1,474 research outputs found

    Determination Of Parameter Regions For Diagonal Dominance And Stability Of Mimo Systems

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017Endüstride karşılaşılan sistemlerin birçoğu birden fazla giriş ve çıkış değişkenine sahiptir. Bu tarz sistemler SISO sistemlerle karşılaştırıldıklarında, birçok farklı yapısal özellikleri göze çarpmaktadır. Örneğin, en genel durumda herhangi bir çıkış tüm girişlerden az veya çok etkilenir. Diğer taraftan, kontrolör türleri açısından bakıldığında ise araştırmacılar genel olarak "merkezi" ve "merkezi olmayan" olmak üzere iki farklı kontrol yapısına odaklanmışlardır. Ancak, ayarlanacak parametre sayısının azlığı, dayanıklılık ve operatör açısından kullanım kolaylığı gibi nedenlerle merkezi olmayan kontrol yapılarının uygulamalarda daha sık tercih edildiği ileri sürülebilir. Farklı giriş çıkış çiftleri arasındaki etkileşimlerin önemli boyutlara ulaştığı durumlarda ise bu tür kontrolörlerin performansı ve etkinliği genel olarak azalır. Yukarıda bahsedilen nedenlerden dolayı MIMO sistemlerde etkileşimlerin azaltılması özellikle merkezi olmayan kontrolör tasarımı açısından büyük bir önem arz etmektedir. MIMO sistemlerde etkileşimleri azaltmak amacıyla kullanılabilecek yöntemlerden bir tanesi de tam köşegenleştirme ile karşılaştırıldığında daha zayıf bir koşulun sağlanmasını gerektiren köşegen baskınlık kavramıdır. Köşegen baskın sistemlerde bir giriş değişkeni özel bir çıkış değişkeni ile diğer çıkışlara oranla çok daha fazla ilişkilidir. Bu nedenle, bu tezin en temel hedeflerinden bir tanesi MIMO sistemlerde köşegen baskınlık koşullarını sağlayan kontrolör parametre bölgelerinin belirlenmesidir. Buna ek olarak, en genel durumda köşegen baskınlık kararlılığı gerektirmediğinden çok değişkenli sistemleri kararlı kılan kontrolör parametrelerinin belirlenmesi de yine bu tez kapsamında amaçlanan temel hedeflerden bir diğeridir. Sonuç olarak, merkezi olmayan kontrolör tasarımına ön adım oluşturacak şekilde hem köşegen baskınlık hem de kararlılık koşullarının sağlandığı kontrolör parametre bölgelerinin belirlenmesi hedeflenmektedir. Literatürde köşegen baskınlık kavramının önemi özellikle Rosenbrock'un 1970'lerin başındaki çalışmalarından sonra artmıştır. Ancak süreç içerisinde araştırmacıların büyük bir çoğunluğu köşegen baskınlık ile ilgili olarak belirli bir ölçütü en iyileyen kontrolör parametre çiftlerinin belirlenmesine yönelmiştir. Bu durum ise bir sonraki tasarım adımında kısıtlamalara neden olabilmektedir. Buna ek olarak, parametre belirsizliği durumunda köşegen baskınlığın korunup korunmadığı ve/veya belirlenen parametre çiftinin köşegen baskınlık sınırlarına ne kadar yakın olduğu genel olarak detaylı bir şekilde araştırılmamıştır. Bu tez kapsamında köşegen baskınlık üzerindeki gerek ve yeter koşulların belirlenmesi hedeflendiğinden, özel olarak TITO sistemler ve köşegen yapıdaki kontrolör durumu detaylı olarak ele alınmıştır. Bu tarz sistemleri, verilen sabit bir frekans değerinde köşegen baskın kılan kontrolör parametreleri üzerindeki gerek ve yeter koşullar belirlenmiştir. Elde edilen sonuçlar sonlu sayıdaki frekans noktası için de geçerlidir ve pratik açıdan bakıldığında verilen bir frekans aralığına da genişletilebilir durumdadır. Buna ek olarak, daha iyi baskınlık oranı sağlayan parametre bölgelerinin belirlenmesine yönelik olarak orjinal köşegen baskınlık tanımına ağırlık faktörleri eklenmiş ve bu durum için gerek ve yeter koşullar belirlenmiştir. Son olarak da statik köşegen kontrolör durumunda sütun köşegen baskınlığı için kontrolör parametre bölgelerinin yapısını değiştiren kritik frekans değerleri belirlenmiştir. Elde edilen sonuçların köşegen baskınlık açısından etkinlikleri, örnek sistemler ve farklı kontrolörler üzerinden, Gershgorin Diskleri ve köşegen baskınlık çizimleri kullanılarak gösterilmiştir. MIMO sistemleri kapalı çevrimde kararlı kılan kontrolör parametrelere bölgelerinin belirlenmesi için ise Lyapunov eşitliği temelli bir yöntem ileri sürülmüştür. Bu yöntem sayesinde frekans tabanlı yöntemlerde karşılaşılan tekil frekansların hesaplanması ve/veya frekans taraması gibi adımlara olan ihtiyaç ortadan kaldırılmıştır. Temel Lyapunov yaklaşımı açısından bakıldığında LTI sistemler için Lyapunov matrisi olan P(k)'nın pozitif tanımlılığı gerek ve yeter koşuldur. Ancak, Lyapunov matrisi P(k)'nın pozitif tanımlılığı en genel durumda 2n adet parametrik eşitliğin çözümünü gerektirir. Yapılan analizle bu sayı önce n+1'e indirilmiştir. Ardından, Lyapunov matris eşitliği Kronecker çarpımları ve vektörizasyon operatörü kullanılarak standart forma indirgenmiş ve tanımlanan yeni M(k) matrisinin determinantının tartışılan sistem için bir kararlılık sınırı oluşturduğu sistem matrisi A(k), Lyapunov matrisi P(k) ve Kronecker çarpımları üzerinden tanımlanan M(k)'nin birbirleriyle olan ilişkileri üzerinden gösterilmiştir. Dolayısıyla M(k) matrisinin determinantını sıfır ve sonsuz yapan kontrolör parametrelerinin ilgili sistemin kararlılık sınırını oluşturduğu belirlenmiştir. Diğer bir deyişle, kararlılık sınırlarının belirlenmesi en fazla iki adet parametrik ifadenin çözümüne indirgenmiştir. Lyapunov formulasyonunda kullanılan P(k) ve Q matrislerinin simetrikliğinden kaynaklanan M(k) matrisinin determinantınındaki tekrarlanan özdeğerler ise eleminasyon ve duplikasyon matrisleri kullanılarak uygulanan dönüşümler yardımıyla ortadan kaldırılmıştır. Önerilen yöntemin literatürde var olan PSA gibi yöntemlerle ilişkisi ise sonlu ve sonsuz kök sınırları üzerinden gösterilmiştir. Kararlı kılan kontrolör parametre bölgelerinin belirlenmesinde Lyapunov temelli bir yaklaşım kullanıldığından öne sürülen yöntem sadece MIMO sistemlerde değil Lyapunov formülasyonunun kurulabildiği çok geniş bir sistem sınıfına ve alt problemlere de uygulanabilir durumdadır. Bu durumu gösterebilmek amacıyla ilk olarak MIMO sistemlerde kontolör entegrasyonu problemi ele alınmıştır. MIMO kontrolörlerde meydana gelebilecek olası hataları göz önünde bulundururak olası hata durumlarında dahi sistemin kararlılığını garanti etmeyi amaçlayan bu probleme bir çözüm önerisi sunulmuştur. Önerilen yöntemin etkinliği literatürde var olan yaklaşımlar üzerinden karşılaştırmalı olarak gösterilmiştir. Buna ek olarak, yine önerilen Lyapunov eşitliği temelli yöntemin olası diğer kullanım alanlarını vurgulamak amacıyla ayrık zamanlı sistemlerin kararlılığı ayrıntılı olarak tartışılmıştır. Bu durumda önerilen yaklaşımın nasıl değiştiği vurgulanmıştır. Lyapunov temelli yaklaşım ile kararlılık sınırlarının analitik ifadelerinin belirlenmesi de mümkündür. Bu durum da özellikle optimizasyon temelli tasarım yöntemlerinde farklı kullanım alanları açmaktadır. Bu kapsamda dayanıklı MPC problemi detaylı olarak ele alınmıştır. Lyapunov yöntemi kullanılarak belirlenen analitik kararlılık sınırları dayanıklı MPC problem formülasyonunda kullanılarak ele alınan problem nominal MPC problemine dönüştürülmüştür. Önerilen yöntemin etkinliği literatürde sıklıkla kullanılan bir sistem üzerinden de gösterilmiştir. Tam köşegenleştirme ile karşılaştırıldığında, köşegen baskınlık daha zayıf bir koşul olarak ortaya çıkar. Bu nedenle, parametre belirsizlikleri durumunda dahi bu koşulu sağlayan kontrolör parametrelerini belirlemek mümkün hale gelir. Bu tez kapsamında, TFM elemanlarının aralık tipi parametre belirsizliği içerdiği TITO sistemler detaylı olarak tartışılmıştır. Bu tür sistemleri parametre belirsizlikleri durumunda dahi köşegen baskın kılan statik köşegen kontrolörlerin belirlenmesi hedeflenmiştir. Bu hedef doğrultusunda üçgen eşitsizliği ve tarama yöntemlerine dayanan iki farklı konservatif yöntem önerilmiştir. Bu yaklaşımlar kullanılarak tartışılan problem ilk aşamada nominal sistemin ağırlıklandırılmış baskınlık problemine dönüştürülmüştür. Sonrasında da önceki bölümlerde elde edilen sonuçlar kullanılarak sonuca gidilmiştir. Son olarak da belirsiz parametre içeren çok değişkenli sistemlerin kararlılığı tartışılmıştır. Bu aşamada belirsiz parametreler için literatürde kullanılan iki farklı varsayıma yer verilmiştir. İlk varsayımda belirsiz parametreler üzerinde herhangi bir kısıtlama yoktur ve sistemi kararlı kılan tüm belirsiz parametre bölgelerinin belirlenmesi hedeflenmektedir. Bu durumda önerilen Lyapunov temelli yöntem direkt olarak uygulanabilir durumdadır. Bu yöntemin aksine literatürde var olan bir çok yöntemde ise belirsiz parametre sayısı ve türü üzerinde bir takım varsayımlarda bulunularak sonuçlar elde edilmiştir. Bu tez kapsamında önerilen yöntemin doğruluğu literatürde var olan farklı örnek durumlar üzerinden gösterilmiştir. Diğer taraftan, bazı durumlarda belirsiz sistem parametrelerinin alabileceği minimum ve maksimum değerler belirlidir. İlgili parametrenin bilinen bu değerler arasında bir değer aldığı tüm durumlarda polinom ailesinin kararlı kalıp kalmadığının belirlenmesi hedeflenir. SISO sistemler için bazı özel durumlarda sonlu sayıda polinomun kararlı olmasının tüm polinom ailesinin kararlığını garanti ettiği gösterilmiştir. MIMO sistemlerde ise en basit durumlarda bile kontrolör parametrelerinin ve TFM'yi oluşturan transfer fonksiyonlarının çarpımları karakteristik polinomda görünmektedir. %SISO sistemlerle karşılaştırıldığında bu tarz durumlarda dayanıklı kararlılığı sağlayan kontrolör parametre bölgelerinin belirlenmesi görece daha zordur. Tartışılan bu problemde karakteristik polinom, hem alt ve üst sınırları bilinen belirsiz parametreleri hem de serbest kontrolör parametrelerini içermektedir. Bu tez kapsamında yukarı yakınsama yaklaşımından da yararlanılarak, Kharitonov Teoremi ve önerilen Lyapunov eşitliği temelli yaklaşımla bu tarz sistemleri dayanıklı kararlı kılan kontrolör parametre bölgelerinin belirlenmesine yönelik bir yöntem önerilmiştir. Önerilen bu yöntem Kharitonov Teoremi de kullanıldığından hesaplama yükünü önemli oranda azaltmaktadır ancak değişmez kontrolör parametre bölgelerinin belirlenmesinde ek analiz adımlarını da beraberinde getirmektedir. Özetle, bu tez kapsamında nominal ve parametre belirsiz MIMO sistemeleri hem köşegen baskın kılan hem de kararlı yapan köşegen tipteki kontrolörlerin parametre bölgelerinin belirlenmesi hedeflenmiştir. Köşegen baskınlık açısından bakıldığında gerek ve yeter koşulların belirlenmesi hedeflendiğinden TITO sistemler üzerinden sonuçlar elde edilmiştir. Diğer taraftan kararlı kılan kontrolör parametrelerinin belirlenmesinde ise herhangi bir sistem veya kontrolör kısıtı bulunmamaktadır.Most of the industrial plants include more than one input and output variable. Compared to Single Input Single Output (SISO) systems, such systems include different structural properties. For instance, an output variable is effected by all input variables in general. On the other hand, in terms of controller structures, researchers have focused on two main approaches for such systems, which are "centralized" and "decentralized" controllers. However, it can be proposed that decentralized controllers are preferred more in practice due to various reasons like less number of tuning parameter, possibility to apply single loop controller design methods, ease of use for operators etc. Whereas, in general, performance and efficiency of such controllers reduce when there are significant interactions between different input-output pairs in a Multi Input Multi Output (MIMO) system. Reducing the interactions between different input-output pairs in MIMO systems is crucial in terms of decentralized controller design due to the previously mentioned reasons. Diagonal dominance which is a weaker condition compared to decoupling, is one of the approaches that can be used to reduce interactions in MIMO systems. One input variable is strongly related with one specific output variable in diagonal dominant systems. One of the main aims of this thesis is to determine controller parameter regions that achieve diagonal dominance conditions. Additionally, it is also aimed to determine stabilizing parameter spaces, since diagonal dominance does not indicate stability in general. As a result, controller parameter regions that achieve both diagonal dominance and stability conditions in closed loop are determined in this thesis as the first step of decentralized controller design. In literature, the diagonal dominance concept has gained attraction since the pioneering studies of Rosenbrock in early 1970s. However, in the meantime most of the researchers focused on determining a specific controller parameter pair that optimizes a predetermined condition. Such a case may restrict the designer in the next steps of the design process. Additionally, the number of studies are limited that investigates the diagonal dominance characteristics of the determined controller parameters in case uncertainties or checks how the system is close to the diagonal dominance boundaries. Two Input Two Output (TITO) systems are special subset of MIMO systems since in practice many MIMO systems can be treated as several TITO subsystems as proposed in literature. In terms of diagonal dominance, particularly, TITO systems and diagonal type controllers are discussed in detail, since it is aimed to determine necessary and sufficient conditions on diagonal dominance in terms of controller parameters. For such systems, exact conditions on the controller parameters in terms of both column and row diagonal dominance are derived at a given fixed frequency. Derived results are also valid for finite number of frequencies and practically applicable for a given frequency range. Moreover, weighting factors are added to the original definition of diagonal dominance in order to derive controller parameter regions that achieve better diagonal dominance ratios. Necessary and sufficient conditions on diagonal type controllers are also derived for the weighted diagonal dominance problem. Lastly, critical frequencies that may possibly change the interval characteristics of static diagonal controllers for the column diagonal dominance are derived. Effectiveness of the derived results in terms of diagonal dominance are demonstrated over several case studies using Gershgorin Disc plots and diagonal dominance ratio plots. On the other hand, a Lyapunov equation based stability mapping approach is proposed within the scope of this thesis to derive stabilizing controller parameter spaces of a given MIMO system. In the present approach, it is not necessary to calculate singular frequencies or apply frequency sweeping that most of the frequency based approaches require. From the Lyapunov point of view, positive definiteness of the Lyapunov matrix P(k) is necessary and sufficient for LTI systems. However, considering the numerators and denominators of the leading principal minors it is required to solve 2n parametric equation in order to determine positive definiteness of P(k). This number is reduced to n+1 at the first step. After that, Lyapunov matrix equation is reduced to the standard set of equation representation using the Kronecker products and vectorization operator. At this point, a new matrix M(k) is defined over the Kronecker products and it is shown that determinant of M(k) is the product of binary combinations of A(k). Using the relations between the system matrix A(k), Lyapunov matrix P(k) and M(k), it is shown that it is sufficient to solve at most 2 parametric equations which are |M(k)|=0 and |M(k)|->infinity. Determinant of M(k) includes redundant multiplications of binary combinations of eigenvalue pairs of A(k) due to the matrices P(k) and Q that are used in Lyapunov formulation are symmetric. In order to eliminate the redundant multiplications and reduce the computational complexity, elimination and duplication matrices are introduced as transformation matrices. In addition to MIMO systems, the proposed stability mapping approach is applicable to a broad range of systems, further system classes and sub problems where Lyapunov formulation is possible. In order to demonstrate these properties of the proposed approach, firstly, controller integrity problem of MIMO systems is discussed in detail. An approach is proposed to determine stabilizing controller parameter regions even in case of possible failures related with controller parameters. A benchmark case study is included and effectiveness of the proposed approach is shown over a comparative study with a currently existing approach. Additionally, discrete time systems is also discussed in detail to demonstrate the further application areas of the proposed Lyapunov equation based stability mapping approach. In this case, the structure of the Lyapunov equation varies slightly compared to the continuous time case. Another benefit of the proposed Lyapunov equation based approach is the opportunity to determine analytical expressions of stability boundaries. So that, it becomes possible to use Lyapunov equation based stability mapping approach in optimization based approaches by inserting the stability boundaries as constraints on such approaches. This case is also addressed through the robust Model Predictive Control (MPC) problem. Analytical stability boundaries which is derived in the off-line phase using the proposed stability mapping approach is inserted to the robust MPC problem formulation to achieve stability. In this way, robust MPC problem is transformed into the nominal MPC problem. The effectiveness of the proposed method is also demonstrated through a benchmark system that is frequently used in the literature. Diagonal dominance proposes weaker conditions compared to decoupling. As a result, it becomes possible to determine controller parameter regions that achieve diagonal dominance in case of parametric uncertainties. Within the scope of this thesis, two conservative approaches which are based on triangular inequality and griding are proposed for the systems that include interval type uncertainties in Transfer Function Matrix (TFM) elements. Using these approaches diagonal dominance problem of a parametric uncertain system is transferred to the weighted diagonal dominance problem of the nominal plant. After that, previously derived results are used to determine static diagonal controller parameter regions. Lastly, stability of parameter uncertain multivariable systems is discussed in order to determine robustly stabilizing parameter spaces. There are two main assumptions on uncertain parameters in literature. In the first assumption, there is no restriction on uncertain parameters and it is aimed to determine all uncertain parameter spaces that preserve stability of the closed loop system. In this case, proposed Lyapunov equation based stability mapping approach is directly applicable. Contrary to this approach, many methods that is currently available in the literature include the results obtained by making some assumptions on the number and the type of uncertain parameters. The validity of the Lyapunov equation based method has been demonstrated through different benchmark case studies. On the other hand, in some cases, it is assumed that upper and lower bounds of uncertain parameters are known. It is aimed to determine whether the whole polynomial family is stable in all cases where the uncertain parameters take any value between these known intervals. In some special cases, it was shown in literature that stability of finite number fixed polynomials guarantee the stability of whole uncertain polynomial family in case of SISO systems. However, the characteristic polynomial of MIMO systems includes the multiplication of free controller parameters and individual transfer functions even in the simplest cases. As a result, it can be proposed that compared to SISO systems, it is more difficult to determine the controller parameter areas that provide robust stability in such systems. In the discussed problem characteristic equation includes both uncertain parameters that have known upper and lower bounds and free controller parameters. In this thesis, an approach is presented to determine robustly stabilizing parameter spaces using the Kharitonov Theorem in accordance with the Lyapunov method by applying overbounding method on characteristic polynomial coefficients. The proposed method reduces the computational complexity significantly, since Kharitonov Theorem is used. However, it must also be noted that calculation of invariant controller parameter sub regions in terms of overbounding also introduces additional analysis steps. As a conclusion, in this thesis, it is mainly focused on determining controller parameter regions of the diagonal type controllers that make both nominal and parametric MIMO systems diagonal dominant and stable. The results are derived through TITO systems from the standpoint of diagonal dominance, since it is aimed to determine the necessary and sufficient conditions. On the other hand, there is no restriction on the system and controller type for the proposed stability mapping approach.DoktoraPh.D

    A computational method for simultaneous LQ optimal control design via piecewise constant output feedback

    Get PDF
    This paper is concerned with simultaneous linear-quadratic (LQ) optimal control design for a set of LTI systems via piecewise constant output feedback. First, the discrete-time simultaneous LQ optimal control design problem is reduced to solving a set of coupled matrix inequalities and an iterative LMI algorithm is presented to compute the feedback gain. Then, simultaneous stabilization and simultaneous LQ optimal control design of a set of LTI continuous-time systems are considered via periodic piecewise constant feedback gain. It is shown that the design of a periodic piecewise constant feedback gain simultaneously minimizing a set of given continuous-time performance indexes can be reduced to that of a constant feedback gain minimizing a set of equivalent discrete-time performance indexes. Explicit formulas for computing the equivalent discrete-time systems and performance indexes are derived. Examples are used to demonstrate the effectiveness of the proposed method.published_or_final_versio

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Utilization of Differential Thrust for Lateral/Directional Stability of a Commercial Aircraft with a Damaged Vertical Stabilizer

    Get PDF
    This thesis investigates the utilization of differential thrust to help a commercial aircraft with a damaged vertical stabilizer regain its lateral/directional stability. In the event of an aircraft losing its vertical stabilizer, the consequential loss of the lateral/directional stability is likely to cause a fatal crash. In this thesis, the damaged aircraft model is constructed, and the lateral/directional dynamic stability and frequency domain analyses are conducted. The propulsion dynamics of the aircraft are modeled as a system of differential equations with engine time constant and time delay terms to study the engine response time with respect to a differential thrust input. The novel differential thrust control module is presented to map the rudder input to differential thrust input. Then, the differential thrust based control strategies such as linear quadratic regulator (LQR), model reference adaptive system (MRAS), and H∞ loop-shaping based robust control system are proposed to be utilized to help maintain stability and control of the damaged aircraft. For each type of control system design, robustness and sensitivity analysis is also conducted to test the performance of each control system in the presence of noise and uncertainty. Results demonstrate successful applications of such control methodologies as the damaged aircraft can achieve stability under feasible control efforts and without any actuator saturation. Finally, a comparison study of three control systems is conducted to investigate the merits and limits of each control system. Overall, the H∞ loop-shaping based robust control system was found to have the most remarkable results for stabilizing and saving the damaged aircraft

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Robust Controller Design for an Autonomous Underwater Vehicle

    Get PDF
    Worldwide there has been a surge of interest in Autonomous Underwater Vehicles (AUV). The ability to operate without human intervention is what makes this technology so appealing. On the other hand, the absence of the human narrows the AUV operation to its control system, computing, and sensing capabilities. Therefore, devising a robust control is mandatory to allow the feasibility of the AUV. Motivated by this fact, this thesis aims to present, discuss and evaluate two linear control solutions being proposed for an AUV developed by a consortium led by CEiiA. To allow the controller design, the dynamic model of this vehicle and respective considerations are firstly addressed. Since the purpose is to enable the vehicle’s operation, devising suitable guidance laws becomes essential. A simple waypoint following and station keeping algorithm, and a path following algorithms are presented. To devise the controllers, a linear version of the dynamic model is derived considering a single operational point. Then, through the decoupling of the linear system into three lightly interactive subsystems, four Proportional Integral Derivative controllers (PIDs) are devised for each Degree Of Freedom (DOF) of the vehicle. A Linear Quadratic Regulator (LQR) design, based on the decoupling of the linear model into longitudinal and lateral subsystems is also devised. To allocate the controller output throughout the actuators, a control allocation law is devised, which improves maneuverability of the vehicle. The results present a solid performance for both control methods, however, in this work, LQR proved to be slightly faster than PID.É visível, a nível mundial, um aumento considerável do interesse em Veículos Autónomos Subaquáticos (Autonomous Underwater Vehicles - AUV). O que torna esta tecnologia tão atraente é a capacidade de operar sem intervenção humana. Contudo, a ausência do ser humano restringe a operação do AUV ao seu sistema de controlo, computação e capacidades de detecção. Desta forma, conceber um controlo robusto é obrigatório para viabilizar o AUV. Motivado por este facto, esta tese tem como objetivo apresentar, discutir e avaliar duas soluções de controlo linear, a propor a um AUV desenvolvido por um consórcio liderado pelo CEiiA. Para que o projeto do controlador seja possível, o modelo dinâmico deste veículo e respectivas considerações são primeiramente abordados. Com a finalidade de possibilitar a operação do veículo, torna-se essencial a elaboração de leis de guidance adequadas. Para este efeito são apresentados algorítmos de Waypoint following e Station keeping, e de path following. Para a projeção dos controladores é derivada uma versão linear do modelo dinâmico, considerando um único ponto operacional. Através da separação do modelo linear em três subsistemas são criados quatro controladores Proporcional Integral Derivativo (PID) para cada grau de liberdade (Degree Of Freedom - DOF) do veículo. É também projetado um Regulador Linear Quadrático (LQR), baseado na separação do modelo linear em dois subsistemas, longitudinal e lateral. É ainda apresentada uma lei de alocação de controlo para distribuir o sinal de saída dos controladores pelos diferentes atuadores. Esta provou melhorar a manobrabilidade do veículo. Os resultados finais apresentam um desempenho sólido para ambos os métodos de controlo. No entanto, neste trabalho, o LQR provou ser mais rápido do que o PID
    corecore