on plant 

species and is related to the canopy's physiological status and development stage (Vanderbilt 

& Grant, 1985). Most studies have used the ultraviolet (UV) and VIS spectral regions; an 

opportunity still exists to understand the effects of cuticle wax & trichomes more closely when 

sensed using the NIR region of the electromagnetic spectrum. 

2.6 NIR data pre-processing methods & statistical modelling 

This section was divided into four parts: (a) sample strategy, (b) choosing a pre-processing data 

method, (c) choosing an appropriate statistical model and (d) variable selection. Many remote 

sensing research has explored innovative data pre-processing methods to analyse reflectance 

data (Zhai et al., 2013). The utility of spectral data pre-processing methods is an essential 

component for deriving a representative spectral sample. Essentially, applying a pre-processing 

data method has many benefits, such as reducing spectral data dimensionality, spectral noise, 
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data redundancy and impurity, especially when employing high dimensional and multivariate 

data. 

2.6.1 Sampling strategy 

Firstly, deriving a suitable sampling strategy is the primary step to acquiring accurate results 

using NIR scanning systems. Sampling strategies should assimilate steps that reduce 

background noise and enhance the integrity of data for modelling (Atkinson & Curran, 1995; 

Zhu et al., 2019). Samples obtained for modelling should contain high variability of the target 

site, providing a more stable model less vulnerable to outlier scenarios (Atkinson & Curran, 

1995; Au et al., 2020; Zhu et al., 2019). Table 2.2 below shows a variety of studies with 

different sampling strategies derived based on their application. Furthermore, using a reliable 

wet chemistry assessment method is integral to validating the data before modelling. Therefore, 

researchers should emphasize the accurate execution of wet chemistry assessments. 

Table 2. 2: A comparative table of various research studies who detected foliar nutrients 

Author 
Chemic

al 
Plant 

Sam

ple 

size 

Instrument 

Scannin

g 

window 

(nm) 

Wet chemistry 

Ulissi et 

al. (2011) 

N Tomato 

leaves 

15 a (portable) 

single-channel 

spectrophotomet

er 

400-800 FlowSys, 

Systea, Italy 

Zhai et al. 

(2013) 

N, P, K Various 

plants 

(rice, 

corn, 

sesame, 

soybean, 

tea, grass, 

arbour, 

and shrub) 

95 FieldSpec Pro 

Portable 

spectroradiomete

r 

350-2500 N: 

Kjeldahl 

method 

 

P & K:  

Mo–Sb 

colourimetry 

and a corning 

flame 

photometer 

Afandi et 

al. (2016) 

N Rice crop 48 handheld 

spectroradiomete

r 

700-1075 Kjeldahl 

method 

Lequeue 

et al. 

(2016) 

N Tomato 

leaf 

powder 

216 Fourier 

Transform-IR 

imaging 

Microscope 

(Hyperion 3000, 

Bruker Optics, 

Ettlingen, 

Germany) 

350-2500 Elemental 

analyzer 

(Thermo 

Finnigan, San 

Jose, 

CA, USA) 
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Amirruddi

n et al. 

(2017) 

N Immature 

palm tree 

150 1500 model 

spectroradiomete

r 

350-1050 TruMec Series 

CNS Carbon/ 

Nitrogen/Sulfu

r analyzer 

instrument 

Masemola 

and Cho 

(2019) 

N Eucalyptu

s trees 

53 ASD 

spectroradiomete

r 

350-2500 Leco FP528 

N analyser 

(Murguzur 

et al., 

2019) 

N, P, 

Carbon 

(C) 

Vascular 

plants 

N: 

552 

P: 

291 

C: 

424 

 

FieldSpec 3, 

ASD 

Inc., Boulder, 

Colorado 

 

350-2500 Colourimetric 

method and the 

CNS elemental 

analyzer 

Guo et al. 

(2019) 

N Rubber 

trees 

(Hevea 

brasiliensi

s) 

200 FieldSpec 3, 

ASD 

Inc., Boulder, 

Colorado 

 

350-2500 Indophenol 

blue 

colourimetry 

Method and the 

continuous 

flow analyzer 

Au et al. 

(2020) 

Availab

le N 

(NA) 

Eucalyptu

s trees 

3662 Foss-NIR 

Systems 6500; 

400-2498 N/A 

(Oliveira 

& 

Santana, 

2020) 

N, P, K, 

S Ca, 

Mg, 

Mn, B, 

Zn, Cu, 

Fe 

Eucalyptu

s clones 

1350 CI-710 mini-

spectrometer 

400-900 Spectrophotom

etry: Ca, Mg, S, 

Zn, Fe, Mn; 

Colorimetry: P; 

Flame 

photometry: K; 

Kjeldahl: N 

 

2.6.2 Pre-processing 

Secondly, an important step is choosing the most appropriate spectral data pre-processing 

method. Section 3. b of this review highlights some essential strategies to eliminate spectral 

noise from hyperspectral data. The statistical model's success depends on the pre-processing 

data method (Schmitt et al., 2014). There are many variations in spectral data pre-processing 

methods such as signal derivatives, vector normalization (VN), or multiplicative scatter 

correction (MSC). Table 2.3 below shows studies with different scanning windows, pre-

processing data methods and data splitting methods used on different leaf material and scanning 

systems. 
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Table 2. 3: A comparative table of various research studies detailing pre-processing data 

methods for foliar nutrients 

Author Nutrient Software Pre-processor 
Data split 

(%) 

Ulissi et al. 

(2011) 

Chlorophyll 

(Chl) 

N 

MATLAB 

V7.0 

Stavisky-Golay, 

Multiple Scatter Correction, 

Orthogonal Signal correction 

85/15 

Zhai et al. 

(2013) 

N 

P 

K 

PLSR: ParLeS 

v3.0 

SVMR: 

LIBSVM 

toolbox 

Absorbance transformation 

(log(1/Ref)) 

First derivative 

Light scatter and baseline 

correction (MSC and standard 

normal variate (SNV)) 

Detrending 

Wavelet 

Median filter 

Data enhancement 

(normalization and mean 

centre) 

First derivative transformation 

70/30 

Afandi et 

al. (2016) 

N N/A None 70/30 

Lequeue et 

al. (2016) 

N 

C 

Unscrambler® 

X software 

version 10.3 

Smoothing (Stavisky-Golay 

algorithm) 

First derivatives 

 

Amirruddin 

et al. 

(2017) 

N DA: Statistical 

Analysis 

System (SAS) 

9.4 software 

SVM: WEKA 

3.6.9 software 

DA feature selection 

(STEPDISC) 

SVM- Recursive Feature 

Elimination (SVM-RFE) 

70/30 

Masemola 

and Cho 

(2019) 

N MATLAB 

toolbox 

Toolbox 

Field Spectroscopy Facility 

(FSF) Post Processing Toolbox 

First derivative 

 

Applied process 

MSC 

SNV 

SG smoothing convolution  

 

Embedded pre-processes 

Mean centring ('mean') 

Auto-scaling 

MSC plus mean centring 

MSC plus autoscaling 

Randomized 

(Murguzur 

et al., 2019) 

N 

P 

C 

R-PLS 

package 

centring,  

scaling,  

SNV,  

85/15 
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smoothing based on moving 

averages,  

baseline corrections and  

1st and second-order SG 

derivatives 

 

2.6.3 Statistical modelling 

Thirdly, a statistical model should be selected based primarily on the application of the 

research, used for either classification or prediction of the data used in the study. Table 2.4 

provides a detailed description of studies that mainly used statistical prediction models for 

foliar analysis. An important step is to calibrate and test the models. Splitting data into training 

and test data is essential for model calibration and validation. The following studies 

demonstrate the application of using different splits (Curran, 1989; Curran et al., 2001; Donkin 

et al., 1993b; Guo et al., 2010; Mutowo et al., 2018; Pasquini, 2018). Earlier studies used 

standard multivariate statistical algorithms such as PLS (Menesatti et al., 2010; Ulissi et al., 

2011) and PLSR (Zhai et al., 2013). For instance, Menesatti et al. (2010) used PLS to make 

chemical determinations on citrus tree leaves detecting N, P, K, Ca, Mg, Fe, Zn, and Mn using 

the Vis-NIR region (310-1100 nm). Their study found relatively high correlations with R2's 

ranging from 0.88 for Mg and 0.48 for P. Alternatively, PLSR is an effective method of 

estimating the nutrient content of plants (Zhai et al., 2013). However, when Zhai et al. (2013) 

compared the model performance of PLSR and SVMR in detecting N, P, K using Vis-NIR 

(1000-2500 nm), they found that the PLSR model produced satisfactory results with R2's of 

0.59, 0.51, 0.51 for N, P, K, respectively. The SVMR model outperformed PLSR; as a result, 

the SVMR model accounted for more than 90% of the variation. Most of the studies in table 

2.4 have focused on measuring N as it relates to the general health of the plant species. 

However, not much research has measured the entire range of macronutrients and 

micronutrients. 

2.6.4 Variable selection 

Lastly, recent studies successfully implemented variable selection. Variable selection enables 

scientists to test the ability of a spectral waveband to detect a feature accurately. For example, 

variable selection algorithms frequently detect water absorption features. Considering the 

extreme case of spectral data pre-processing, the method of variable selection aims to eliminate 

variables not contributing to improving the model's overall performance (Pasquini, 2018). 

Pasquini (2018) reviews and lists many different variable selection methods for improving 
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model performance. Studies have generally shown decent to significantly accurate results when 

using variable selection to predict chemical properties of foliar material. Overall, variable 

selection seeks to: simplify models for more straightforward interpretation, shorter training 

times, avoiding problems of dimensionality and overfitting. For example, Mutanga et al. 

(2004b) applied the ‘continuum removal on absorption features’ concept to predict 

macronutrients N, P, K, Ca and Mg using a GER 3700 spectroradiometer (350–2500 nm) in a 

savanna grassland in Kruger National Park (KNP), South Africa. The authors tested four 

variables for estimating canopy concentrations N, P, K, Ca, and Mg: (i) continuum-removed 

derivative reflectance (CRDR), (ii) band depth (BD), (iii) band depth ratio (BDR) and (iv) 

normalized band depth index (NBDI) using Stepwise linear regression. As a result, their study 

produced the highest using CRDR data, which yielded R2 values of 0.70, 0.80, 0.64, 0.50 and 

0.68 with root mean square errors (RMSE) of 0.01, 0.004, 0.03, 0.01 and 0.004 for N, P, K, 

Ca, and Mg, respectively. 

The results of their study justify the use of pre-processing data methods for successfully 

estimating nutrient content in dry foliar samples (Zhai et al., 2013). Furthermore, the 

differences in prediction accuracy between PLSR and SVMR show the importance of selecting 

a suitable algorithm. 

Table 2. 4: A comparative table of various research studies detailing statistical analysis 

and variable selection methods for foliar nutrient analysis. 

Author Nutrient Algorithm 

Model 

calibratio

n 

paramete

rs 

Model 

validation 

paramete

rs 

Latent 

variables 
Results 

Ulissi et 

al. (2011) 

Chlorophy

ll (Chl) 

N 

Partial 

least 

squares 

regression 

(PLSR) 

R2 R2  

11 

R2 = 0.94 

RMSE SEP 

The 

standard 

error of 

prevision 

(SEP) 

RMSE 

SEP = 

0.35 

 
Root mean 

square 

error in 

calibration 

(RMSEC) 

Squared 

bias (SB) 
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Root mean 

square 

error in 

validation 

(RMSECV

) 

Nonunity 

slope 

(NU) RMSE = 

0.41 

 

Lack of 

correlation 

(LC) 

Zhai et al. 

(2013) 

N 

P 

K 

PLSR  

 

R2
CV 

 

R2
V 

 

6 

R2
V = 0.66 

 

RMSECV 
RMSEV  

 

RMSEV = 

0.577 

 

Leave one 

- out cross 

validation 

(LOOCV) 

Residual 

prediction 

deviation 

(RPD) 

RPD = 

1.75 

Akaike 

informatio

n criterion 

(AIC) 

 

K-fold 

cross-

validation 

using 

RMSE 

Afandi et 

al. (2016) 
N 

Artificial 

Neural 

Network 

(ANN) 

RMSE 

 RMSE 

try-error 

method 

11 
RMSE = 

0.32 
3-fold 

cross-

validation 

Lequeue et 

al. (2016) 

N 

C 

Partial 

Least 

Squares 

(PLS) 

regression 

the 

standard 

error of 

calibration 

(SEC) 

 

R2
C  

 

Selected 

by the 

software 

R2
C = 0.9 

 

 

the 

standard 

error of 

cross-

validation 

(SECcv) 

 

the ratio of 

prediction 

to the 

deviation 

of cross-

validation 

(RPDCV) 

 

RPDcv = 

>3 
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determinat

ion 

coefficient 

of 

calibration 

(R2
C) 

 

RPDC 

R2
p = > 

0.90 

 
the ratio of 

prediction 

to the 

deviation 

of the 

calibration 

(RPDC) 

Amirruddi

n et al. 

(2017) 

N 

Discrimina

tive 

analysis 

(DA) for 

classificati

on 

Training 

accuracy 

(TA %) 

 

TA (%) 

DA: 

8-30 

wavebands 

 

DA:  

TA (%) = 

87.95  

CVA (%) 

= 87.90 

 

Support 

vector 

machine 

(SVM) 

Cross-

validation 

accuracy 

(CVA %) 

CVA(%) 
SVM: 6 

wavebands 

SVM:  

TA (%) = 

94.13 

CVA (%) 

= 81.74 

(Averaged 

across 

immature, 

young 

mature and 

prime 

mature 

leaves) 

Masemola 

and Cho 

(2019) 

N 

Competiti

ve 

adaptive 

reweighted 

sampling 

(CARS)  

Monte 

Carlo 

Cross-

Validation 

R2
CAL 

RMSECAL 

R2
P 

RMSEP 
6 

sMC-PLS: 

R2
P = 0.76 

RMSEP = 

0.30 

 

PLS-

CARS: 

R2
P = 0.74 

RMSEP = 

0.25 
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(MCCV)-

CARS 

Significant 

multivariat

e 

correlation 

(sMC)-

PLS 

PLS-

MCCV-

CARS: 

R2
P = 0.76 

RMSEP = 

0.14 

(Obtained 

from fresh 

leaf 

spectra) 

Murguzur 

et al. 

(2019) 

N 

P 

C 

PLS 

Internal 

10-fold 

cross-

validation 

R2  

 

N/A 

N: 

R2 = 0.94 

RMSEP = 

0.20 

 

 

 

 

RMSE 

 

P: 

R2 = 0.76 

RMSEP = 

0.05 

 

CV 
C: 

R2 = 0.82 

RMSEP = 

1.16 

 
RMSEP 

 

 

2.7 Summary & Discussion 

This review examined a decade (2010 – 2020) of research to provide a synopsis of the past and 

present techniques for detecting foliar nutrients using NIRS. The best practice of this 

technology will provide high throughput commercial industry with a rapid and cost-effective 

alternative to assessing the nutrient status of their plants. Hence, future research should support 

implementing a NIRS system with a standardized approach to sample preparation, pre-

processing, and statistical modelling.  

2.7.1 Section overview 

An essential part of this review was to list and compare the pre-processing data methods used 

from the latest research studies. It is important to note that NIR spectrometers generally 

produce a large amount of noise towards the end of the spectrum. There was no standard data 
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pre-processing method from the studies presented in this review that could deal with such noise. 

However, most studies preferred to use the SG smoothing as the primary data pre-processing 

method. Furthermore, most studies used the first derivative transformation to reduce 

background S/N in NIR data (Lequeue et al., 2016; Masemola & Cho, 2019; Murguzur et al., 

2019; Zhai et al., 2013). To overcome the challenge of S/N problems caused by light scattering, 

studies here employed mainly two methods: 1. MSC and 2. SNV.  

Furthermore, pre-processors such as MSC, SNV and SG into high dimensional hyperspectral 

data have improved prediction accuracy compared to untransformed data (Ustin & 

Jacquemoud, 2020). For example, Zhai et al. (2013) successfully employed MSC and SNV 

combined with the wavelet detrending method to correct light scattering variation and baseline 

of N, P, and K content present in leaves of diverse plants using laboratory-based VIS and near-

infrared (Vis-NIR) reflectance spectroscopy. However, SNV predicted N with the highest 

accuracy for all the leaf spectral datasets (Masemola & Cho, 2019). More commonly, most 

studies listed in this review used wavelet detrending as a successful method for reducing 

spectral noise. Furthermore, 'mean centring', and most studies also employed 'auto-scaling; 

however, these two methods are typically embedded and automated in the software used. This 

chapter has stressed the importance of reducing spectral noise. The reduction in spectral noise 

has shown to significantly improve results in the studies by (Agjee et al., 2018; Koziol et al., 

2018; Peerbhay et al., 2013).  

Finally, following data cleaning for noise and obscurities using pre-processing data methods, 

statistical models can be produced for either prediction or classification. An important part is 

selecting the most suitable algorithm (statistical model). For regression, most studies have used 

the PLSR algorithm for predicting foliar nutrients in vascular plants, tomato leaves, grasses, 

and various other shrubs (Cho et al., 2007; Meuret et al., 1993; Oliveira & Santana, 2020; Peng 

et al., 2019). Many studies in this review found much higher correlations when using PLSR 

than other algorithms for predicting foliar nutrients  (Abdel-Rahman et al., 2017; Murguzur et 

al., 2019; Singh et al., 2015). For example, Murguzur et al. (2019); and Ulissi et al. (2011) 

successfully predicted (R2 => 0.90) N levels using the PLSR algorithm. However, some studies 

found SVMR performed better in estimating N, P and K as SVMR have built-in noise and 

overfitting removal mechanisms (Amirruddin et al., 2017; Zhai et al., 2013).  

For accuracy assessment, most studies used the R2, and root means square error (RMSE) to test 

the predictive ability of the models (Cho et al., 2007; Mutowo et al., 2018; Pasquini, 2018; 

Zhai et al., 2013). Most studies preferred to use the root means square error cross-validation 
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(RMSECV), as well as the ratio of prediction (RPD) for the goodness of fit and SEC for 

calibration error. These studies: Afandi et al. (2016), Murguzur et al. (2019), and Zhai et al. 

(2013) the K-fold cross-validation technique as a resampling procedure for further calibration 

of their models. 

2.7.2 Latest research 

The latest research conducted (2010-2020) shows a trend towards NIR technology in various 

applications and strategies. Most studies used NIR configured spectrometer devices in this 

review, while a few studies strategically selected the NIR region using full-spectrum 

hyperspectral data (350-2500 nm) for foliar analysis (Lequeue et al., 2016; Masemola & Cho, 

2019; Murguzur et al., 2019). N is the most common plant health chemical parameter to 

monitor (Ustin, 2013; Windley & Foley, 2015). Hence, most of the examples in this review 

investigated estimating N levels within plant leaf material, whereas very few studies 

investigated other macronutrients (P, K, Ca, Mg, Na) and micronutrient (Mn, Fe, Cu, Zn, B). 

The sample sizes differed significantly from 15 to >1000 samples per study. It is important to 

note; these samples represented the total number of reference samples and not the spectral 

samples. However, researchers found that smaller sample sizes did not significantly affect the 

prediction results than studies with bigger sample sizes. The NIR instrumentation used by most 

studies were partly handheld devices and bench devices. The wet chemistry analysis performed 

differed across the laboratories; as a result, most nutrients did not show any significant pattern 

besides N using the conventional method called the 'Kjeldahl method' as the preferred method. 

2.8 Recommendations 

The findings of this review had a specific focus on the latest data pre-processing methods and 

statistical models for forest foliar nutrient assessment. This review highlighted the challenges 

and opportunities before model development. The leaf reflectance values affect spectral noise, 

moisture content; epicuticle wax; and adaxial and abaxial sampling. With this said, selecting 

the best data pre-processing method and statistical model is application-specific. It is vital to 

remain relevant with the latest research in this evolving research domain. The influence of 

artificial intelligence (AI) and better computing power will exceedingly enhance many of the 

pre-processing data methods and statistical models mentioned in this review. Essentially, the 

methodologies gathered in this literature review will be tested in the preceding chapters of this 

thesis.  
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Recently, studies have shown that pre-processing data methods could significantly improve 

results. Furthermore, collinearity and high dimensional data cause overfitting problems, 

especially when using sizeable contiguous data sets. Hence, before modelling, an integral part 

of data analysis is to employ pre-processing and variable selection methods. The studies 

presented in this review were limited by mainly: small sample size (Afandi et al., 2016; 

Lequeue et al., 2016); the number of latent variables used in the model (Zhai et al., 2013); and 

leaf water content (Masemola & Cho, 2019). This review found that glaucousness and 

trichomes influenced spectral reflectance. Furthermore, the impact was species-dependent and 

related to the plant's physiological status. 

This thesis recommends future research to investigate the utilization of MSC, SNV and SG as 

pre-processing data methods combined with PLSR and SVMR as statistical models. Future 

studies should investigate these statistical models using multiple validation parameters against 

the data produced from NIR technology and wet chemistry to reduce spectral noise. 

Furthermore, studies have shown that the plant's age, seasonality, and temperature affect 

epicuticle wax and trichome production; leaf reflectance will vary across these elements. 

Hence, an opportunity exists in understanding the impact of epicuticle wax and trichomes, 

moisture content, and the effects of sampling the adaxial and abaxial leaf surfaces across age, 

seasonality and temperature and heterogeneous trees with the reduction of spectral noise. The 

information gathered, and lessons learnt in this chapter are important for developing the 

strategies for detecting nutrient deficiencies in the upcoming chapters of this thesis.  
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CHAPTER 3: Investigating the ability of remote sensing to rapidly detect 

nutrient deficiencies of saplings in a nursery environment using hyperspectral 

data 

 

To investigate the ability of remote sensing to rapidly detect nutrient deficiencies of saplings 

in a nursery environment using hyperspectral data. 

 

 

 

This chapter was based on: 

Singh L*, Mutanga O, Mafongoya P, Peerbhay KY, Dovey S 2021. Detecting nutrient deficiencies in 

Eucalyptus grandis trees using hyperspectral remote sensing and random forest. South African 

Journal of Geomatics 10 (2), 207–222. 
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Abstract 

Nutrient deficiencies in commercial forest trees often lead to stunted growth and reduced 

chances of field survival, resulting in a loss of time productivity and trees that can become 

more susceptible to a host of infections. While conventional foliar analytical methods provide 

accurate results, they are not time and cost-effective in a high productivity environment. This 

study aims to test the capability of remote sensing to detect macronutrient and micronutrient 

deficiencies rapidly in juvenile trees. This study acquired full-waveform handheld/proximal 

hyperspectral data (350-2500nm) from 135 young trees planted in individual pots in a 

controlled forestry nursery environment. This study quantified N, P, K, Ca, Mg, Na, Mn, Fe, 

Cu, Zn, and B in young commercially planted forest variety. This study identified the most 

critical wavebands for detecting nutrient deficiencies using built-in RF variable importance 

(VI) measures. The RF algorithm's robustness significantly reduced the dataset's noise whilst 

producing promising results for certain macronutrients such as P and N (0.95 and 0.89, 

respectively) and micronutrients such as Mn and Cu (0.90 and 0.86, respectively). This study 

identified the red-edge, NIR, VIS and SWIR-2 regions of the electromagnetic spectrum as the 

most effective regions for detecting macronutrients and micronutrients in this study. This study 

recommends testing the use of strategic portions of the electromagnetic spectrum for reducing 

noise and enabling faster computing time, such as portable NIR technology. 

Keywords: hyperspectral, forestry, random forest, nitrogen, foliar nutrients 
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3.1 Introduction 

Nutrient deficient trees present a challenge to the commercial forestry sector. Underproductive 

trees put pressure on economic systems and nutrient cycles. The adequate supply of 

macronutrients and micronutrients play a crucial role in supporting plant development, 

positively influencing forest productivity (Silva & Uchida, 2000). N, P, K, Fe, B and Zn are 

essential macronutrients for several plant physiological functions such as photosynthesis, 

enzymatic reactions, respiration, ribonucleic acid formation, tryptophan synthesis, maintaining 

genetic information, root development, stomatal regulation, protection against oxidative 

damage and creating amino acids (Silva & Uchida, 2000). However, macronutrient and 

micronutrient deficiencies often result in stunted growth, chlorosis, reduced protein content, 

weak stem production and can cause early maturity in some plants (Silva & Uchida, 2000). 

Traditionally, scientists obtained foliar nutrient information using destructive sampling 

methods such as wet chemistry analysis, which involve ground-based periodic surveys and 

tedious laboratory work that is costly and time-consuming (Pullanagari et al., 2016). However, 

researchers have made little progress using indirect spectral methods (Oliveira et al., 2017). 

Remote sensing offers a rapid, non-destructive, and effective approach for detecting key 

nutrient levels in forest trees. Handheld/proximal hyperspectral data can benefit high 

productivity environments, such as in younger plants in forest nurseries. The detection of foliar 

nutrients occurs through specific absorption features within the electromagnetic spectrum. 

Earlier research explains the physiological link between foliar nutrient content and remote 

sensing, e.g., (Curran, 1989; Dixit & Ram, 1985; Elvidge, 1990). More specifically, 

hyperspectral systems (350–2500nm) capture detailed spectral information; however, they are 

often sensitive to the influence of spectral noise, which negatively impacts classification 

approaches (Agjee et al., 2018). Spectral noise can significantly impact the quality of the data 

acquired; hence, classification approaches' performance will deteriorate (Agjee et al., 2018).  

For example, Oliveira et al. (2017) successfully estimated the N content of 25-month 

Eucalyptus trees and compared a wide range of variable importance (VI) results. As a result, 

the authors obtained the best R2's of 0.97 using inflexion point position (IPP), normalized 

difference red-edge (reNDVI) and modified red-edge normalized difference vegetation index 

(mNDI) in the 400–900nm range. A later study by Oliveira and Santana (2020) estimated the 

full range of macronutrients and micronutrients: N, P, K, S, Ca, Mg, Mn, B, Zn, Cu, and Fe in 

Eucalyptus clones using the NIR region (400-900 nm) and PLSR. As a result, the authors 

predicted all nutrients using the coefficient of determination of cross-validation (RCV
2), with 
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the lowest and highest estimate was Mg (0.22 RCV
2) and N (0.95 RCV

2), respectively. The 

authors found that PLSR and variable selection methods increased the accuracy of nutrient 

concentration estimates and suggested future studies to use wavelength ranges above 900 nm. 

Osco et al. (2020b) tested machine learning algorithms: kNN, lasso regression, RR, SVM, 

ANN, DT, and RF using a proximal hyperspectral sensor (380- 1020nm) to predict nutrient 

content on a Valencia-orange orchard. The authors obtained high predictions (R2) above 0.73 

for all algorithms and found that RF was the most suitable algorithm. 

Many studies have predicted nutrient concentrations using handheld/proximal hyperspectral 

data and a vast array of computational algorithms (Abdel-Rahman et al., 2017; Ferwerda et al., 

2005; Oliveira & Santana, 2020; Wang et al., 2018). However, few studies used a full-

waveform hyperspectral proximal sensor and RF to predict macronutrient and micronutrient 

deficiency. Therefore, this study aimed to predict macronutrients and micronutrients in 

Eucalyptus hybrid trees using full-waveform handheld/proximal hyperspectral data (350-

2500nm) and the RF algorithm. Furthermore, to our knowledge, no studies have identified the 

most critical wavebands for detecting nutrient deficiencies in younger trees within a nursery 

setting. The outcomes of this study will promote the use of remote sensing scanning systems 

for rapid diagnosis of macronutrient and micronutrient deficiencies in high productivity 

commercial forestry environments. 

3.2 Material and Methods 

3.2.1 Study area 

This research experiment was conducted under a controlled nursery environment at the ICFR 

nursery in Pietermaritzburg, KwaZulu Natal, South Africa (29°37'40.20"S and 30°24'13.63"E). 

This study examined a Eucalyptus hybrid (Eucalyptus grandis x Eucalyptus urophylla). The 

Eucalyptus genus is a hardwood perennial native to Australia (Myburg et al., 2014). 

Commercial forestry industries commonly grow Eucalyptus trees for their fast growth and 

superior wood properties (Myburg et al., 2014). Hence, more than 100 countries across six 

continents (>20 million ha) grow Eucalyptus trees as a timber resource (Myburg et al., 2014). 

The hybrid species Eucalyptus grandis and Eucalyptus urophylla used in this study are native 

to Newcastle, New South Wales to Bundaberg in Queensland and the Indonesian Archipelago 

Timor, respectively (Pajares, 2015; Pinto et al., 2014). The shape of hybrid Eucalyptus grandis 

x Eucalyptus urophylla leaves was lanceolate with the adaxial side dark green and the abaxial 

slightly paler than the adaxial side. 
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soil nutrient levels with tree growth and foliar nutrient diagnostics to improve laboratory soil 

data interpretation (Table 3.2). 

Table 3. 1: Fertilizer compounds used to exclude specific nutrients in pot experiment 

treatments 

Nutrient Fertilizer compound added Compound formula 

N Urea CH4N2O 

P Sodium Dihydrogen Orthophosphate dihydrate NaH2PO4.H2O 

H Potassium Chloride KCl 

Ca Calcium Chloride CaCl2.2H2O 

Mg Magnesium Chloride hexahydrate MgCl2.6H2O 

Na Sodium Sulphate anhydrous Na2SO4 

Micro-nutrients Micro-Nutrient Mix Zn, Cu, Fe, B, Mn, Mo 

 Zinc Chloride                                                                      ZnCl2 

 

Table 3. 2: Pot trial experimental design 

Treatments Nutrient 

Exclusion of macronutrients -N, -P, -K, -Ca, -Mg, -Na 

Exclusion of micronutrients -Mn, -Fe, -Cu, -Zn, -B (combined) 

Control 1 No fertilizer 

Control 2 Full Fertilizer 

3.2.3 Spectral measurements 

Spectral reflectance measurements were taken on the 2nd of February 2017, using a handheld 

field ASD (FieldSpec® three spectrometers) synchronously with foliar sampling. The ASD 

measures at a sampling interval range of 1.4nm for 350-1000nm and 2nm for 1000-2500nm. 

Reflectance measurements were taken 1m above the pot, using the fibre optic cable set at 25 

degrees field of view (FOV), pointed at the nadir position. A white reference panel treated with 

a barium sulphate of known reflectivity to calibrate the sensor was used every ten minutes 

(Spectralon Labsphere, Inc., Sutton, New Hampshire). Ten measurements of each plant (per 

pot) were acquired to derive the representative reflectance spectra for each pot for a total of 

135 pots. The ASD instrument operator was positioned as far away from the area under 

observation to reduce interferences caused by anthropogenic shadow and reflection (Figure 
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3.2). Each pot was placed in direct sunlight on a cloudless day between 10:00h and 14:00h 

Central African Time. 

Furthermore, pots were placed on a stable black platform in an open area to minimize 

bidirectional reflectance distribution function (BRDF) effects and background scattering. After 

averaging the spectra, all spectra were converted from radiance to reflectance using ViewSpec 

Pro software (ASD Inc., Boulder, Colorado, version 6.0.11). All spectra were radiometric and 

atmospheric corrected to reduce noise using the Natural Environment Research Council 

(NERC) field of spectroscopy templates (NERC, Undated). 

 

Figure 3. 2: Schematic drawing of ASD measurements procedure. 

3.2.4 Wet chemistry 

Foliar samples were taken from fully expanded leaves from the top third of all 25 trees in the 

sample plots for foliar diagnostics. All samples were dried, weighed and analysed for physio-

chemical properties and expressed by leaf concentration (%/dry weight). All laboratory tests 

were executed using standard measures as described by (Donkin et al., 1993a, 1993b). 

3.2.5 Reference data t-test 

In this study foliar chemistry was measured before and after nutrient depletion. Nutrient 

depletion thresholds were defined in Reuter and Robinson (1997). The foliar chemistry results 

were used to test the significant difference in means (𝑥̅) of foliar macronutrient and 

micronutrient at both high and low levels of nutrient content using a paired 𝜏-test for nutrient 

deficient plants. As a result, the paired 𝜏-test provides a score of the significance (ρ-value) by 

calculating the difference in the 𝑥̅ of two groups data (Ruxton, 2006). The ρ-value was used to 
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calculate the statistical hypothesis test results, assuming the null hypothesis is correct (Meng, 

1994). If the 𝜌-value is <= 0.05, the two datasets are significantly different, and if the 𝜌-value 

is > 0.05, the result is insignificant; hence the trees did not deplete the targeted nutrient. The 

𝜏-test was calculated using the following formula metrics: 

𝑡 =
𝑚

𝑠/√𝑛
  

Where 𝜏 is the paired 𝜏-test, m and s are the mean and the standard deviation of the difference 

in samples, respectively. N is the size of the sample. 

3.2.6 Random Forest 

This study used RF for regression based on the classification and regression trees (CART) to 

predict (Breiman, 2001). The RF ensemble was implemented using the "randomForest" 

package R in R statistical software (R Development Core Team).  Compared to several other 

machine learning algorithms, the RF algorithm delivers the most consistent results, especially 

when using high dimensional handheld/proximal hyperspectral data for predicting foliar 

nutrient data (Amirruddin et al., 2020). The RF algorithm produces decision trees by drawing 

a subset of training samples through a replacement method known as "bagging". The bagging 

process refers to selecting the same sample several times while the remaining samples can 

remain unselected. During the training process, approximately two-thirds of the samples from 

the training set are used as "in-bag” samples, while the remaining one third "out-of-bag" (OOB) 

samples are used as an internal cross-validation technique to test the RF models' performance 

(Belgiu & Drăguţ, 2016). The error produced through the cross-validation technique is known 

as the OOB error. The RF algorithm splits each node by a user-defined parameter called the 

𝑚𝑡𝑟𝑦 function whilst each decision tree is independently produced without pruning (Breiman, 

2001). Another user-defined parameter is the 𝑛𝑡𝑟𝑒𝑒 which grows the forest whilst the algorithm 

generates trees which have high variance and low bias (Breiman, 2001). The model grows trees 

until the final classification is taken by the average class assignment probabilities using the 

arithmetic mean. The RF algorithm evaluates the model using the final classification and 

produces a new unlabelled data input against all the decision trees, and each tree votes for class 

membership. Here, the membership class that receives the maximum votes is the final model 

selected (Belgiu & Drăguţ, 2016). The model was parametrized using the 𝑚𝑡𝑟𝑦 and 𝑛𝑡𝑟𝑒𝑒 

functions. RF recognizes that classification accuracy is sensitive to 𝑚𝑡𝑟𝑦 than the 𝑛𝑡𝑟𝑒𝑒 

function. R sets the default 𝑛𝑡𝑟𝑒𝑒  value at 500, whereby errors stabilize as the R package grows 

trees (Belgiu & Drăguţ, 2016). The 𝑛𝑡𝑟𝑒𝑒 value can be optimized to find the best detection 
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accuracies and lowest error rates (Mutanga et al., 2012).  After numerous runs through the RF 

algorithm, an 𝑛𝑡𝑟𝑒𝑒 value of 750 provided more accurate results with the data used in this study. 

The 𝑚𝑡𝑟𝑦 and 𝑛𝑡𝑟𝑒𝑒 functions were set to 46 and 750, respectively.  

3.2.7 Variable importance 

Determining the most critical variables is essential for improving model optimisation, 

simplification and robustness, especially when dealing with high dimensional data in this study 

(Liaw & Wiener, 2002). RF has three measures of variable importance. VI bases the first 

measure on the number of times a candidate variable is selected in the model. The second 

measure of importance is based on the Gini impurity when a variable is chosen to split a node, 

as Breiman (2001) proposed. Finally, the third measure is the permutation of a variable as an 

ensemble of VI (Breiman, 2001). In this study, the third measure (permutation of variables) of 

variable importance, and the mean squared error (MSE) in percentage was chosen for 

determining VI. VI was determined for each nutrient to generate a coherent account of the 

relevant variables used in the prediction models for nutrient deficiency. 

3.2.8 Accuracy assessment 

The final dataset was split into training (70%) and test (30%) (Breiman, 2017). The R2 was 

used for prediction and RMSE to assess the RF algorithm's performance in determining nutrient 

deficiency. The R2 was calculated using predicted and observed values, values closer to one, 

predict better results. The RMSE was calculated using predicted and observed values, values 

closer to zero, predict better results. Higher R2 and lower RMSE values indicate a reliable 

model. 

3.3 Results 

3.3.1 Descriptive statistics and reference t-test  

Table 3.3 summarizes descriptive statistics related to Eucalyptus grandis x Eucalyptus 

urophylla foliar macronutrient and micronutrient at low and high levels. A random subset (10 

pots) was taken for each nutrient on the repetitive measured pots before and after inducing 

deficiency to test if nutrient deficiency had occurred. The paired τ-test revealed that there was 

a significant difference (𝜌 ≤ 0.05) in 𝑥̅ whereby the average 𝜌 − 𝑣𝑎𝑙𝑢𝑒 = 0.0067. 

Table 3. 3: Descriptive statistics of Eucalyptus grandis x Eucalyptus urophylla foliar 

macronutrient and micronutrient content. 
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Nutrient High  Low 

 
Min Max Median SD 

 
Min Max Median SD 

Macronutrients (%)   

   

 

 

N 0.59 3.67 2.13 0.94 

 

0.83 3.16 1.995 0.50 

P 0.002 0.41 0.206 0.08 

 

0.015 0.50 0.2575 0.06 

K 0.02 2.45 1.235 0.39 

 

0.26 1.02 0.64 0.11 

Ca 0.31 2.88 1.595 0.49 

 

0.39 1.61 1 0.25 

Mg 0.003 0.88 0.441 0.11 

 

0.21 0.59 0.4 0.08 

Na 0.08 0.32 0.2 0.06 

 

0.05 0.21 0.13 0.05 

Micronutrients (ppm)   

   

 

 

Mn 29.96 5 137.42 2583.7 968.84 

 

837.85 8 417.55 4627.7 1 620.46 

Fe 23.11 669.57 346.34 69.98 

 

43.04 214.85 128.95 32.92 

Cu 3.42 10.88 7.15 1.44 

 

5.51 17.77 11.64 2.57 

Zn 3.44 47.17 25.305 9.24 

 

13.19 64.64 38.915 10.73 

B 23.79 166.49 95.14 39.65 

 

5.70 98.53 52.115 22.15 

3.3.2 Detecting macronutrient N, P, K, Ca, Mg, Na, using RF 

An important step was applied to determine the nutrient content of each tree. Furthermore, it 

was essential to test trees' prediction accuracy with combined low and high nutrient 

concentrations. The RF model (𝑛𝑡𝑟𝑒𝑒 = 750 and 𝑚𝑡𝑟𝑦 = 46) successfully predicted the 

macronutrient of trees with low and high nutrient concentration levels. Figure 3.3 shows 

predicted versus observed distribution plots for all macronutrients. As a result, the RF 

algorithm successfully predicted macronutrients N, P, K, Ca, Mg, and Na with R2’s of 0.88, 

0.95, 0.73, 0.88, 0.70, 0.75 and RMSE’s of 0.15, 0.13, 0.14, 0.10, 0.06, 0.04, respectively 

(Figure 3.3). 
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Figure 3. 3: The one-to-one relationship between predicted versus observed 

macronutrients: N, P, K, Ca, Mg, Na using RF. 

3.3.3 Detecting micronutrients Fe, Mn, Cu, Zn, B using RF 

To predict micronutrients, the same 𝑛𝑡𝑟𝑒𝑒  and 𝑚𝑡𝑟𝑦  input values were used in the macronutrient 

RF prediction model. Figure 3.4 shows predicted versus observed distribution plots for all 
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micronutrients. As a result, the RF algorithm successfully predicted low and high levels of 

micronutrients concentrations Fe, Mn, Cu, Zn, and B with R2's of 0.79, 0.90, 0.86, 0.69, 0.66 

and RMSE's of 11.86, 745.01, 1.70, 15.09, 2.54, respectively (Figure 3.4). 
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Figure 3. 4: The one-to-one relationship between predicted versus observed for 

micronutrients: Fe, Mn, Cu, Zn, and B using RF. 

3.3.4 Variable importance of macronutrients 

Figure 3.5 shows the most effective wavebands for detecting macronutrients at low and high 

concentrations used in the prediction model. The RF ensemble measures VI to obtain the most 

important wavebands. This study considered the top ten most important wavebands for each 

macronutrient. The SWIR region was partitioned into SWIR-1 (1300nm to 1900nm) and 

SWIR-2 (1900nm to 2500nm). For N content and Na concentrations, the most important 

wavebands are (1949nm, 675nm, 722nm, 892nm, 908nm, 918nm, 930nm, 947nm, 950nm, 

955nm) and (901nm, 931nm, 955nm, 1131nm, 1371nm, 1420nm, 1960nm, 902nm, 907nm, 

908nm) found in the NIR and red edge regions of the spectrum, respectively. For P, Ca, and 

Mg concentrations, the important wavebands are (429nm, 353nm, 360nm, 367nm, 407nm, 

413nm, 438nm, 444nm, 452nm, 453nm), (357nm, 383nm, 354nm, 355nm, 362nm, 389nm, 

408nm, 422nm, 507nm, 672nm) and (1295nm, 1302nm, 1980nm, 1296nm, 429nm, 442nm, 

444nm, 449nm, 450nm, 453nm) found in the VIS region, respectively. Whilst, for K 

concentration detection, the most important wavebands are (1912nm, 389nm, 350nm, 390nm, 

2045nm, 2124nm, 2139nm, 2494nm, 406nm, 2098nm) found in the VIS (40 %) and SWIR-2 

region (60 %), respectively (Figure 3.5). 

 

Figure 3. 5: Radar plot showing important spectral regions for detecting deficient 

macronutrients: N, P, K, Ca, Mg, and Na. The electromagnetic regions are illustrated in 

the following colours: VIS (yellow), NIR (green), SWIR-1 (blue) and SWIR-2 (red). 
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3.3.5 Variable importance of micronutrients 

Figure 3.6 shows the most effective wavebands for detecting micronutrients at the low and high 

concentrations used in the prediction model. Fe, Zn and B produced correlations with the NIR 

region. The most critical wavebands for detecting Fe, Zn and B in this study were (1123nm, 

1128nm, 894nm, 907nm, 919nm, 922nm, 941nm, 958nm, 961nm, 969nm), (788nm, 1186nm, 

949nm, 1564nm, 445nm, 469nm, 636nm, 714nm, 742nm, 744nm), (784nm, 896nm, 904nm, 

1263nm, 897nm, 1069nm, 1073nm, 1170nm, 1307nm, 1318nm), respectively. Mn and Cu 

showed strong correlations with the SWIR-2 region. The most critical wavebands for detecting 

Mn and Cu in this study were (2496nm, 1909nm, 2418nm, 2495nm, 2451nm, 1800nm, 

1877nm, 1222nm, 1260nm, 1291nm) and (1906nm, 1921nm, 1914nm, 1923nm, 1922nm, 

1909nm, 1929nm, 2483nm, 405nm, 1225nm) found in the SWIR-2 region, respectively (Figure 

3.6). 

 

Figure 3. 6: Radar plot showing important spectral regions for detecting deficient 

micronutrients: Fe, Mn, Cu, Zn, and B. The electromagnetic regions are illustrated in the 

following colours: VIS (yellow), NIR (green), SWIR-1 (blue) and SWIR-2 (red). 

3.4 Discussion 

In commercial forestry, the supply of nutrients from root to shoot is vital for plant growth and 

forest productivity. Quantifying nutrient-deficient trees in a compartment remains unworkable 

and could prove challenging when dealing with many younger plants in the nursery. Hence 

new methods are needed that can be adaptable early, either at the nursery before planting, to 

provide rapid detections or out in the field (Quentin et al., 2017).  The early detection of 
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potential nutrient depletion at the nursery level could guide the optimisation of future forest 

management practices and lead to a more robust approach to nutrient measurement and 

assessment (Garcia et al., 2018). A recent study by Acevedo et al. (2020) suggests that the use 

of nutrient loading at the nursery level will improve seedling nutritional status, morphological 

attributes, and the growth of new roots. The authors suggest modelling growth responses to 

improve their understanding of physiological processes further.  

This study successfully determined foliar macronutrients in E. grandis x E. urophylla at low 

and high nutrient concentration levels using handheld/proximal hyperspectral data and RF. The 

prediction results were high throughout all macronutrients, vital for improving remote sensing 

efficacy, particularly in deficient samples. The prediction results (R2) of the most limiting 

growth nutrients N, P, K in this study explain the findings of previous studies (Adams et al., 

2000; Axelsson et al., 2013; Özyiğit & Bilgen, 2013), which detected similar R2 accuracies in 

foliar wheat and grass samples. The use of the RF algorithm significantly improved detection 

accuracy when compared to previous studies that used VI’s and PLS to detect N, P, K and Na 

in wheat samples (Mahajan et al., 2014; Oliveira et al., 2017; Pimstein et al., 2011). For 

example, P predicted considerably better than previous studies (Mahajan et al., 2014; Özyiğit 

& Bilgen, 2013) with R2's above 0.90, while previous studies produced R2's below 0.50. The 

RF algorithm has built-in parameter fine-tuning, which permits the optimisation of the ntree 

function, providing more robust results than generalized VIs used in previous studies. RMSE 

values remained low; however, N samples were found to be considerably higher than the rest 

but still permissible. Our findings confirm that foliar micronutrients can be detected in E. 

grandis x E. urophylla at both deficient and not deficient levels using handheld/proximal 

hyperspectral data and RF. While many studies generally predict macronutrients N, P, K, this 

study predicted a wide range of micronutrients. However, this study predicted micronutrients: 

Ca, Mg, Na, Mg at low and high concentrations. This study could predict micronutrients better 

with prediction accuracies from 0.66 to 0.90. While Ca produced the highest R2 among Ca, Mg 

and Na. While other studies used VI's (Adams et al., 2000; Oliveira et al., 2017; Özyiğit & 

Bilgen, 2013), this study achieved higher accuracies when using the RF algorithm. This 

achievement validates and promotes the robustness and effectiveness of the RF ensemble to 

discriminate each micronutrient, especially when using high dimensional data. 

An important step was determining which waveband regions correlate with the deficient 

nutrients. To our knowledge, our study is the first to examine the critical wavebands for 

detecting macronutrient and micronutrient deficiencies in foliar tree material. Hence, this study 



46 

results could not be directly compared to previous studies, mainly examining N deficiency in 

heterogeneous environments (Blackmer et al., 1996; Goel et al., 2003). However, the VI results 

correlated well with other corresponding regions of the electromagnetic spectrum associated 

with general reflectance markers in foliar material. For example, this study found that most 

macronutrient deficiencies correlate with wavebands in the VIS (P, Ca, Mg) and NIR (N, Na) 

regions. Blackmer et al. (1996) found similar correlations in the VIS region when examining 

N deficiency in corn using a portable spectroradiometer (350-1100nm). In the absence of the 

latest instrumentation, their study could not examine the NIR edge and SWIR regions, which 

were essential regions for determining N deficiency in our study. 

According to Goel et al. (2003), wavebands 498nm and 671nm in the VIS region correlated 

with N stress in foliar corn material. Similarly, waveband 675nm closely related to their study 

in this study (Figure 3.5). However, higher correlations were found in this study for N 

deficiencies in the red-edge and NIR region. Like N, most micronutrient deficiencies correlated 

with the NIR (Fe, Zn, B) regions related to Liew et al. (2008). Also, Mn and Cu deficiencies 

were more closely related to the SWIR-2 region. Obtaining lower RMSE values than higher R2 

values were crucial for generating more robust models for each nutrient during modelling. 

Lower RMSE values improve the technology's efficacy and provide confidence to the user 

(forester, nursery manager or technical staff), particularly during the system's implementation 

into commercial forestry nurseries. The RF algorithm helped provide VI measures, essential 

for identifying the most critical wavebands when using high dimensional data. Deriving 

reference paired τ-test results formed an essential component of this study for deciphering 

between nutrient-deficient trees and not nutrient deficient. The results from the reference paired 

τ-test showed a significant difference (𝜌 ≤ 0.05) in samples with deficient and not deficient 

for all macronutrients and micronutrients. 

This study provides a framework for proactive decision-making about the nutrient health status 

of a tree. Nurseries could use this method for quality control and risk assessment purposes. 

Rapid spectroscopy is cost-effective, time-efficient and requires fewer resources for the 

chemical processing of samples. Furthermore, future studies should upscale this assessment to 

a live standing compartment. This study will help foresters, land managers, and commercial 

timber industries rapidly assess each tree's health status within a compartment. Upscaling to 

the hyperspectral satellite data would be beneficial; however, problems of resolution (e.g., 

spectral) may hinder the detection of macronutrient and micronutrients deficiency in 

Eucalyptus Grandis trees. 



47 

3.5 Summary and Conclusion 

To our knowledge, this is the first study that has explored remote sensing of a full range of tree 

macronutrients (N, P, K, Ca, Mg, Na) deficiencies and micronutrients (Fe, Mn, Cu, Zn, B) 

deficiencies, using full-waveform handheld/proximal hyperspectral data (350-2500nm) and the 

RF algorithm. From this study, this study concludes that: 

• The study successfully predicted N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, and B in E. 

grandis x E. urophylla using handheld/proximal hyperspectral data and RF analysis. 

• Variable importance results predicted wavebands for detecting nutrient deficiencies in 

E. grandis x E. urophylla.  

• The results improve the efficacy of using remote sensing methods for nutrient analysis 

in a high productivity forestry nursery environment. 

This study was an important first step for detecting nutrient deficiencies at a micro-level 

(nursery environment). Future studies should use this study as a framework for rapid plant 

nutrient analysis in commercial forestry nurseries. Future research could upscale the results 

from this study from nursery to field level as well as investigate detecting the distribution of 

key nutrients within forest trees using remote sensing imagery. Hence, the upcoming chapter 

will attempt to detect nutrient deficiencies at macro-scale (field environment). Understanding 

the capabilities of remote sensing to detect nutrient deficiencies at both scales are important for 

implementation of the technology commercially.  
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CHAPTER 4: Impacts of vertical canopy positioning in the detection of nutrients 

in hybrid Eucalyptus trees using near-infrared datasets 

 

Impacts of vertical canopy positioning in the detection of nutrients in hybrid Eucalyptus trees 

using near-infrared datasets 

 

 

 

This chapter was based on: 

Singh L*, Mutanga O, Mafongoya P, Peerbhay KY, Ismail R (Preparation). A Rapid Diagnostic Tool 

for Detecting Tree Growth Nutrients Using Near-Infrared Spectroscopy and Vertical Canopy 

Positioning. 
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Abstract 

Ineffective nutrient screening technologies could lead to the release of unhealthy trees for in-

field planting, wasting functional space and time and inevitably impeding production. In this 

study, macronutrients: N, P, K, Ca, Na, Mg, and micronutrients: Fe, B, Cu, Mn, Zn of 135 

Eucalyptus grandis saplings were measured using NIRS and the vertical canopy gradient 

technique. Eucalyptus grandis seeds were planted in two-litre plastic pots filled with topsoil 

and placed them in a controlled nursery environment. Non-destructive samples were acquired 

at four VCPs using a handheld NIR spectrometer device. Leaf samples were picked and 

scanned on both adaxial and abaxial sides to provide a representative sample. Pre-processing 

techniques: PCA and SG smoothing were applied before implementing the PLS regression 

algorithm to understand the distribution of nutrient content across the four VCPs. The 

combination of NIRS and VCP successfully determined nutrient concentrations. Overall, the 

findings of this work provide an alternative screening framework for commercial forestry 

nurseries that require quality planting material for long- and short-term resource sustainability. 

Keywords: Remote sensing, forest biochemistry, infrared image sensors, vegetation mapping, 

vertical canopy positioning 
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4.1 Introduction 

Nutrient availability plays a significant role in plant survival and growth, with an optimal 

supply of critical nutrients vital for increasing plant stem volume and density and overall 

productivity. N, P, and K are among the most critical macronutrients known for efficient plant 

growth. For instance, N is the major component of Chl and amino acids used for photosynthesis 

and protein synthesis, effective for plant physiological functions and development (Richardson 

et al., 2009; Vessey, 2003). Several other macronutrients are responsible for overall organism 

function  (Khan & Lee, 2013; Martinelli et al., 2000; Nguyen et al., 2015) and physiological 

processes in plants (Bahar et al., 2018; Garcia & Zimmermann, 2014). Although plants require 

an abundant supply of macronutrients for overall growth, they also require adequate 

micronutrients such as B, Fe, Cu, Mn, molybdenum (Mo), and Zn (Ma et al., 2012; Rengel, 

2007). Predominantly, the concentration of within-tree macronutrients and micronutrients are 

in the leaves and branches (Martinelli et al., 2000). Therefore, an important step is 

understanding the distribution of nutrients across a tree’s vertical canopy gradient (Fig. 2). 

The distribution of nutrients across the vertical canopy gradient of a tree is complex and 

variable, challenging most estimation processes (Gara et al., 2018; Gara et al., 2019; Zhao et 

al., 2016). Forest canopies are spatially heterogeneous environments, and the relationships 

between the chemical content, light interception, canopy structure and patterns of 

photosynthesis are poorly understood (Ellsworth & Reich, 1993; Mutowo et al., 2019; Wang 

& Li, 2013). Previous studies only took measurements at a single VCP which did not represent 

nutrient distribution across the VCP. Furthermore, research has shown that the tree’s re-

translocate nutrients throughout the tree canopy as a conservation strategy (Fife et al., 2008). 

Hence, assessing the VCP variation to chemical content can provide valuable insight into the 

partitioning of nutrient resources within forest trees (Ellsworth & Reich, 1993). 

In the 1970s, researchers began investigating the interaction of electromagnetic radiation as a 

proxy for detecting foliar biochemicals and their distribution within forest canopies (Aber, 

1979a, 1979b; Hansen et al., 1987; Reich et al., 1990). The principles of Beer’s law provided 

researchers with a physiological basis to understand the physical link between organic 

substances and electromagnetic radiation. Henceforth, the interactions of light with organic 

compounds triggered energy transitions during partial intermolecular bonding known as 

vibrational states (Weyer, 1985). Weyer (1985) describes three bond vibrations, namely: (1) 

C-H; (2) N-H; and (3) O-H absorption. Weyer (1985) also experimented with instrumentation, 

analysis techniques, and remote sensing applications for detecting organic substances. As a 
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result, a plethora of research findings expose specific regions of the electromagnetic spectrum 

where organic compounds absorption occurs (Curran, 1989; Dixit & Ram, 1985; Elvidge, 

1990; Sasaki et al., 1984; Wessman et al., 1989). Previous researchers used mathematical 

models combined with radiometers to find the best sampling points through the VCP to 

understand the distribution of foliar biochemicals within forest canopies. For example, 

Ellsworth and Reich (1993) found that N content was distributed throughout the forest canopy 

in a spatially patterned way in response to height using a portable integrating radiometer (400 

nm to 700 nm). However, primitive technological innovations limited early research whereby 

most studies typically estimated C, N, leaf area index (LAI), foliage, and canopy gas exchange 

using point-based approaches and tools such as cameras and point quadrats. Furthermore, not 

many studies estimated macronutrients and micronutrients that are important for tree growth 

and the ecological functions of the forest. 

The latest technological innovations offer platforms for measuring nutrient content through the 

vertical canopy gradient using non-destructive approaches (Gara et al., 2018). Gara et al. 

(2018) found that variations in leaf mass accounted for most of the variables useful for canopy-

level scaling relationships and the partitioning of nutrient resources. Typically, laboratories 

analyse nutrient content using wet chemistry techniques from extractable soil and foliar dry 

matter (Chase et al., 2016). For example, a common wet chemistry technique for determining 

nitrogen content is the Kjeldahl method that requires fresh weight samples to be dried, grinded, 

and sieved into dry weight samples (e.g., leaves) before chemical analysis (Bremner, 1960). In 

summary, foliar dry matter is placed into a digestion flask for distillation and titration using 

chemical solutions and results are derived from the residual weight (pre-weight - post-

weight).Although these methods produce accurate results, they often become tedious, prove 

costly over large scale sampling operations and do not account for the variation of nutrient 

content in live standing trees (Downes et al., 1997). Furthermore, there are limited expertise 

and resources to process, analyse and interpret such information. The latest advancements in 

remote sensing technologies can offer a more practical, faster, and provide a broader area 

coverage for forestry opportunities in estimating and monitoring foliar nutrient content in trees 

(Mutowo et al., 2018; Pasquini, 2018; Quentin et al., 2017).  

For example, Li et al. (2018) successfully estimated leaf nitrogen concentration (LNC) in the 

upper, middle and lower layers of oilseed rape (Brassica napus L.) and obtained R2 results 

ranging between 0.83 to 0.90 using handheld hyperspectral data (350 nm to 2500 nm), PLS, 

lambda-lambda R2 (LL R2) and SVM models. Gara et al. (2018) found that leaf traits and leaf 
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reflectance co-vary across the vertical canopy profile. The authors successfully estimated foliar 

N, Chl, C, and equivalent water thickness (EWT) between the upper, middle and lower parts 

of a tree using handheld hyperspectral data and Partial least squares-discriminative analysis 

(PLS-DA) (350 nm to 2500 nm). Meacham-Hensold et al. (2019) successfully predicted %N 

in a high-throughput tobacco (Nicotiana tabacum) environment using PLSR. The authors 

predicted an R2 of 0.83 for the %N. However, only a few studies have estimated foliar nutrients 

at various VCPs using NIRS and PLSR. Recently, NIRS technologies have also shown success 

in estimating foliar nutrients.  

NIRS provides a non-destructive approach for nutrient sampling in a high throughput nursery 

environment. Non-destructive sampling approaches reduce the risk of epidemiological 

exposure in young plants (Muñoz-Huerta et al., 2013). Furthermore, non-destructive NIRS 

allows multiple nutrients to be analysed simultaneously from a single scan; NIRS reduces data 

dimensionality by using a smaller portion of the electromagnetic spectrum (Murguzur et al., 

2019). Previous research omits analytical processes once calibration models are in place, 

allowing for a further reduction in dimensional data reduces processing costs up to 80% 

(Murguzur et al., 2019). Previous studies have found leaf optical properties closely related to 

foliar chemistry in the NIR region (Asner, 1998; Ferreira et al., 2018; Mutanga et al., 2004b; 

Van Deventer et al., 2015; Wallis et al., 2019; Yu et al., 2020). For example, Ferreira et al. 

(2018) determined carbon (C), N, extractives, acid-soluble lignin, Klason insoluble lignin, and 

holo-cellulose in Eucalyptus harvest residues using handheld NIR sensor (1100 nm to 2500 

nm) combined with PLS-DA. Asner et al. (2011) determined a range of leaf chemical traits 

including N, P, K, Ca, Mg, Zn, B, Fe, Mn in humid tropical forests using airborne VIS to NIR 

(400 nm to 1050 nm) combined with  PLSR. 

In summary, nutrients are active components in the development and growth of forest trees. 

However, methods used to determine their nutrient content or deficiency have proven 

challenging. This study, therefore, aims to accurately detect valuable macronutrients and 

micronutrients required for optimal tree growth over a vertical canopy gradient using NIR 

technology. This study will expand on Gara et al. (2018) research as a basis for vertical canopy 

research and take a step further by introducing an additional canopy position. Trees relocate 

nutrients throughout the canopy as a conservation mechanism; therefore, an additional sample 

position combined with using an NIR sensor and the PLSR algorithm would be a promising 

approach to more accurately determining nutrient content. Future earth exploration satellite 

sensors will offer an opportunity for scientists to seamlessly integrate satellite imagery with 
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handheld NIR spectrometer devices (Adão et al., 2017). Hence, NIR data will be readily 

provided as an effective alternative to acquiring nutrient information over a large area, rapidly 

and more accurately. 

4.2 Methods and materials 

4.2.1 Study area and species description 

This research experiment was conducted under a controlled nursery environment at the ICFR 

nursery in Pietermaritzburg, KwaZulu Natal, South Africa (29° 37’40.20 “S and 30° 24’13.63 

“E) (Figure 4.1). Figure 4.1 shows the study area location at the ICFR in Pietermaritzburg, 

KwaZulu Natal, South Africa with nearby important cities. This study examined a Eucalyptus 

hybrid (Eucalyptus grandis x Eucalyptus urophylla). The Eucalyptus genus is a hardwood 

perennial native to Australia (Myburg et al., 2014). Commercial forestry industries commonly 

grow Eucalyptus trees for their fast growth and superior wood properties (Myburg et al., 2014). 

Hence, more than 100 countries across six continents (>20 million ha) grow Eucalyptus trees 

as a timber resource (Myburg et al., 2014). More specifically, the hybrid species Eucalyptus 

grandis and Eucalyptus urophylla used in this study originated in Newcastle, New South 

Wales, to Bundaberg in Queensland and the Indonesian Archipelago and Timor (Myburg et 

al., 2014; Pinto et al., 2014). The shape of hybrid Eucalyptus grandis x Eucalyptus urophylla 

leaves was lanceolate with the adaxial side dark green and the abaxial slightly paler than the 

adaxial side. 
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Figure 4. 1: The location of the ICFR nursery study site in KwaZulu Natal, South Africa 

and pot trial experiment within the nursery environment. 

4.2.2 Experimental design 

A pot experiment was conducted to develop more explicit diagnostic indicators and measures 

of changes in soil nutrient status. 135 mature hybrid seeds Eucalyptus grandis x Eucalyptus 

urophylla obtained from a commercial plantation seed orchard in KwaZulu Natal, Midlands, 

South Africa, in June 2014. To minimize the effect of a microclimate, pots were randomly 

arranged in the designated nursery environment under natural sunlight. The pots were under an 

open-sided plastic cover to exclude rainfall at the nursery. The soil type used in this study was 

Inanda soil (Meyer et al., 1983), and the soil texture was silty clay (56% sand & silt; 44% clay). 

Distilled water was added automatically via drip irrigation to maintain optimal soil moisture 

conditions. Fertilizer was added once per week over four weeks and then left to acclimatize for 

another four weeks (Gara et al., 2018). The canopy characteristics of the leaf material sampled 

in this study were at the sapling stage of growth with a height of 30 cm to 60 cm. The size of 

the leaf area was 6 cm to 10 cm long and 2 cm to 3 cm wide. The canopy width was 

approximately 30 cm to 40 cm. The tree species used in this study has an elongated root 

structure inside the vase. The height of each sapling grew to approximately 45 cm. The root 
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physiognomies had an elongated rooting structure (Louro et al., 1999). The hybrid Eucalyptus 

has an extensive tap-root rooting system designed to anchor the trees and horizontal roots that 

keep the trees upright when planted in the field (Dye, 1996). 

4.2.3 NIRS leaf spectral measurements 

For each leaf sample measurement, approximately three (3) grams of fresh leaves were 

randomly sampled from all four canopy layers (Q1-Q4) for each sapling (Figure 4. 3). After 

carefully discriminating four canopy layers, leaves were picked from the outer and interior 

canopy in all directions (Gara et al., 2018). Four canopy layers were determined based on the 

height of the sapling along the stem. The picked leaf samples from four canopy layers were 

packaged in Ziploc bags, stored in a portable cooler, and transported them to the ICFR 

laboratory, Pietermaritzburg, South Africa, to perform all laboratory measurements within two 

hours of leaf picking. Figure 4.2 shows reflectance and first derivative NIR spectral signatures 

of a randomized leaf sample in this study. NIR spectra were acquired using the Fourier 

Transform-near infrared (FT-NIR) spectrometer device (Model: Multi-Purpose Analyzer, 

Bruker Optik GmbH, Ettlingen, Germany) at wavelengths from 9000 to 4000 cm-1 (800 to 

2500 nm) at 4 cm-1 sampling intervals (2074 spectral wavebands) (Figure 4.2). 

 

Figure 4. 2: Reflectance and first derivative spectra plot of an N spectral measurement.  

The spectrometer device was calibrated using OPUS software using the Opus Manual. The S/N 

ratio root means square (RMS) was 1.513029, and the S/N peak-to-peak (PP) was 0.142029. 

To minimize BRDF effects and atmospheric perturbations, spectral measurements were 

acquired on clear days between 10:00 and 14:00 h central African time (Gara et al., 2018). A 

60 cm fibre optic cable attached to a pistol grip and an external trigger was used to collect each 
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leaf sample's spectra to minimize spectral noise. Two scans were performed on both the adaxial 

and abaxial sides to provide a representative sample. A spectralon white reference panel coated 

with a barium sulphate of known reflectivity was used to calibrate the sensor. Calibration was 

performed continuously after every 15 to 20 measurements to offset any changes to the room 

environment. Scans of the leaf veins, midrib, and the petiole were avoided to reduce 

background scattering and noise (Gara et al., 2018). Figure 4.3 illustrates how each vertical 

canopy position was determined across a sapling profile. In total, 1080 spectral reflectance 

measurements were collected (135 plants x 4 canopy layers x 2 sides) (Figure 4.3). To ensure 

the ratio of direct to diffuse incoming solar radiation was constant, the measurement setup 

maintained a steady and consistent view angle when measuring each sampling in an open area 

(Darvishzadeh et al., 2008).  

4.2.4 Wet chemistry analysis 

Foliar samples were taken from fully expanded leaves from the top third of all 25 trees in the 

sample plots for foliar diagnostics. All samples were dried, weighed and analysed for physio-

chemical properties and expressed by leaf concentration (%/dry weight). All laboratory tests 

were executed using standard measures as described by (Donkin et al., 1993a, 1993b). 

4.3 Statistical analysis 

4.3.1 Spectra evaluation & noise removal 

Before chemometric analysis, all spectral reflectance data were analysed for noise and averaged 

per leaf canopy position and pot. All spectra were transformed from reflectance to the first 

derivative (Tsai & Philpot, 1998). A moving second-order polynomial Savitsky filter was 

applied with a window size of 5 to all spectra to reduce noise in the dataset (Savitzky & Golay, 

1964; Tsai & Philpot, 1998). 
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Figure 4. 3: Illustration of the four canopy layers (Q1, Q2, Q3, Q4) with outer and inner 

tree segmentations.  

4.3.2. Partial least squares regression 

Partial least squares regression (PLSR) was the preferred model approach due to the 

collinearity among input variables as the number of input variables is large, relative to the 

number of observations (Martin et al., 2018). A large amount of research has suggested using 

PLS analysis as a benchmark for detecting chemometric techniques (Hansen & Schjoerring, 

2003; Norgaard et al., 2000). Moreover, previous research successfully predicted plant nutrient 

data combined with NIR spectral measurements using PLSR (Abdel-Rahman et al., 2017; Gara 

et al., 2018; Ge et al., 2019; Meacham-Hensold et al., 2019). A PLSR transforms spectral data 

from its original form to eigenvectors and calculates the covariance between the response and 

predictor variables (Wang et al., 2019). Kiala et al. (2016) explain PLSR in a three-step 

process. In the first step, decomposition of the independent variables and the response variable. 

The second step is the prediction or expression of Y-values using X-values which as the 

regression coefficient and an error matrix of the relationship between Y-values and X-values. 

In the third step, the algorithm uses the predicted Y-values to produce a predictive model of the 

subsequent response variable (Kiala et al., 2016). PLSR is an extension of the multiple linear 

regression model, which combines both PCA and multiple linear regression (Abdi, 2010). 
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PLSR was implemented in RStudio statistical software (Team, 2020) using the “caret” and 

“prospectr” libraries. In simple terms, the goal of PLSR is to predict a set of dependent variables 

from a set of independent variables (Abdi, 2010). The principle behind PLS is to search for a 

set of latent variables (Kembhavi et al., 2011; Zhao et al., 2013). 

4.3.3 Accuracy assessment 

The final dataset was split for each treatment into 70 % training and 30 % test data (Gara et al., 

2018). The R2 was used to indicate the percentage of variation within the data. However, in 

this study the adjusted R2 predictions was preferred as it reduces the number of predictors in 

the model, which helps overcome problems of overfitting (Huang et al., 2019; Ward et al., 

2019). The adjusted R2 formula is:  

 Radjusted
2 = 1 − [

(1 − R2)(n − 1)

n − k − 1
] 

where R2 is the sample R-square, k is the number of predictors, and n is the total sample size. 

The RMSE and the mean absolute error (MAE) was used to calculate the amount of variation 

between predicted and observed values, values closer to 0, predicted better results (Wang et 

al., 2019). The RMSE formula is: 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

where y  

 

𝑅𝑀𝑆𝐸[%} =
𝑅𝑀𝑆𝐸

𝑌̅
 ×  100 

 

4.4 Results 

4.4.1 Leaf canopy positions 

An essential step in this study is to predict which canopy level is best to measure. In this study, 

four vertical canopy levels (Q1, Q2, Q3, Q4) were measured to ensure total coverage of the 

entire sapling. Figure 4.4 shows a line graph and bar graph of each biochemical correlation 

with each position. In the line graph the Y-axis shows the R2 result, and the X-axis shows the 
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nutrient. Each line in the graph represents a vertical canopy position. The vertical spread of the 

line data shows the variability of the results across each nutrient. For example, the orange 

colour line is vertical canopy position (2) which highly correlates with the nutrient sodium. In 

the bar graph the Y-axis shows the R2 result, and the X-axis shows the nutrient.  Each bar in 

the graph represents the vertical canopy position. The colour at the top of the bar shows the 

vertical canopy position with the highest correlation for a nutrient. The bar graph does not show 

the spread of data but more importantly the highest correlation result for each nutrient. For 

example, the orange block on top of the red block shows that sodium predicts the highest in 

vertical canopy position (2). Overall, Q2 best predicted the macronutrients: N, P, K, Ca, Mg, 

and Na. The highest correlations for N and Ca were found in Q3 with an R2 of 0.88 and 0.40, 

respectively. The highest correlations for P, Mg, and Na were found in Q2 with R2’s of 0.17, 

0.59, and 0.82, respectively. K predicted highest in Q1 with an R2 of 0.54.  

Table 4.2 shows the R2, MAE and RMSE results of each vertical canopy position and for each 

biochemical. Overall, Q4 best-predicted micronutrients: Fe, Mn, Cu, Zn and B. The highest 

correlations for Fe, Mn and B were found in Q3 and Q4 with R2’s of 0.31, 0.29, and 0.58, 

respectively. Cu and Zn predicted highest in Q1 with R2’s of 0.74 and 0.64, respectively (Figure 

4.4). 
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Figure 4. 4: Line and bar graph showing each biochemical correlation at each canopy leaf 

position. Q1 to Q4 represents each vertical canopy leaf position. 

4.4.2 Macronutrients and micronutrients predictions using PLSR 

Table 4.1 shows R2 results for all nutrients with first and second derivatives, where the first 

derivative shows the direction, a point is moving at any point on the curve whilst the second 

derivative shows how the direction is changing based on the slope of the tangent. To strengthen 

the results, it was important to show MAE values combined with predicted versus observed 

graphs. MAE values show how measured values differ from actual real values. Figure 4.5 and 

figure 4.6 show the relationship between predicted versus observed values using a 95% 

confidence interval for macronutrients and micronutrients. The 95% confidence interval shows 

the mean estimate for each nutrient and the estimate of the range in variation for a preceding 

test. Overall, the accuracies for the detection of macronutrients outperformed micronutrients. 

Prediction results produced R2’s within a range of 0.16 to 0.92 and 0.16 to 0.87 for 
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micronutrients and macronutrients using a first derivative transformation, respectively. Also, 

RMSE values ranged between 0.02 % to 0.19 % and 1.01 ppm to 1289 ppm for macronutrients 

and micronutrients, respectively (Table 4.1). Prediction results produced R2’s within a range 

of 0.21 to 0.92 and 0.23 to 0.87 for micronutrients and macronutrients using a second derivative 

transformation, respectively. Also, RMSE values ranged between 0.02 % to 0.41 % and 1.14 

ppm to 577.4 ppm for macronutrients and micronutrients, respectively (Table 4.1)(Figure 4.5). 

Furthermore, the majority (82 %) of the biochemicals (N, K, Ca, S, Fe, B, Mn, Zn) performed 

better using a smoothing window equal to 3 and segment break equal to 5. The minority (18 

%) of the biochemicals, specifically P and Mg, performed better using a smoothing window 

equal to 11, 13 and segment break equal to 13, 15, respectively (Table 4.1). This study predicted 

N, S, Cu, and B with an R2 above 0.80 (Figure 4.6). 
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Figure 4. 5: One-to-one relationship (g∕kg) with a 95% confidence interval between 

predicted and observed macronutrients: N, P, K, Ca, Mg, and Na using PLSR with all 

spectra averaged for each nutrient. 
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Figure 4. 6: One-to-one relationship (g∕kg) with a 95% confidence between predicted and 

observed micronutrients: Fe, Mn, Cu, Zn, and B using PLSR with all spectra averaged 

for each nutrient.  

Table 4. 1: R2, MAE and RMSE’s of all nutrients averaged 
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R2, MAE, and RMSE of first and second derivatives for each biochemical with all spectra 

averaged. *DER = derivative. 

Table 4. 2: R2, MAE, and RMSE at the different leaf positions 

  Biochemical DER R2 MAE RMSE RMSE % 

M
ac

ro
n

u
tr

ie
n
ts

 
Nitrogen 

1st  0.91 0.38 0.53 19 

2nd  0.57 0.37 0.42 41 

Phosphorous 
1st  0.16 0.04 0.06 6 

2nd  0.21 0.04 0.06 6 

Potassium 
1st  0.66 0.07 0.09 6 

2nd  0.71 0.08 0.06 6 

Calcium 
1st  0.40 0.17 0.21 19 

2nd  0.37 0.17 0.20 20 

Magnesium 
1st  0.63 0.04 0.06 5 

2nd  0.67 0.05 0.05 5 

Sodium 
1st  0.86 0.03 0.04 2 

2nd  0.86 0.04 0.02 2 

M
ic

ro
n

u
tr

ie
n
ts

 

Iron 
1st  0.16 27.63 39.97 4163 

2nd  0.23 28.13 39.80 3980 

Manganese 
1st  0.26 1261.16 1465.50 128900 

2nd  0.30 1304.01 1306.00 57740 

Copper 
1st  0.83 1.46 1.91 101 

2nd  0.84 1.45 1.03 114 

Zinc 
1st  0.67 7.77 9.70 691 

2nd  0.68 7.62 6.42 642 

Boron 
1st 0.84 26.62 33.78 1740 

2nd  0.75 25.19 20.20 1629 
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The asterisk (*) symbol Indicates the best performing canopy position for each biochemical. 

R2, MAE and RMSE at the different leaf positions (Q1 to Q4) for each biochemical using the 

best smoothing window and segment break in the first derivative. 

4.4.3 Variable importance within each leaf canopy position 

Assessing the VI of which wavelengths best discriminate each nutrient within each leaf canopy 

position was also essential in this study. Table 4.3 explicitly shows the most important 

  Biochemical   Q1 Q2 Q3   Q4 

M
ac

ro
n

u
tr

ie
n
ts

 
Nitrogen 

R2 0.57 0.55 0.88* 0.35 

MAE 0.40 0.40 0.43 0.42 

RMSE 0.55 0.56 0 56 0.58 

Phosphorous 

R2 0.06 0.17* 0 15 0.10 

MAE 0.04 0.04 0.04 0.03 

RMSE 0.06 0.06 0.06 0.06 

Potassium 

R2 0.54* 0.35 0 32 0.32 

MAE 0.08 0.07 0.07 0.07 

RMSE 0.10 0.09 0 10 0.10 

Calcium 

R2 0.26 0.35 0.40* 0.27 

MAE 0.19 0.17 0 18 0.18 

RMSE 0.23 0.22 0 22 0.23 

Magnesium 

R2 0.25 0.59* 0 54 0.49 

MAE 0.06 0.05 0.49 0.05 

RMSE 0.08 0.06 0.63 0.07 

Sodium 

R2 0.08 0.82* 0.62 0.65 

MAE 0.06 0.04 0.04 0.04 

RMSE 0.06 0.05 0.05 0.05 

M
ic

ro
n

u
tr

ie
n
ts

 

Iron 

R2 0.08 0.11 0 14 0.31* 

MAE 28.78 27.49 26.65 25.87 

RMSE 41.10 39.93 39.22 36.94 

Manganese 

R2 0.07 0.26 0 27 0.29* 

MAE 1308.51 1236.18 1257.79 1219.55 

RMSE 1543.08 1471.29 1478 29 1429.19 

Copper 

R2 0.74* 0.50 0 59 0.57 

MAE 1.80 1.67 1.65 1.64 

RMSE 2.27 2.14 2 10 2.12 

Zinc 

R2 0.62* 0.29 0 27 0.46 

MAE 8.46 7.65 8.02 7.28 

RMSE 10.99 10.21 10.23 9.46 

Boron 

R2 0.44 0.30 0 55 0.58* 

MAE 31.47 28.49 25.84 25.75 

RMSE 38.51 35.14 32.62 32.56 
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wavelengths (nm) for detecting each nutrient (N, P, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B) within 

in each vertical canopy position (Q1, Q2, Q3, Q4). Variable importance of each vertical canopy 

level was assessed using the “varImp” function within the “caret” package. This study 

predicted most nutrients within the SWIR region. Only N, P, Mn could be more discernible 

within the NIR region of the electromagnetic spectrum (Table 4.3). 

Table 4. 3: Variable important wavelength for each nutrient within each canopy position 
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Table 4.4 shows the calculated means and standard deviations (SD) of R2’s and the distribution 

of data around the mean R2 for each biochemical. The standard deviation was significant in 

explaining the variance when measuring each canopy position. The lowest SD was 0.04 R2’s 

for Cu, and the highest SD was 0.16 R2’s for N, whereas the average mean and SD was 0.39 

and 0.10 for all biochemicals combined, respectively (Table 4.4). 

  Biochemical 
Canopy 

Position 
Variable important wavelengths (nm) 

M
ac

ro
n

u
tr

ie
n
ts

 

Nitrogen 

Q1 1672 1671 1673 1669 1674 1668 1675 1667 1676 1666 

Q2 1671 1669 1672 1668 1673 1667 1674 1666 1675 1665 

Q3 863 864 863 864 904 1651 1650 1649 903 864 

Q4 1667 1668 1666 1669 1665 1671 1664 1672 1191 1191 

Phosphorous 

Q1 2224 2222 2116 2115 2118 2113 2111 2120 2225 2110 

Q2 2321 2323 2319 2325 2327 2317 1834 1832 1835 1831 

Q3 1224 1265 1275 1090 1276 1091 1265 1223 1266 1224 

Q4 1224 1265 1275 1090 1276 1091 1265 1223 1266 1224 

Potassium 

Q1 2225 2224 2222 2227 1653 1652 1655 2220 1651 1656 

Q2 2321 2319 1778 1777 2323 1681 1682 1779 1776 1684 

Q3 1680 1679 1678 1681 1677 1773 1775 1772 1776 1676 

Q4 1681 1680 1682 1679 1684 1678 2247 2245 2249 2251 

Calcium 

Q1 1689 1690 1688 1691 1687 1692 1686 1693 1695 1685 

Q2 2266 2268 2264 2262 2270 2260 2258 2256 2251 2253 

Q3 940 940 939 940 961 2195 941 2197 2193 937 

Q4 2193 2192 2195 2190 2197 2188 2199 2186 911 2201 

Magnesium 

Q1 2210 2212 2208 2214 2207 2205 1692 1693 2203 1691 

Q2 1688 1687 1689 1686 1690 1685 1684 1691 1682 1692 

Q3 1685 1686 1684 1687 1682 1688 1681 1689 1680 1793 

Q4 1689 1688 1690 1687 1691 1686 1692 1685 1684 1693 

Sodium 

Q1 2224 2222 2220 2225 2218 2106 2108 2104 2110 2103 

Q2 1712 1714 1715 1711 1716 1710 1717 1709 1718 845 

Q3 1678 1677 1679 1676 1680 1681 1675 1682 1674 1684 

Q4 1680 1679 1681 1678 1682 1677 1684 1676 1685 1675 

M
ic

ro
n

u
tr

ie
n
ts

 

Iron 

Q1 2225 2224 2227 2222 2229 2372 1291 1763 1764 1765 

Q2 1769 1770 1767 1771 1772 1773 1766 1775 1776 1765 

Q3 1675 1674 1676 1677 1673 1678 1672 1679 1680 1671 

Q4 1679 1678 1680 1677 1681 1676 1682 1684 1675 1685 

Manganese 

Q1 931 931 950 950 932 941 1117 1117 999 1283 

Q2 1265 1265 1222 1222 1264 1257 931 1263 1266 1246 

Q3 1246 1257 1246 1245 1205 1205 1257 1263 1258 1222 

Q4 1246 1246 1245 1247 1248 985 1245 1223 1265 1205 

Copper 

Q1 963 999 964 1000 999 987 988 963 987 966 

Q2 1668 1667 1669 1666 1671 1665 1672 1664 1673 1663 

Q3 1664 1663 1665 1662 1666 1667 1668 1671 1669 1661 

Q4 1675 1674 1673 1676 1672 1677 1671 1669 1678 1665 

Zinc 

Q1 1651 1652 1650 1653 1649 1655 1648 1647 1656 1646 

Q2 1783 1784 1830 1782 1831 1828 1786 1832 1827 1834 

Q3 1783 1784 1782 1786 1781 1787 1794 1795 1788 1793 

Q4 1684 1682 1685 1681 2245 2243 1686 2247 2241 2249 

Boron 

Q1 2224 2225 2222 1652 1651 1650 1653 2220 1649 842 

Q2 1682 1684 1681 1685 1680 2319 1679 1686 2321 1771 

Q3 1678 1677 1679 1676 1680 1681 1675 1682 1674 1684 

Q4 1678 1679 1677 1680 1681 1676 1682 1675 1684 1674 
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Table 4. 4: Mean R2 and standard deviation of leaf canopy positioning for each 

biochemical 

 

4.5 DISCUSSION 

This study detected foliar nutrients using NIRS and VCP using PLSR in 135 Eucalyptus 

grandis saplings. The study included an additional position of measurement (Q4), which 

enabled further investigation into which part of the sapling denoted the best place to determine 

  Biochemical   Q1 Q2 Q3   Q4 Mean R2 SD R2 

M
ac

ro
n

u
tr

ie
n
ts

 

Nitrogen 

R2 0.57 0.55 0.88* 0.35 0.49 0.12 

MAE 0.40 0.40 0.43 0.42 0.41 0.02 

RMSE 0.55 0.56 0.56 0.58 0.56 0.01 

Phosphorous 

R2 0.06 0.17* 0.15 0.10 0.10 0.04 

MAE 0.04 0.04 0.04 0.03 0.04 0.00 

RMSE 0.06 0.06 0.06 0.06 0.06 0.00 

Potassium 

R2 0.54* 0.35 0.32 0.32 0.33 0.02 

MAE 0.08 0.07 0.07 0.07 0.07 0.00 

RMSE 0.10 0.09 0.10 0.10 0.10 0.00 

Calcium 

R2 0.26 0.35 0.40* 0.27 0.29 0.05 

MAE 0.19 0.17 0.18 0.18 0.18 0.01 

RMSE 0.23 0.22 0.22 0.23 0.22 0.01 

Magnesium 

R2 0.25 0.59* 0.54 0.49 0.43 0.16 

MAE 0.06 0.05 0.49 0.05 0.16 0.22 

RMSE 0.08 0.06 0.63 0.07 0.21 0.28 

Sodium 

R2 0.08 0.82* 0.62 0.65 0.45 0.32 

MAE 0.06 0.04 0.04 0.04 0.04 0.01 

RMSE 0.06 0.05 0.05 0.05 0.05 0.01 

M
ic

ro
n

u
tr

ie
n
ts

 

Iron 

R2 0.08 0.11 0.14 0.31* 0.11 0.03 

MAE 28.78 27.49 26.65 25.87 27.20 1.25 

RMSE 41.10 39.93 39.22 36.94 39.30 1.75 

Manganese 

R2 0.07 0.26 0.27 0.29* 0.20 0.11 

MAE 1308.51 1236.18 1257.79 1219.55 1255.51 38.65 

RMSE 1543.08 1471.29 1478.29 1429.19 1480.46 47.04 

Copper 

R2 0.74* 0.50 0.59 0.57 0.55 0.05 

MAE 1.80 1.67 1.65 1.64 1.69 0.07 

RMSE 2.27 2.14 2.10 2.12 2.16 0.08 

Zinc 

R2 0.62* 0.29 0.27 0.46 0.34 0.10 

MAE 8.46 7.65 8.02 7.28 7.85 0.50 

RMSE 10.99 10.21 10.23 9.46 10.22 0.62 

Boron 

R2 0.44 0.30 0.55 0.58* 0.43 0.13 

MAE 31.47 28.49 25.84 25.75 27.89 2.71 

RMSE 38.51 35.14 32.62 32.56 34.71 2.81 
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nutrient content using a non-destructive approach. Understanding the concentration and 

distribution of active leaf biochemicals within vegetation canopies significantly influences 

gross primary production (GPP) and is empirical for developing accurate sapling nutrient 

prediction models (Alton & North, 2007). NIR technology offers forestry companies a robust, 

simplified, and operational alternative for retrieving specific biochemical information to 

inform sapling breeding programs and mill pulping requirements. 

The objective of this study was to investigate the best sampling position to measure 

macronutrients and micronutrients at different canopy positions by segmenting saplings into 

four quartiles using NIRS. The idea was to select and inform forest nursery managers on the 

best sampling position, which will reduce sampling time and still provide an accurate account 

of the nutrient content in the entire sapling. This study used a similar method reported by Gara 

et al. (2018) and adapted it by adding a fourth quartile which further segmented the sapling. 

However, Gara et al. (2018) studied the shifting of wavelengths from the lower to upper 

portions of the tree and measured N, Chl, specific leaf area, C, and effective water thickness. 

As a result, their study used significance 𝜌-value at 0.1, 0.05, and 0.01 to compare the lower to 

upper regions. Whereas this study specifically observed the trees most effective macronutrients 

and micronutrients between all leaf canopy positions. The finding in this study shows that 

macronutrients and micronutrients are better predicted in Q2 and Q4, respectively. 

However, when observing the overall predictions of each nutrient, P produced significantly 

low results within NPK compared to other studies using PLSR with all spectra averaged. 

Commonly, NPK has high prediction accuracies when compared to earlier research. Similar 

studies such as Abdel-Rahman et al. (2017) also predicted NPK using PLSR, which produced 

significantly higher P content results than this study. Nonetheless, the results in this study are 

comparable to other studies that determined valuable nutrients in young trees using remotely 

sensed data (Mutowo et al., 2018, 2019). For instance, Mutowo et al. (2019) achieved an R2 of 

> 0.90 for N with a 2-canopy level (top and medium) using Sentinel-2 imagery (443 nm to 

2190 nm) and weighted means (RMSE) approach. Asner et al. (2011) achieved an R2 of 0.59 

for N and 0.51 for P. Menesatti et al. (2010) measured N, P, K, Ca, Mg, Fe, Zn, and Mn in 

citrus leaves using a VI-NIR spectrometer (310 to 1100 nm) and PLS for prediction. As a result, 

like this study, their study also found significantly low P accuracies during testing; however, 

their study achieved their highest accuracy for K compared to our study.  

A potential limitation for accurately sampling at leaf level studies understands the process of 

nutrient re-translocation at the species level. Nutrient re-translocation is a process when a plant 
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removes nutrients from plant tissue into the perennial part of the plant before senescence as a 

conservation mechanism (Fife et al., 2008). As a result, lower nutrient content levels could be 

in the leaves at the acquisition time. For example, Fife et al. (2008) found significant 

differences in the amount of nutrient content in the leaves compared to the stem or trunk after 

taking measurements at 12 months and 22 months of age in Acacia mearnsii De Wild. (a N-

fixing species); Eucalyptus globulus; E. fraxinoides H. Deane Maiden; E. grandis W. Hillex 

Maiden; Pinus radiata; and Casuarina glauca Sieber ex Spreng species.  

However, this study provides evidence to sample at specific locations to find differences in 

nutrient content. A constraint of this study is the lack of variability in environmental conditions 

that would be of impact in a more natural environment. An essential step for future research 

would be to investigate the chemical distribution throughout the canopy of live standing trees 

using a methodology like this study. Detecting foliar nutrients within a forest environment can 

offer fast and reliable results to forestry and agricultural sectors. Future work can use such 

methods developed in this study for estimating wood density properties and other key traits 

such as cellulose and lining that would be instrumental towards the manufacturing value chain 

of the forestry business. The generalization of this study’s findings supports analyses of live 

standing trees. However, this will require future studies to understand the re-translocation of 

plant biochemistry within the bigger context and consider all external environmental impacts, 

which may influence nutrient content. Also, future studies could upscale this approach to fully 

grown trees in the field to examine the extent of the VCP method for the detection of critical 

nutrients and to understand the impact of taking measurements from the inner and outer 

portions of the trees. The adoption of coherent sampling methods and analytical procedures for 

biomonitoring to better understand plant and leaf processes is critical for the sustainability of 

many forestry industries worldwide (Loppi et al., 1997). The success of this study promotes 

the use of NIR spectroscopy for determining the nutrient status of saplings. Furthermore, 

providing a good platform for forestry industries to rapidly detect the nutrient status of their 

younger plants while ensuring optimal growth of their future plantations. 

4.6 Conclusion 

In conclusion, the study detected and predicted foliar nutrients in Eucalyptus grandis saplings 

under nursery conditions. The study made the following findings:  
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• The findings of this study suggest that spectral measurements are best taken from 

canopy position levels Q2 and Q4 for macronutrients and micronutrients using NIRS, 

respectively. 

• Not many studies have examined the full range of macronutrients (N, P, K, Ca, Mg, 

Na) and micronutrients (Fe, Mn, Cu, Zn, B) nutrient concentrations across four VCP’s 

using NIR spectroscopy combined with an effective PLS algorithm. 

Overall, the study found no distinct VCP better predicted all nutrients in this study. However, 

this study offers guidance to the optimal tree position suitable for producing the best detection 

of each macronutrient and micronutrient. The next step would be upscaling the methodologies 

developed in this study onto larger areas within the forest plantation using higher resolution 

airborne sensors to accurately detect contemporary nutrient management regimes. Lastly, 

finding the optimal position to take a representable sample are important for understanding the 

distribution of nutrient deficiencies throughout a tree canopy. In the upcoming chapter we 

explore airborne sensors to test the capabilities of airborne sensors and the detection accuracy 

of nutrients on a broader scale.  
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CHAPTER 5: Comparing the classification accuracy of ultra-high-resolution 

UAS imagery and very-high-resolution PlanetScope imagery in four nutrient 

management regimes using a deep learning artificial neural network 

To compare the classification accuracy of ultra-high-resolution UAS imagery and very-high-

resolution PlanetScope imagery in four nutrient management regimes using a deep learning 

artificial neural network. 

 

 

 

 

 

This chapter was based on: 

Singh L*, Mutanga O, Mafongoya P, Peerbhay KY, Dovey S (Preparation). Comparing unmanned 

aerial vehicle and PlanetScope imagery for classifying nutrient management regimes in commercial 

forestry plantations using a deep learning artificial neural network. 
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Abstract 

Improvements in spatial resolutions of remotely sensed data can improve crop health status 

mapping. Coarser-resolution imagery conceivably confounds nutrient assessments. Proximal 

sensors provide incredibly high spectral resolutions; however, they are not practical for 

assessing large compartment forest canopies. This study aims to evaluate the capabilities of 

ultra-high-resolution UAS imagery and very-high-resolution PlanetScope imagery combined 

with a deep learning ANN to classify four nutrient management regimes in a Eucalyptus 

compartment forest. Using a confusion matrix both pixel-based image sources successfully 

classified the four nutrient management regimes with an OA above 80%, KHAT above 75% 

using four hidden layers and 30 epochs. UAS imagery performed better than PlanetScope 

imagery; however, the results show the potential of very-high-resolution PlanetScope imagery 

closely matching the results of ultra-high-resolution UAS imagery. Advancements in remote 

sensing and machine learning provide resourceful in improving the effectiveness and efficiency 

of nutrient assessments. 

Keywords: PlanetScope, deep learning, forestry, foliar biochemicals 
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5.1 Introduction 

UAS technology and very-high-resolution satellite imagery have shown potential to assist in 

maximising global forest plantations returns (Dash et al., 2018; Krishna, 2018; Taddese et al., 

2020). Recently, research has focused significantly on developing remote sensing methods 

using very-high-resolution imagery for forest management (Barbedo, 2019; Mutanga et al., 

2016). UAS’s and very-high-resolution satellite imagery can provide precise, timely, cost-

effective, and versatile services for crop management (Chen et al., 2019; Krishna, 2018). 

Advanced UAS photogrammetric sensors such as the Red Edge-MX Micasense camera provide 

a host of crop management services such as precision agriculture, crop health, irrigation 

monitoring and detecting pests and diseases are essential information for making an informed 

decision (Berger et al., 2020; Fareed & Rehman, 2020; Krishna, 2018; Oliveira et al., 2020). 

The Micasense camera provides centre meter pixel accuracy, designed for precision 

agricultural applications (Babaeian et al., 2021). The Micasense camera is small and lighter for 

UAS drone assembly and is generally cheaper than actual hyperspectral cameras (Suomalainen 

et al., 2021). To date, not many studies have explored the capabilities of new-generation UAS 

technology and very-high-resolution satellite imagery to classify nutrient management regimes 

in commercial forestry compartments. Intelligent nutrient management regimes provide a 

valuable competitive edge for commercial forestry growers. Furthermore, practical nutrient 

assessments provide essential information for forest mensuration, forest health and estimating 

yield potential. 

Globally, forests play an integral role in climatic stabilization and sequestering C in biomass 

and soil (Yousefpour et al., 2018). Research suggests that forest management is a primary 

driver of biodiversity, climate change, ecosystem health and ecosystem services (Kahl & 

Bauhus, 2014; Yousefpour et al., 2018). Problems exist when commercial forests become 

nutrient deficient; effectively, time is lost, resulting in no return on investment for commercial 

forestry companies. Hence, the supply of adequate nutrients to trees directly affects the income 

potential of forestry industries. In this regard, a crop’s response to standard but essential inputs 

such as nutrients (fertilizer), water and other amendments varies immensely (Krishna, 2018). 

UAS’s provide ultra-high-resolution imagery with centimetre accuracy, enabling more discrete 

information for subsequent analysis. UAS’s have restrictions to local area applications (<10 

km2), whilst very-high-resolution satellite imagery provides extensive area coverage of the area 

of interest (AOI)(Johansen et al., 2020). The standard procedure is to validate UAS imagery 

with ground data enhancing the reliability of the data collected. UAS’s and very high-resolution 

satellite imagery offers a wide range of services to farmers and reduce drudgery (Krishna, 
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2018). UAS’s and very-high-resolution satellite imagery offers non-destructive assessments 

which disturb soil neither its biotic factors nor the physicochemical properties of the targeted 

AOI (Krishna, 2018).  

Furthermore, the lack of suitable plantation nutrient management regimes for maintaining 

balanced soil nutrients results in a decline in tree productivity, dystrophic soils, and the 

interruption of natural nutrient cycling processes (Crous et al., 2007). Long-term changes in 

soil nutrient levels have been challenging to detect in previous studies directly attributable to 

management induced losses (Krishna, 2018). More specifically, nutrient-related productivity 

decline in plantation forests can function the accuracy of sampling methods that require 

calibration with plantation forest soils. Detecting nutrient-related productivity decline in 

plantation forests can be challenging in complex plantation environments. Traditional sampling 

techniques for evaluating different nutrient management regimes have to wait until harvest; 

hence the early detection of nutrient stress cannot be tracked (Cai et al., 2019). It is important 

to understand the cost implications of employing these systems operationally in a practical 

environment. The cost of these platforms and associated sensors are rapidly decreasing while 

their capabilities and sophistication are constantly improving (Dash et al., 2018). There are 

many factors to consider when comparing the cost-benefit of UAS versus satellite imagery 

such as optical quality (low, medium, high), minimum order area, radiometric resolution, 

spatial resolution, data volume per hectare, revisit time, and price per hectare. (Sozzi et al., 

2021). However, satellite imagery is characterized by a lower break-even point in hectares 

compared to UAS imagery. Furthermore, satellite imagery most commonly requires a 

minimum order compared to UAS image that is flown based on the parameters of the AOI. 

Previous studies have demonstrated the use of ultra-high-resolution imagery (>2m) on airborne 

UAS platforms for mapping biophysical and biochemical properties of crops using mainly 

vegetation spectral indices (Cai et al., 2019; Dash et al., 2018; Lu et al., 2018; Lussem et al., 

2019; Osco et al., 2020a) and machine learning (Gracia-Romero et al., 2020; Han & 

Watchareeruetai, 2019; Zha et al., 2020). However, there are substantial costs associated with 

acquiring centimetre accurate UAS imagery, which generally covers a smaller area than 

satellite imagery. Therefore, satellite imagery still plays a vital role in precision agriculture 

mapping applications by mapping at larger spatial scales, technically not achievable for UASs 

(Johansen et al., 2020). Later studies have revealed that UAS data can complement satellite 

imagery (Dash et al., 2018). For example, Johansen et al. (2020) tested UAS and Worldview-

3 imagery capabilities to map the condition of macadamia tree crowns using the RF classifier. 
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As a result, Worldview-3 imagery underperformed compared to UAS imagery; however, the 

authors correctly classified five condition categories with out of bag accuracy above 98.5%. 

Dash et al. (2018) tested the sensitivity of multispectral imagery collected from time-series 

UAS and satellite imagery to detect herbicide-induced stress in a carefully controlled 

experiment carried out in a mature Pinus radiata D. Don plantation in New Zealand. The 

authors compared the performance of spectral indices Normalized Difference Vegetation Index 

(NDVI), green normalized difference vegetation index (GNDVI), and the red edge normalized 

difference vegetation index (RENDVI). The authors found that UAS imagery provides superior 

sensitivity to physiological stress than satellite imagery. 

In summary, many studies have mapped and monitored the nutrient status of crops such as 

sunflower, cotton, wheat, grass, turfgrass, corn, potato, sugar beet, rice, soybean, and canola 

using multispectral, hyperspectral and red-green-blue (RGB) UAS imagery (Barbedo, 2019; 

Dash et al., 2018; Gracia-Romero et al., 2020; Jay et al., 2019; Lussem et al., 2019). 

Furthermore, the majority of the studies mentioned above predicted N concentration, P and K 

using spectral vegetation indices such as normalized difference red edge (NDRE), NDVI, 

normalized green-red difference index (NGRDI), PLSR, RF and SVMR (Barbedo, 2019). 

However, few studies have compared the performance of ultra-high-resolution UAS’s and 

very-high-resolution PlanetScope imagery for classifying nutrient management regimes 

combined with a deep learning ANN in a commercial forestry compartment. Hence, the aim of 

this is to evaluate the capabilities of ultra-high-resolution UAS imagery and very-high-

resolution PlanetScope imagery combined with a deep learning ANN to classify four nutrient 

management regimes in a Eucalyptus compartment forest. This study will provide exploratory 

clarity to the trade-offs of two very-high-resolution remote sensing platforms for optimizing 

forest management practices. Climate Smart Forestry recognizes synergies among climate 

change mitigation and other forest benefits, essentially optimizing forest management practices 

to contribute to climate change mitigation to contribute to the ambitious COP 21 goals 

(Yousefpour et al., 2018). 

5.2 Materials and methods 

5.2.1 Study area 

The study area is located at the Clan Sappi plantation in KwaZulu-Natal, South Africa 

(29°20’6” S, 30°27’13” E)(Figure 5.1). The location of the nutrient management regime in the 

mist belt grassland bioregion of the KwaZulu-Natal, Midlands, occupies 1.4ha. The 
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compartment consisted of 3-4-year-old Eucalyptus grandis x Eucalyptus urophylla tree species 

variety, Eucalyptus grandis (flooded gum or rose gum) is native to New South Wales, and 

Eucalyptus urophylla (Timor white gum, Timor Mountain gum, Popo or Ampupu) is native to 

the Indonesian Archipelago and Timor. The mean annual precipitation (MAP) range for the 

study area is 1000-1100 mm, and the mean annual temperature (MAT) is 18.1 degrees Celsius, 

situated at 788 m above sea level (ASL) (Mucina & Rutherford, 2006). The study area lithology 

consists of shale and dolerite, and the soil type is Inanda which has a silty clay soil texture 

(Mucina & Rutherford, 2006). The soil texture comprises of 56% sand and 44% of clay. The 

study area was preferred due to anthropogenic influences, a controlled environment, and typical 

site characteristics for compartment planting of the tree species. 

 

Figure 5. 1: The location of the study area in a plantation forest of KwaZulu Natal, 

Midlands, South Africa, and the nutrient management regime formation. 

5.2.2 Experimental design & field data 

The nutrient management regime trial comprised four treatments with four replicates arranged 

in a Latin square design. Trees were planted at 1m x 1m espacement (i.e., 10 000 sph), with 

plots of 10 x 15 trees (750 m2) and growth measurement plots of 5 x 5 trees centrally located 

within each plot (Figure 5.1). Figure 5.1 illustrates the polygons depicting each nutrient 
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management regime. A series of 16 ground control points (GCPs) were established at the centre 

of each polygon represented in Figure 5.1 within the study area. Each GCP was located using 

a Trimble GeoExplorer 6000 series GeoXH global positioning system (GPS). The GPS has a 

centimetre-level accuracy of less than 10 cm, which improves accuracy when locating each 

GCP (Trimble Navigation Ltd., Sunnyvale, CA, USA). The GCP’s were used to accurately 

geo-rectify the UAS imagery (Dash et al., 2018). The four treatments consist of: 

1. Residue retention (RET): All biomass (stem, branches, and foliage) is retained and 

dispersed over the plot (to simulate full nutrient retention). 

2. Nutrient removal (REM): All biomass is removed with no fertilizer application. 

3. Nutrient replacement (FERT): All biomass is removed, followed by fertilizer addition 

to replace lost nutrients. The annual nutrient loss was calculated and replaced with 

granular fertilizer at around 110% of the removed elements; dispersed over the whole-

plot area. Fertilizer addition commenced after the first harvest (first coppice crop) to 

simulate intensive nutrient removal with management amelioration. 

4. Rehabilitation (2RF): Same as treatment 2, but when soil depletion is confirmed, this 

treatment will test the ability of fertilizer to ameliorate soil fertility following re-

establishment of all plots to standard operational espacement and to recover naturally 

or through fertilizer addition. Thus, the first three treatments were implemented for the 

study’s first phase. 

5.2.3 UAS imagery & pre-processing 

UAS imagery was collected under cloudless (0%) conditions between 10:00 and 14:00 h central 

African time using DJI Phantom 4 Pro quadcopter in October 2018. UAS imagery was 

collected using a Red Edge-MX Micasense narrowband multispectral camera (Micasense Inc., 

Seattle, WA, USA). The Red Edge-MX Micasense camera has a pixel size of 2 cm and a pixel 

depth of 12-bits (Lussem et al., 2019). The Red Edge-MX Micasense camera has the following 

waveband setting (blue = 455–495 nm, green = 540–580 nm, red = 658–678 nm, red edge = 

707–727 nm and NIR = 800–880 nm). The DJI Phantom 4 Pro was flown at an altitude of 

approximately 60 m above the AOI, resulting in a ground sample distance (GSD) of 8 cm (Dash 

et al., 2018). The image was acquired as a snapshot of the AOI with a focal length lens of 5.5 

mm and a FOV of 151.47 degrees. The camera was housed in a gimbal to ensure the nadir 

orientation of the camera during data collection. The sensor was calibrated using a reference 
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panel (white reference) coated with a barium sulphate of known reflectivity. Sensor calibration 

took place directly before and after each flight to offset any change in the sun’s atmospheric 

condition and irradiance (Singh et al., 2017a). 

The UAS image was processed using (Structure-from-Motion software PhotoScan v1.4) 

(AgiSoft LLC, St. Petersburg, Russia) in conjunction with the GCPs speculated in the 

experimental design of this study (Lussem et al., 2019). Image pixels were extracted from the 

polygons (Figure 5.1) using the “Extract by Mask tool” in the “Spatial Analyst” toolbox in 

ArcGIS 10.7.  Each nutrient management regime represented various pixels based on the UAS 

image resolution. 

5.2.4 PlanetScope imagery & pre-processing 

The acquisition of PlanetScope imagery coincided with the time of acquiring the UAS imagery. 

PlanetScope multispectral imagery was obtained under cloudless conditions in October 2018 

by the supplier. PlanetScope satellite imagery consists of a constellation of individual small 

Dove satellites, namely a CubeSat 3U form factor. The constellation has approximately 130 

satellites that image the entire earth on a daily temporal resolution. The PS2 instrument onboard 

the Dove satellite collects images with a frame size of 24 x 8 km and a bit depth of 12-bits. 

PlanetScope imagery comprises four wavebands operating over the 455-860 nm wavelength 

range with a spatial resolution of 3.7 m. Specific wavelength ranges are 455-515 nm, 500-590 

nm, 590-670 nm, and 780-860 nm for the blue, green, red, and NIR. 

PlanetScope product level 3A imagery was obtained which is radiometric, and sensor corrected 

by the vendor. ENVI 5.2 image processing software (L3Harris Technologies, 2020) was used 

to test and further pre-processed the PlanetScope imagery for any other irregularities. 

PlanetScope product level 3A imagery is orthorectified and projected to Universal Transverse 

Mercator (UTM) by the vendor, and the WGS-84 Geodetic System was used, similarly for the 

UAS imagery above. Similarly, pixels were extracted from the polygons (Figure 5.1) using the 

“Extract by Mask tool” in the “Spatial Analyst” toolbox in ArcGIS 10.7. Each nutrient 

management regime represented various pixels based on the PlanetScope image resolution. 

Table 5. 1: UAS and PlanetScope configurations and specifications 

Platform 

name 

Platform 

type 
Sensor type 

Radiometric 

resolution 

Spatial 

resolution 
Wavebands 

Spectral resolution 

(nm) 

DJI 

Phantom 4 
UAS 12-bit 

8 cm/px @ 

120 m 

Blue 455–495 

Green 540–580 



80 

Red Edge-

MX 

Micasense 

Red 658–678 

Red-edge 707–727 

NIR 800–880 

PlanetScope Satellite 4 band 12-bit 3.7 m/px 

Blue 455-515 

Green 500-590 

Red 590-670 

NIR 780-860 

 

5.2.5 Deep learning artificial neural network (ANN) algorithm 

In general, an ANN stems from artificial intelligence, which is the ability of a sophisticated 

computer machine to perform human intelligence tasks (Atkinson & Tatnall, 1997; Berg & 

Nyström, 2018; Reichstein et al., 2019). A deep learning ANN is based on constructing 

increasingly sophisticated hierarchical architectures using two or more hidden layers with 

multi-layer neurons (Reichstein et al., 2019). Multi-layer neurons can cycle or loop information 

between different neurons, creating powerful pattern recognition abilities to learn intricate 

multivariate data patterns (Atkinson & Tatnall, 1997; Mutanga & Skidmore, 2004; Reichstein 

et al., 2019). Previous studies used various deep learning ANN models such as multi-layer 

perceptron (MLP), radial basis function, and backpropagation in forest modelling of remotely 

sensed data (Atkinson & Tatnall, 1997; Liu et al., 2013; Omer et al., 2017; Wang et al., 2009). 

Figure 5.2 represents the network structure of an ANN; whereby hidden layers bridge the gap 

between input layers and output layers. Artificial neurons receive a set of weighted inputs to 

produce an output through an activation function (Atkinson & Tatnall, 1997)(Figure 5.2). An 

activation function is liable for converting the summed weighted input from the node into the 

node’s activation or output to help the network learn intricate patterns in the data. Several types 

of activation functions such as sigmoid, rectified linear units, or hyperbolic tangents exist 

within the neurons of each hidden layer (Berg & Nyström, 2018). Combined with the activation 

function, each neuron in the ANN is assigned a bias, including the output neurons and 

excluding the input neurons, whilst the connections between neurons in subsequent layers are 

represented by matrices of weights (Berg & Nyström, 2018). The weighted input for a deep 

learning ANN is defined as: 

𝑧𝑗
𝑙 =  ∑ 𝑤𝑗𝑘

𝑙
𝑘 𝜎𝑙−1(𝑧𝑘

𝑙−1) + 𝑏𝑗
𝑙   
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where the sum of all inputs is taken to the neuron j in Layer l, which is the number of neurons, 

the deep learning ANN naturally defines a recursion in terms of previous weighted inputs 

through the ANN. The calculation that terminates any recursion is defined as:  

𝜎0(𝓏𝑗
0) =  𝒴𝑗

0 = 𝓍𝑗     

More specifically, in figure 5.2, Layer 0 is the input layer which is consists of imagery (UAS 

and PlanetScope) and the response variable (nutrient management regimes), and Layer L is the 

output layer. Layer l – 1 and Layer l represent the hidden layers; in this figure 5.2, there are 

two hidden layers, whereas, in this study, four hidden layers were used (Berg & Nyström, 

2018). 

 

Figure 5. 2: A fully connected feedforward ANN (Berg & Nyström, 2018). 

The feedforward algorithm for computing the output is defined as:  

𝑦𝐿 =  𝜎𝐿(𝑧𝐿) 

𝑍𝐿 =  𝑤𝐿𝜎𝐿(𝑧𝐿−1) +  𝑏𝐿 

𝑧𝐿−1 =  𝑤𝐿−1𝜎𝐿−2(𝑧𝐿−2) +  𝑏𝐿−1 

⋮ 

𝑧1 =  𝑤1𝑥 +  𝑏1 

The backpropagation algorithm for calculating the gradients of the cost function is defined as: 

𝛿𝑗
ℒ =

𝜕𝒞

𝜕𝒴𝑗
ℒ  𝜎ℒ

′(𝒵𝑗
ℒ), 

𝜕𝒞

𝜕𝓌𝑗𝑘
𝑙 = 𝒴𝑘

𝑙−1𝛿𝑗
𝑙, 
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𝛿𝑗
𝑙 = ∑ 𝓌𝑘𝑗

𝑙+1
𝑘  𝛿𝑘

𝑙+1 𝜎ℒ
′(𝒵𝑗

𝑙), 
𝜕𝒞

𝜕𝑏𝑗
𝑙 = 𝛿𝑘

𝑙 . 

The deep learning ANN was executed in Rapid Miner studio software (version 7.3). Rapid 

Miner provides an integrated tool for neural network analysis that supports all the machine 

learning process steps, including data preparation, results in visualisation, validation, and 

optimisation (Alsaqer & Sasi, 2017; Kanmani & Jayapradha, 2017). This study set the number 

of neurons to 1000 and epochs to 30, with four hidden layers to increase the ANN’s depth for 

a deep learning approach. 

5.2.6 Accuracy assessment 

The extracted pixels for each image (PlanetScope and UAS) were randomly split into training 

(60%) and test (40%) datasets. A confusion matrix was used to evaluate the accuracy 

assessment or network performance (Cömert & Kocamaz, 2016). The confusion matrix 

produces an OA and KHAT, which indicates the percentage of correctly classified pixels and 

the effectiveness of the overall classification (Congalton & Green, 2019; Tu et al., 2018). 

KHAT values range between 0 to 1 in percentage; values closer to 1 predict the best results. 

The confusion matrix measures the user and producer accuracy embedded in its system. The 

user accuracy corresponds to an error of commission (inclusion), and producer accuracy 

corresponds to an error of omission (exclusion)(Atkinson & Tatnall, 1997). The confusion 

matrix was calculated by comparing the ground truth data (plantation biochemicals) with the 

in-depth learning ANN classification results. OA and KHAT equations are as follows: 

𝑂𝐴 =
∑ 𝑋𝑖𝑖𝑇

𝑖=1

𝑛
            

𝐾𝑎𝑝𝑝𝑎 =
𝑛∗ ∑ 𝑋𝑖𝑖− ∑  𝑇

𝑖=1 ∑ 𝑋𝑖𝑗𝑇
𝑖=1

𝑇
𝑖=1

𝑛2− ∑  𝑇
𝑖=1 ∑ 𝑋𝑖𝑗𝑇

𝑖=1

         

T is the number of classes; Xii represents the correctly classified pixels in class i; Xij represents 

the incorrectly classified pixels in class i; and n represents the number of pixels participating 

in the classification (Tu et al., 2018).  
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5.3 Results 

5.3.1 Basic soil physio-chemical properties 

Table 5.2 shows the basic assessment of soil physio-chemical properties (attribute) was 

conducted at 0-20 cm soil depth in the study area. These properties are essential attributes of 

ancillary data, potentially used to enhance this study’s nutrient regime classification accuracy.  

Table 5. 2: General study area information and basic soil physio-chemical properties of 

the 0 - 20 cm soil depth for the nutrient management regime trial. 

Attribute Study area 

Sand & Silt % 56 

Clay % 44 

Texture Silty Clay 

pH (KCl) 3.55 

pH (H2O) 3.89 

Exchangeable acidity (cmolc kg-1) 7.16 

Organic carbon (WB) % 8.35 

N % 0.51 

C : N 16.4 

P (ppm) 6.51 

K+ (cmolc kg-1) 0.20 

Ca2+ (cmolc kg-1) 0.60 

Mg2+ (cmolc kg-1) 0.27 

Na+ (cmolc kg-1) 0.06 

ECEC (cmolc kg-1) 8.29 

Base saturation (%) 13.6 

 

5.3.2 Deep learning ANN using UAS imagery 

As a result, very-high-resolution 6cm spatial resolution UAS imagery pixels produced an 

overall classification accuracy of 87.62%, a KHAT statistic value of 0.83, and an error rate of 

12.38%. Table 5.3 & 5.4 is a confusion matrix showing the performance of a deep learning 

ANN and the user and producer accuracy which is calculated by dividing the number of 

correctly classified pixels in each nutrient regime by the total number of pixels in the 

corresponding column. The combination of UAS imagery and a deep learning ANN produced 
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excellent classification accuracy for each nutrient management regime, with the user and 

producer accuracy ranging from 75% to 100% and 82% to 94%, respectively (Table 5.3). The 

classification of nutrient removed plot pixels produced the best results with user and producer 

accuracies of 100% and 82%, respectively. Similarly, the retained plot pixels’ classification 

produced better results than other plots with a user and producer accuracy of 94% and 88% for 

nutrient retained plots, respectively (Table 5.3). However, the classification of rehabilitated 

plots pixels produced lower results with user and producer accuracies of 75% and 86% in this 

study, respectively. 

Deep learning model scoring history 

Figure 5.3 shows the scoring history of the UAS image model that was trained for 30 epochs 

using four hidden layers and 200 neurons. The choice of limiting the epochs to 30 was made 

based on the empirical observation that the process converged well within 30 epochs (Figure 

5.3).  Figure 5.3 shows that most “learning” occurred during the first ten epochs.  

Table 5. 3: Confusion matrix based on the deep learning ANN and the UAS imagery five 

waveband pixels. *Bold values indicate the number of correctly classified pixels.  

  Removed Rehabilitated Fertilized Retained Row total 
User’s 

accuracy (%) 

Removed 4100    4100 100 

Rehabilitated 900 4300 200 300 5700 75 

Fertilized  500 4700 300 5500 85 

Retained  200 100 4600 4900 94 

Column total 5000 5000 5000 5200 20200  

Producer’s accuracy (%) 82 86 94 88   
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Figure 5. 3: The scoring history of the deep learning ANN using UAS imagery. * Y-axis 

shows classification error (RMSE), and the x-axis shows the number of epochs. The series 

lines show training (yellow) and validation (purple) converging after 30 epochs.  

5.3.3 Deep learning ANN using PlanetScope imagery 

As a result, very-high-resolution 3m spatial resolution PlanetScope imagery pixels produced 

an overall classification accuracy of 81.50%, a KHAT statistic value of 0.75 and an error rate 

of 18.50%. The combination of PlanetScope satellite imagery and a deep learning ANN 

produced excellent classification accuracies for each nutrient management regime, with user 

and producer accuracies ranging from 73% to 100% and 76% to 90%, respectively (Table 5.4). 

Similarly, to the UAS imagery, the PlanetScope satellite image best-classified nutrient 

removed plot pixels with user and producer accuracies of 100% and 76%, respectively. The 

classification of nutrient fertilized and retained plot pixels produced the same results with user 

and producer accuracies of 80% and 80%, respectively. The rehabilitated plot pixels 

classification performed well with 73% and 90% user and producer accuracy, respectively 

(Table 5.4). 

Deep learning model scoring history 
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We replicated the same parameters in the UAS image (Figure 5.4). Figure 5.4 shows the scoring 

history for the PlanetScope image model that was trained for 30 epochs using four hidden layers 

and 200 neurons. In  Figure 5.4 the most “learning” occurred during the first ten epochs.  

Table 5. 4: Confusion matrix based on the deep learning ANN and the PlanetScope 

imagery four waveband pixels. *Bold values indicate the number of correctly classified 

pixels. 

  Removed Rehabilitated Fertilized Retained Row total 
User’s 

accuracy (%) 

Removed 3800    3800 100 

Rehabilitated 1200 4500 500  6200 73 

Fertilized   4000 1000 5000 80 

Retained  500 500 4000 5000 80 

Column total 5000 5000 5000 5000 20000  

Producer’s accuracy (%) 76 90 80 80   

 

Figure 5. 4: The scoring history of the deep learning ANN using PlanetScope imagery. * 

Y-axis shows classification error (RMSE), and the x-axis shows the number of epochs. 

The series lines show training (yellow) and validation (purple) converging after 30 epochs. 
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5.3.4 Comparing UAS and PlanetScope imagery using a deep learning ANN 

Very-high-resolution UAS and PlanetScope imagery pixels accurately classified nutrient 

management regimes with overall classification accuracy> 80%. Table 5.5 compares the 

overall classification accuracy between using UAS and PlanetScope imagery using overall 

accuracy, KHAT and error rate. Ultimately, the UAS imagery performed better than 

PlanetScope imagery. When comparing the differences in actual values between the UAS and 

PlanetScope imagery, there is a 6.12%, 0.08% and a 6.12% difference in the OA, KHAT and 

error rate, respectively (Table 5.5).  

Table 5. 5: Overall classification performance of UAS and PlanetScope imagery pixels 

using a deep learning ANN. 

Imagery Overall accuracy (%) KHAT (%) Error rate (%) 

UAS 87.62 0.83 12.38 

PlanetScope 81.50 0.75 18.50 

 

Furthermore, table 5.6 compared the user and producer accuracy of very high-resolution UAS 

and PlanetScope imagery to classify each nutrient management regime. Figure 5.5 illustrates 

the classification of all nutrient management regimes in the study area using UAS imagery. As 

a result, the UAS image pixels produced higher user accuracy (>=75%) when compared to 

PlanetScope image pixels for the removed, fertilized and retained plots. However, the 

rehabilitated plot produced a lower user accuracy for the UAS image pixels (75%) than the 

PlanetScope image pixels (86%). The producer accuracy of the UAS image pixels was higher 

(>=82%) for rehabilitated, fertilized, and retained plots compared to the PlanetScope image 

pixels. However, the removed plot produced a lower producer accuracy for the UAS image 

pixels (82%) than the PlanetScope image pixels (100%) (Table 5.6). 

Table 5. 6: Comparing UAS and PlanetScope image pixel user and producer accuracies 

across all nutrient management regimes. 

 Removed Rehabilitated Fertilized Retained 

UAS     

User’s accuracy (%) 100 75 85 94 

Producer’s accuracy (%) 82 86 94 88 

PlanetScope     

User’s accuracy (%) 76 90 80 80 

Producer’s accuracy (%) 100 73 80 80 
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*Producer accuracy = omission error and user accuracy = commission error.  

 

Figure 5. 5: The classification of nutrient management regimes using UAS imagery. 

*Each nutrient management regime is indicated within each plot on the map (please refer 

to experimental design and field data section of this study for information). 

5.4 Discussion 

This study has shown a deep learning ANN’s potential to accurately classify critical 

commercial nutrient management regimes using ultra-high-resolution UAS imagery and very-

high-resolution satellite imagery in KwaZulu-Natal, South Africa. A deep learning ANN 

combined with very-high-resolution UAS imagery provides an ideal framework for classifying 

several nutrient management regimes in a commercial forestry compartment. Additionally, this 
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study has shown that very high-resolution satellite imagery can classify several nutrient 

management regimes. 

5.4.1 Classification using UAS imagery 

The deep learning ANN successfully classified all nutrient management regimes with a lower 

spectral resolution and high spatial resolution UAS sensor (Figure 5.5). The UAS sensor 

produced an OA above 87% and a KHAT value of 0.83% for all nutrient management regimes. 

A multi-perceptron ANN was more effective and efficient, reducing computational time while 

producing a low error rate of 12.38%. To date, not many studies have used a similar 

experimental design; hence the results cannot be compared to many other studies. A similar 

study by  Escalante et al. (2019) reported an OA of 83% when estimating N fertilization in 

Barley using UAS imagery and a deep learning approach. Their study used a 3-waveband RGB 

image, whereas this study used a 5-waveband image, including a NIR and red-edge waveband 

which improved accuracy and predictive capabilities. The use of the Micasense camera 

improves predictions in this study. Although the Micasense camera provides exceptional 

performance for the objectives obtained in this study, it is more expensive than commonly used 

RGB cameras. However, for the level of detail required in this study, the Micasense camera 

provided the relevant performance. 

5.4.2 Classification using PlanetScope imagery 

The deep learning ANN successfully classified all nutrient management regimes using high 

spatial resolution PlanetScope satellite imagery. To date, this is the first study to use a 

combination of PlanetScope imagery and an ANN to detect nutrient concentrations in a forestry 

environment. Similar studies using high-resolution imagery from different sources combined 

with a deep learning approach. The results obtained in this study are comparable to Pereira et 

al. (2022), who found UAS imagery superior to PlanetScope and Sentinel-2 imagery. Our 

findings concur that the accuracy of the predictions is consistent with the area of interest’s area 

size (AOI’s). Satellite imagery is more suitable for larger areas than UAS imagery. Hence, 

UAS imagery can provide higher levels of spatial accuracy when compared to satellite imagery 

(Watt et al., 2019). PlanetScope imagery’s performance was exceptional compared to previous 

studies (Berger et al., 2020; Dash et al., 2018; Johansen et al., 2020; Lussem et al., 2019). The 

overall results indicate the usefulness and capabilities of 4-band PlanetScope satellite imagery 

in detecting discrete nutrients in a compartment forest.  
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5.4.3 Comparing classification using UAS and PlanetScope imagery 

The objective of this study was to compare the utility of ultra-high-resolution centimetre 

accuracy UAS and very-high-resolution PlanetScope imagery for classifying each nutrient 

management regime in a compartment forest. This study refers to ultra-high-resolution imagery 

with less than 1m spatial resolution, and very-high-resolution imagery is > 1m and < 10m (Watt 

et al., 2019). These platforms were selected based on their similarities in spectral, radiometric, 

and very-high spatial resolutions. Table 5.1 shows the configurations of each platform which 

are almost identical for two vastly different imaging platforms. The UAS imagery performed 

better than satellite imagery; however, its margin surpassed the PlanetScope imagery was 

small. However, limitations exist amongst both platforms, which include the study design. 

UAS deliver exceptional high resolutions, although there are limitations such as gusty wind 

conditions, flight restrictions, battery capacity, and a skilled UAS pilot (Pereira et al., 2022). 

When compared to satellite platforms, these limitations do not exist. However, satellite 

platforms do not offer the same versatility as UAS platforms, such as timely collection, 

administrative acquisition processes, zoning into the AOI, and image format issues. Another 

limitation exists in the affordability of both platforms. UAS imagery RGB generally costs less 

than satellite imagery (multispectral or hyperspectral) due to the complexity, investment, and 

technology requirements for building and launching a satellite. This study was essential to 

show that the latest very-high-resolution satellite imagery can be utilized for mapping nutrients 

with highly accurate precision in discrete areas where UAS’s are generally restricted (Johansen 

et al., 2020). This study shows that UAS imagery is better at predicting nutrient concentrations 

in heterogeneous environments when compared to satellite imagery. Hence, the detection of 

discrete foliar information requires higher spatial resolutions combined with NIR and red edge 

wavebands. Furthermore, the battery life of a UAS platform a limitation for studies that require 

a series of images for monitoring change detection. However, in this study, only a snapshot 

was required.  

5.5 Conclusion 

Overall, this study’s results indicate that ultra-high-resolution UAS imagery and very-high-

resolution satellite imagery can classify nutrient management regimes in a commercial 

plantation forest in KwaZulu Natal, South Africa. The critical point was that PlanetScope 

results were closely matched with the UAS imagery, which supports satellite imagery for 

mapping discrete land use biochemicals using a deep learning ANN. This chapter provided 

important feedback for understanding the effectiveness of airborne (UAS imagery) and satellite 
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imagery for detecting nutrient deficiencies at plantation level. As a result, the information 

gathered here will be used to improve the detection accuracies of nutrient deficient trees in the 

preceding chapter.  
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CHAPTER 6: Improving the prediction of nutrient content in a compartment 

forest using very-high-resolution imagery and a deep learning artificial neural 

network 

 

To provide a framework for predicting nutrients in a compartment forest using very-high-

resolution imagery and a deep learning artificial neural network. 

 

 

 

 

This chapter was based on: 

Singh L*, Mutanga O, Mafongoya P, Peerbhay KY, Ismail R (Preparation). Predicting forestry health 

indicators using high-resolution UAS imagery and a deep learning artificial neural network in South 

Africa. 
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Abstract 

Accurately predicting forest quality variables provides stakeholders with valuable information 

on forest condition, assessment, and effective management. Very high-resolution spatial 

resolution, remotely sensed datasets provide resources for evaluating finite ecological forest 

health indicators. Therefore, this study aims to evaluate how a well-calibrated broad-band 

multispectral camera (Micasense RedEdge-M), captured using an UAS, can predict tree 

macronutrients and micronutrients using a deep learning ANN in a heterogenous Eucalyptus 

compartment forest. As a result, this study found the NIR and red-edge wavebands to be the 

most important contributors to predicting macronutrients and micronutrients with successful 

predictions resulting in  R2’s ranging between 0.45 and 0.75, with RMSE’s below 0.08. 

Exploring heterogeneous environments tests the capability of remotely sensed data to detect 

subtle changes in discrete biochemical information. Future studies should further understand 

the contribution of climatic variability as a component of ancillary data to create a more holistic 

construct for predicting foliar nutrients. 

Keywords: UAS, deep learning, forestry, foliar biochemicals 
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6.1 Introduction 

Precise estimates of forest quality variables are needed to support global climate change policy 

initiatives such as Reducing Emissions from Deforestation and forest Degradation (REDD+) 

(Gomes et al., 2010) and the Forest Observation System (FOS) (Schepaschenko et al., 2019). 

Forest nutrient availability is a dominant driver for C retention (De Vries, 2014). In a paper, 

Fernández-Martínez et al. (2014) describe nutrient-rich forests with a higher rate of net 

ecosystem production and lower ecosystem respiration which increases C allocation in the 

woody tissues and fungal root symbionts and exudates. These nutrient-rich forests have higher 

retention of NPK, whereas nutrient-poor forests show symptoms of nutrient deficiencies, 

including a reduction in leaf area and lower foliar concentrations (Fernández-Martínez et al., 

2014; Watt et al., 2019). NPK is associated with metabolically active proteins, including 

RuBisCo, directly linked to plant productivity (Cavender-Bares et al., 2020; Silva & Uchida, 

2000). Hence, NPK are essential contributors to assessing plant health and rates of C retention 

in forest environments (Fernández-Martínez et al., 2014; Silva & Uchida, 2000; Watt et al., 

2019). More specifically, estimating nutrient quality biochemicals are critical for monitoring 

forest growth and improving decision-support systems for specific agronomic practices (Guo 

et al., 2020). However, the precise measurement of these nutrient quality biochemicals at the 

compartment level becomes challenging for silviculture practice when using conventional 

nutrient assessment methods (Watt et al., 2019). 

Conventional nutrient assessment methods are time-consuming, labour intensive, expensive, 

and generally not consistent for extrapolating a single measurement over a large (<10 km2) 

sample area (Pullanagari et al., 2016; Watt et al., 2019). Moreover, these assessments are 

generally only carried out at the end of a growing season, which provides little information 

regarding the temporal effects of climate, and other environmental constituents have on nutrient 

retention (Pullanagari et al., 2016). Very high spatial resolution multispectral satellite data have 

contributed immensely to determining nutrient quality biochemicals across homogeneous and 

heterogeneous environments. Hence, foliar nutrient information require very high spatial 

resolutions for successful detection accuracies (Watt et al., 2019). Recent developments in 

remote sensing offer an opportunity to such highly detailed mapping demands made by the 

forestry sector. Very-high-resolution UAS’s imagery offer significant potential for improving 

the precision accuracy of mapping biochemical content of vegetation (Cai et al., 2019; 

Chemura et al., 2018). UAS’s provide incomparable resolution and data densities than 

alternative platforms however they are limited in flight range of up to 10 km2 (Watt et al., 

2019). To date, a few studies have investigated the potential of very-high-resolution 
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multispectral UAS imagery for accurately predicting NPK in commercial plantation forests. 

Multispectral UAS imagery provides a more affordable option with strategic band 

configurations that elevate issues of overfitting and spectral noise when compared to 

hyperspectral imaging (Mutanga et al., 2004a; Mzinyane et al., 2016). Hence, the focus of 

research should be on developing remote sensing methods for effectively and efficiently 

assessing the quality of commercial forestry plantations using a cost-effective approach for 

sampling at compartment level (Fassnacht et al., 2016; Galidaki et al., 2017; Köhl et al., 2006; 

Watt et al., 2019). Accurate nutrient assessments using remote sensing enable forest managers 

to make informed decisions on the health of their plantations yield potential and overall 

productivity (Watt et al., 2019). In addition, further research on this issue will improve the 

efficacy of remote sensing, providing a cost-effective, timely, non-destructive alternative to 

traditional nutrient assessments (Dash et al., 2018). 

Emergent literature presents the potential use of UAS’s as an alternative platform to satellite 

and airborne platforms given their low-cost operation in environmental monitoring, higher 

spatial resolutions, and high flexibility in image acquisition (Dash et al., 2018; Mutanga et al., 

2016). Combining very high spatial resolution UAS imagery and broad-band spectral 

resolutions can provide an ideal framework for detecting foliar biochemicals at the 

compartment level (Lussem et al., 2019). Furthermore, a combination of very-high-resolution 

UAS imagery and a deep learning artificial intelligence machine learning approach has 

improved biochemical information detection and accuracy. For example, Cai et al. (2019) 

tested the consistency of CubeSat-based (455nm-860nm) chlorophyll index green (CIg) against 

UAS-based CIg for N stress in different N management practices of cornfield trials in 

Champaign County, Illinois. Their study showed that CubeSat-based CIg produced high 

correlations with UAS-based CIg (correlation above 0.9). Montgomery et al. (2020) measured 

the crop nutrient status of flue-cured tobacco using a combination of UAS imagery (20-

megapixel RGB camera and a spatial resolution of 0.05m), canopy structure and multiple linear 

regression model in Wilson, North Carolina. The authors used a low-cost UAS equipped with 

consumer-grade RGB cameras (multi-view stereo images) in a 0.5 ha field. The authors 

successfully measured NPK and B. The most robust relationships produced adjusted R2’s of 

0.81 and 0.41 for N and B, respectively. Their study showed the positive influence of canopy 

structure and spectral reflectance when measuring the crop nutrient status of tobacco trees. 

Osco et al. (2020a) predicted leaf N in maize crops using UAS imagery (SenseFly Parrot 

Sequoia multispectral sensor (550nm-790nm)) and machine learning models in Brazil. The 

authors successfully predicted leaf N using a series of spectral vegetation indices NDVI, 
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NDRE, green normalized difference vegetation (GNDVI), and the soil adjusted vegetation 

index (SAVI)) and machine learning models with variations (REPTree (REPT), Random Forest 

(RF), kNN, Support Vector Machine-Polynomial (SVMP), linear regression (LR)). Their study 

produced the highest R2 of 0.91 for leaf N concentration using the RF machine learning 

algorithm using a GSD of 0.10m. 

Similarly, Costa et al. (2021) determined leaf nutrient concentrations in citrus trees using 

multispectral UAS imagery (Micasense (465nm-1000nm)) and machine learning in Polk 

County, Florida, USA. As a result, the estimation model successfully mapped two citrus tree 

varieties (Hamlin and Valencia) using a gradient boosting regression tree. The authors achieved 

high precision for macronutrients (N, P, K, Mg, Ca, and sulphur (S)) with an average error of 

9% and 17% and moderate precision for micronutrients (Zn, B, Mn, Fe, Cu) with an average 

error of 16% and 30% for Hamlin and Valencia citrus trials, respectively. 

Previous studies predicted mainly crop health status using vegetation indices and indirect 

measures such as the chlorophyll index green combined with mainly linear regression 

modelling techniques in the USA and Chile (Cai et al., 2019; Costa et al., 2021; Dash et al., 

2018; Kattenborn et al., 2019; Montgomery et al., 2020). This study aims to provide a 

framework for detecting macronutrients and micronutrient content using very-high-resolution 

(<10 cm) multispectral imagery and a deep learning ANN in a compartment forest in the 

KwaZulu-Natal Midlands, South Africa.  

6.2 Material and methods 

6.2.1 Study area/map 

This study was conducted at the Clan Sappi plantation located in the Midlands, South Africa 

(29°20’6” S, 30°27’13” E)(Figure 6.1). The study area is 1.4 hectares consisting of a nutrient 

management regime trial situated in the mist belt grassland bioregion of the KwaZulu-Natal, 

Midlands. The species variety planted was 3-4-year-old Eucalyptus grandis x Eucalyptus 

urophylla. Eucalyptus grandis (flooded gum or rose gum) is native to New South Wales, and 

Eucalyptus urophylla (Timor white gum, Timor Mountain gum, popo or ampupu) is native to 

the Indonesian Archipelago and Timor. The study area is situated at 788m ASL receives a MAP 

range of 1000-1100 mm and a MAT of 18.1 degrees Celsius (Mucina & Rutherford, 2006). 

The lithology is shale and dolerite, consisting of a silty clay soil texture comprising of 56% 

sand and silt and 44% of clay. 



97 

 

Figure 6. 1: The location of the study area in a commercial forest of KwaZulu Natal, 

Midlands, South Africa, and the nutrient management regime formation. 

6.2.2 Experimental design & field layout 

This section is similar to section 5.2.2 of this thesis. A  nutrient management regime trial 

comprised four treatments with four replicates arranged in a Latin square design. A series of 

16 GCPs were established at the centre of each polygon represented in Figure 6.1 within the 

study area. Each GCP was located using a Trimble GeoExplorer 6000 series GeoXH GPS. 

6.2.3 UAS imagery & pre-processing 

The UAS image specifications and pre-processing techniques is similar to section 5.2.3 of this 

thesis. UAS imagery was acquired under cloudless (0%) conditions between 10:00 and 14:00 

h central African time using DJI Phantom 4 Pro quadcopter in October 2018. The DJI Phantom 

4 Pro was flown at an altitude of approximately 60 m above the AOI, resulting in a GSD of 8 

cm (Dash et al., 2018). The image was acquired as a snapshot of the AOI with a focal length 

lens of 5.5 mm and a FOV of 151.47 degrees. The sensor was calibrated using a reference panel 

(white reference) coated with a barium sulphate of known reflectivity. Sensor calibration 

occurred directly before and after each flight to offset any change in the sun’s atmospheric 
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condition and irradiance (Singh et al., 2017a). The UAS image was processed using (Structure-

from-Motion software PhotoScan v1.4) (AgiSoft LLC, St. Petersburg, Russia) in conjunction 

with the GCPs speculated in the experimental design of this study (Lussem et al., 2019). Each 

nutrient management regime represented various pixels based on the UAS image resolution. 

6.2.4 Deep learning artificial neural network (ANN) algorithm 

A deep learning ANN architecture constructs increasingly sophisticated hierarchical 

architectures using multiple hidden layers with multi-layer neurons (Reichstein et al., 2019). 

Multi-layer neurons can cycle or loop information between different neurons, creating 

powerful pattern recognition capabilities to learn intricate multivariate data patterns (Atkinson 

& Tatnall, 1997; Mutanga & Skidmore, 2004; Reichstein et al., 2019). Figure 6.2 represents 

the network structure of an ANN; whereby hidden layers bridge the gap between input layers 

and output layers. Artificial neurons receive a set of weighted inputs to produce an output 

through an activation function (Atkinson & Tatnall, 1997) (Figure 6.2). An activation function 

is responsible for transforming the summed weighted input from the node into the node’s 

activation or output to help the network learn intricate patterns in the data. Several types of 

activation functions such as sigmoid, rectified linear units, or hyperbolic tangents exist within 

the neurons of each hidden layer (Berg & Nyström, 2018). Combined with the activation 

function, each neuron in the ANN is assigned a bias, including the output neurons and 

excluding the input neurons, whilst the connections between neurons in subsequent layers 

include matrices of weights (Berg & Nyström, 2018). The weighted input for a deep learning 

ANN is: 

𝑧𝑗
𝑙 =  ∑ 𝑤𝑗𝑘

𝑙
𝑘 𝜎𝑙−1(𝑧𝑘

𝑙−1) + 𝑏𝑗
𝑙   

The sum of all inputs is taken to the neuron j in Layer l, the number of neurons. The deep 

learning ANN naturally defines a recursion in previous weighted inputs through the ANN. The 

calculation that terminates any recursion is:  

𝜎0(𝓏𝑗
0) =  𝒴𝑗

0 = 𝓍𝑗    

More specifically, in figure 6.2, Layer 0 is the input layer which is consists of imagery (UAS 

and PlanetScope) and the response variable (nutrient management regimes), and Layer L is the 

output layer. Layer l – 1 and Layer l represent the hidden layers; in this figure 6.2, there are 

two hidden layers, whereas, in this study, four hidden layers were used (Berg & Nyström, 

2018). 



99 

 

Figure 6. 2: A fully connected feedforward ANN (Berg & Nyström, 2018). 

The deep learning ANN was executed in Rapid Miner studio software (version 7.3). Rapid 

Miner provides an integrated tool for neural network analysis that supports all the machine 

learning process steps, including data preparation, results in visualization, validation, and 

optimization (Alsaqer & Sasi, 2017; Kanmani & Jayapradha, 2017). This study set the number 

of neurons to 1000 and epochs to 30, with four hidden layers to increase the ANN’s depth for 

a deep learning approach. 

6.2.5 Accuracy assessment 

The final dataset was split into training (70%) and test (30%) data (Breiman, 2017). Similar to 

section 3.2.8, R2 was used for prediction and RMSE. Higher R2 and lower RMSE values 

indicate a reliable model. 

6.3 Results 

6.3.1 Predicting of macronutrients and micronutrients 

Tables 6.1 and 6.2 summarize the bare soil physiochemical properties and prediction statistics. 

This study successfully predicted macronutrients and micronutrients using very-high-

resolution UAS imagery and a deep learning ANN. As a result, R2’s predictions ranged 

between 0.45 and 0.75, with RMSE values ranging between 0.01 and 38.04 for both 

macronutrients and micronutrients. P produced the highest R2 value of 0.75, whilst B produced 

the lowest R2 value of 0.54 (Table 6.2). The UAS image model was trained for 30 epochs using 

four hidden layers and 200 neurons for both macronutrients and micronutrients. The choice of 
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limiting the epochs to 30 was made based on the empirical observation that the process 

converged well within 30 epochs. 

Table 6. 1: General study area information and bare soil physio-chemical properties of 

the 0 - 20 cm soil depth for the nutrient management regime trial in the Midlands, South 

Africa. 

Attribute Study area 

Sand & Silt % 56 

Clay % 44 

Texture Silty Clay 

pH (KCl) 3.55 

pH (H2O) 3.89 

Exchangeable acidity (cmolc kg-1) 7.16 

Organic carbon (WB) % 8.35 

N % 0.51 

C : N 16.4 

P (ppm) 6.51 

K+ (cmolc kg-1) 0.20 

Ca2+ (cmolc kg-1) 0.60 

Mg2+ (cmolc kg-1) 0.27 

Na+ (cmolc kg-1) 0.06 

ECEC (cmolc kg-1) 8.29 

Base saturation (%) 13.6 

 

Table 6. 2: Summary of predictive statistics and results using UAS imagery and a deep 

learning ANN. 

Biochemical Min Max Mean R2 RMSE 

Nitrogen 47 60 53 0.71 6.72 

Phosphorous 0.09 0.21 0.15 0.75 0.02 

Potassium 0.63 1.04 0.81 0.74 0.07 

Calcium 1.31 1.81 1.57 0.68 0.12 

Magnesium 0.27 0.60 0.44 0.63 0.06 

Sodium 0.14 0.22 0.17 0.63 0.01 

Iron 251 412 338 0.45 38.04 
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Manganese 0.56 0.87 0.67 0.49 0.05 

Copper 8.29 11.9 10.36 0.56 0.44 

Zinc 15.5 22.62 19.01 0.54 3.08 

Boron 22.51 38.79 30.63 0.54 4.98 

 

Figure 6.3 and 6.4 displays the scatterplots used to show the variability of the data points over 

the mean in this study. K produced the highest R2 of 0.74, whilst Fe produced the lowest R2 of 

0.45 (Figure 6.3 and 6.4). This study produced a mean R2 prediction of 0.57 for all 

macronutrients and micronutrients. RMSE values were consistent with all R2 predictions, with 

the highest RMSE of 4.98 and lowest RMSE of 0.02 for B and K, respectively (Table 6.2). 

   

   

Figure 6. 3: Scatterplots showing the one-to-one relationship between predicted versus 

observed values of macronutrients using a deep learning ANN. 
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Figure 6. 4: Scatterplots showing the one-to-one relationship between predicted versus 

observed values of micronutrients using a deep learning ANN. 

6.3.2 Variable importance 

An important step was determining which wavebands onboard the UAS camera sensor were 

more valuable in the prediction model for predicting macronutrients and micronutrients in this 

study. Figure 6.5 illustrates a radar plot of variable importance measures for micronutrients and 

macronutrients, the colours represent a nutrient and the scale (0-100%) shows the percentage 

of importance to an electromagnetic region. The VI percentages were averaged across all 

macronutrients and micronutrients for each waveband (i.e., red, green, blue, NIR and red-edge). 

The NIR and red-edge wavebands produced the highest correlations with an average NIR 

waveband of 94% and a red-edge waveband of 92% across all macronutrients in this study. In 

contrast, the blue waveband produced the lowest correlation of 57% (Figure 6.5). The red-edge 

and red wavebands produced the highest correlations with an average red-edge waveband of 

84% and a red waveband of 68% across all macronutrients in this study. In contrast, the NIR 

waveband produced the lowest correlation of 63% (Figure 6.5). Overall, the NIR and red-edge 

wavebands produced the highest correlations for predicting both macronutrients and 

micronutrients in this study (Figure 6.5). Figure 6.6 represents prediction maps of three 
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macronutrients (NPK) and three micronutrients (Cu, Fe, Zn) concentrations using five-

waveband UAS (Micasense) imager, higher concentrations are green in colour and lower 

concentrations are red in colour of the nutrients. 

 

 

Figure 6. 5: Radar plots showing variable importance of the most essential wavebands 

used to predict macronutrients and micronutrients. 

 

Macronutrients Micronutrients 
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Figure 6. 6: Prediction maps of three macronutrients (NPK) and three micronutrients 

(Cu, Fe, Zn) concentrations using five-waveband UAS (Micasense) imagery in KwaZulu 

Natal, Midlands, South Africa. 

6.4 Discussion 

Commercial afforestation can produce effective climate change mitigation strategies such as 

offsetting anthropogenic C, stabilizing climate risks, contributing several essential ecosystem 

services, and providing a safety net to meet basic human needs (De Vries, 2014; Forster et al., 

2021; Gamfeldt et al., 2013; Luyssaert et al., 2008). A challenge is maintaining the health of 

extensive commercial forests, as trees require an optimal supply of nutrients for growth (Dash 

et al., 2018). Conventional methods provide accurate assessments; however, reproducing these 

assessments over large forestry compartments becomes ineffective and inefficient. The 

development of innovative methods that are more effective and efficient for large scale forest 

health assessment is critical for enhancing tree growth, reducing exposure to pests and disease, 

and ultimately improving yield (Köhl et al., 2006). This study assesses the capability of the 

Micasense sensor onboard a UAS to detect and map essential forest health macronutrients and 

micronutrients effectively. Additionally, this study implemented VI measures to show the 

essential wavebands needed to detect macronutrients and micronutrients accurately. This study 

presents a reliable framework for detecting and monitoring forest health nutrient indicators of 

commercially grown Eucalyptus grandis variety in a compartment forest in KwaZulu-Natal, 

South Africa. 

6.4.1 Predicting macronutrients and micronutrients using UAS imagery and a deep learning 

approach 

The results show that very-high-resolution UAS imagery combined with a deep learning ANN 

successfully detected and mapped macronutrients and micronutrients within a commercial 

forestry environment. These results justify previous research recommendations for using very-

high-resolution imagery and a deep learning artificial intelligence approach to map discrete 

foliar biochemicals in a compartment forest. This study site was preferred due to the 

homogeneity of commercial forestry conditions. Homogeneity allowed for consistency when 

sampling, which appropriates the objectives of this study. The results from this study were 

compared to Cai et al. (2019), who produced similar results. Cai et al. (2019) found that UAS-

based imagery provided more spatial details when compared to CubeSat-based imagery. 

Implementing very high spatial resolution imagery was essential in our study for detecting the 
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full range of macronutrient and micronutrient information. Another study by Montgomery et 

al. (2020) produced similar results to our study even when implementing ancillary data into 

their regression models, such as canopy structural data and water flow information. This study 

did not implement ancillary data into the modelling phase. Without ancillary data, this study 

produced similar results due to the robustness of using a deep learning approach combined with 

high-quality imagery. A few nutrients produced lower predictions results, such as Iron (0.45). 

The cause of this is unknown; however previous studies have related lower prediction 

accuracies to the mobility (translocation) of nutrient concentration within the plant physiology 

(Montgomery et al., 2020; Silva & Uchida, 2000). This study was constrained to a snapshot of 

the study area; hence future studies could estimate nutrients over a more extended temporal 

resolution to understand the translocation of nutrients within the tree. 

The prediction maps show the concentrations of nutrients within each different nutrient regime. 

Higher concentrations are green in colour, whereas lower concentrations are depicted red. 

Unfortunately, there is no distinct pattern showing the variation of nutrient concentration across 

each nutrient management regime. The problem could be caused by the pixel density of the 

image or the lower spectral resolution of the Micasense sensor. The distribution of 

macronutrient and micronutrient concentrations seems higher (greener in colour) in the eastern 

regions of the maps (figure 6.6). The abnormal distribution could be due to water absorption 

or water accumulation in the eastern part of the compartment. 

6.4.2 Variable importance 

An essential step in this study was to understand which wavebands contributed to each 

nutrient's prediction model. Overall, VI results show that the NIR and red-edge wavebands best 

predict macronutrients, with average VI of 94% and 92% for the NIR and red-edge wavebands, 

respectively. In comparison, the red and red-edge wavebands were the best in predicting 

micronutrients, with average VI of 70% and 87% for the red and red-edge waveband, 

respectively (Figure 6.5). The red-edge waveband was a vital descriptor in this study, previous 

studies that suggested using the red-edge waveband (Mutanga et al., 2004b; Mutowo et al., 

2018; Rodrigues et al., 2020; Zhang et al., 2020). The blue waveband produced the lowest 

correlation of 57% for macronutrients whilst the blue, green and NIR wavebands produced the 

lowest results for micronutrients; however, they were still significantly higher. These results 

are not surprising as previous studies found similar waveband performances in this study 

(Mutowo et al., 2018; Shi et al., 2019; Türker-Kaya & Huck, 2017). VI results can improve 

the efficacy of the basic spectral waveband setting for different types of acquisition purposes. 
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For example, engineers can prioritize fitting spectral sensors with the red-edge waveband for 

remote sensing of nutrient information than using lower priority blue waveband settings. These 

results enable forest managers and critical forestry stakeholders to make investment decisions 

on the type of remote sensing technology to acquire for specific field surveys. 

6.5 Conclusion 

Overall, this chapter aimed to improve the detection accuracy of nutrient deficient trees using 

the best possible practices gathered from the previous chapters in this thesis.  

The conclusions of this study are as follows: 

• To date, the NIR and red-edge wavebands are high contributors to the prediction model 

of macronutrients and micronutrients. 

• A combination of very high-resolution imagery (<10cm GSD) and deep learning ANN 

can accurately predict full range macronutrients and micronutrients. 

The challenges of the forestry industry should guide future studies. Future studies should 

enhance conventional practice by improving detection accuracy. Enhancing the practice and 

effectiveness of remote sensing in a high-throughput environment will improve the efficacy of 

remote sensing. As a result, this chapter successfully detected nutrient deficiencies with a 

reasonable accuracy for in-field implementation at commercial plantation level.  
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CHAPTER 7: Detecting and mapping forest nutrient deficiencies: Eucalyptus 

grandis x and Eucalyptus urophylla trees in KwaZulu-Natal, South Africa: A 

synthesis 

7.1 Introduction 

The effects of nutrient deficiencies are often amplified when the productivity of valuable 

resources is at risk, which wastes functional space, time and inevitably impedes production. 

More importantly, ineffective nutrient screening technologies result in untimely in-field 

planting of trees before reaching optimal levels. Conventional nutrient screening regimes use 

destructive sampling methods, which involve periodic ground-based surveys and tedious 

laboratory assays that are costly and time-consuming (Pullanagari et al., 2016). Hence, 

accurately quantifying nutrient deficient trees at a compartment level and within extensive 

commercial forestry remains unworkable, especially when dealing with many samples 

(Quentin et al., 2017). The timely detection of nutrient depletion at the nursery level could 

optimize forest management practices for in-field planting (Garcia et al., 2018). Hence, new 

methods must provide rapid detection capacities, reduce labour, and maximize time. Therefore, 

detecting and mapping nutrient deficiencies in commercial forestry are critical to maximising 

productivity, especially within a limited forest production area. In this context, the utility of 

remote sensing has offered great potential to enhance traditional nutrient detection methods in 

a high productivity environment. 

However, the use of remotely sensed data for identifying nutrient concentrations has proven 

difficult, owing to the lack of appropriate spectral and spatial resolutions. Furthermore, the 

efficacy of the technology has not been widely adopted; hence a lack of understanding of the 

principles of remote sensing has led researchers to focus on mainly indirect estimates such as 

NDVI using traditional statistical data pre-processing methods. Also, conventional remote 

sensing mainly used hyperspectral spectrometer devices which caused overfitting and 

multicollinearity problems, thus selecting essential wavebands for detection was limited. 

Lastly, earlier statistical methods provided minimal accounts of the data acquired from remote 

sensing devices; hence scientists could not determine definitive relationships between remote 

sensing and agricultural health indicators. Most importantly, the challenges mentioned above 

weakened the efficacy of remote sensing for detecting nutrients in a forestry environment. 

Therefore, the aim of this thesis was to develop an alternative nutrient screening framework 

for the commercial forestry industry using the latest advancements in remote sensing and 

chemometric data analysis techniques. The benefits produced in this thesis present a new 
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paradigm for the commercial forestry industry that requires quality planting material for long- 

and short-term resource sustainability. 

In this thesis, the objectives were to (1) provide a synopsis of the application of remote sensing 

for detecting foliar nutrients, (2) investigate the ability of remote sensing to rapidly detect 

nutrient deficiencies of saplings in a nursery environment using hyperspectral data, (3) 

investigate the influence of VCP in improving the detection accuracy of nutrients of saplings 

in a nursery environment using NIR data, (4) compare the classification accuracy of ultra-high-

resolution UAS imagery and very-high-resolution PlanetScope imagery in four nutrient 

management regimes using a deep learning ANN, and (5) provide a framework for the 

detection of nutrients in a compartment forest using very-high-resolution imagery and a deep 

learning ANN. In a nutshell, Chapter 2 provides an introduction and overall background for 

the thesis conceptual design, which address objective 1. the synthesis for chapters 3 and 4 

(chapter 7.3) was combined, which specifically focus on a nursery experiment using handheld 

analytical devices to test the findings of chapter 2, which address objectives 2 and 3. Similarly, 

chapters 5 and 6 (chapter 7.4) was combined which provide an upscale approach with a specific 

focus on airborne and spaceborne remote sensing technology for large-scale mapping in a 

compartment forest, these chapters address objectives 4 and 5. 

7.2 Summary of results/findings 

Research objective 1 was achieved in chapter 2. The main purpose of chapter 2 was to provide 

evidence regarding the scientific background and underpinning for remote sensing of nutrient 

biochemicals. The latest scientific literature showed a trend towards NIR technology in various 

applications and strategies used to detect foliar nutrients. The main outcomes of this chapter 

suggest that NIR technology provides reasonably accurate results when utilising strategically 

selected data pre-processing methods and statistical models that reduce spectral noise. An 

important element is understanding the impact of sample sizes, latent variables, and leaf water 

content were the main factors determining successful outcomes. NIR studies were reported to 

gather more accurate detection accuracies when compared to other portions of the 

electromagnetic spectrum (Elvidge, 1990; Kokaly & Clark, 1999; Peñuelas & Filella, 1998). 

Furthermore, the scientific underpinnings of the physiological basis for remote sensing of foliar 

biochemicals was discussed. More specifically, the physical laws of how remote sensing of 

foliar biochemicals is made possible using a non-destructive approach (Curran, 1989; Elvidge, 

1990; Fourty et al., 1996; Wessman et al., 1989). The potential of using hyperspectral NIR 

remote sensing for foliar nutrient detection in a forestry environment. Hence, this chapter 
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critically analysed a decade (2010-2020) of research using an integrative approach with a 

specific focus on NIR technology. In this chapter most research articles followed a similar 

approach to detecting nutrients in foliar samples (Figure 2.1). In summary, the importance of 

the NIR region of the electromagnetic spectrum formed the basis for the type of remote sensing 

used in this chapter. A reflection on future research motivates understanding the effects of 

epicuticle wax and trichomes on leaf optical properties. Overall, this chapter formed the 

foundation of the preceding chapters in this thesis. 

Research objective 2 was achieved chapter 3. Chapter 3 tested the capability of remote sensing 

to detect nutrient deficiencies in a Eucalyptus variety using the RF algorithm. This chapter 

successfully detected full range macronutrients (N, P, K, Ca, Mg, Na) and micronutrients (Mn, 

Fe, Cu, Zn, B) using full-waveform hyperspectral data (350-2500 nm). The robustness of the 

RF algorithm produced promising results for certain macronutrients such as P and N (0.95 and 

0.89, respectively) and micronutrients such as Mn and Cu (0.90 and 0.86, respectively). This 

chapter found the prediction results (R2) of the most limiting growth nutrients N, P, K in this 

chapter explain the findings of previous studies (Adams et al., 2000; Axelsson et al., 2013; 

Özyiğit & Bilgen, 2013). Chapter 3 identified the red-edge, NIR, VIS and SWIR-2 regions of 

the electromagnetic spectrum as the most critical wavebands for detecting nutrient deficiencies 

using built-in RF measures importance (Figure 3.5). The outcomes of chapter 3 were used as a 

basis for chapter 4 of this thesis. 

Research objective 3 was achieved in chapters 4. Chapter 4 intended to enhance the sampling 

strategy in chapter 3. The goal of chapter 4 was to find the most effective sampling position to 

enhance spectroscopic sampling procedures in a fully operational nursery environment for 

detecting nutrient deficiencies before infield planting. Furthermore, chapter 4 attempted to find 

the best position for sampling across the vertical canopy gradient of a sapling and to understand 

the translocation of nutrients throughout the sapling. Chapter 4 built on the study by Gara et al. 

(2018) who used a vertical canopy gradient model for sampling. Chapter 4 findings show the 

best place to take a representative sample is from VCP Q2 and Q4 for enhancing the detection 

of macronutrients and micronutrients using NIRS.  

Research objective 4 was achieved in chapters 5. Chapter 5 compared the accuracies of very 

high-resolution imagery namely the Micasense sensor onboard a UAS platform and the 

PlanetScope imagery onboard a satellite platform (Table 5.1). This chapter successfully 

classified nutrients using a deep learning ANN for both platforms. As a result, the Micasense 

5 waveband imagery performed slightly better than the satellite imagery with an overall 
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classification accuracy of 87.62%, a KHAT statistic value of 0.83, and an error rate of 12.38% 

(Figure 5.5). Whereas the PlanetScope satellite imagery produced an overall classification 

accuracy of 81.50%, a KHAT statistic value of 0.75 and an error rate of 18.50%. This chapter 

concluded that high spectral resolution UAS imagery performed better than most studies who 

used RGB cameras. Furthermore, the UAS platform could capture more detail due to its higher 

spatial resolution (6 cm) when compared to the PlanetScope satellite imagery. 

Research objective 5 was achieved in chapters 6. Chapter 6 was designed from the most 

successful findings of chapter 5. Hence, the best performing imagery in Chapter 6 was used to 

provide a framework for detecting macronutrients and micronutrients combined was 

implemented with using a deep learning ANN. Chapter 6 developed VI measures to identify 

the most important wavebands in the 5 waveband Micasense UAS image (red, green, blue, 

NIR, red-edge) which highly influenced the prediction model (Figure 6.5). Chapter 6 

successfully predicted all macronutrients and micronutrients and developed VI measures that 

can be used in a specialized remote sensing framework. As a result, this chapter successfully 

predicted macronutrients and micronutrients with R2’s ranging between 0.54 and 0.75 with 

RMSE’s below 0.08. 

7.3 Research gaps 

This thesis addressed the research gaps specifically pertaining to the remote sensing of nutrient 

biochemicals. Furthermore, this thesis uses a systematic approach by testing different 

methodologies across many different platforms. Chapters 3 and 4 were based on a nutrient-

dependent nursery experiment to understand the physiological basis for remote sensing of foliar 

biochemicals. The foundation of the nursery experiments was to implement a controlled 

environment with known experimental inputs and outputs. Two different analytical 

spectrometer devices were tested, namely the ASD (chapter 3) and Bruker Fourier Transform-

NIR (FT-NIR) spectrometer devices (chapter 4). The outcomes of chapter 3 suggest that future 

studies test the capabilities of using strategic portions (NIR region) of the electromagnetic 

spectrum to reduce spectral noise in the dataset and enable faster computing time. Chapter 4 

improved the findings of Gara et al. (2018) by enhancing their sampling strategy by adding a 

fourth quartile which further segmented the sapling. Furthermore, this chapter added one more 

VCP (Q4) (Figure 4.3) and sampled both the adaxial and abaxial sides of leaf material which 

many studies have not addressed. Chapter 5 and 6 aimed to upscale chapters 3 and 4 from 

proximal (handheld) sensors and a nursery environment to airborne and satellite sensors in a 

compartment forest environment. The upscaling approach enables for transferability between 



112 

scientific experiments and operationally using the science in a field environment. Furthermore, 

chapters 5 and 6 differed in the statistical approach: chapter 5 aimed to classify macronutrients 

and micronutrients whilst chapter 6 aimed to predict macronutrients and micronutrients. An 

important step was to understand the performance of classification accuracy before making 

infield predictions. The overall findings suggested an alternative screening framework for 

commercial forestry nurseries requiring quality planting material for long-term and short-term 

resource sustainability. 

7.4 Strengths and limitations of the methodology 

This thesis has many strengths and limitations in the methodologies used for its practical and 

operational use of remote sensing technology. In this section, the strengths and limitations are 

summarized described in more detail. In this thesis, strengths include sampling at large 

quantities, rapid monitoring of nutrient status, application of pre-processing data methods, 

reducing time and labour of acquiring a sample, and employing methods of variable selection. 

This thesis demonstrates the ability of remote sensing to sampling large scale compartment 

forest in a heterogeneous environment. This thesis describes the use of remote sensing for rapid 

detection and monitoring of the nutrient status of trees. The thesis demonstrates the use of pre-

processing data methods for reducing spectral data dimensionality, spectral noise, data 

redundancy and impurity, especially when employing high dimensional and multivariate data. 

The thesis demonstrates that the technology is more efficient and effective in generating 

nutrient assessments by reducing the time and labour of acquiring a sample over a large area. 

Lastly, the thesis employs variable selection methods that enable scientists to test the ability of 

a spectral waveband to detect a feature more accurately in an operational environment. 

In this thesis, limitations include the cost-benefit of the technology, physiological functions of 

trees, spectral noise, the influence of moisture content and trichomes, and image resolution 

accuracies. A limitation of technology exists in the affordability of the remote sensing 

platforms. UAS imagery RGB generally costs less than satellite imagery (multispectral or 

hyperspectral) due to the complexity, investment, and technology requirements for building 

and launching a satellite. UAS deliver exceptional high resolutions, although there are 

limitations such as gusty wind conditions, flight restrictions, battery capacity, and employing 

a skilled UAS pilot. However, satellite platforms do not offer the same versatility as UAS 

platforms, such as timely collection, administrative acquisition processes, zoning into the AOI, 

and image format issues. A limitation of the technology is to better understand relationship/link 

between the process of nutrient re-translocation at the species level and remote sensing. The 
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physiological functions of the tree and the distribution of nutrients across the tree need to be 

further understood. The issue of spectral noise for the scope of requirements in the remote 

sensing of nutrient variables. Hyperspectral remote sensing is the more preferred as it produces 

narrower bands than multispectral imaging, however hyperspectral imagery is highly 

influenced by the presence of spectral noise. Furthermore, the influence of moisture content 

and trichomes and the interaction of electromagnetic waves on the leaves needs to be further 

understood when acquiring a representative sample.  

The adoption of the technology for operational use in a commercial forestry industry presents 

a strength and limitation. The strength is that commercial forestry industries have already 

adopted the technology as it will improve their screening performance for large scale sampling 

before infield planting. To date, there are many commercial nurseries that are researching ways 

of improving their remote sensing frameworks for more accurate and efficient use of the 

technology. However, there are many institutions that have not transitioned fully from wet 

chemistry to remote sensing screening due to issues with the efficacy of technology and 

ideological reasoning when comparing to wet chemistry sampling methodologies. Hence, 

further research is required to improve the efficacy of the technology and create confidence in 

the use of the technology for decision makers to make more informed decisions.  

7.5 Conclusions 

This thesis aimed to investigate the potential use of remote sensing to accurately detect and 

map foliar nutrient deficiencies occurring within commercial forestry environments in 

KwaZulu-Natal, South Africa. The research undertaken in this thesis has demonstrated the 

capability of remotely sensed technologies to detect and map foliar nutrient deficiencies by 

comparing different imaging platforms and study areas. The main conclusions were based on 

the subsequent observations presented in this thesis: 

1. Data cleaning for noise and obscurities using pre-processing data methods, statistical 

models can be produced for either prediction or classification. An important part is 

selecting the most suitable algorithm (statistical model). The influence of AI and better 

computing power will exceedingly enhance many of the pre-processing data methods 

and statistical models mentioned in this review. 

2. The study successfully predicted N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, and B in E. 

grandis x E. urophylla using hyperspectral data and RF analysis. The RF reduced the 

dataset's noise whilst producing competent results for certain macronutrients such as P 
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and N (0.95 and 0.89, respectively) and micronutrients such as Mn and Cu (0.90 and 

0.86, respectively). The red-edge and NIR portions of the electromagnetic spectrum 

wavebands for detecting both macronutrients and micronutrients in E. grandis x E. 

urophylla. 

3. The best positions to collect spectral measurements along the vertical canopy gradient 

are from VCP: Q2 and Q4 in this chapter. Overall, the study found no distinct VCP that 

better predicted all nutrients in this chapter. 

4. Centimetre accurate ultra-high-resolution UAS imagery has proven more effective than 

PlanetScope satellite imagery in classifying macronutrients and micronutrients in 

commercial plantation forestry in KwaZulu Natal, South Africa. PlanetScope satellite 

imagery closely matched the results of the UAS image, which is valuable for mapping 

discrete land use biochemicals using a deep learning ANN. 

5. The utilization of the NIR and red-edge wavebands highly contributed to the prediction 

model. A combination of very high-resolution imagery (<10cm GSD) and deep learning 

ANN can accurately predict full range macronutrients and micronutrients in 

compartment forest. Optimizing sensors with pre-set waveband configurations will 

enhance the speed and detection rates of these discrete foliar biochemicals. 

7.6 Recommendations and future research 

The future of foliar nutrient deficiency detection and mapping lies in further understanding the 

influences of plant's age, seasonality, and temperature that affect epicuticle wax and trichome 

production. Future research should investigate these influences by including this information 

into the mapping framework for in-depth analysis. Hence, an opportunity exists in 

understanding the impact of epicuticle wax and trichomes, moisture content, and the effects of 

sampling the adaxial and abaxial leaf surfaces across age, seasonality, temperature, and 

heterogeneous trees. While such variables would improve the detection accuracies of foliar 

nutrients and facilitate proper management decisions, monitoring areas at risk of nutrient 

depletion should be investigated. 

Research should also focus on developing chemometric models that are plant variety-specific 

as a “plug and play” framework for detecting nutrient deficiencies rapidly. In this regard, forest 

managers should regularly implement detection and mapping techniques to provide temporal 

information related to the extent, distribution, and rate of nutrient depletion. The availability of 
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affordable hyperspectral data sources would make high spatial resolution satellite data more 

accessible for nutrient monitoring applications in the forestry sector.  

To further optimize the results of this thesis, future research should investigate efficient 

methods of reducing spectral noise in high spatial data, especially for foliar biochemicals which 

require narrower-band configurations. Effective spectral noise reduction strategies should 

enable efficient detection of nutrient stressed plants in a high-throughput environment. Hence, 

the continuous testing of new remote sensing sensors and the use of artificial intelligent 

algorithms will optimize the detection accuracies found in this thesis. 

Finally, while this thesis focuses on detecting and mapping nutrient deficiencies within a 

commercial forestry environment, future research may consider diagnosing heterogeneous 

environments. In context, the automated detection techniques developed would be valuable to 

other agricultural and cropping sectors owing to the widespread and diverse ranges of nutrient 

deficiencies. 



116 

References 

Abdel-Rahman, E. M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., & Ismail, R. (2017). 
Estimating Swiss chard foliar macro-and micronutrient concentrations under different 
irrigation water sources using ground-based hyperspectral data and four partial least 
squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. 
Computers and Electronics in Agriculture, 132, 21-33. doi: 
https://doi.org/10.1016/j.compag.2016.11.008 

Abdi, H. (2010). Partial least squares regression and projection on latent structure regression 
(PLS Regression). Wiley interdisciplinary reviews: computational statistics, 2(1), 97-
106 

Aber, J. (1979a). Foliage‐height profiles and succession in northern hardwood forests. Ecology, 
60(1), 18-23 

Aber, J. (1979b). A method for estimating foliage-height profiles in broad-leaved forests. The 
Journal of Ecology, 35-40 

Acevedo, M., Rubilar, R., Dumroese, R. K., Ovalle, J. F., Sandoval, S., & Chassin-Trubert, R. 
(2020). Nitrogen loading of Eucalyptus globulus seedlings: nutritional dynamics and 
influence on morphology and root growth potential. New Forests, 1-16. doi: 
https://doi.org/10.1007/s11056-020-09778-2 

Adams, M. L., Norvell, W. A., Philpot, W. D., & Peverly, J. H. (2000). Spectral detection of 
micronutrient deficiency in ‘Bragg’soybean. Agronomy Journal, 92(2), 261-268. doi: 
(https://doi.org/10.2134/agronj2000.922261x) 

Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. (2017). 
Hyperspectral imaging: A review on UAV-based sensors, data processing and 
applications for agriculture and forestry. Remote Sensing, 9(11), 1110 

Afandi, S. D., Herdiyeni, Y., Prasetyo, L. B., Hasbi, W., Arai, K., & Okumura, H. (2016). 
Nitrogen content estimation of rice crop based on near-infrared (NIR) reflectance using 
artificial neural network (ANN). Procedia Environmental Sciences, 33, 63-69. doi: 
http://10.1016/j.proenv.2016.03.057  

Agjee, N. e. H., Mutanga, O., Peerbhay, K., & Ismail, R. (2018). The impact of simulated 
spectral noise on random forest and oblique random forest classification performance. 
Journal of Spectroscopy, 2018. doi: https://doi.org/10.1155/2018/8316918 

Alsaqer, A. F., & Sasi, S. (2017). Movie review summarization and sentiment analysis using 
rapidminer 2017 International Conference on Networks & Advances in Computational 
Technologies (NetACT) (pp. 329-335): IEEE. 

Alton, P. B., & North, P. (2007). Interpreting shallow, vertical nitrogen profiles in tree crowns: 
A three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. 
Agricultural and forest meteorology, 145(1-2), 110-124 

Amirruddin, A. D., Muharam, F. M., Ismail, M. H., Ismail, M. F., Tan, N. P., & Karam, D. S. 
(2020). Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels 
in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision 
tree and random forest. Computers and Electronics in Agriculture, 169, 105221. doi: 
https://doi.org/10.1016/j.compag.2020.105221 

Amirruddin, A. D., Muharam, F. M., & Mazlan, N. (2017). Assessing leaf scale measurement 
for nitrogen content of oil palm: performance of discriminant analysis and Support 
Vector Machine classifiers. International Journal of Remote Sensing, 38(23), 7260-
7280. doi: https://doi.org/10.1080/01431161.2017.1372862 

Ansari, M. S., Young, K. R., & Nicolas, M. E. (2016). Determining Wavelength for Nitrogen 
and Phosphorus Nutrients Through Hyperspectral Remote Sensing in Wheat (Triticum 
aestivum L.) Plant. International Journal of Bio-Resource & Stress Management, 7. 
doi: (https://doi.org/10.5958/0976-4038.2016.00125.1) 

Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. 
Remote sensing of Environment, 64(3), 234-253. doi: https://doi.org/10.1016/S0034-
4257(98)00014-5 



117 

Asner, G. P., & Martin, R. E. (2009). Airborne spectranomics: mapping canopy chemical and 
taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 7(5), 
269-276 

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C., Carranza, L., . . . Weiss, 
P. (2011). Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing 
of Environment, 115(12), 3587-3598 

Atkinson, P. M., & Curran, P. J. (1995). Defining an optimal size of support for remote sensing 
investigations. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 768-776. 
doi: http://10.1109/36.387592 

Atkinson, P. M., & Tatnall, A. R. (1997). Introduction neural networks in remote sensing. 
International Journal of remote sensing, 18(4), 699-709 

Au, J., Youngentob, K. N., Foley, W. J., Moore, B. D., & Fearn, T. (2020). Sample selection, 
calibration and validation of models developed from a large dataset of near-infrared 
spectra of tree leaves. Journal of Near-Infrared Spectroscopy, 0967033520902536. doi: 
https://doi.org/10.1177/0967033520902536 

Axelsson, C., Skidmore, A. K., Schlerf, M., Fauzi, A., & Verhoef, W. (2013). Hyperspectral 
analysis of mangrove foliar chemistry using PLSR and support vector regression. 
International Journal of Remote Sensing, 34(5), 1724-1743. doi: 
(https://doi.org/10.1080/01431161.2012.725958) 

Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., & Tuller, M. (2021). Estimation 
of root zone soil moisture from ground and remotely sensed soil information with 
multisensor data fusion and automated machine learning. Remote Sensing of 
Environment, 260, 112434 

Bahar, N. H., Gauthier, P. P., O’Sullivan, O. S., Brereton, T., Evans, J. R., & Atkin, O. K. 
(2018). Phosphorus deficiency alters scaling relationships between leaf gas exchange 
and associated traits in a wide range of contrasting Eucalyptus species. Functional Plant 
Biology, 45(8), 813-826 

Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors 
for monitoring and assessing plant stresses. Drones, 3(2), 40 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications 
and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-
31. doi: (https://doi.org/10.1016/j.isprsjprs.2016.01.011) 

Berg, J., & Nyström, K. (2018). A unified deep artificial neural network approach to partial 
differential equations in complex geometries. Neurocomputing, 317, 28-41 

Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., . . . Hank, T. 
(2020). Crop nitrogen monitoring: Recent progress and principal developments in the 
context of imaging spectroscopy missions. Remote Sensing of Environment, 242, 
111758 

Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., & Chanussot, 
J. (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE 
Geoscience and remote sensing magazine, 1(2), 6-36 

Blackmer, T. M., Schepers, J. S., Varvel, G. E., & Walter-Shea, E. A. (1996). Nitrogen 
deficiency detection using reflected shortwave radiation from irrigated corn canopies. 
Agronomy Journal, 88(1), 1-5. doi: 
(https://digitalcommons.unl.edu/agronomyfacpub/338 ) 

Boadi, S., Baah-Acheamfour, M., Ulzen-Appiah, F., & Murtaza Jamro, G. (2014). Nontimber 
forest product yield and income from Thaumatococcus daniellii under a mixed tree 
plantation system in Ghana. International Journal of Forestry Research, 2014. doi: 
(http://dx.doi.org/10.1155/2014/524863) 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi: 
(https://doi.org/10.1023/A:1010933404324) 

Breiman, L. (2017). Classification and regression trees: Routledge. 
Bremner, J. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of 

Agricultural Science, 55(1), 11-33 
Cael, J., Gardner, K., Koenig, J., & Blackwell, J. (1975). Infrared and Raman spectroscopy of 

carbohydrates. Paper V. Normal coordinate analysis of cellulose I. The Journal of 
Chemical Physics, 62(3), 1145-1153. doi: https://doi.org/10.1063/1.430558 



118 

Cai, Y., Guan, K., Nafziger, E., Chowdhary, G., Peng, B., Jin, Z., . . . Wang, S. (2019). 
Detecting in-season crop nitrogen stress of corn for field trials using UAV-and 
CubeSat-based multispectral sensing. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(12), 5153-5166 

Card, D. H., Peterson, D. L., Matson, P. A., & Aber, J. D. (1988). Prediction of leaf chemistry 
by the use of visible and near-infrared reflectance spectroscopy. Remote Sensing of 
Environment, 26(2), 123-147. doi: https://doi.org/10.1016/0034-4257(88)90092-2 

Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote Sensing of Plant 
Biodiversity: Springer Nature. 

Chase, C. W., Kimsey, M. J., Shaw, T. M., & Coleman, M. D. (2016). The response of light, 
water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir 
forests. Forest Ecology and Management, 363, 98-109 

Chemura, A., Mutanga, O., Odindi, J., & Kutywayo, D. (2018). Mapping spatial variability of 
foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 
MSI data. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 1-11. doi: 
https://doi.org/10.1016/j.isprsjprs.2018.02.004 

Chen, Jin, Y., & Brown, P. (2019). An enhanced bloom index for quantifying floral phenology 
using multi-scale remote sensing observations. ISPRS Journal of Photogrammetry and 
Remote Sensing, 156, 108-120 

Chen, L., Wang, Y., Ren, C., Zhang, B., & Wang, Z. (2019). Assessment of multi-wavelength 
SAR and multispectral instrument data for forest aboveground biomass mapping using 
random forest kriging. Forest Ecology and Management, 447, 12-25 

Cho, M. A., Skidmore, A., Corsi, F., Van Wieren, S. E., & Sobhan, I. (2007). Estimation of 
green grass/herb biomass from airborne hyperspectral imagery using spectral indices 
and partial least squares regression. International journal of applied Earth observation 
and geoinformation, 9(4), 414-424. doi: https://doi.org/10.1016/j.jag.2007.02.001 

Cipullo, S., Nawar, S., Mouazen, A., Campo-Moreno, P., & Coulon, F. (2019). Predicting 
bioavailability change of complex chemical mixtures in contaminated soils using 
visible and near-infrared spectroscopy and random forest regression. Scientific reports, 
9(1), 1-12. doi: https://doi.org/10.1038/s41598-019-41161-w 

Cömert, Z., & Kocamaz, A. F. (2016). A study based on gray level co-occurrence matrix and 
neural network community for determination of hypoxic fetuses International Artificial 
Intelligence and Data Processing Symposium (IDAP) (pp. 569-573). 

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: 
principles and practices: CRC press. 

Costa, L., Kunwar, S., Ampatzidis, Y., & Albrecht, U. (2021). Determining leaf nutrient 
concentrations in citrus trees using UAV imagery and machine learning. Precision 
Agriculture, 1-22 

Crous, J., Morris, A., & Scholes, M. (2007). The significance of residual phosphorus and 
potassium fertiliser in countering yield decline in a fourth rotation of Pinus patula in 
Swaziland. Southern Hemisphere Forestry Journal, 69(1), 1-8 

Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 
30(3), 271-278. doi: (https://doi.org/10.1016/0034-4257(89)90069-2) 

Curran, P. J., Dungan, J. L., & Peterson, D. L. (2001). Estimating the foliar biochemical 
concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark 
methodologies. Remote Sensing of Environment, 76(3), 349-359. doi: 
https://doi.org/10.1016/S0034-4257(01)00182-1 

Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2008). Inversion of a radiative 
transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous 
grassland. Remote Sensing of Environment, 112(5), 2592-2604 

Dash, J., Pearse, G., & Watt, M. (2018). UAV multispectral imagery can complement satellite 
data for monitoring forest health. Remote Sensing, 10(8), 1216 

De Vries, W. (2014). Nutrients trigger carbon storage. Nature Climate Change, 4(6), 425-426 
Demetriades-Shah, T. H., Steven, M. D., & Clark, J. A. (1990). High resolution derivative 

spectra in remote sensing. Remote Sensing of Environment, 33(1), 55-64. doi: 
https://doi.org/10.1016/0034-4257(90)90055-Q 



119 

Dixit, L., & Ram, S. (1985). Quantitative analysis by derivative electronic spectroscopy. 
Applied Spectroscopy Reviews, 21(4), 311-418. doi: 
https://doi.org/10.1080/05704928508060434 

Donkin, M., Pearce, J., & Chetty, P. (1993a). Methods for routine plant analysis in the ICFR 
laboratories. ICFR Bulletin Series, 8, 93 

Donkin, M., Pearce, J., & Chetty, P. (1993b). Methods for routine plant analysis in the ICFR 
laboratories. , 6(93), 8 

Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A 
review. Agronomy for sustainable development, 28(1), 33-46 

Downes, G. M., Hudson, I., Raymond, C. A., Dean, G. H., Michell, A. J., Schimleck, L. R., . . 
. Muneri, A. (1997). Sampling plantation eucalypts for wood and fibre properties: 
CSIRO publishing. 

Dye, P. (1996). Response of Eucalyptus grandis trees to soil water deficits. Tree Physiology, 
16(1-2), 233-238. doi: https://doi.org/10.1093/treephys/16.1-2.233 

Ellsworth, D., & Reich, P. (1993). Canopy structure and vertical patterns of photosynthesis and 
related leaf traits in a deciduous forest. Oecologia, 96(2), 169-178 

Elvidge, C. D. (1990). Visible and near-infrared reflectance characteristics of dry plant 
materials. Remote Sensing, 11(10), 1775-1795. doi: 
https://doi.org/10.1080/01431169008955129 

Escalante, H., Rodríguez-Sánchez, S., Jiménez-Lizárraga, M., Morales-Reyes, A., De La 
Calleja, J., & Vazquez, R. (2019). Barley yield and fertilization analysis from UAV 
imagery: a deep learning approach. International Journal of Remote Sensing, 40(7), 
2493-2516 

Eshkabilov, S., Lee, A., Sun, X., Lee, C. W., & Simsek, H. (2021). Hyperspectral imaging 
techniques for rapid detection of nutrient content of hydroponically grown lettuce 
cultivars. Computers and Electronics in Agriculture, 181, 105968 

FAO. (2016). FAO-KRC Regional cross-sectoral Policy Dialogue on Forests for Food 
Security. http://www.fao.org/3/a-bl730e.pdf. 

Fareed, N., & Rehman, K. (2020). Integration of Remote Sensing and GIS to Extract Plantation 
Rows from A Drone-Based Image Point Cloud Digital Surface Model. ISPRS 
International Journal of Geo-Information, 9(3), 151 

Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., . . . 
Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed 
data. Remote Sensing of Environment, 186, 64-87 

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., . . 
. Obersteiner, M. (2014). Nutrient availability as the key regulator of global forest 
carbon balance. Nature Climate Change, 4(6), 471-476. doi: 
https://doi.org/10.1038/nclimate2177 

Ferreira, G. W., Roque, J. V., Soares, E. M., da Silva, I. R., da Silva, E. F., Vasconcelos, A. d. 
A., & Teófilo, R. F. (2018). Temporal decomposition sampling and chemical 
characterization of eucalyptus harvest residues using NIR spectroscopy and 
chemometric methods. Talanta 

Ferwerda, J. G., Skidmore, A. K., & Mutanga, O. (2005). Nitrogen detection with hyperspectral 
normalized ratio indices across multiple plant species. International Journal of Remote 
Sensing, 26(18), 4083-4095. doi: (https://doi.org/10.1080/01431160500181044) 

Fife, D., Nambiar, E., & Saur, E. (2008). Retranslocation of foliar nutrients in evergreen tree 
species planted in a Mediterranean environment. Tree physiology, 28(2), 187-196 

Forster, E. J., Healey, J. R., Dymond, C., & Styles, D. (2021). Commercial afforestation can 
deliver effective climate change mitigation under multiple decarbonisation pathways. 
Nature Communications, 12(1), 1-12 

Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G., & Verdebout, J. (1996). Leaf optical 
properties with explicit description of its biochemical composition: direct and inverse 
problems. Remote sensing of Environment, 56(2), 104-117 

Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, M., . . . 
Mallinis, G. (2017). Vegetation biomass estimation with remote sensing: focus on 
forest and other wooded land over the Mediterranean ecosystem. International Journal 
of Remote Sensing, 38(7), 1940-1966 



120 

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., . . . Philipson, 
C. D. (2013). Higher levels of multiple ecosystem services are found in forests with 
more tree species. Nature communications, 4(1), 1-8 

Gara, T. W., Darvishzadeh, R., Skidmore, A. K., & Wang, T. (2018). Impact of vertical canopy 
position on leaf spectral properties and traits across multiple species. Remote sensing, 
10(2), 346. doi: https://doi.org/10.3390/rs10020346 

Gara, T. W., Darvishzadeh, R., Skidmore, A. K., Wang, T., & Heurich, M. (2019). Evaluating 
the performance of PROSPECT in the retrieval of leaf traits across canopy throughout 
the growing season. International Journal of Applied Earth Observation and 
Geoinformation, 83, 101919 

Garcia, K., & Zimmermann, S. D. (2014). The role of mycorrhizal associations in plant 
potassium nutrition. Frontiers in plant science, 5, 337 

Garcia, W., Amann, T., & Hartmann, J. (2018). Increasing biomass demand enlarges negative 
forest nutrient budget areas in wood export regions. Scientific Reports, 8(1), 1-7. doi: 
https://doi.org/10.1038/s41598-018-22728-5 

Ge, Y., Atefi, A., Zhang, H., Miao, C., Ramamurthy, R. K., Sigmon, B., . . . Schnable, J. C. 
(2019). High-throughput analysis of leaf physiological and chemical traits with VIS–
NIR–SWIR spectroscopy: a case study with a maize diversity panel. Plant methods, 
15(1), 66 

Girard, A., Schweiger, A. K., Carteron, A., Kalacska, M., & Laliberté, E. (2020). Foliar Spectra 
and Traits of Bog Plants across Nitrogen Deposition Gradients. Remote Sensing, 
12(15), 2448. doi: https://doi.org/10.3390/rs12152448 

Goel, P. K., Prasher, S. O., Landry, J., Patel, R. M., Bonnell, R., Viau, A. A., & Miller, J. 
(2003). Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency 
and weed infestation in corn. Computers and Electronics in Agriculture, 38(2), 99-124. 
doi: (https://doi.org/10.1016/S0168-1699(02)00138-2) 

Gomes, R., Bone, S., Cunha, M., Nahur, A. C., Moreira, P. F., Meneses-Filho, L., . . . Moutinho, 
P. (2010). Exploring the bottom-up generation of REDD+ policy by forest-dependent 
peoples. Nature, 2, 836 

Gracia-Romero, A., Kefauver, S. C., Vergara-Díaz, O., Hamadziripi, E., Zaman-Allah, M. A., 
Thierfelder, C., . . . Araus, J. L. (2020). Leaf versus whole-canopy remote sensing 
methodologies for crop monitoring under conservation agriculture: a case of study with 
maize in Zimbabwe. Scientific reports, 10(1), 1-17 

Guo, P.-T., Li, M.-F., Luo, W., & Cha, Z.-Z. (2019). Estimation of foliar nitrogen of rubber 
trees using hyperspectral reflectance with feature bands. Infrared Physics & 
Technology, 102, 103021. doi: https://doi.org/10.1016/j.infrared.2019.103021 

Guo, T.-t., Zhang, B., Guo, L., Li, D.-s., Wu, Y., Wu, J.-j., & Zhao, L. (2010). Classification 
of plant leaves by near-infrared spectroscopy using ANN and wavelet 2010 Second 
International Workshop on Education Technology and Computer Science (Vol. 2, pp. 
20-23): IEEE. 

Guo, Y., Yin, G., Sun, H., Wang, H., Chen, S., Senthilnath, J., . . . Fu, Y. (2020). Scaling effects 
on chlorophyll content estimations with RGB camera mounted on a UAV platform 
using machine-learning methods. Sensors, 20(18), 5130 

Han, K. A. M., & Watchareeruetai, U. (2019). Classification of nutrient deficiency in black 
gram using deep convolutional neural networks 2019 16th International Joint 
Conference on Computer Science and Software Engineering (JCSSE) (pp. 277-282): 
IEEE. 

Hansen, & Schjoerring, J. (2003). Reflectance measurement of canopy biomass and nitrogen 
status in wheat crops using normalized difference vegetation indices and partial least 
squares regression. Remote sensing of environment, 86(4), 542-553 

Hansen, P., McRoberts, R., Isebrands, J., & Dixon, R. (1987). Determining CO2 exchange rate 
as a function of photosynthetic photon flux density. Photosynthetica, 21, 98-101 

Holmes, G., & Keiller, D. (2002). Effects of pubescence and waxes on the reflectance of leaves 
in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. 
Plant, Cell & Environment, 25(1), 85-93. doi: https://doi.org/10.1046/j.1365-
3040.2002.00779.x 



121 

Huang, C.-Y., Wei, H.-L., Rau, J.-Y., & Jhan, J.-P. (2019). Use of principal components of 
UAV-acquired narrow-band multispectral imagery to map the diverse low stature 
vegetation fAPAR. GIScience & remote sensing, 56(4), 605-623 

Huete, A. R. (1986). Separation of soil-plant spectral mixtures by factor analysis. Remote 
Sensing of Environment, 19(3), 237-251. doi: https://doi.org/10.1016/0034-
4257(86)90055-6 

Jay, S., Baret, F., Dutartre, D., Malatesta, G., Héno, S., Comar, A., . . . Maupas, F. (2019). 
Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-
sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote 
Sensing of Environment, 231, 110898 

Johansen, K., Duan, Q., Tu, Y.-H., Searle, C., Wu, D., Phinn, S., . . . McCabe, M. F. (2020). 
Mapping the condition of macadamia tree crops using multi-spectral uav and 
worldview-3 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165, 
28-40 

Kahl, T., & Bauhus, J. (2014). An index of forest management intensity based on assessment 
of harvested tree volume, tree species composition and dead wood origin. Nature 
Conservation, 7, 15 

Kanmani, W., & Jayapradha, B. (2017). Prediction of Default Customer in Banking Sector 
using Artificial Neural Network. International Journal on Recent and Innovation 
Trends in Computing and Communication, 5(7), 293-296 

Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E. (2019). UAV data as 
alternative to field sampling to map woody invasive species based on combined 
Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 227, 61-73 

Kembhavi, A., Harwood, D., & Davis, L. S. (2011). Vehicle detection using partial least 
squares. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 
1250-1265 

Khan, A. L., & Lee, I.-J. (2013). Endophytic Penicillium funiculosum LHL06 secretes 
gibberellin that reprograms Glycine max L. growth during copper stress. BMC plant 
biology, 13(1), 86 

Kiala, Z., Odindi, J., Mutanga, O., & Peerbhay, K. (2016). Comparison of partial least squares 
and support vector regressions for predicting leaf area index on a tropical grassland 
using hyperspectral data. Journal of Applied Remote Sensing, 10(3), 036015. doi: 
(https://doi.org/10.1117/1.JRS.10.036015) 

Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., . . . Lewis, 
P. (2013). Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the 
National Academy of Sciences, 110(3), E185-E192 

Köhl, M., Magnussen, S. S., & Marchetti, M. (2006). Sampling methods, remote sensing and 
GIS multiresource forest inventory: Springer Science & Business Media. 

Kokaly, R. F., & Clark, R. N. (1999). Spectroscopic determination of leaf biochemistry using 
band-depth analysis of absorption features and stepwise multiple linear regression. 
Remote sensing of environment, 67(3), 267-287. doi: https://doi.org/10.1016/S0034-
4257(98)00084-4 

Koziol, P., Raczkowska, M. K., Skibinska, J., Urbaniak-Wasik, S., Paluszkiewicz, C., Kwiatek, 
W., & Wrobel, T. P. (2018). Comparison of spectral and spatial denoising techniques 
in the context of High Definition FT-IR imaging hyperspectral data. Scientific reports, 
8(1), 1-11. doi: https://doi.org/10.1038/s41598-018-32713-7 

Krishna, K. R. (2018). Agricultural drones: a peaceful pursuit: Taylor & Francis. 
L3Harris Technologies, I. (2020). ENVI 5.2: environment for visualizing images. Florida, 

United States: 1988-2020 Harris Geospatial Solutions, Inc.  
Lepine, L. C., Ollinger, S. V., Ouimette, A. P., & Martin, M. E. (2016). Examining spectral 

reflectance features related to foliar nitrogen in forests: Implications for broad-scale 
nitrogen mapping. Remote Sensing of Environment, 173, 174-186 

Lequeue, G., Draye, X., & Baeten, V. (2016). Determination by near-infrared microscopy of 
the nitrogen and carbon content of tomato (Solanum lycopersicum L.) leaf powder. 
Scientific reports, 6, 33183. doi: https://doi.org/10.1038/srep33183 

Li, L., Jákli, B., Lu, P., Ren, T., Ming, J., Liu, S., . . . Lu, J. (2018). Assessing leaf nitrogen 
concentration of winter oilseed rape with canopy hyperspectral technique considering 
a non-uniform vertical nitrogen distribution. Industrial Crops and Products, 116, 1-14 



122 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 
18-22 

Liew, O. W., Chong, P. C. J., Li, B., & Asundi, A. K. (2008). Signature optical cues: emerging 
technologies for monitoring plant health. Sensors, 8(5), 3205-3239. doi: 
(https://doi.org/10.3390/s8053205) 

Liu, M., Wang, M., Wang, J., & Li, D. (2013). Comparison of random forest, support vector 
machine and back propagation neural network for electronic tongue data classification: 
Application to the recognition of orange beverage and Chinese vinegar. Sensors and 
Actuators B: Chemical, 177, 970-980 

Loppi, S., Nelli, L., Ancora, S., & Bargagli, R. (1997). Passive monitoring of trace elements 
by means of tree leaves, epiphytic lichens and bark substrate. Environmental 
Monitoring and Assessment, 45(1), 81-88 

Louro, R. P., Dos Santos, A. V., & Machado, R. D. (1999). Ultrastructure of Eucalyptus 
grandis× Eucalyptus urophylla. I. Shoots cultivated in vitro in multiplication and 
elongation-rooting media. International journal of plant sciences, 160(2), 217-227 

Lu, B., He, Y., & Liu, H. (2018). Mapping vegetation biophysical and biochemical properties 
using unmanned aerial vehicles-acquired imagery. International Journal of Remote 
Sensing, 39(15-16), 5265-5287 

Lu, X., & Lu, S. (2015). Effects of adaxial and abaxial surface on the estimation of leaf 
chlorophyll content using hyperspectral vegetation indices. International Journal of 
Remote Sensing, 36(5), 1447-1469. doi: 
https://doi.org/10.1080/01431161.2015.1012277 

Lussem, U., Bolten, A., Menne, J., Gnyp, M., & Bareth, G. (2019). Ultra-high spatial resolution 
UAV-based imagery to predict biomass in temperate grasslands. Int. Arch. 
Photogramm. Remote Sens. Spat. Inf. Sci, 443-447 

Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., . . . Grace, 
J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213-215 

Ma, T., Wu, W., & Wang, Y. (2012). Transcriptome analysis of rice root responses to 
potassium deficiency. BMC Plant Biology, 12(1), 161 

Mahajan, G., Sahoo, R., Pandey, R., Gupta, V., & Kumar, D. (2014). Using hyperspectral 
remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in 
wheat (Triticum aestivum L.). Precision Agriculture, 15(5), 499-522. doi: 
(https://doi.org/10.1007/s11119-014-9348-7) 

Martin, R. E., Chadwick, K. D., Brodrick, P. G., Carranza-Jimenez, L., Vaughn, N. R., & 
Asner, G. P. (2018). An Approach for Foliar Trait Retrieval from Airborne Imaging 
Spectroscopy of Tropical Forests. Remote Sensing, 10(2), 199 

Martinelli, L. A., Almeida, S., Brown, I., Moreira, M., Victoria, R., Filoso, S., . . . Thomas, W. 
(2000). Variation in Nutrient Distribution and Potential Nutrient Losses by Selective 
Logging in a Humid Tropical Forest of Rondonia, Brazil 1. Biotropica, 32(4a), 597-
613 

Masemola, C., & Cho, M. A. (2019). Estimating leaf nitrogen concentration from similarities 
in fresh and dry leaf spectral bands using a model population analysis framework. 
International Journal of Remote Sensing, 40(17), 6841-6860. doi: 
https://doi.org/10.1080/01431161.2019.1597300 

McEwan, A., & Steenkamp, J. (2014). Silviculture modernization in the South African forestry 
industry Proceedings of the second international congress of silviculture, 26th–29th 
Novembe, Florence. Florence: Accademia Italiana di Scienze Forestali. 

McManus, K. M., Asner, G. P., Martin, R. E., Dexter, K. G., Kress, W. J., & Field, C. B. (2016). 
Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote 
Sensing, 8(3), 196 

Meacham-Hensold, K., Montes, C. M., Wu, J., Guan, K., Fu, P., Ainsworth, E. A., . . . Raines, 
C. (2019). High-throughput field phenotyping using hyperspectral reflectance and 
partial least squares regression (PLSR) reveals genetic modifications to photosynthetic 
capacity. Remote sensing of environment, 231, 111176 

Mee, C., Balasundram, S. K., & Hanif, A. H. M. (2017). Detecting and monitoring plant 
nutrient stress using remote sensing approaches: A review. Asian J. Plant Sci, 16, 1-8. 
doi: http://10.3923/ajps.2017.1.8 



123 

Menesatti, P., Antonucci, F., Pallottino, F., Roccuzzo, G., Allegra, M., Stagno, F., & Intrigliolo, 
F. (2010). Estimation of plant nutritional status by Vis–NIR spectrophotometric 
analysis on orange leaves [Citrus sinensis (L) Osbeck cv Tarocco]. Biosystems 
Engineering, 105(4), 448-454. doi: 
https://doi.org/10.1016/j.biosystemseng.2010.01.003 

Meng, X.-L. (1994). Posterior predictive P-values. The Annals of Statistics, 22(3), 1142-1160. 
doi: http://doi:10.1214/aos/1176325622 

Meuret, M., Dardenne, P., Biston, R., & Poty, O. (1993). The use of NIR in predicting nutritive 
value of Mediterranean tree and shrub foliage. Journal of Near-Infrared Spectroscopy, 
1(1), 45-54 

Meyer, J., Wood, R., McIntyre, R., & Leibbrandt, N. (1983). Classifying soils of the South 
African sugar industry on the basis of their nitrogen mineralizing capacities and organic 
matter contents Proc S Afr Sug Technol Ass (Vol. 57, pp. 151-158): Citeseer. 

Montgomery, K., Henry, J. B., Vann, M. C., Whipker, B. E., Huseth, A. S., & Mitasova, H. 
(2020). Measures of canopy structure from low-cost UAS for monitoring crop nutrient 
status. Drones, 4(3), 36 

Mucina, L., & Rutherford, M. (2006). The vegetation of South Africa, Lesotho and Swaziland. 
Strelitzia 19.,(South African National Biodiversity Institute: Pretoria, South Africa). 
Memoirs of the Botanical Survey of South Africa 

Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., 
Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for 
sensing the nitrogen status in plants: advantages, disadvantages and recent advances. 
Sensors, 13(8), 10823-10843 

Murguzur, F. J. A., Bison, M., Smis, A., Böhner, H., Struyf, E., Meire, P., & Bråthen, K. A. 
(2019). Towards a global arctic-alpine model for Near-infrared reflectance 
spectroscopy (NIRS) predictions of foliar nitrogen, phosphorus and carbon content. 
Scientific reports, 9(1), 1-10. doi: https://doi.org/10.1038/s41598-019-44558-9 

Mutanga, Dube, T., & Ahmed, F. (2016). Progress in remote sensing: vegetation monitoring in 
South Africa. South African Geographical Journal, 98(3), 461-471. doi: 
(https://doi.org/10.1080/03736245.2016.1208586) 

Mutanga, & Skidmore, A. (2004). Integrating imaging spectroscopy and neural networks to 
map grass quality in the Kruger National Park, South Africa. Remote sensing of 
environment, 90(1), 104-115 

Mutanga, Skidmore, A., & Prins, H. T. (2004a). Discriminating sodium concentration in a 
mixed grass species environment of the Kruger National Park using field spectrometry. 
International journal of remote sensing, 25(20), 4191-4201. doi: 
https://doi.org/10.1080/01431160410001720207 

Mutanga, Skidmore, A. K., & Prins, H. (2004b). Predicting in situ pasture quality in the Kruger 
National Park, South Africa, using continuum-removed absorption features. Remote 
sensing of Environment, 89(3), 393-408. doi: https://doi.org/10.1016/j.rse.2003.11.001 

Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland 
vegetation using WorldView-2 imagery and random forest regression algorithm. 
International Journal of Applied Earth Observation and Geoinformation, 18, 399-406. 
doi: (https://doi.org/10.1016/j.jag.2012.03.012) 

Mutowo, G., Mutanga, O., & Masocha, M. (2018). Evaluating the Applications of the Near-
Infrared Region in Mapping Foliar N in the Miombo Woodlands. Remote Sensing, 
10(4), 505. doi: https://doi.org/10.3390/rs10040505 

Mutowo, G., Mutanga, O., & Masocha, M. (2019). Including shaded leaves in a sample affects 
the accuracy of remotely estimating foliar nitrogen. GIScience & Remote Sensing, 1-14 

Myburg, A. A., Grattapaglia, D., Tuskan, G. A., Hellsten, U., Hayes, R. D., Grimwood, J., . . . 
Bauer, D. (2014). The genome of Eucalyptus grandis. Nature, 510(7505), 356-362. doi: 
https://doi.org/10.1038/nature13308 

Mzinyane, T., Van Aardt, J., Ahmed, F., & Gebreslasie, M. (2016). Predicting soil nitrogen 
content using narrow-band indices from Eucalyptus grandis canopies as proxy. South 
African Journal of Plant and Soil, 33(1), 23-31 

NERC. (Undated). Excel Post Processing Templates and User Guides. Retrieved from 
https://fsf.nerc.ac.uk/resources/post-processing/Excel.shtml 



124 

Nguyen, G., Rothstein, S., Spangenberg, G., & Kant, S. (2015). Role of microRNAs involved 
in plant response to nitrogen and phosphorous limiting conditions. Frontiers in plant 
science, 6, 629 

Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). 
Interval partial least-squares regression (iPLS): a comparative chemometric study with 
an example from near-infrared spectroscopy. Applied Spectroscopy, 54(3), 413-419 

Oliveira, L. F. R. d., Oliveira, M. L. R. d., Gomes, F. S., & Santana, R. C. (2017). Estimating 
foliar nitrogen in Eucalyptus using vegetation indexes. Scientia Agricola, 74(2), 142-
147. doi: (http://dx.doi.org/10.1590/1678-992x-2015-0477 ) 

Oliveira, L. F. R. d., & Santana, R. C. (2020). Estimation of leaf nutrient concentration from 
hyperspectral reflectance in Eucalyptus using partial least squares regression. Scientia 
Agricola, 77(6). doi: https://doi.org/10.1590/1678-992x-2018-0409  

Oliveira, R. A., Näsi, R., Niemeläinen, O., Nyholm, L., Alhonoja, K., Kaivosoja, J., . . . 
Markelin, L. (2020). Machine learning estimators for the quantity and quality of grass 
swards used for silage production using drone-based imaging spectrometry and 
photogrammetry. Remote Sensing of Environment, 246, 111830 

Omer, G., Mutanga, O., Abdel-Rahman, E. M., Peerbhay, K., & Adam, E. (2017). Mapping 
leaf nitrogen and carbon concentrations of intact and fragmented indigenous forest 
ecosystems using empirical modeling techniques and WorldView-2 data. Isprs Journal 
of Photogrammetry and Remote Sensing, 131, 26-39. doi: 
10.1016/j.isprsjprs.2017.07.005 

Osco, L., Junior, J., Ramos, A., Furuya, D., Santana, D., Teodoro, L., . . . Junior, C. (2020a). 
Leaf nitrogen concentration and plant height prediction for maize using UAV-based 
multispectral imagery and machine learning techniques. Remote Sensing, 12(19), 3237 

Osco, L., Ramos, A., & Faita, M. (2020b). A Machine Learning Framework to Predict Nutrient 
Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sensing, 12(6), 
906. doi: https://doi.org/10.3390/rs12060906 

Özyiğit, Y., & Bilgen, M. (2013). Use of spectral reflectance values for determining nitrogen, 
phosphorus, and potassium contents of rangeland plants. Journal of Agricultural 
Science and Technology, 15(7), 1537-1545 

Pajares, G. (2015). Overview and current status of remote sensing applications based on 
unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 
81(4), 281-330. doi: https://doi.org/10.14358/PERS.81.4.281 

Pasquini, C. (2018). Near-Infrared Spectroscopy: a mature analytical technique with new 
perspectives–A review. Analytica chimica acta. doi: 
https://doi.org/10.1016/j.aca.2018.04.004 

Payn, T. W., Hill, R. B., HÖck, B. K., Skinner, M. F., Thorn, A. J., & Rijkse, W. C. (1999). 
Potential for the use of GIS and spatial analysis techniques as tools for monitoring 
changes in forest productivity and nutrition, a New Zealand example. Forest Ecology 
and Management, 122(1-2), 187-196. doi: https://doi.org/10.1016/S0378-
1127(99)00041-9 

Peerbhay, K. Y., Mutanga, O., & Ismail, R. (2013). Commercial tree species discrimination 
using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant 
analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS Journal of 
Photogrammetry and Remote Sensing, 79, 19-28. doi: 
https://doi.org/10.1016/j.isprsjprs.2013.01.013 

Peña-Lévano, L. M., Taheripour, F., & Tyner, W. E. (2019). Climate change interactions with 
agriculture, forestry sequestration, and food security. Environmental and Resource 
Economics, 74(2), 653-675 

Peng, Z., Guan, L., Liao, Y., & Lian, S. (2019). Estimating total leaf chlorophyll content of 
gannan navel orange leaves using hyperspectral data based on partial least squares 
regression. IEEE Access, 7, 155540-155551. doi: 
http://10.1109/ACCESS.2019.2949866 

Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for 
diagnosing plant physiological status. Trends in plant science, 3(4), 151-156 

Pereira, F. d. S., de Lima, J., Freitas, R., Dos Reis, A., do Amaral, L., Figueiredo, G., . . . 
Magalhães, P. (2022). Nitrogen variability assessment of pasture fields under an 



125 

integrated crop-livestock system using UAV, PlanetScope, and Sentinel-2 data. 
Computers and Electronics in Agriculture, 193, 106645 

Peterson, D. L., Aber, J. D., Matson, P. A., Card, D. H., Swanberg, N., Wessman, C., & 
Spanner, M. (1988). Remote sensing of forest canopy and leaf biochemical contents. 
Remote Sensing of Environment, 24(1), 85-108. doi: https://doi.org/10.1016/0034-
4257(88)90007-7 

Pimstein, A., Karnieli, A., Bansal, S. K., & Bonfil, D. J. (2011). Exploring remotely sensed 
technologies for monitoring wheat potassium and phosphorus using field spectroscopy. 
Field Crops Research, 121(1), 125-135. doi: 
(https://doi.org/10.1016/j.fcr.2010.12.001) 

Pinto, D. S., Resende, R. T., Mesquita, A., Rosado, A. M., & Cruz, C. D. (2014). Early selection 
in tests for growth traits of Eucalyptus urophylla clones test. Scientia Forestalis, 
42(102), 251-257. doi: http://www.ipef.br/publicacoes/scientia/a 

Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., & Azcón, R. (2009). Arbuscular 
mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive 
trees under nursery conditions. Journal of plant physiology, 166(13), 1350-1359 

Pullanagari, R., Kereszturi, G., & Yule, I. (2016). Mapping of macro and micro nutrients of 
mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS Journal of 
Photogrammetry and Remote Sensing, 117, 1-10 

Pullanagari, R., Kereszturi, G., Yule, I., & Irwin, M. (2018). Determining Uncertainty 
Prediction Map of Copper Concentration in Pasture from Hyperspectral Data Using 
Qunatile Regression Forest IGARSS 2018-2018 IEEE International Geoscience and 
Remote Sensing Symposium (pp. 3809-3811): IEEE. 

Quentin, A. G., Rodemann, T., Doutreleau, M. F., Moreau, M., & Davies, N. W. (2017). 
Application of near-infrared spectroscopy for estimation of non-structural 
carbohydrates in foliar samples of Eucalyptus globulus Labilladiere. Tree Physiology, 
37(1), 131-141. doi: (https://doi.org/10.1093/treephys/tpw083 

Reich, P., Ellsworth, D., Kloeppel, B., Fownes, J., & Gower, S. (1990). Vertical variation in 
canopy structure and CO2 exchange of oak-maple forests: influence of ozone, nitrogen, 
and other factors on simulated canopy carbon gain. Tree Physiology, 7(1-2-3-4), 329-
345 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., & Carvalhais, N. (2019). 
Deep learning and process understanding for data-driven Earth system science. Nature, 
566(7743), 195-204 

Rengel, Z. (2007). Cycling of micronutrients in terrestrial ecosystems Nutrient cycling in 
terrestrial ecosystems (pp. 93-121): Springer. 

Reuter, D., & Robinson, J. B. (1997). Plant Analysis: An Interpretation Manual  (Second ed.): 
CSIRO publishing. 

Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition 
of phosphorus and nitrogen in the rhizosphere and plant growth promotion by 
microorganisms. Plant and soil, 321(1-2), 305-339 

Ring, E. (2000). The discovery of infrared radiation in 1800. The Imaging Science Journal, 
48(1), 1-8. doi: https://doi.org/10.1080/13682199.2000.11784339 

Rodrigues, M., Nanni, M. R., Cezar, E., dos Santos, G. L. A. A., Reis, A. S., de Oliveira, K. 
M., & de Oliveira, R. B. (2020). Vis–NIR spectroscopy: from leaf dry mass production 
estimate to the prediction of macro-and micronutrients in soybean crops. Journal of 
Applied Remote Sensing, 14(4), 044505. doi: https://doi.org/10.1117/1.JRS.14.044505 

Rubilar, R. A., Allen, H. L., Fox, T. R., Cook, R. L., Albaugh, T. J., & Campoe, O. C. (2018). 
Advances in silviculture of intensively managed plantations. Current Forestry Reports, 
4(1), 23-34. doi: https://doi.org/10.1007/s40725-018-0072-9 

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test 
and the Mann–Whitney U test. Behavioral Ecology, 17(4), 688-690. doi: 
(https://doi.org/10.1093/beheco/ark016) 

Sasaki, K., Kawata, S., & Minami, S. (1984). Estimation of component spectral curves from 
unknown mixture spectra. Applied optics, 23(12), 1955-1959. doi: 
https://doi.org/10.1364/AO.23.001955 

Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least 
squares procedures. Analytical chemistry, 36(8), 1627-1639 



126 

Schepaschenko, D., Chave, J., Phillips, O. L., Lewis, S. L., Davies, S. J., Réjou-Méchain, M., 
. . . Herault, B. (2019). The Forest Observation System, building a global reference 
dataset for remote sensing of forest biomass. Scientific data, 6(1), 1-11 

Schmitt, S., Garrigues, S., & de la Guardia, M. (2014). Determination of the mineral 
composition of foods by infrared spectroscopy: A review of a green alternative. Critical 
reviews in analytical chemistry, 44(2), 186-197. doi: 
https://doi.org/10.1080/10408347.2013.835695 

Shi, H., Lei, Y., Prates, L. L., & Yu, P. (2019). Evaluation of near-infrared (NIR) and Fourier 
transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with 
chemometrics for the determination of crude protein and intestinal protein digestibility 
of wheat. Food chemistry, 272, 507-513. doi: 
https://doi.org/10.1016/j.foodchem.2018.08.075 

Silva, J. A., & Uchida, R. (2000). Plant Nutrient Management in Hawaii’s Soils, Approaches 
for Tropical and Subtropical Agriculture. Plant Nutrient Management in Hawaii’s 
Soils, 31-55 

Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., & Townsend, P. A. (2015). Imaging 
spectroscopy algorithms for mapping canopy foliar chemical and morphological traits 
and their uncertainties. Ecological Applications, 25(8), 2180-2197. doi: 
https://doi.org/10.1890/14-2098.1 

Singh, L., Mutanga, O., Mafongoya, P., & Peerbhay, K. (2017a). Remote sensing of key 
grassland nutrients using hyperspectral techniques in KwaZulu-Natal, South Africa. 
Journal of Applied Remote Sensing, 11(3), 036005 

Singh, L., Mutanga, O., Mafongoya, P., & Peerbhay, K. Y. (2017b). Multispectral mapping of 
key grassland nutrients in KwaZulu-Natal, South Africa. Journal of Spatial Science, 1-
18 

Sozzi, M., Kayad, A., Gobbo, S., Cogato, A., Sartori, L., & Marinello, F. (2021). Economic 
comparison of satellite, plane and uav-acquired NDVI images for site-specific nitrogen 
application: Observations from Italy. Agronomy, 11(11), 2098 

Stein, B. R., Thomas, V. A., Lorentz, L. J., & Strahm, B. D. (2014). Predicting macronutrient 
concentrations from loblolly pine leaf reflectance across local and regional scales. 
GIScience & Remote Sensing, 51(3), 269-287 

Suomalainen, J., Oliveira, R. A., Hakala, T., Koivumäki, N., Markelin, L., Näsi, R., & 
Honkavaara, E. (2021). Direct reflectance transformation methodology for drone-based 
hyperspectral imaging. Remote Sensing of Environment, 266, 112691 

Taddese, H., Asrat, Z., Burud, I., Gobakken, T., Ørka, H. O., Dick, Ø. B., & Næsset, E. (2020). 
Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the 
Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing, 12(20), 3335 

Team, R. (2020). RStudio: Integrated Development for R (Version Version 1.2.5042). RStudio, 
Inc., Boston, MA. Retrieved from http://www.rstudio.com/ 

Timmer, V. (1997). Exponential nutrient loading: a new fertilization technique to improve 
seedling performance on competitive sites. New Forests, 13(1-3), 279-299. doi: 
https://doi.org/10.1023/A:1006502830067 

Tsai, F., & Philpot, W. (1998). Derivative analysis of hyperspectral data. Remote Sensing of 
Environment, 66(1), 41-51 

Tu, Y., Bian, M., Wan, Y., & Fei, T. (2018). Tea cultivar classification and biochemical 
parameter estimation from hyperspectral imagery obtained by UAV. PeerJ, 6, e4858 

Türker-Kaya, S., & Huck, C. (2017). A review of mid-infrared and near-infrared imaging: 
principles, concepts and applications in plant tissue analysis. Molecules, 22(1), 168 

Turner, J., & Lambert, M. (2017). Analysis of Foliage Phosphorus Requirements of Radiata 
Pine Plantations. Communications in Soil Science and Plant Analysis, 48(18), 2218-
2229. doi: (https://doi.org/10.1080/00103624.2017.1409355) 

Ulissi, V., Antonucci, F., Benincasa, P., Farneselli, M., Tosti, G., Guiducci, M., . . . Pari, L. 
(2011). Nitrogen concentration estimation in tomato leaves by VIS-NIR non-
destructive spectroscopy. Sensors, 11(6), 6411-6424. doi: 
(https://doi.org/10.3390/s110606411) 

Ustin, S. L. (2013). Remote sensing of canopy chemistry. Proceedings of the national academy 
of sciences, 110(3), 804-805 



127 

Ustin, S. L., & Jacquemoud, S. (2020). How the Optical Properties of Leaves Modify the 
Absorption and Scattering of Energy and Enhance Leaf Functionality Remote Sensing 
of Plant Biodiversity (pp. 349-384): Springer, Cham. 

van der Meer, F. (2018). Near-infrared laboratory spectroscopy of mineral chemistry: A 
review. International journal of applied earth observation and geoinformation, 65, 71-
78. doi: https://doi.org/10.1016/j.jag.2017.10.004 

van der Tol, C., Vilfan, N., Dauwe, D., Cendrero-Mateo, M. P., & Yang, P. (2019). The 
scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the 
models Fluspect and SCOPE. Remote sensing of environment, 232, 111292. doi: 
https://doi.org/10.1016/j.rse.2019.111292 

Van Deventer, H., Cho, M., Mutanga, O., & Ramoelo, A. (2015). Capability of models to 
predict leaf N and P across four seasons for six sub-tropical forest evergreen trees. 
ISPRS Journal of Photogrammetry and Remote Sensing, 101, 209-220 

Vanderbilt, V. C., & Grant, L. (1985). Plant canopy specular reflectance model. IEEE 
Transactions on Geoscience and Remote Sensing(5), 722-730. doi: http://0196-
2892/85/0900-0722 

Varhola, A., Coops, N. C., Weiler, M., & Moore, R. D. (2010). Forest canopy effects on snow 
accumulation and ablation: An integrative review of empirical results. Journal of 
Hydrology, 392(3-4), 219-233. doi: https://doi.org/10.1016/j.jhydrol.2010.08.009 

Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 
255(2), 571-586 

Wallis, C. I., Homeier, J., Peña, J., Brandl, R., Farwig, N., & Bendix, J. (2019). Modeling 
tropical montane forest biomass, productivity and canopy traits with multispectral 
remote sensing data. Remote sensing of environment, 225, 77-92 

Walshe, D., McInerney, D., Van De Kerchove, R., Goyens, C., Balaji, P., & Byrne, K. A. 
(2020). Detecting nutrient deficiency in spruce forests using multispectral satellite 
imagery. International Journal of Applied Earth Observation and Geoinformation, 86, 
101975 

Wang, Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A., Hobbie, S. E., & Cavender-
Bares, J. (2019). Mapping foliar functional traits and their uncertainties across three 
years in a grassland experiment. Remote sensing of environment, 221, 405-416 

Wang, Q., & Li, P. (2013). Canopy vertical heterogeneity plays a critical role in reflectance 
simulation. Agricultural and forest meteorology, 169, 111-121 

Wang, Y., Wang, F., Huang, J., Wang, X., & Liu, Z. (2009). Validation of artificial neural 
network techniques in the estimation of nitrogen concentration in rape using canopy 
hyperspectral reflectance data. International Journal of Remote Sensing, 30(17), 4493-
4505 

Wang, Z., Skidmore, A. K., Darvishzadeh, R., & Wang, T. (2018). Mapping forest canopy 
nitrogen content by inversion of coupled leaf-canopy radiative transfer models from 
airborne hyperspectral imagery. Agricultural and Forest Meteorology, 253, 247-260. 
doi: (https://doi.org/10.1016/j.agrformet.2018.02.010) 

Wang, Z., Skidmore, A. K., Wang, T., Darvishzadeh, R., Heiden, U., Heurich, M., . . . Hearne, 
J. (2017). Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by 
correcting for canopy structure effects. International Journal of Applied Earth 
Observation and Geoinformation, 54, 84-94 

Warburton, P., Brawner, J., & Meder, R. (2014). Handheld near-infared spectroscopy for the 
prediction of Leaf physiological status in tree seedlings (Report No. 1751-6552). 
Retrieved from Journal of Near-Infrared Spectroscopy. 

Ward, K. J., Chabrillat, S., Neumann, C., & Foerster, S. (2019). A remote sensing adapted 
approach for soil organic carbon prediction based on the spectrally clustered LUCAS 
soil database. Geoderma, 353, 297-307 

Watt, M. S., Pearse, G. D., Dash, J. P., Melia, N., & Leonardo, E. M. C. (2019). Application 
of remote sensing technologies to identify impacts of nutritional deficiencies on forests. 
ISPRS Journal of Photogrammetry and Remote Sensing, 149, 226-241 

Wessman, C. A., Aber, J. D., & Peterson, D. L. (1989). An evaluation of imaging spectrometry 
for estimating forest canopy chemistry. International Journal of Remote Sensing, 10(8), 
1293-1316. doi: https://doi.org/10.1080/01431168908903969 



128 

Weyer, L. G. (1985). Near-infrared spectroscopy of organic substances. Applied Spectroscopy 
Reviews, 21(1-2), 1-43. doi: https://doi.org/10.1080/05704928508060427 

Williams, P., & Norris, K. (1987). Near-infrared technology in the agricultural and food 
industries: American Association of Cereal Chemists, Inc. 

Windley, H. R., & Foley, W. J. (2015). Landscape-scale analysis of nutritional traits of New 
Zealand tree foliage using near-infrared spectroscopy. Forest Ecology and 
Management, 357, 161-170 

Xulu, S., Gebreslasie, M. T., & Peerbhay, K. Y. (2019). Remote sensing of forest health and 
vitality: a South African perspective. Southern Forests: a Journal of Forest Science, 
81(2), 91-102 

Yousefpour, R., Augustynczik, A. L. D., Reyer, C. P., Lasch-Born, P., Suckow, F., & 
Hanewinkel, M. (2018). Realizing mitigation efficiency of European commercial 
forests by climate smart forestry. Scientific reports, 8(1), 1-11 

Yu, P., Zhang, M., Ziyan, X., Yang, T., Yali, S., Zhou, T., . . . Lin, Y. (2020). Estimation of 
leaf nutrition status in degraded vegetation based on field survey and hyperspectral data. 
Scientific Reports (Nature Publisher Group), 10(1) 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., & Berry, J. A. (2019). A practical 
approach for estimating the escape ratio of near-infrared solar-induced chlorophyll 
fluorescence. Remote Sensing of Environment, 232, 111209. doi: 
https://doi.org/10.1016/j.rse.2019.05.028 

Zha, H., Miao, Y., Wang, T., Li, Y., Zhang, J., Sun, W., . . . Kusnierek, K. (2020). Improving 
unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction 
with machine learning. Remote Sensing, 12(2), 215 

Zhai, Y., Cui, L., Zhou, X., Gao, Y., Fei, T., & Gao, W. (2013). Estimation of nitrogen, 
phosphorus, and potassium contents in the leaves of different plants using laboratory-
based visible and near-infrared reflectance spectroscopy: comparison of partial least-
square regression and support vector machine regression methods. International 
journal of remote sensing, 34(7), 2502-2518. doi: 
(https://doi.org/10.1080/01431161.2012.746484) 

Zhang, S., Li, J., Wang, S., Huang, Y., Li, Y., Chen, Y., & Fei, T. (2020). Repaid Identification 
and Prediction of Cadmium–Lead Cross-Stress of Different Stress Levels in Rice 
Canopy Based on Visible and Near-Infrared Spectroscopy. Remote Sensing, 12(3), 469. 
doi: https://doi.org/10.3390/rs12030469 

Zhang, X., Liu, F., He, Y., & Gong, X. (2013). Detecting macronutrients content and 
distribution in oilseed rape leaves based on hyperspectral imaging. Biosystems 
engineering, 115(1), 56-65 

Zhao, Caiafa, C. F., Mandic, D. P., Chao, Z. C., Nagasaka, Y., Fujii, N., . . . Cichocki, A. 
(2013). Higher order partial least squares (HOPLS): a generalized multilinear 
regression method. IEEE transactions on pattern analysis and machine intelligence, 
35(7), 1660-1673 

Zhao, C., Li, H., Li, P., Yang, G., Gu, X., & Lan, Y. (2016). Effect of vertical distribution of 
crop structure and biochemical parameters of winter wheat on canopy reflectance 
characteristics and spectral indices. IEEE Transactions on Geoscience and Remote 
Sensing, 55(1), 236-247 

Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. (2005). Nitrogen deficiency effects on 
plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. 
European journal of agronomy, 22(4), 391-403 

Zhu, X., Ma, L., Li, C., Tang, L., Zhao, Y., & Zhang, H. (2019). Sampling strategy and product 
validation over nonuniform surface-based on TEM and CGM upscaling: A case study 
on LAI. Nonlinear Optics and Applications XI, 11026, 110261I. doi: 
https://doi.org/10.1117/12.2525310 

 




