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So long as man imagines that he cannot do this or that, so long is he

determined not to do it; and consequently so long is it impossible to him

that he should do it.

- Benedict Spinoza (1632-1677) Ethics
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Abstract

The design of robust nonlinear automatic flight control systems for a helicopter

along with a set of simulation results are presented in this thesis. The controllers are

synthesized by first applying the theory of Feedback Linearization and then enhancing

their robustness properties by additionally applying techniques from Sliding mode and

Lyapunov based control. The thesis begins with an introduction to the helicopter con-

trol problem, the difficulties associated with current control practices and the potential

improvements achievable by using nonlinear control. This is followed by a review of the

literature in which the theoretical tools of differential geometric control have been devel-

oped. The survey further includes progress made in the area of robust nonlinear control

and appropriate applications studies. Next a comprehensive mathematical model of a

single rotor helicopter is presented in a form amenable to the manipulations required by

nonlinear system theory. A brief overview of the physical interpretation of the dynamic

equations, which is important to the control system designer's understanding of the

system, is given. At this point Input-Output Linearization is fully developed since it is

this aspect of Feedback Linearization that is later applied. This is followed by further

mathematical descriptions of the robust techniques used to augment the basic control

law. As a mathematical theory Feedback Linearization necessarily restricts the class

of systems to which the t'chnique can be applied. In engineering, however, it is found

that a knowledge of a particular system dynamics and its performance requirements

can be used to weaken some of the stringent conditions imposed by the global system

independent theory. Bearing this in mind, the helicopter control system is constructed

and an iterative scheme is presented for dealing with the peculiar input multiplicities

that appear in the helicopter equations. The robust schemes, Lyapunov based control

and Sliding mode control, are then applied and this results in two robust control laws.

Finally simulation studies are presented along with a discussion of the helicopter han-

dling quality requirements and the performance of the control laws in satisfying these

specifications.



4

Acknowledgements

I wish to express my sincere appreciation to my supervisor Dr. K. C. Woodgate

whose guidance and encouragement has been of immeasurable assistance to me in many

ways. I thank him also for the valuable comments on the contents and organisation of

this thesis.

Thanks are also due to Dr. G. D. Padfield and Mr. A. T. McCallum of the DRA

Bedford, for their help and advice with regard to the mathematical helicopter model.

In addition, I thank Dr. R. Cipolla for providing me with the LATEX style files used in

this thesis.

This research undertaking was funded by the Science and Engineering Research

Council and I gratefully acknowledge their support.

I also wish to thank the departmental administrative and computing services staff

for always being friendly and helpful.

Thanks to all my friends and colleagues, past and present, in the Aeronautics De-

partment who have sympathised through the lows and delighted in the highs, helping

to make the whole experience memorable for the right reasons.

Finally I thank my parents and family for their continuous support and for their

belief in me.



Contents

1 Introduction	 7

	

1.1	 Gain Scheduling	 ...............................	 9

	

1.2	 Helicopter Control ..............................	 11
1.2.1	 Helicopter Model ...........................	 12

	

1.3	 Feedback Linearization ............................	 13

	

1.4	 Nonlinear Robust Control .......................... 	 17

	

1.5	 Literature Survey ...............................	 19
1.5.1	 Nonlinear Geometric Control ....................	 19
1.5.2 Aerospace Applications of Nonlinear Geometric Control ..... 21
1.5.3	 Lyapunov Based Control .......................	 24
1.5.4	 Sliding Mode Control ........................ 	 26
1.5.5	 Linear Helicopter Control ......................	 28

	

1.6	 Contribution of the Thesis .......................... 	 29

2 The Helicopter System	 31
2.1 Main Rotor Dynamics .....................	 32

2.1.1	 Rotor Control ......................	 34
2.2	 Helicopter Dynamics ...................... 	 35
2.3	 Helicopter Model ........................ 	 37

2.3.1	 Reference Frames ....................	 38
22 Th (pncr.I F'iiiiat.inns nf Mtii-n

	
40

3 Nonlinear Geometric Control
	

44
3.1	 Mathematical Background ..........................	 45
3.2	 Input-Output Linearization ......................... 	 46
3.3	 Zero Dynamics ................................	 53

	

3.4 Asymptotic Output Tracking ........................ 	 60
3.5	 Summary	 ...................................	 61

4 Nonlinear Robust Control
	

63
4.1 System Uncertainty	 64

	

4.2 Lyapunov-Based Robust Control ...................... 	 65
4.2.1	 Lyapunov Mm-Max Approach ....................	 66

	

4.2.2 Input-Output Linearization Framework .............. 	 71
4.3

	

	 Robust Sliding Mode Control ........................	 81
4.3.1 Robust Tracking of Input-Output Linearizable Systems ..... 86

5



6

5 Helicopter Control System Design	 92
5.1 Tracking Control Using Input-Output Linearization ............92

5.1.1	 Iterative Scheme ...........................98
5 .1.2	 Full State Feedback	 .........................100

5.2	 Robust Controller Design ..........................100
5.2.1 Uncertainty Characterization ....................100
5.2.2 Robust Controller Using a Lyapunov-Based Design ........103
5.2.3 Robust Controller Based on Sliding Mode Control Theory . . . 105

5 .3	 Internal Dynamics ..............................106

6 Discussion of Results	 110
6 .1	 Model	 .....................................110
6 .2	 Simulation Results ..............................113

6.2.1	 Input-Output Linearization Control Law ..............115
6.2.2	 Robust Control Laws .........................122

6.3 Handling Qualities Requirements ......................135
6 .4	 Other Manuvres	 ..............................148
6 .5	 Decoupling Matrix ..............................152
6 .6	 Summary	 ...................................155

7 Conclusions	 158
7.1 Recommendations for Further Development ................158

Bibliography	 162

A Inertia Coefficients	 169

B Equations of Motion	 170



Chapter 1

Introduction

The research objective is to investigate and extend nonlinear geometric control theory

to the design of robust controllers for helicopters. Robustness properties, which are

not directly addressed by geometric control theory, are enhanced by augmenting the

basic control law with additional techniques based on Lyapunov control and Sliding

mode control. Developing these ideas to facilitate the ease of their application is desir-

able because of the potential improvement that may be achieved over existing design

techniques employing linear analyses. The general manner in which the investigation

is carried out ensures that the ideas may be easily applied to more general systems.

For the helicopter control problem the objective is essentially to construct stabilizing

and tracking controllers for the outputs whereof pilots normally desire good decoupled

tracking performance in order to fly the vehicle with relative ease.

Given a time varying nonlinear system of the following form:

(t) = f(t,x(t))+g(t,x(t),u(t))	 (1.1)

where x(t) E is the state vector, u(t) E m is the input vector and f, g E are

vectors, the basic task for control system designers is that of choosing the control vector

u to ensure that the system's state vector x meets some pre-specified requirements. The

solution to this problem is usually approached in one of two ways.

The first is to approximate the nonlinear system by a small perturbation linearized

model and then to design a locally valid controller using existing linear techniques.

This approach suffers from from the fact that the controller designed is only valid in a

small region around the design point, i.e. the region in which the linearity assumptions

hold. This means that to ensure adequate performance over the entire operating range,

it is generally necessary to use some form of Gain Scheduling to interpolate the control

7
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law parameters between design points. Although this approach does not form part of

the work presented here, this scheme and its associated problems are described in more

detail later.

The second approach, followed in this thesis, uses the nonlinear model to find a

nonlinear control law that achieves the design objectives. Generally this is not an easy

task and in the past designs tended to be unique and system dependent. However great

advances in the differential geometric approach to nonlinear control in the 1980's led

to Feedback Linearization, a method that provides a systematic approach to the design

of control systems for fairly general nonlinear systems.

Feedback Linearization is essentially based on two concepts, Input-State Lineariza-

tion and Input-Output Linearization both of which will be introduced later on. Most

of the nonlinear helicopter controllers described in the literature were derived using the

Input-State Linearization technique. The first problem in using this technique is the

need to make extensive simplifying assumptions to the model in order to satisfy the

restrictive conditions necessary for Input-State Linearization. The second deficiency

lies in the fact that Input-State Linearization is more conducive to state regulation

problems and thus necessarily restricts the designer to producing a tracking controller

for the somewhat arbitrary output functions automatically determined by the method.

Therefore there is no freedom to choose outputs for tracking.

As will be shown later Input-State Linearization of the simplified helicopter equa-

tions leads to a flight path trajectory controller since the outputs, automatically gener-

ated by the method which may be used for tracking, are the displacements in the x, y

and z directions as well as the yaw angle. However as Smith [71] and Garrard-Low-

Prouty [21] point out, pilots prefer to have the flight control system track pitch angle,

bank angle, altitude rate and heading rate. Since this is not achievable using Input-

State Linearization this thesis will focus on the use of Input Output Linearization which

constitutes an advance on what is already available in the literature. This procedure

is less restrictive than Input-State Linearization and the unsimplified comprehensive

nonlinear model is used in the control system design, thus potentially increasing its

range of validity over previous designs.

This chapter commences with a brief introduction to some of the concepts that will

be developed in detail in the later chapters. This is then followed by a survey of pub-



1.1 Gain Scheduling	 9

lished studies related to this research undertaking. Chapter 2 provides an introduction

to the dynamics of helicopters illustrating the highly nonlinear nature of the system. It

is the severely coupled nonlinear aerodynamic contributions to the helicopter dynam-

ics that vindicates the design of nonlinear controllers. The nonlinear control theory is

then described in detail in Chapter 3. The procedure involved in the decomposition

of a nonlinear system into a linear subsystem with its accompanying reduced order

nonlinear subsystem is given. The methods employed in ensuring that the basic non-

linear control law is robust to model uncertainty and other disturbances are detailed

next in Chapter 4. The robust theory outlined is that of Sliding mode control and a

Lyapunov based technique. Chapter 5 describes the application of the nonlinear control

theory to helicopter control system design. This is followed by the necessary control

law augmentation by certain robustifying components derived using Sliding mode and

Lyapunov analyses. To illustrate the validity of the designs, several simulation studies

are presented in Chapter 6. The performance of each controller is evaluated in terms

of the Pilot Handling Quality Requirements documented in the Aeronautical Design

Standard (ADS-33C) [1]. By satisfying these specifications it is expected that there

will be no limitations on flight safety or on the capability to perform intended missions.

Finally, conclusions regarding the research are made in Chapter 7 and are followed by

potential areas for further development.

1.1 Gain Scheduling

Even the most sophisticated linear control method can suffer from limitations to its

range of operation when applied to the actual nonlinear system. To remedy this degra-

dation of performance, gain scheduling is employed when the controller is outside its

region of validity. Typically an entire operational range controller is constructed in two

parts. Linear design methods are applied to the linearized models at various operating

points in order to arrive at a set of linear feedback control laws, parametrized by some

gain(s), that perform satisfactorily when the closed ioop system is operated near the

respective operating points. The next step is the gain scheduling which is intended

to handle the nonlinear aspects of the design problem. The idea is to interpolate the

linear control law at intermediate operating conditions. In fact a scheme is devised for

changing the parameters in the linear control law structure based on some monitored

operating condition. Figure 1.1 overleaf illustrates the gain scheduling requirement.
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Even with certain practical guidelines, gain scheduling still remains far from a trivial

task. Some of the problems associated with its implementation are as follows:

• The scheduling variable i.e. the monitored variable should capture the system's

nonlinearities. Such a variable is inferred from an in-depth understanding of the

physics of the problem.

• The scheduling variable should vary slowly. Rapid changes in the dynamic re-

sponse of high performance systems will be severely restricted by such a con-

straint.

• The scheduling procedure, i.e. a program by which the control law gains can be

changed as a function of the scheduling variable must be devised. At present

linear interpolation seems to be the standard practice however, as Figure 1.1

indicates, this will not always yield satisfactory results. The introduction of more

powerful techniques for robust multivariable linear design will result in increased

difficulty associated with the satisfactory scheduling of such complex control laws.

At present important system properties such as performance or even nominal

stability are not addressed explicitly in this rather ad hoc design process. In fact

such properties must be inferred from extensive simulations.

Gain Interpolation Functions

............-- K2	

Design Point B

Design Point A	 - - - - -	 -

K,

Linear Control Law Associated
With Each Design Point

To Adequately Compensate For System Nonlinearities Linear Interpolation May Not Suffice

Moving From Point A to Point B May Require A Different Function From That Of Moving From B to A

Figure 1.1: Cain Interpolation

Due to these problems with current gain scheduling practices, recent research has

aimed at providing an analytical framework for gain scheduling and overcoming the
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limitations highlighted. Shamma [64] provides rigorous mathematical justification for

the gain scheduling guidelines such as scheduling on a slow variable. He showed how

these rules of thumb can be transformed into quantitative statements. This work goes

on to identify the fundamental limitations on the achievable performance by such rules

of thumb. Shamma and Athans [65] point out that gain scheduling needs to address

the possibility of fast parameter variations otherwise guaranteed properties cannot be

established. They further suggest that a theory for fast parameter varying systems

would involve modification of robust control design methodologies such as H and

n-synthesis in order to explicitly address the variations. Research in this area is still

very much in its infancy.

Rugh [61] introduces an independent study of an analytical framework for gain

scheduling. At this early stage difficulties still remain and any comprehensive analysis

has yet to appear.

In view of these remaining difficulties the gain scheduling problem is far from being

resolved and research into explicit nonlinear systems analysis will of course continue and

justifiably so. One of the key motivations for the work of this thesis is the deficiencies

of current practice outlined above.

1.2 Helicopter Control

The open loop dynamics of un-augmented, high-performance, single-rotor helicopters

exhibit unacceptable responses. Consequently pilot workload is high and precise control

is difficult. The deficiencies due to the highly nonlinear dynamics are as follows:

• Both the lateral and the longitudinal responses are unstable

• There is substantial coupling between the lateral and the longitudinal modes

• The bandwidths in the pitch, yaw and heave axes are too low to satisfy level 1

handling qualities criteria. This essentially implies that the pilot's workload in

controlling the helicopter in these axes is likely to be unacceptably high. Chapter

6 provides a more precise insight into the numerical levels associated with the

handling qualities criteria.
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Flight control systems for helicopters are currently designed by using linear control

theory. A review of recent linear helicopter control follows in Section 1.5.5 of the

literature survey. The deficiencies associated with gain scheduling, often cause the

flight control system performance to degrade as the helicopter moves away from the

design conditions. The use of nonlinear control theory in the design of flight control

systems allows for the possibility of achieving global control, that is around the entire

flight envelope, by means of a single control law. This is because the design is based on

the explicit nonlinear equations of motion and not linearized dynamics that are only

valid locally. In addition, improved performance and safety over current linear designs

may be achieved in regions where severe nonlinearities inevitably limit linear designs.

The helicopter flight control systems reported here are based on nonlinear system

theory that employs mathematical tools from differential geometry. A few slightly dif-

fering nonlinear geometric control designs have been implemented in various aerospace

applications in the past. The success and scope of these applications is documented in

the Literature Survey, Section 1.5.2.

1.2.1 Helicopter Model

The model includes the main rotor rigid body effects, coning and quasi-steady flapping

all of which are described in more detail in Chapter 2. The tail rotor is based on a

similar analysis except that here th flapping is neglected. Due to the complexity of the

flow field around the helicopter fuselage no analytical framework is used to express their

effects; instead wind tunnel results are used to model these aerodynamic contributions.

Although this model, due to Padfield [55], contains certain simplifying assumptions,

its performance in stability and control studies is fairly well validated. This model has

been used extensively in helicopter flight control system studies in the U.K.

The helicopter model was set up in Sirnulink' the nonlinear systems simulation

package that operates in conjunction with Matlab'. Due to the immensity and com-

plexity of the equations, implementation was expedited by programming the equations

into C-Language Mex files that are readily accessed through Simulink.

'Simulink and Matlab are registered trademarks of The Maths Works Inc.
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1.3 Feedback Linearization

Conceptually, Feedback Linearization is a means of transforming a nonlinear system

into an equivalent linear system by means of coordinate changes and state feedback.

Based on this linear equivalent system, a linear control law can then be formulated and

then inverse-transformed to meet the design requirements.

To illustrate the concept of Feedback Linearization, consider the simple academic

example:

= a sin(x2)

= —x12+u
	

(1.2)

where a is a positive constant.

Consider the following state space coordinates change:

z1 =	 (1.3)

a sin(x2)
	

(1.4)

and the coordinate change in the input space given by:

=

	

	 (1.5)
a cos(x2)

which can be viewed as a state feedback.

Applying the above mappings to the nonlinear dynamic system (1.2) yields:

th 1 = 22

=	 Z12	
1	

(1.6)
a cos(x2)

Differentiating z and 22 and rearranging gives:

th 1 =

	= 	 (1.7)
a cos(x2)

Replacing th and ±2 of system (1.6) by the functions in (1.7) and rearranging:

21 = Z2

= —z1 2 a cos(x 2 ) + v + x 2 a cos(x 2 )	 ( 1.8)
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but since x 1 = z 1 , system (1.8) becomes the following linear equivalent system

= z2

= V
	

(1.9)

It is now possible to compute v using linear techniques, for example feedback of z, to

achieve the necessary design requirements

Figure 1.2 and the worked example serve to simply illustrate the concept of Feedback

Linearization. This example highlights two important consequences of the methodology.

State Feedback

	

I	 Coordinates	 I	 IReference	 v I	 I	 U	 I	 Nonlinear	 i	 i	
Coordinates

	

I	 Change	 I	 II	 Change

___ ___ ___HzI	 System	 I	 I[Input space	 I	 I	 (state space I

I Linear	 II	 Feedback
Controlle

Figure 1.2: Feedback Linearization

The first is that regions exist in which the input space coordinates change is invalid.

This is because the denominator contains the term cos(x 2 ) causing the transformation

to be valid only when cos(x 2) 0, that is, for example, when - < x2 < . This

implies that the transformation is only local, if however no such restrictions apply

then the transformation is globally applicable. For an appreciation of what the local

restriction means for the control law, consider a small perturbation linearization of

system 1.2 around the equilibrium point x 1 = x2 = 0:

= ax

= u	 (1.10)

By inspection, any control law based on this system may be applied at best when, say,

- < 22 < and —0.1 < z < 0.1. Clearly even the local feedback linearized control
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law which has a region of validity - < x 2 < - and -	 x1	 oo, is far better, in

this sense, than any linear design.

The second point that is worth noting is that the parameter a appears explicitly

in the nonlinear control law. The method assumes that a is completely known, this

however is often not so in practice and it is usually necessary to augment the basic

feedback linearized control law with certain robust terms to ensure that performance is

maintained despite such model uncertainty.

The above analysis is in fact an example of Input-State Linearization in which the

entire nonlinear system is transformed into a linear equivalent system. This required

coordinate changes in the state space and the input space and also the nonlinear feed-

back of state variables. More generally, under certain conditions, the nonlinear system

of the form:

= f(x) +	 9jUj	 (1.11)

can be transformed to the following linear form:

= Az+>b1v1
	

(1.12)

where A is a constant real matrix, b, are constant real vectors, z is the new state and

v is the new input.

Using the linear equivalent system, linear control techniques such as pole placement

may be used to design a controller for the system that ensures that the closed loop re-

sponse is stable and satisfies other design specifications achievable with linear feedback

control.

Feedback Linearization is based on nonlinear systems such as (1.11) which are affine

in the control (i.e. the control variable enters linearly into the system). Since most

practical systems are of this kind, this assumption is not generally a problem. The

helicopter model unfortunately is not affine and in order to apply the theory directly

an iterative scheme is introduced into the computations. This iterative scheme is in-

dependent of the helicopter model and may be used with other similar systems not

satisfying the affine condition.

The method above is concerned with finding a linear equivalent to the entire nonlin-

ear system and in doing so ignores the outputs and the input-output functional aspect
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of the system. When faced with control objectives such as output command tracking

and output decoupling the concept of Input-Output Linearization is more useful.

Input-Output Linearization is based on finding a nonlinear control law which achieves

some degree of decoupling of the system outputs. By decoupling it is meant that cer-

tain outputs are independent of the other outputs. Input-Output Linearization of the

following nonlinear system:

th =	 (1.13)

yi = h(x)

where y is some output, is achieved by fInding an explicit relationship between the

inputs to the system and its outputs. This input-output map gives rise to the decoupling

control law and a corresponding state space coordinates transformation. Applying the

control law and the coordinate change to the nonlinear system results in a system having

a decoupled linear part as well as a reduced order nonlinear part. Again standard

linear techniques may be applied to the linear part in designing a tracking controller

for the system outputs. However it is also necessary to ensure that the remaining

nonlinear subsystem ,which is called the internal dynamics, remains well behaved as

a result of the Input-Output Linearization and the subsequent linear control design.

The zero dynamics, which is a simplification of the internal dynamics, is used in the

determination of the stability characteristics of the internal dynamics. The concept of

zero dynamics is expounded in Chapter 3.

A variation of Input-Output Linearization is based on the concept of Dynamic

Inversion. This may be described by considering the input-output map which takes

the form:

(r,)
yl	 = M(x)u1	 (1.14)

where (r,) is the r th time derivative of y

If this mapping can be inverted then:

(re)= M'(x)y1 (1.15)

Since it is desirable to have the output y track certain reference trajectories, YreJ,

it is then possible to substitute Yref into the inverse mapping in order to find the corre-

sponding input u. In system analysis it is usual for the outputs to be computed based
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on a knowledge of the inputs. However, in this case the inverse is done, that is the

inputs required are calculated from a knowledge of the reference outputs.

1.4 Nonlinear Robust Control

For many physical systems, the development of accurate mathematical descriptions is

still rather difficult and, as a result, uncertainties inevitably arise in these models. These

uncertainties may be due to imperfectly known or even entirely unknown parameter

values of the systems and their changing environment, as well as to the unpredicted

disturbances, such as measurement noise. Consequently control laws that are resistant

to the performance degradation effects of these uncertainties are important in the design

of good and efficient control systems.

In recent years, essentially three control methodologies have been proposed to corn-

pensate for the effects of system uncertainties in nonlinear systems.

• Adaptive Control

Sliding Mode Control

• Lyapunov-Based Control

In self-tuning and other stochastic adaptive control systems, on-line identification

algorithms constantly monitor parameter values and disturbances to provide informa-

tion to appropriate adaptive controllers. These schemes tend to be expensive and result

in additional control system complexity.

In contrast to adaptive schemes, deterministic control methods use fixed nonlinear

feedback control functions, which operate effectively over a range of system uncertain-

ties of specified bounded magnitude, without using on-line identification. For such

methods the uncertain quantities are described only in terms of bounds on their pos-

sible sizes, that is, no statistical description is assumed. Within this framework, the

controllers guarantee stable operation for all possible variations of the uncertainties.

The two principal approaches to deterministic control are Sliding Mode Control and

Lyapunov Based Control.
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Sliding mode control was originally developed from the variable structure control

concept of Utkin [76]. It is based on a notational simplification allowing an th order

tracking problem to be replaced by an equivalent first order stabilization problem.

Sliding mode control first defines the sliding surface in the error state space which

achieves the desired tracking objective in that tracking is achieved by remaining on

this surface. Secondly a switching state feedback control that incorporates the bounds

of the uncertainty is derived. This forces the error state to slide along the surface until

it converges and tracking is attained. The undesirable chattering inevitable using the

switching control law may be eliminated by using a saturation control. This however

causes a steady state error to persist. The control system bandwidth can be tuned

by adjustable parameters in the control law. Unfortunately the tuning capability is

limited so there exists a trade-off between tracking accuracy and robustness to the

uncertainties.

The Lyapunov approach uses a Lyapunov function and specified magnitude bounds

on the uncertainties. A nonlinear control is then constructed to ensure uniform ulti-

mate boundedness of the closed ioop feedback trajectory to within a certain desirable

accuracy. The controller is a discontinuous control function, with continuous control in

a boundary layer in the neighbourhood of the switching surface. The boundary layer

control prevents the excitation of high frequency un-modelled parasitic dynamics.

To date results fall into two categories. There are those that can be termed struc-

tural in nature. This means that the uncertainty cannot enter arbitrarily into the state

equations, certain conditions must be met regarding the locations of the uncertainty

within the system description; such requirements are referred to as matching condi-

tions. In this situation uncertainties with an arbitrarily large prescribed bound can

be tolerated . The second body of results is termed non-structural in nature. Instead

of imposing matching conditions on the system, more general uncertainties are per-

mitted at the expense of sufficient smallness assumptions on the allowable sizes of the

uncertainties.

When considering uncertain nonlinear systems, Feedback Linearization provides a

unified approach for the design of tracking or stabilization controllers. This approach

does not however, guarantee robustness of the controller. To compensate for this defi-

ciency , the above techniques have been used in conjunction with Feedback Lineariza-

tion. The control system resulting from the incorporation of the robust methodologies
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into the geometric control framework is described in Chapter 4.

1.5 Literature Survey

A general review of past investigations related to robust nonlinear control and helicopter

control system design is presented below.

1.5.1 Nonlinear Geometric Control

This section outlines studies in the theoretical development of nonlinear geometric

control theory.

In the area of Input-State Linearization, Krener [40] studied the question of finding

a diffeomorphism that is, a local (or global) and smooth change of coordinates in the

state space, that changes a nonlinear system into a linear one. Brockett [7] enlarged

the class of transformations by also allowing for the use of a certain form of feedback.

Following Brockett's paper, Jakubczyk and Respondek [37] found necessary and suffi-

cient conditions for the existence of linearizing transformations for multi-input systems.

Independently Su [73] used a slightly different formulation in providing a local solution

for the single-input feedback equivalence problem. This was later improved by Hunt-

Su-Meyer [31] in which a global solution was presented. Hunt-Su-Meyer [30] then found

necessary and sufficient conditions for the existence of local linear transformations in

the multivariable case. These conditions, not surprisingly, impose stringent require-

ments on the structure of the system. The transformations are generally difficult to

find for all but fairly simple models.

The other trend in nonlinear differential geometric control, that is, the linearization

of the input-output response of a nonlinear system has also received much attention in

the recent past. Isidori [34] and Nijmeijer and van der Schaft [54] provide a compre-

hensive treatment of nonlinear control studied from this viewpoint. The immense po-

tential offered to nonlinear control by the In put-Output Linearization approach, causes

-

research to continue undaunted by certain obstacles identified during early work. The

difficulties are generally associated with the dynamics rendered unobservable by the

method. Some fairly recent advances that try to resolve the problems of the basic

theory are presented below. These recent developments, although not essential to this
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study, constitute significant advances in nonlinear geometric control.

For example, it can be shown that the Input-Output Linearization method may

hide part of the nonlinear system that is linearizable. Therefore the control designers

may unwittingly be ignoring dynamics that can readily be incorporated into the design

procedure. Hunt and Verma [32] proved a sufficient condition for uncovering hidden

modes for an n-th order single input single output system. By appropriate coordinate

changes and state feedback a linear system of dimension k, where n > k ^ r, is

produced. Note that r is the order of the linear subsystem obtained by Input-Output

Linearization.

The problem of controlling a fixed nonlinear plant, in order to have its output track a

reference signal and for stability of the entire closed ioop system, is solvable by standard

Input-Output Linearization if and only if the zero dynamics are asymptotically stable,

i.e. if the system is minimum phase. However, in the non-minimum phase case, Isidori

and Byrnes [35] showed that a solution may be achieved if the zero dynamics of the

plant have a hyperbolic equilibrium. This means that the zero dynamics are either

unstable or asymptotically stable so that a small perturbation linearization of the zero

dynamics has no eigenvalues with real part equal to zero.

Isidori and Grizzle [36] showed how the achievement of noninteracting control with

internal stability is possible for a system exhibiting unstable zero dynamics. They

showed that the zero dynamics, based on any regular static feedback that achieves

noninteracting control possesses an invariant manifold whose dynamics is independent

of the particular decoupling control law used. These invariant * dynamics are called

the fixed modes. Further they found that noninteracting control with internal stability

can be achieved by regular static state-feedback only if the induced fixed dynamics is

asymptotically stable.

For square nonlinear systems, Wagner [78] considered the use of dynamic feedback

for the above problem. He found that the P* dynamics contains another generally lower-

dimensional sub-dynamics called the dynamics which is invariant even under

dynamic feedback. If these dynamics are unstable, noninteraction with stability cannot

be achieved. It is further shown that a system with unstable P" dynamics that is not

solvable via static feedback laws, can still be rendered non interactive and stable by

way of a suitable dynamic feedback, provided the smaller 	 dynamics is stable.
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Battilotti [4] extended Wagner's work and found a sufficient condition for nonlinear

noninteracting control with stability via dynamic state feedback for square systems. He

proved that mjx dynamics must be locally asymptotically stable along with the fulfil-

ment of some rank conditions. Battilotti [5] generalised the above sufficient condition

to systems having block partitioned outputs i.e. a nonlinear system with n inputs, p

outputs grouped into /2 blocks.

1.5.2 Aerospace Applications of Nonlinear Geometric Control

Most of the studies in this section do not attend to the most important property of any

control law, that is, robustness to uncertainties. Instead they assume that the model

corresponds exactly to the plant. However, these early studies are still important since

they have exposed varying degrees of success in applying nonlinear geometric control to

real systems. Importantly too, difficulty in applying such theories have been uncovered

and areas for future research identified.

Meyer-Su-Hunt [52, 51] applied the equivalence theory to a somewhat simplified

helicopter model. A regulator was designed for the transformed system, forcing it to

track the output of a flight path reference model. Several simplifying assumptions were

made in order to apply the equivalence theory; in spite of this, the robustness aspect of

the control to uncertain dynamics was not investigated. The tracking outputs for the

flight path trajectory, i.e. the three translation displacements, are not really consistent

with guidelines given in (ADS-33C) where bank angle, pitch angle, yaw rate and altitude

rate are the preferred tracking outputs for low speed and hovering flight.

Smith and Meyer [70] designed a full flight envelope controller using the inverse of

the complete helicopter model in the feedforward control path. Continuous real time

inversion of the helicopter model was achieved using a Newton-Raphson trim algorithm.

Successful flight tests were carried out on a UH-1H helicopter.

Menon-Badgett-Walker-Duke [50] designed a flight trajectory controller for an air-

craft using linearizing transformations and singular perturbation theory. They showed

that by exploiting the time scale separation between the fast and the slow dynamics,

the nonlinear control law can be simplified. For this type of system it is important to

ensure that the assumed time scale separation is valid for the mancuvres considered.
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Lane and Stengel [42] used the nonlinear inverse dynamics technique to design a

controller for an aircraft at high angle of attack. Specific state variables that are of

particular interest to the pilot were decoupled and arranged in sets that are varied as

functions of the flight phase. This is a particularly interesting study since it identifies

key points in the application of inverse dynamics such as the decoupling of outputs and

the range of validity of the control law which depends directly on the range over which

the input-output map is nonsingular. Unfortunately only the decoupled dynamics was

addressed, the unobservable internal dynamics were not mentioned.

The application of the Input-State Linearization technique to the design of a he-

licopter trajectory following control system was carried out by Licéaga and Bradley

[46]. In order to apply the method certain simplifications were made to the system, the

first being to design a compensator to perform a partial linearization and decoupling

of the system's angular rates and its normal velocity. This was carried out under the

assumption that angular velocities evolve much faster than translational ones and that

pilots therefore control flight trajectories by controlling the vehicle's attitude. Neglect-

ing certain parameters by assuming smallness values, an equivalent system was then

found using linearizing transformations on the partially linearized simplified system. A

regulator was then designed to ensure tracking of the x, y, z displacements and the yaw

angle trajectories. The control law here was derived analytically unlike Meyer et al [52]

whose control system depended on a numerical method for calculation of the inverse

solution.

Chartlet-Levine-Marino [9] present, without proof, necessary and sufficient condi-

tions for full dynamic Feedback Linearization. These conditions are generalizations of

those given for static Feedback Linearization by Hunt et al [30]. These transformations

are applied to a simple academic aircraft model in which the inputs are assumed to be

thrust and the three angular rates.

In problems in which the input-output map M(x) in (1.14) is nearly singular, large

control, which may not be permissible, is usually required. In aircraft control problems

the input-output maps are often nearly singular if the small forces generated by the

moment producing control devices are included in the design. Singh [66] incorporated

these small forces into the aircraft model and managed to derive a decoupling control

law that required only small control input. The decoupling scheme used gives rise to

singularly perturbed systems. The quasi-steady state solution produces a control law
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that decouples the system in an approximate manner.

Pantalos [56] showed how to Input-Output Linearize a somewhat academic heli-

copter model to ensure that no internal dynamics is produced. By assuming that

each force, (drag, lift and side-force), and each moment, (rolling, pitching and yaw-

ing), are inputs to the system, an appropriate selection of six output variables enables

full Input-Output Linearization to be performed. Additionally digital implementation

of the continuous control law as well as inclusion of an adaptive scheme to overcome

helicopter mass uncertainty was detailed.

The nonlinear inversion technique was used by Romano and Singh [60] to design a

trajectory tracking control law for an aircraft carrying out large manuvres. Robust-

ness to parameter uncertainty was enhanced by use of integral feedback. Stability of

the zero dynamics was also demonstrated.

Heiges-Menon-Schrage [29] used a similar approach to Menon et al [50], in that

singular perturbation theory was used to simplify the linearizing transformations for

a helicopter full authority trajectory controller. The important assumption made is

that the cyclic stick and the pedals are moment generating devices with very little

contribution to the body forces. Only the collective is used as a direct force control.

This assumption aids the fast and slow time-scale controller approach. This leads to the

development of a control law for the collective, (in the fast time scale), in conjunction

with an analytical solution to the inverse mapping for the attitude dynamics, (in the

slow time scale). This approach is good for tracking of the displacements x, Ye, Ze and

yaw attitude, however this is not consistent with the requirements of ADS-33C.

Most of the fixed wing aircraft applications of nonlinear geometric control theory

assume, without satisfactory proof, that the moment-to-force coupling is small and can

therefore be neglected. Hauser-Sastry-Meyer [28] provided rigorous justification for

the neglect of this small moment-to-force coupling. They also derived an approximate

Input-Output Linearizing control law to achieve desirable closed loop properties for

a simplified aircraft model. Finally they developed a theory for approximate Input-

Output Linearization for a class of nonlinear systems called slightly non-minimum phase

to which highly manceuvrable aircraft such as the V/STOL belong.

Gopalswamy and Hedrick [22, 23] showed how standard Input-Output Linearization
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may fail to produce an adequate controller due to the instability of the unobservable

modes when applied to a simplified high performance aircraft model. By identifying

ideal internal dynamics and then redefining the outputs, they designed a control law

such that asymptotic tracking of the real outputs is achieved while ensuring that the

internal dynamics remains acceptable. The later paper also presents Sliding mode

control used in conjunction with Input-Output Linearization for the design of a pitch-

axis control system for an aircraft. The uncertainties considered are norm bounded

and satisfy matching assumptions.

The studies concerning non-minimum phase nonlinear systems, or in this case input-

output linearized systems whose internal dynamics are unstable, are important to this

thesis since helicopters are non-minimum phase. The method employed in this thesis

for treating the internal dynamics exploits the important fact that pilots control trans-

lational velocities by controlling body attitudes. Due to this, control of the internal

dynamics can be achieved by using a secondary outer ioop as shown in Chapter 5.

Furthermore the similarity that exists between the outer loop method of this thesis

and the formal output redefinition approach of Gopalswamy and Hedrick is indicated

there.

1.5.3 Lyapunov Based Control

This section contains studies of early pioneering work in the area of control for uncer-

tain systems. In addition, recent progress in enhancing the robustness properties of

Feedback Linearization using a Lyapunov based control technique is included.

Gutman [24] presented the Lyapunov Mm-Max approach to treat general nonlin-

ear systems with uncertainties satisfying matching assumptions. The technique uses

a discontinuous control law to ensure that every system trajectory is asymptotically

stable. This approach motivated Leitmann [43] to find nonlinear control laws that sta-

bilized linear dynamical systems containing uncertain elements which again satisfy the

matching assumptions. In this case, however, the control discontinuity was smoothed

by using a saturation controller which is only able to guarantee that every system re-

sponse is ultimately bounded within a certain neighbourhood of the zero state. Corless

and Leitmann [14] also used the Mm-Max approach with the saturation control on non-

linear dynamical systems containing uncertainties. Unfortunately there is no general
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rule for finding the Lyapunov function needed in this approach. Chapter 4 describes

these studies further since they are central to the development of the Lyapunov-based

control law analysis presented in Chapter 4.

Dispensing with the matching assumptions, Barmish and Leitmann [3] decomposed

the system into two parts: a matched portion and a mismatched portion. A measure

of mismatch M is defined for the unmatched part. Effective control is shown to be

possible as long as the measure of mismatch M does not exceed some critical mismatch

threshold M*. Essentially the feedback control is based on the matched uncertainty and

the resulting robustness margin will accommodate mismatched uncertainty, provided

it remains small. This work carried out for linear systems was extended by Chen and

Leitmann [12] to general nonlinear uncertain dynamical systems.

The following studies form the basis of recent work where Lyapunov based robust-

ness theory is introduced into the Feedback Linearization structure.

Feedback Linearization was shown to be a robust method by Su-Meyer-Hunt [74].

It is robust in the sense that all systems close to the mathematical model are asymp-

totically stabilized about corresponding equilibrium points and that stability holds for

any trajectory starting in some fixed compact set in the state space. By way of proof

a method of constructing Lyapunov functions using the transformation method is pre-

sented.

The multivariable robust tracking of a Feedback Lirtearizable nonlinear system was

studied by Ha and Gilbert [25]. To be fully linearizable the model exhibited special

structural characteristics, further the uncertainties considered were only of the matched

kind. The controller was designed by way of Lyapunov functions and ensured that the

tracking error was ultimately bounded in the presence of modelling errors.

Kravaris and Palanki [39] used a similar approach on a single input single output

system. Input-Output Linearization of the nominal model, i.e. without uncertainty, de-

composed the system into a linear part and a reduced order nonlinear part, the internal

dynamics. The uncertainties considered were matched, however a further restriction

was the requirement for the internal dynamics to be stable, independent of the control

variable and not subject to any uncertainty.

Robust stabilization of uncertain single input single output nonlinear systems was
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considered by Korasani [38]. A singular perturbation analysis was used to reduce the

system into two decoupled subsystems representing the slow and the fast dynamics.

Coordinate transformations and static state space control laws were found such that

the certain parts of both subsystems were both transformed to linear controllable and

observable systems. The control laws were then modified to ensure boundedness of the

solutions to the inclusion of uncertainty.

Singh [68] applied a Lyapunov type robust controller to an aircraft. The controller

design required that the uncertainty be bounded and that the uncertainty appears at

the same order of differentiation as the control input, i.e. the matching condition is

satisfied. To improve tracking performance an integral term was included in the design.

Unfortunately the effect of the robust control law on the internal dynamics, which were

input variable dependent, was not mentioned.

Using Feedback Linearization, the robust stabilization of nonlinear uncertain sys-

tems was investigated by Chen and Chen [10]. Both matched and mismatched uncer-

tainties are considered. Adopting saturation type controllers, arbitrarily large matched

uncertainties were compensated while a certain smallness was necessary in the mis-

matched case. The nominal systems considered were fully feedback linearizable. This

approach is followed in Chapter 4 where the Lyapunov Control is introduced into the

Input-Output Linearization framework.

Liao-Fu-Hsu [45] employ matrix norm techniques in Lyapunov theory along with

Input-Output Linearization to design a robust control law for a single input single

output system. The mismatched uncertainties tolerated are assumed to lie within a

small set. The analysis presented for the mismatched uncertainties provided the basis

for the analysis presented in Chapter 4 for ensuring the boundedness of the internal

dynamics.

1.5.4 Sliding Mode Control

A good introduction to the basics of Sliding mode control theory is given in Slotine and

Li [69] and DeCarlo et al [15]. Further insight into the theory and current applications

can also be found in Zinober [82, 83]. This section concentrates on studies that have

incorporated Sliding mode ideas into the Feedback Linearization framework.
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An early example of merging Sliding mode control techniques with multivariable

Input-Output Linearization was presented by Fernández and Hedrick [18]. The feasi-

bility of using the technique is demonstrated by application to a continuously stirred

tank reactor problem. The issues pertaining to potential problems concerning internal

dynamics and robustness to uncertainties, though mentioned, are not really developed.

Singh [67] used Sliding mode control (SMC) to design a discontinuous control law

for an uncertain nonlinear aircraft model. The nominal system was decoupled by In put-

Output Linearization and the uncertainties considered satisfied the structural matching

conditions. The control law accomplished asymptotic decoupled output trajectory fol-

lowing. The stability or otherwise of the internal dynamics were not discussed.

For general single input single output (SISO) systems Behtash [6] combined SMC

with Input-Output Linearization. The uncertainties satisfied a generalized matching

assumption. The internal dynamics were assumed to be stable and independent of the

control input. Therefore there was no need to assess the effect of the SMC law on the

internal dynamics. The switching control law, while providing zero steady state tracking

error, is somewhat imperfect due to the associated chattering as seen in Chapter 4.

Combining SMC with Input-Output Linearization, Fu and Liao [20] considered

uncertain MIMO systems. As above, the uncertainty was matched and the internal

dynamics were stable and unaffected by the control variable. Using matrix norm tech-

p iques, a discontinuous control law was derived. The controller design was finally

applied to a two degree of freedom robotic manipulator with variable payload repre-

senting the uncertainty. This study forms the basis for the Sliding mode control law

analysis detailed in Chapter 4.

Following the above study Liao-Fu-Hsu [44] used a similar system and conditions

to derive a robust adaptive tracking control law having no knowledge of bounds on the

uncertainty. Essentially, the uncertainty bound is parametrized by an unknown

parameter and is given by:

IlzNI ^ Pib
	

(1.16)

where P is a known function.

In the Input-Output Linearization framework Elmali and Olgac [16] derived a sec-

ond order SMC law for uncertain MIMO systems. To minimise on complications the
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uncertainty was assumed to satisfy the matching conditions and the internal dynamics

were considered stable and input variable independent. This latter assumption implies

that the stable internal dynamics of the nominal system remains the same even when

uncertainties are introduced. This work emphasised the difficulty incurred in choosing

the tuning parameters, a procedure which still remains rather ad hoc.

1.5.5 Linear Helicopter Control

This section investigates recent advances in the use of linear control for the design

of helicopter control systems. These studies are important since they provide useful

insight into the specific problems that helicopter control designers should aim to resolve.

Further they serve to expose areas of deficiency in current control laws. The results and

performance analyses presented in these studies provide a qualitative measure against

which the nonlinear control laws designed here may be compared.

Manness and Murray-Smith [49] presented a design for an Eigenstructure Assign-

ment helicopter control system. The outputs Ii, r, 9, q5 were chosen to provide an

attitude command attitude hold system. The performance of the controller was evalu-

ated with respect to the requirements of ADS-33C. This study provides a clear insight

into the vehicle dynamics and specific problems associated with it. The authors found

that the explicit inclusion of the high frequency rotor dynamics in the model resulted

in a certain deterioration in the control law, in particular a decrease in the achiev-

able bandwidth and an increase in phase delay compared to the model involving only

quasi-steady flapping.

Takahashi [75] designed an H2 control law for a helicopter in a near hover flight

condition. The control law consisted of a rate command system to decouple the three

angular rates and the vertical velocity. Even though the control system bandwidths

were consistent with the specifications of (ADS-33C) [1], the controller when tested in a

vertical motion simulator was found to satisfy only level 2 handling quality requirements

due to certain tendencies of the controller to cause pilot induced oscillation in the roll

axis. This controller is restricted to operate only in the neighbourhood of the hover

design condition.

Low and Garrard [47] present a design based on eigenstructure assignment for the

improvement of helicopter handling qualities. The inner loop control law was designed
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to decouple roll, pitch and yaw rates along with vertical velocity. Stability robustness

was investigated by unstructured singular value techniques. The results presented for

the nominal design were quite good, however the authors acknowledge that the control

law needs to be tested on more realistic mathematical models. Gain scheduling of such

a controller to provide full envelope control was not discussed.

Yue and Postlethwaite [80] outlined the application of H optimisation to a heli-

copter problem. The control law was designed for the hover flight condition and the

nonlinear simulation results presented indicated the value of the approach to that flight

condition. This was followed later by Yue and Postlethwaite [81] in which a handling

qualities assessment and piloted simulation results, using a large motion system simu-

lator, were presented. Certain deficiencies in the yaw axes were uncovered. Research in

this area has continued over recent years with the following publications: Postlethwaite

and Walker [58], Walker et al [79] and Postlethwaite and Skogestad [57]. At the time of

the last publication further piloted simulation trials had been carried out but now for a

full envelope controller. The scheduled controller was based on five fixed point designs

at 0, 20, 40, 60 and 80 knots. Forward speed was chosen as the scheduling variable

while linear interpolation was the scheduling algorithm. For the trajectories chosen the

results were fairly good, however the problem that still remains is the operation of the

controller in a more highly nonlinear phase of the flight envelope. As Sham ma et al [65]

point out, if gain scheduling is not developed further, then sophisticated linear control

techniques are likely to be limited by somewhat inferior gain interpolation practices.

1.6 Contribution of the Thesis

Nonlinear control systems using Input-Output Linearization have been designed in

Chapter 5 for a nonlinear helicopter model. These control laws are valid over the entire

flight envelope therefore precluding any gain scheduling requirement.

Robustness to uncertainties such as disturbances or unmodelled dynamics has been

addressed by augmenting the nominal Input-Output Linearization control law with

Sliding mode and Lyapunov based methodologies as shown in Chapter 5. In addition,

comparisons of the performance of these two robust techniques when applied to a real

system are readily available from the simulation studies of Chapter 6.

The entire closed loop system was tested by computer simulation paying particu-
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lar attention to the requirements of ADS-33C [1]. It was found, Chapter 6, that in

general that the control laws enabled the helicopter to satisfy Level 1 handling quality

specifications during hovering and low speed flight.

The Input-Output Linearization theory generally requires systems to be affine, i.e.

to be linear in the control variable, if immense complexity is to be avoided in applying

the theory. Although the helicopter system is non-affine the theory was still applied

while avoiding additional computation and analysis by introducing an iterative scheme

the details of which appear in Chapter 5.

Helicopter systems are non-minimum phase which in the context of nonlinear ge-

ometric control implies that the internal dynamics are unstable. Systems of this kind

are generally not thought amenable to the application of Input-Output Linearization.

However it is shown here, Chapter 5, how this problem may be resolved in the helicopter

case by exploiting physical characteristics of the dynamic system.

The subsection entitled Internal Dynamics in Section 4.2.2 addresses the behaviour

of the internal dynamics of an uncertain system when an Input-Output Linearization

control law augmented with a robust Lyapunov scheme is applied. The analysis pre-

sented has been developed from ideas presented in Liao-Fu-Hsu [45]. While this section

is not entirely original it contains elements of novelty.

Finally the UK-Standard helicopter model due to Padfield [55] was implemented

in Simulink and provides a complete control system design and performance testing

environment by allowing usage of Matlab's control system analysis features. Particular

model details appear in Chapters 2, 5 and 6 as deemed appropriate.

In summary two nonlinear control laws for a single rotor helicopter were constructed

using Input-Output Linearization as a basis for the designs. Robustness to uncertain

dynamics was enhanced by incorporating either Lyapunov-based or Sliding mode con-

trol techniques. The existence of nonlinear control terms in the helicopter model was

effectively dealt with by means of an iterative scheme which eliminates the need for

a more complex analysis when such non-affine systems are encountered. The internal

dynamics has been examined and it was shown that in spite of the non-minimum phase

nature of the system, effective control is maintained by exploiting physical character-

istics of the system. Finally compliance with Level 1 handling qualities requirements

has been demonstrated though computer simulation.



Chapter 2

The Helicopter System

The main components of the helicopter considered in this study are shown below in

Figure 2.1. The lift required to balance the weight or to produce vertical translational

motion is generated by the single main rotor. By tilting this lift vector pitching and

rolling moments can be produced which, as seen later, allows the vehicle to be accel-

erated in the fore and aft as well as the lateral directions respectively. The tail rotor

thrust is varied to balance the torque developed by the main rotor and also enables

the helicopter to be controlled in yaw. The fin and the tailplane, although not control

surfaces, facilitate lateral and longitudinal open loop stability in forward flight. The

main rotor generates both forces and moments which cause severe coupling between

axes and therefore helicopters are substantially more difficult to control than fixed wing

aircraft.

taft rotor	 ,- main rotor

fin—/

taul-	

fuselageplane

Figure 2.1: Helicopter System

This chapter discusses the dynamics of the helicopter, highlighting the unique prob-

lems associated with helicopter control. To do this a brief introduction to rotor be-

haviour is presented in Section 2.1. This is followed in Section 2.2 by comments re-

garding the severe cross coupling present in the dynamic behaviour of the helicopter.

31
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Finally, in Section 2.3, the equations of motion for the helicopter model are presented

in a form amenable to Input-Output Linearization.

2.1 Main Rotor Dynamics

As an introduction to the rotor blade motion, consider a typical rotor hub configuration

shown in Figure 2.2.

axis of rotation

lag axis

-	 pitch change
, link

flap axis	 blade

pitch axis
(feathering)

Figure 2.2: Rotor Hub Configuration

The hinges in this arrangement are fully articulated and as such each rotor blade is

individually attached to the hub through two virtually perpendicular hinges. This al-

lows rigid motion of the blade in two directions: out-of-plane rotation (flapping motion)

and in-plane rotation (lag motion).

Smith [71] provides a simple treatment of the rotor dynamics. As the blades rotate

they will take up a coning angle /3 as shown Figure 2.3. This arises due to the force

balance between the weight of the blades, lift and the centrifugal forces acting on them.
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Figure 2.3: Coning Angle
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When the helicopter is in forward flight,

the increase in lift on the advancing

blade due to the increased relative ye-

locity causes it to flap up through an an-

gular displacement called the flapping

angle as shown in Figure 2.4. This

motion reduces the effective blade in-

cidence and hence lift on the blade and

ultimately allows the blade to flap down

again. The reverse process occurs on

the retreating blade. This combined ef-

fect tends to equalise lift across the en-

tire rotor. This phenomenum is called

flapping.

The flapping motion sets up Coriolis

moments in the plane of the disc which

subsequently gives rise to an in-plane

motion called lagging. Note however

that this lead-lag motion, with its ac-

companying lag angle Figure 2.5 , tends

to make only a minor contribution to

the rotor's performance, Seddon [63].

Axis of Rotation

- -	 - - Flapping Angle

Angle

Figure 2.4: Flapping Angle

agang1e

Figure 2.5: Lag Angle
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2.1.1 Rotor Control

To control a rotor, the pitch angles of its blades can be altered to produce a change in

the blades' angle of attack, thereby controlling the corresponding aerodynamic forces.

During rotation there will be an azimuthal variation of lift as indicated by the velocity

distribution of Figure 2.6.

Retreatln9( :: --

lv

Velocity
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	 J

0 AzImuth PosItions

Figure 2.6: Velocity Distribution

This variation affects the degree of flapping motion, as shown Figure 2.7, and conse-

quently the direction of the average thrust vector.

DirecBon of Flight

Max. Displacement t.ç
180

Max.	 I	 Max.
Velocity 270	 -, '	 - 90 Velocity
Dowi,	

I
Retreating	 Advancing

0
Max Displacement Down

Figure 2.7: Flapping Behaviour

Essentially, with the advancing blades producing lift more efficiently than the re-
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treating ones, a large lift asymmetry is created between the advancing and the retreat-

ing blades. Reducing the pitch of each blade as it traverses the advancing side while

increasing it on the retreating side will compensate for the lift asymmetry. In other

words a cyclic variation of lift can be effected by changing the pitch of the blades as

they rotate; this is known as cyclic pitch control. When the result of the cyclic pitch

is a pitching moment applied to the helicopter, then it is called the longitudinal cyclic

01 $ . If the result is a rolling moment then the control is termed the lateral cyclic °k

Yaw is controlled by changing, by the same amount, the pitch angle of all the blades

of the tail rotor. This collective pitch deflection of these blades is called the tail rotor

collective 0j. When a collective pitch deflection is made to the all blades of the main

rotor 8, a change in lift occurs. Collective pitch changes cause subsequent changes in

lift thereby allowing for direct control of the helicopter's vertical motion.

2.2 Helicopter Dynamics

The forces and moments acting on a helicopter arise from two sources, aerodynamic

and inertial. All surfaces exposed to the airstream produce aerodynamic forces, due to

the lack of lateral symmetry these give rise to considerable coupling between the lateral

and the longitudinal motions.

An example of the kind of coupling that occurs is that between rolling and yawing;

a roll acceleration is experienced when the pedals are moved to effect a yaw change.

This occurs because the tail-rotor is generally above the roll axis and therefore the

tail-rotor thrust acting through the moment arm produces a rolling moment.

The inertial forces are extremely important to the helicopter since they play the

dominant role in many helicopter motions. The gyroscopic moments from the main

rotor are of principal importance. As presented in Saunders [62] the inter-axis coupling

that arises from these gyroscopic moments may be illustrated as follows. Assuming

counterclockwise blade rotation as viewed from above, then following an applied mo-

ment the gyroscopic action of the rotor produces a rate (or precession) as given below:
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Applied Moment	 Gyroscopic Precession

Pitch up	 Rolling left
Pitch down	 Rolling right
Roll right	 Pitching down
Roll left	 Pitching up

The gyroscopic action of the rotor does not end here; due to the reversibility of the

torque-rate equation, Cochin [13], an established rotational rate, from whatever source,

will in turn produce a gyroscopic moment as follows:

Established Motion
	

Gyroscopic Moment

Pitching up
	

Roll right
Pitching down
	

Roll left
Rolling right
	

Pitch up
Rolling left
	

Pitch down

This gyroscopic cross-coupling behaviour makes a helicopter's dynamics fundamen-

tally different from those of a fixed wing aircraft.

Since the main rotor is used for direct lift control as well as for generating pitching

and rolling moments, normal, longitudinal and lateral motions are all coupled together.

To illustrate this consider the mechanisms involved in a slowing down procedure.

. It is first necessary to pitch the helicopter nose up using the longitudinal cyclic.

This effectively tilts the rotor disc backwards giving rise to a rearward component

of thrust, hence achieving deceleration by a pitch attitude change.

• The normal component of thrust is now insufficient to balance the helicopter

weight; in order to avoid loss of height an increase in main rotor collective is

necessary to effectively increase the thrust.

• The increased rotor thrust gives rise to greater torque, therefore a change in tail

rotor collective must follow to balance this torque and so avoid the development

of significant sideslip.

• The change in tail-rotor collective then induces a rolling moment which must be

countered by an input through the lateral cyclic.

These coupled motions, if not dealt with quickly and effectively, will result in the

helicopter pitching and rolling and certain deviation from the desired flight path on
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approach.

This sort of complex interplay between balancing forces and moments makes flying

a helicopter more complicated and therefore more difficult than flying a fixed wing

aircraft. The excessive pilot workload that occurs under most conditions makes the

use of an automatic flight control system mandatory. In fact, the nonlinear control

theory presented in this thesis offers the possibility of decoupling these motions which

would then greatly enhance the pilot's effectiveness in highly complex manuvres. In

fact this decoupling control system allows for the expansion of the flight envelope into

regions where previously pilots were unsuccessful in achieving adequate control over

the vehicle.

2.3 Helicopter Model

In helicopters six rigid body degrees of freedom for the fuselage are considered. These

are:

Translation along the
three body axes:

z-axis	 up-down motion
y-axis	 right-left motion
x-axis	 fore-aft motion

In addition, the main rotor itself has some independent degrees of freedom including

collective coning, flapping, lagging and rotational speed. The pilot judges the flying

qualities in terms of the first six and is only indirectly concerned with the blade motions

themselves. Ironically it is the blade motions that determine the major forces and

moments on the fuselage.

The model used in this thesis is due to Padfleld [55] and includes the main rotor

rigid body effects, coning and quasi-steady flapping. According to Prouty [59] the

time constant for the flapping of conventional rotor blades corresponds to to of a

rotor revolution and it is this rapid response that justifies the use of the quasi-steady

assumption. The approximation effectively eliminates blade motion as separate degrees

of freedom and simulates replacing the rotor with a black box at the top of the mast,

which essentially produces forces and moments instantaneously in response to changes
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in flight condition or control inputs.

In addition the main rotor lag degree of freedom is also omitted which as noted

earlier contributes relatively little to the blade dynamics. The tail rotor is based on

a similar analysis to the main rotor except here flapping is neglected. The rotational

speed of each rotor is assumed to be constant for these studies. Due to the complexity

of the flow field around the helicopter fuselage no analytical framework is used to

express their effects; instead wind tunnel results are used to model these aerodynamic

contributions.

Although this model contains certain simplifying assumptions, its performance in

stability and control studies is fairly well validated and has been used widely in heli-

copter flight control system studies in the U.K. One should note however that increas-

ingly challenging control tasks will only be solved by high gain, high bandwidth control

laws. Under these circumstances quasi-steady rotor modelling may not be sufficient and

the interaction of the high frequency flapping modes with the control system modes

must be assessed at the design stage.

2.3.1 Reference Frames

Flight Path Vector

(tore aft] (u)

	

(v) [nght left]

N	 (r)
[yaw]

[up . downj	 Z

(w)

Figure 2.8: Axis System



Ze

Xb

Xe
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OX is the longitudinal axis. positive forward

OY is the lateral axis. positive starboard

OZ is the normal axis. positive towards undercarriage

In the analysis of helicopter dynamics, the equations of motion are usually given

in terms of the body axes system. The body reference frame is shown in Figure 2.8,

where the origin 0 lies at the centre of gravity of the hclicopter.

The attitude of the body with respect to

the inertial reference frame is defined by

the Euler angles : 0, ç5, i. These angles,

as shown in Figure 2.9, are the angles

between the body axes and the earth

fixed inertial frame.

Figure 2.9: Euler Angles

The helicopter, which is assumed to be rigid, has six degrees of freedom: three

of these define the location of a reference point in the body (translational) and three

define the orientation of the body (rotational).

Now each of the six degrees of freedom requires two state variables (one position

arid one velocity) giving a total of twelve states that completely describe the motion of

the helicopter. However, in general not all of these twelve state variables are of interest

and some of the corresponding differential equations may be neglected.

The six states associated with the three translational degrees of freedom are:

x, y, z	 u, v, w	 Displacements and velocities in the ox,
position	 velocity	 oy and oz directions respectively.

The six states associated with the three rotational degrees of freedom are:

0, /, &	 p, q, r	 Orientation angles with respect to the earth
attitude	 rate	 and angular velocities about the ox, oy, oz

directions respectively.
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2.3.2 The General Equations of Motion

The following equations were taken from Padfield [55], which are essentially the same

dynamic equations given by standard texts such as Etkin [17].

x
u = yr - wq—gsinO+ -

= wp—ur+gcos9sin4)+

= uq—vp+gcos9cos4)+

-

• -

yy

• - ( 1x2: - I)pq +	 - qr) + N

Izz

9 = qcos4)—rsin4)

= p+[qsin4)+rcos4)]tan9

= [q sin 4) + r cos 4)] sec 9

= u[cosOcos]+v[sin4)sin9cos'—cos4)sinb]

+ w[cos 4) sin 0 cos 'çb + sin 4) sin ']

ie = t4cos0sin&] + v[sin4)sin0sin '+ cos4)cos']

+ w[cos 4) sin 9 sin t,b - sin 4) cos 1]

= u[— sinG] + v[sin q5cos9] + w[cos4)cos0]

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

The above equations were derived subject to the following assumptions:

• The earth is a sphere rotating on an axis fixed in inertial space and g is a constant

acting normal to the surface.

• The centripetal acceleration associated with the earth's rotation is neglected.

• The atmosphere is at rest relative to the rest of the earth.

. The vehicle is a rigid body.

• xz is a plane of symmetry.
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Note that x, Ye and z instead of x, y, z are used in these equations, this is because

in practice the position of the vehicle relative to the Earth and not the vehicle's body

fixed reference frame is of interest.

The total forces X, Y, Z and the total moments L, M, N are the sum of the contri-

butions from each of the helicopter's five main components : the main rotor, the tail

rotor, the tail plane, the fin and the fuselage. If the vertical plane of the helicopter is

considered to be a plane of symmetry then the force and moment equations have the

following contributions

X = Xr+Xj	 (2.13)

Y = Yr+Yt +Yjn+Yj	 (2.14)

Z = Zr+Ztp+Z1	 (2.15)

L = Lr + L + L1	 (2.16)

M = Mr+Mtp+Mj	 (2.17)

N = Nr+Ni +Njn+Nj	 (2.18)

The subscripts relate to the contribution from each of the helicopter's main com-

ponents:

r : [main rotor]	 fn : [fin]	 tp : [tailpiane]	 f : [fuselage]	 t : [tail rotor]

The main rotor forces and moments are functions of the aerodynamic parameters,

the state variables and the main rotor pilot inputs. Similarly the tail rotor forces and

moments are functions of the states and the pilot input controlling the tail rotor. The

fuselage forces and moments which are calculated from semi-empirical wind tunnel data

given in Padfleld [55] do not however depend directly on the helicopter commands. The

fin and the tailplane contributions are functions of the state variables but again they

are independent of the pilot inputs.

As mentioned earlier, the four control inputs available to the pilot are
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Collective
	

00

Longitudinal Cyclic	 MAIN ROTOR

Lateral Cyclic
	

dc

Tail-Rotor Collective
	

°ot	 TAIL ROTOR

Of the twelve state equations presented earlier only the first eight are critical to a

mathematical model of the helicopter's dynamic behaviour. This is because these eight

equations are each dependent on all of these eight state variables, {u, v, to, p, q, r, 9, },

but independent of the remaining four states, {', x, y, z}. The remaining four

states, though providing information about the helicopter's motion, do not contribute

to the basic model. The eight state model may then be rewritten as:

ü =
m	 m

= top— ur+gcos9sin+ 
Yj(x) + Yj(x) 

+ 
Yr(X, u) +

m	 m	 m	 m

= uq— vp+gcos0cosq+ Zj(x) + 
Zt(x) + Zr(X,U)

m	 m	 m
= (1yy_1zz)q7'+1zz(t+pq)+LJn(x)+Lr((,u)+Lt(x,u)

13:3:

(1 - 1) rp+ I3:z(r 2 - p2 ) + Mj (x) + Mt(x) + Mr(X, u)
q=

'yy
(13:3: - I)pq + I(j— qr) + Nj (x) + N1 (x) + Nr(X, u) + Nt(x, u)

r =
'zz

0 = qcos—rsin

= p+[qsinq5+rcosq]tan0

where x is the state vector and u is the input vector.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

As seen in chapter 1, in order to carry out Feedback Linearization, the nonlinear

system must be presented in the following form:

* = f(x)+ gi(x) Ui + . ..+ gm(x) Urn	 (2.27)

The first change must then be to rewrite the j5 and i equations such that the state

derivatives 5 and t appear only on the left hand side of the equations.

= Ij qr+I2pq+13{Ljn(x)+Lr(x,u)+Lg(x,u)}+

14 {Nj (x) + Nj (x) + Nr(X, u) + N(x, u)} 	 (2.28)
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= 15 rp+ '6 (r 2 - p2 ) + 17 {Mj (x) + Mt (x) + Mr(X, u)}	 (2.29)

1' = I8pq+I9qr+ Ito {Lj,(x) + Lr(X,U)+ Lt(x,u)}+

h i {N,r(x) + Nj (x) + Nr(X, u) + Nt (x, u)}	 (2.30)

Note that is included so as to maintain consistency. The constants I to	 are listed

in appendix A.

The forces and moments due to the main rotor are highly nonlinear functions of

the state (x) and the inputs (u). Extensive manipulation of these expressions using the

Symbolic Algebra capability of the program Mat hematica' , reduces these expressions to

nonlinear functions of the state explicitly multiplied by the inputs. The general form

that is then achieved for the main rotor contributions is as follows:

Xr(X, u) = XrO (x) + Xr l (x) 00 + Xr2 (x) Oj, + Xr3 (x) 01c + Xr4 (x) 00 Oi +

Xr5 (x) 00 01C + Xr6 (x) 0 + Xr7 (x) 01, Oi + Xr8 (x) 0?, +

Xrg(X) 0
	

(2.31)

The other terms Yr, Lr, Mr, Nr are similarly expressed. However Zr alone has the

unique form.

Zr(X, u) = Zro (X) + Zr j (x) °0 + Zr 2 (X) 0is + Zr3 (X) 0ic	 (2.32)

Likewise the tail rotor contribution to the forces and the moments are rewritten as:

Yt (x, u) = Yt0 (x) + Y (x) 9ot	 (2.33)

and L, N have the same structure.

To summarize, the helicopter dynamics have been presented paying special attention

the coupling effects which mainly arise as a result of the dual-role of the main rotor

in producing forces as well as moments. The equations of motion of the system are

also presented in a form that can be used directly with the Input-Output Linearization

theory to design nonlinear helicopter control laws as shown in Chapter 5.

'Mathematica is a registered trademark of Wolfram Research, Inc.



Chapter 3

Nonlinear Geometric Control

Linear control is a well-developed subject with a long history of successful applications.

Unfortunately designs based on linear theory often deteriorate rapidly due to their

restricted regions of operation. Modern technology such as high-speed, high-accuracy

robots or high performance aircraft, is demanding increasingly sophisticated control

systems which will operate over wide regions. The limitations of linear control are now

significantly restricting the achievable performance of such systems.

Faced with the problem of a nonlinear reality that is difficult to treat, together

with the availability of a good understanding of linear systems, a natural development

was the concept of the linear equivalence of a nonlinear system. By applying the usual

automatic control transformations, that is, a change of coordinates and feedback, an

attempt is made at making the nonlinear system behave the same, at least locally, as

a linear system. Achieving this globally is unlikely in practice, however examples have

shown that even the local equivalence approach is far superior to that of the small

perturbation linearization methods.

This chapter details Input-Output Linearization along with the necessary tools from

differential geometry that are necessary for the theoretical description. As mentioned

in Chapter 1, Input-Output Linearization is concerned with explicitly linearizing the

input-output response of a system by means of coordinate transformations and feed-

back. This often results in a decomposition of the original system into a linear observ-

able part and a reduced order unobservable nonlinear part. Before embarking on the

theoretical analysis a brief outline, is given next, of the mathematical tools that will

be of use later.

44
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3.1 Mathematical Background

The following definitions can be found in Isidori [34] and Slotine and Li [69]. An n-

dimensional space with its ordinary topology is denoted by 	 . A vector field f

-+ ?' is smooth (C°°), if the partial derivatives of f(s) of any order with respect

to x i ,. . ., x exist and are continuous.

Given a scalar function h(s) and vector fields f(s) and g(x), note the following

definitions:

	

Definition Let h :	 ? be a smooth scalar function and f :	 -+ R' be a

	

smooth vector field on	 , then the Lie Derivative of h with respect to f is a scalar

function defined by:

Ljh =	 f

Repeated Lie derivatives are defined recursively as follows

Lh = h

0 (L' h)
ILh = Lj(L'h) =

Definition Let f and g be two smooth vector fields on 	 . The Lie Bracket of f

and g is a third vector field defined by:

Og	 Of
[f, g] =	 I -	 g

The Lie bracket [f, g] may also be written as adjg and repeated Lie brackets are

defined as follows:

ad°jg=g

adg = [f, ad1g]

A Diffeomorphism can be viewed as a generalization of the coordinate transforma-

tion, the formal definition however is given below:

Definition A function 'J : 	 defined in a region , is called a diffeomor-

phism if it is smooth and if its inverse CI	 exists and is smooth.



3.2 Input-Output Linearization 	 46

Note that if the region 	 is the whole space	 , then the diffeormorphism I(x) is

global.

The following lemma given by Slotine and Li [69], is a direct consequence of the well

known Implicit Function Theorem, and may be used to determine whether a function

'T(x) is a diffeomorphism.

Lemma Let 4'(x) be a smooth function defined in a region 	 in	 . If the Ja-

cobian matrix	 is non-singular at a point x = x 0 of , then (x) defines a local

diffeomorphism in a subregion of ft

To illustrate the use of a diffeomorphism, consider the system below:

= f(x) + g(x) u	 (3.1)

The diffeomorphism cI(x) is used to transform the system into another nonlinear system

in terms of a new set of states. Let the new set of states be defined by z =

Differentiation of z and use of the original dynamic equation yields:

o.	 o
z = —x = - (f(x) +g(x) u)	 (3.2)

Therefore the new state space representation is

= .1( z) + g(z)
	

(3.3)

where x (:1)-' (z) has been used and I and g are defined obviously.

Essentially the above lemma and example illustrate that a set of functions

cI(x) =	 =	 :	 (3.4)
z

can be used as new coordinates if their gradients:

JOc'i
lDx	 Oxf	

(.

are linearly independent.

3.2 Input-Output Linearization

The discussion here is confined to square multi-input multi-output (MIMO) nonlinear

systems, that is, systems where the number of outputs is equal to the number of inputs.
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This does not constitute a restriction however since it is only possible to independently

control at most the same number of outputs as there are inputs.

Consider

= f(x)+>g,(x)u,	 (3.6)

Yi = hi(x)

Ym = hm(x)

where x is the state vector, U1,...,Urn are control inputs, yl,. . . , y, are outputs,

1,91,.. . , g, are smooth vector fields and h 1 , . . ., hm are smooth scalar functions defined

on an open set of

Slotine and Li [69] provide a good reference for the basic Input-Output Linearization

procedure which begins with finding a relationship between the inputs and the outputs.

This is done by differentiating the outputs y, so that they are explicitly related to the

inputs, as follows:

yj = h,(x)	 (3.7)

Oh,	 Oh,
=	 (3.8)

i=1
rn

= Ljh, +	 (L9 h3 )u,	 (3.9)
1=1

If L91 h,(x) = 0 for all i then the inputs have not appeared and one must differentiate

further. This process is repeated until at least one input appears.

(r,) = Ln/h+L91Ln/_lhU	 (3.10)

where r2 is the smallest integer such that at least one of the inputs appear. Here
L9,Lr,h3(X) 0 for at least one i, Vx e f, and Q is a region around a point x0.

The integer r2 is known as the relative order of the j-th output with respect to the

inputs.

Repeating the procedure for each output gives the following m equations:
(rj)	 rrIL / \

Y1	 L,1flIX)	 U1

=	 +E(x)	 :	 (3.11)
(rm)	 L7"hm(x)	 Urn



LgmLri_l hi(x)

LgLm_ihm(x)

(3.12)
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Here E(x) is an m x m matrix:

I L91L''hi(x)

E(x)= [L L

g i j 'hm(X)

At this point the concept of relative degree, which is particularly important to the

Input-Output Linearization procedure, is defined:

Definition The system (3.6) has a vector of relative degree {r i ,. . ., r} at a point

so if there exists a neighbourhood 1 of X such that Vs E ft

1. L9 Lh(x) = 0
	

0^k<r-1	 1<i,j<m

2. E(x) is non-singular

Point 1 in this definition indicates that no component of the input vector appears

before the r2 -th derivative of the j-th output yj . The non-singularity of matrix E(x)

in point 2 implies that each of the j = 1 . . . m row vectors

1L Ln3_ih(X), L92L?'h(x), ... L9mL'hj(X)][ 9i /

associated with each output y,, has at least one non-zero element. This means that at

least one of the inputs appear in the r,-th time derivative of y3. Moreover, the order of

appearance of the outputs must be such that the matrix E(x) resulting from the above

in row vectors is invertible. The importance of this non-singularity condition will be

interpreted later.

The procedure of successive differentiation yields functions that may be used as

a new set of state variables. This may be verified by showing that if a system has

a (vector) relative degree of {r 1 ... rm} at then the gradients of these functions,

forming the following row vectors, are linearly independent.

	

8h _____	 ________

ax '	 ax

	

8L 1 h2	aL7'h2
ax	 ax

&IL 8L1hm	 _______

ax	 '

The proof of this statement is given in Isidori [34] and implies that ri+r2+ .•. rm =

r linearly independent vectors have been found. A consequence of this is that r is
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necessarily less than or equal to n, since it is impossible to have more than n linearly

independent vectors in an n-dimensional space. So:

r 1 + '2 + •.. + rm < fl	 (3.13)

The r functions, generated by differentiation of the outputs, are now renamed as follows:

= h(x)

(x) = L1h1(x)

(3.14)

q5(x) = L'h(x)

for 1 ^	 m

If r = n then the following mapping:

(x) = col[cb(x), . . .,	 (x), . . ., q5r(x),..	 m (x)]' rm

has a nonsingular Jacobian matrix at x0 since the gradients of functions (x) are

linearly independent as shown earlier. This implies that the mapping cI(x) qualifies as

a local state space coordinates transformation in a neighbourhood of x 0 as pointed out

in the earlier lemma. Note that the coordinates transformation is global if the relative

degree is defined for all x and the Jacobian matrix is nonsingular for all x.

It is more usual however, that r < n. In this case it is always possible to find (n - r)

more functions, { 	 x) , ... , q(x) ), such that the mapping:

rm ( X )	 r+i(X ), . . ., çn(X)]

has a nonsingular Jacobian matrix and therefore qualifies as a coordinates transforma-

tion.

For the general case r < n a new state vector can be defined as {(', . . ., (, },

where:

q5(x)

	

Cl =	 =	 For 1 < j < rn	 (3.15)

q5(x)

cr+i(x)

	

=	 :	 =	 :	 (3.16)
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The system may now be described in the new coordinates by differentiating the

state vector; for 1 < i < m

dc - OddxOh.
x = Lh = 44 =dt - Ox dt	 Ox

dC - 044 dx - .9Ljh
x = Lh1 = 4); =dt - Ox dt	 Ox

(3.17)

d(, , _ 1 - O_ dx = OLr[2h1 = L rf- l h = 4)2 = ( I

dt	 -	 Ox dt	 Ox
d(, -	 _____
dt - Ox dt	 Ox

The dynamic equations in the new state variables are:

- ri
"1 - " 2

	

= c,,	 (3.18)
m

I..'
=

j=1

yi=c

where

z = 1,2,..., ma((,ij) =	 LrjhI(T)l((, 71))	

}	

for	
1,2,...,mb((,ij) - L L''h()-'((, 71))- g j

The dynamic equations corresponding to the remaining set of new states is given

by

ij= w((yq)+p((,'q)u	 (3.19)

where

= Lf71k(F'((,71))	 for	 i= 1,2,...,m
= Lg, 71k ( cI'((, 1))	 J	 k = 1,2,...,n - r

Recall that by virtue of the fact that system (3.6) has a relative degree, matrix E(x)

is nonsingular and the following nonlinear control law is evident from equation (3.11)

L2'hi(x)
= —E'	 + E'	 :	 ( 3.20)

r rmi. ( \Urn	 I&rntX)	 Vrn
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where { v 1 .. . V} is the new input vector to be designed.

In new coordinates the control law becomes:

- L7h1((, ))

= E'(''((, 17))	 :	 ( 3.21)

Urn	 Urn - L2m hm (_ l ((, ii))

Note that by definition of system (3.18)

L'h 1 ('((, 7)))

a((,ij) =

	

	 and	 b((,q) = E('I'((, 7)))

L2m hm( 1 ((, 71))

Applying the control law (3.21) to system (3.18) yields:

ts -
s1 -

- rt
-

=	 for i=1,2,...,m

yi =c

(3.22)

= w((,7))+p((,i7)E'(JY'((, ii)) {v—a((, i)}

At this point one can see that applying the diffeomorphic transformation (x)

and the nonlinear feedback control law, decomposes the nonlinear system into a linear

controllable system described by state variables (() in addition to a nonlinear subsystem

describing the remaining dynamics through states (ij).

Note that the outputs are given only in terms of the linear states, this implies that

the nonlinear states are not observable at the output. In other words the decomposition

renders the nonlinear subsystem, (the internal dynamics), unobservable.

The main attraction of control law (3.21) is that Noninteracting Controlis achieved.

This means that each output channel, y, = ( is affected only by the corresponding



rii-	

Yl

ii = w( , 11)	 + P(,i1) V
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input channel v, and not by v1 if j	 i. This is illustrated by Figure 3.1 below, where

the output Yi is controlled only by the input v2 through a chain of r1 integrators.

V.	 _______

' Li
IntemaJ Dynamics

Figure 3.1: Schematic of System in New Coordinates

Control law (3.21) is often called a decoupling control law and the matrix E is

known as the decoupling matrix. Since each input-output channel is decoupled, it is

possible to use linear single-input single-output design, such as Pole-Placement, on each

- v, channel without it affecting the others. If on the other hand decoupling were

not achieved then the design of input v would affect not only the y output but all

other outputs. In this case linear multivariable designs would be required to provide

a satisfactory decoupled response. This is may be considered undesirable due to the

considerable theoretical analysis and design complexity typically required.

An interesting case occurs when r = n, then the entire nonlinear system (3.6) is

transformed to a linear equivalent system without any internal dynamics. This is the

ideal case since no nonlinear subsystem is present to complicate the control system

design as indicated later.

Figure 3.2 shows, the Input-Output Linearization process leads to the decomposition

of a nonlinear system into a linear part (external dynamics) and a reduced order non-

linear part (internal dynamics). Using the external part and known linear techniques

one can then design the input v so that the output y achieves a desired response. The

problem that still remains is that of the behaviour of the hidden internal dynamics.

Since the overall control law should account for the entire system dynamics, careful
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attention should be paid to the internal dynamics.

Linear Equivalent System
1. State Space

3. Feedback	 Transformation

______________	 __________	 f1ji:rl.....
Reference	 2. Input Space	 u	 Nonlinear	 x

Transformation	 System	 >	 .....

- ¶v

Linear

Figure 3.2: Entire Closed Loop System

It is worth noting here that the control law (3.21) may only be used provided that

E(x) is invertible. If this is not the case then a dynamic control law may be considered

to achieve noninteraction. The dynamic compensator takes the following form:

u =	 (6, x) + /3(5, x) v	 (3.23)

S = '(5, x) + (5, x) v	 (3.24)

Dynamic extension, which is used to produce the dynamic control law, essentially

involves adding integrators to the dynamics. The controller is then no longer static; for

a detailed description of the procedure see Isidori [34].

3.3 Zero Dynamics

While the zero dynamics concept is outlined below, Isidori [34] provides more details.

Recall that for the system in new coordinates (3.22), the internal dynamics is given by:

= w((,)+p((,j)E'(I1((, ii)) {v— a((, ij)}

= ti((, ij) + ((, ij) v	 (3.25)

To determine the behaviour of the internal dynamics involves solving the nonlinear
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equations given by (3.25) subject to the effect of the control v which is designed to ensure

that the external dynamics satisfy certain criteria. In general nonlinear differential

equations are difficult to solve however the concept of Zero Dynamics greatly assists in

identifying the behaviour of the nonlinear hidden dynamics. To gain an understanding

of the significance of the zero dynamics it is beneficial to start with the linear case and

then to infer parallels with the nonlinear case.

Consider the following single-input single-output system:

y	 bo+bis+...+bs	
'326

Note that the only cases of interest are when the output y = C x is a function of

the state and not the input, to be consistent with the nonlinear systems considered.

This necessarily restricts the order of the numerator polynomial, (p), to be less than

the order of the denominator polynomial, (ii). The difference, n - p = r, is known as

the relative order or relative degree.

A state space realization of the transfer function is

th 1	 0	 i	 0	 ...	 0	 0
0	 0	 1	 ...	 0	 0

=	 .	 X3	 +	 u

0	 0	 0	 ...	 1	 0

	

—a0 —a 1 —a 2 ... —an_i	 Zr,	 1

	

F	
'

	

I	 X2

y =	 [b0 b1 ... b	 0 ... 0]	 x1

xp+2

(3.27)

Zn

The Input-Output Linearization procedure is now carried out starting with succes-

sive differentiations of the output in order to find the explicit relationship between the

input and the output.

y = box i +b i x 2 + ...

I = box 2 +b i x3 + ... + bx2

(3.28)
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(nP1) = b0 Sn_p + b 1 xfl_+ + ... + bp Sn

y(hlP) = b0 5np+1 + b 1 X n_p+2 + •.. +

b(—aoxi—aix2—a2x3—...—a_ix)+bu

The output appears after (n - p) differentiations of the output, i.e. after r (the

relative degree) number of differentiations.

Part of the state space mapping can now be constructed from the following functions

= (i = b0 i + b 1 2 + ... + b,,	 = y

= (2 = b0 z 2 + b 1 53 + ... + b, 5p+2 = Y

= Cr = bXr +biXr+i +	
+bx = y(r_1)

(3.29)

The remaining non-unique functions

r+1 = 7)1 = 5r+1

r+2 = 7)2 = Xr+2

(3.30)

= 7/p5n

are chosen to ensure that the following Jacobian matrix

b0 b1	 b2	 ............ b	0	 ...	 0
0	 b0	 b1	 b2	 .................	 0

0	 0	 ...	 b0	b1	b2

00 .	0	 1	 0	 ............0
aI(x) =	 0	 0	 ...	 0	 0	 1	 ............0	 (3.31)

00 ...	 00	 0	 ............1

is nonsingular, thus enabling '1 to be used as a coordinates transformation.

The system described partially in new coordinates is

c1 =(2
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(2=C3

Cr = bOXr+l+bIXr+2+...+bp_lXn+

b ( — a0 x 1 - a 1 x2 - ... - a_ x) + b u

(3.32)

= Xr+2

7)2 = Xr+3

= (—aox i —a i x 2 — ... — a_x) + U

Letting the control law be:

U = V - b0 Xr+1 - b 1 Xr+2 - •.. - b (—a0 x 1 - a 1 x 2 - ... - a_ x)	
(333)

and applying it to system (3.32) yields:

(1 =(

C2=(3

(3.34)

= V

77 = 7)2

7)2 = 773

(3.35)
v

=	 711772...7)p+
Up	 p	 Up	 Up

If v is now designed to provide tracking of Ci = y, or for stabilization of the external

dynamics, then v takes the following form

Vki (1 k2 (2 ...kr Cr +V 	 (3.36)

such that the eigenvalues of the matrix below, given in terms of k1 , have negative real
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part.

0
	

1	 0	 ...	 0	 Ci	 0

	

(2
	

0
	

o 1 	...	 0	 C	 0
(3	 +	 v	 (3.37)

	

Cr—i
	 0
	

o	 o	 ...	 1	 0

	

Cr	 —k1 —k2 —k3 ...	 kr	 Cr	 1

Therefore the external dynamics achieves the desired control tasks, but the the

behaviour of the hidden dynamics is still to be determined. Note that for stabilization

or tracking tasks on the external dynamics, Ci, ... Cr and i3 are bounded. Therefore

applying the control law (3.36) to the internal dynamics (3.35) gives:

=

112 = 13

b0 	b_1
lip =	 11—---12— ... -----i, + { BoundedFunction}

p	 p	 p

(3.38)

Clearly this implies that the stability of the internal dynamics is determined only by

the coefficients, b0 , ... b,,, of the zeros polynomial. Bearing this in mind it is possible

to define the zero dynamics of a linear system as linear dynamics with eigenvalues

coinciding with the zeros of the transfer function matrix. It therefore follows that for

linear systems, if the zero dynamics are stable then the internal dynamics are also

stable.

It is now shown that the zero dynamics can be obtained directly by applying a

feedback control that ensures that the output remains identically zero for all time.

This implies that in the system given by (3.34) and (3.35), the output and all its

derivatives are zero.

y	 = Ci = 0
=	 = (2 = 0

(3.39)
y(r_1) = er-i = Cr = 0
y(r) = (r = V = 0

Subject to the above constraints (3.35) becomes the zero dynamics and is given by:

lii = '72
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1/2 = 113

(3.40)
b_1

71p =
p	 p	 p

To translate these ideas into the nonlinear system framework consider the following

nonlinear system:

= f(x)+G(x)u	 (3.41)

y	 h(x)

where the equilibrium point is defined as (zo, uo) such that y = h(xo) = 0.

Recall that part of the linear subsystem in new coordinates is:

C. = vi
	

(3.42)

From successive differentiation of the output the following relationship holds:

(r,) - (i	
(3.43)

As in the linear case, the dynamics such that the output remains identically zero is

the zero dynamics. This implies the following conditions:

y1 =	 = 0
(1) -	 - üYi	

(3.44)

(r,)
yi	 = v = 0

The zero dynamics representation in new coordinates

(=0

= w(0, i) - p(O, j) E'(O, i) a(0, i)	 (3.45)

Alternatively in the original coordinates the nonlinear control law arising from the

Input-Output Linearization procedure is

u = E 1 (x) [v - Lh(x)]	 (3.46)
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Applying this control law to the nonlinear system and observing the output zeroing

constraints (3.44), gives the zero dynamics as:

= f(x) + G(x) E'(x) [—Lh(x)] 	 (3.47)

The equilibrium point (x 0 , uo) defined earlier is a point such that y = 0, this implies

that this point necessarily lies in the output zeroing submanifold over which the zero

dynamics evolve. Or in the new coordinates the equilibrium point is ((o, 110, vo), where

by definition (o = 0 and (' = 0 = v which implies that the equilibrium point is given

more simply as (0, '10, 0).

In linear systems the stability of the zero dynamics guarantees the global stability

of the internal dynamics. In nonlinear systems, however, stability of the zero dynamics

guarantees only local stability of the internal dynamics in a region around the equi-

librium point in question. The proof of this is available in texts such as Isidori [34],

however a brief inspection of the rationale follows next.

For the system in new coordinates, applying a feedback that ensures stability of the

external dynamics gives the following system:

Cr =	 ...	 kjr( +3j

7 = ti)((,q)+15((,z1)(_ki(i_ ... 	 kr(r+V)	 (3.48)

If the zero dynamics are asymptotically stable then for sufficiently small Li the

trajectories of (3.48) are bounded. More precisely, using results from Centre Manifold

Theory, for each E there exists 5 and K such that

IKo,iloII< 6	 and	 I v I< K	 Vt^0, 1 ^ i ^ m	 (3.49)

imply

IICt, 'itU < C	 Vt ^ 0	 (3.50)

i.e. the internal dynamics remain bounded.

An important point to note is that the nonlinear control law given in this chapter

achieves noninteraction with stability provided the zero dynamics are stable. This

condition is only a sufficient one and there may still exist systems whose zero dynamics
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are not asymptotically stable in which the achievement of noninteractive control by

means of an internally stable closed loop is still possible. More details of this are given

in the literature review of Chapter 1.

3.4 Asymptotic Output Tracking

Isidori [34] shows the design of a tracking controller for the Input-Output Linearized

system is essentially the design of a control law that will asymptotically stabilize an

error system defined in terms of the actual system outputs and its desired trajectories.

As proved in Isidori, if the zero dynamics are asymptotically stable this type of control

law will ensure that the entire system remains stable and the tracking objectives met.

The outputs of the system are the variables required to track a prescribed trajectory

Yd . Recall that the state vector of the linear subsystem is:

=	 For 1 < j < in	 (3.51)
(1

Define the error corresponding to each output as:

e = y (x) - Yld = (1 - Ytd	 i = 1 ... in	 (3.52)

Differentiating et repeatedly r1 times

	

-	 .	 -	 ri	 - i

	

e1 -	 "1 - Y	 -	 -	 - e2

	

-	 ,	 (2)	 -	 ri	 (2)	 -

	

e2 -	 '2 - 11d	 -	 - Y	 -

(3.53)
1	 -	 (r,-1) -	 - (r,-1) -

	

er_j -	 - ' d 	-	 Ytd	 - er,

•2	 -	 - ( r,)
Cr,	 -	 'sr,	 d

From system (3.22), (,. = v, therefore the dynamic equations of the error system

are:

é =e

(3.54)

= e

(r,)
Cr = Vj_Yjd



e

3Cl

2
r2 +
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Isidori [34] points out that a control law of the following form achieves asymptotic

output tracking:

V1	 kii...kiri	 0	 ...	 0
=	 0	 k2i...k2r2	 0

vrn	 0	 0	 ... kmj •..kmr

In

em

(ri)
!hld

(r2)
Y2a

(rm)
Yrna

Replacing v in control law (3.54) with (3.55) results in:

0	 1	 0	 ...	 0	 e

0	 0	 1...	 0	 e
=	 :	 :	 :	 .	 e

0	 0	 0	 ...	 1

e	 k1 k12 k 3 . . . ktr

(3.55)

(3.56)

The error dynamics of each of the rn linear sub-systems will be stabilized if the

coefficients k, are chosen so that the eigenvalues of the above error system matrix lie

in the Left half Plane. Because of the local nature of the zero dynamics stability, the

control law given above guarantees the stability of the internal dynamics if the desired

trajectories Yd ... r_1) have small magnitudes.

3.5 Summary

A solution to the nonlinear decoupling problem has been found using the theory of

Input-Output Linearization. The steps below show the approach to the problem
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• Determine the relative degree r of the n-th order system for the outputs given.

This is done by differentiating the outputs until the inputs appear.

• This procedure gives rise to the decoupling matrix E(x) and r functions that can

be used as part of a state space coordinates transformation. It is then possible

to find n - r functions to complete the coordinates change.

• The state space transformation along with a nonlinear feedback control law in-

volving the inverse of the decoupling matrix can then be applied to the system.

This decomposes the original system into a linear decoupled subsystem of order

r and a nonlinear subsystem of order n - r.

• The stability characteristics of the zero dynamics should then be determined.

• Finally a tracking control law for the decoupled outputs may be designed.

This system decomposition is used as the basis for the robustness analysis given in

Chapter 4.



Chapter 4

Nonlinear Robust Control

This chapter is concerned with finding nonlinear tracking control laws that are robust to

uncertainties. The control laws are derived within the Feedback Linearization frame-

work. As mentioned in Chapter 1, three main approaches prevail for the treatment

of uncertain systems; they are adaptive control, Sliding mode control and Lyapunov

based control. Since adaptive schemes normally require costly on-line identification

algorithms to monitor parameter values and disturbances, the latter two deterministic

approaches were chosen in this work in order to limit the complexity of the controllers.

Methods employed to deal with uncertainties often require discontinuous control

laws to ensure that the system is robust to uncertainties and that the control objective

is met. The problem with discontinuous control is that implementation is impractical

since control activity is usually unacceptably high. Both the Sliding mode and the

Lyapunov techniques resort to saturation functions in order to eliminate the control

discontinuity, this however affects the desired performance. In the case of tracking

control, the guaranteed asymptotic tracking that discontinuous control provides is not

achievable using the continuous control; in fact the best that can be attained is uniform

ultimate boundedriess. This essentially means that the steady state tracking error will

be non-zero. The dynamic error will however be bounded and dependent on the positive

constant c, to be defined later, which is part of the saturation control law.

A more precise statement of the objective of this chapter can be stated as follows:

given a desired trajectory Yd, design control laws incorporating the linearizing control

of Chapter 3, so that the output error of the closed loop system will be bounded while

maintaining the boundedness of all signals inside the loop regardless of the presence of

uncertainties.

63
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The first step in any analysis of uncertain systems is that of characterizing the un-

certainties. This is done in Section 4.1 and is followed in Section 4.2 by the Lyapunov

approach to the design of robust control laws. The Lyapunov approach utilizes Gut-

man's theory [24] for the nonlinear aspects of the system. Leitmann's approach [43]

for linear systems is then used for the linear subsystem derived during Input-Output

Linearization. The actual Feedback Linearization aspects are dealt with using ideas

from Chen and Chen [10]. Finally the internal dynamics arising from Input-Output

Linearization are discussed in terms of the contribution by Liao et al [45] to uncertain

systems. Section 4.3 then concludes this chapter with a presentation of Sliding Mode

Control. The design of the Sliding mode control within the Feedback Linearization

environment makes use of the work of Fu and Liao [20].

4.1 System Uncertainty

Consider a nonlinear system:

th = f(x) + f(x) +	 [gi (x) + g,(x)] U

= f(x)+Af(x)+ [G(x)-i-iG(x)]u

(4.1)

y2 = h 2 (x)	 i=1...m

with inputs u 1 , outputs y and state x. Note also that G(x) = [g i (x) ... gm(x)] and

iG(x) = [igj (x) ...

The nominal system refers to the case where the uncertainties, f(x) and G(x),

are zero.

Af(x) = iG(x) = 0	 (4.2)

The uncertainty can always be divided into two parts, a matched part and a mis-

matched part as follows:

f(x) = G(x)S(x) +	 fmm(X)
G(x) = G(x) T(x) + 	 Gmm(X)	 (4.3)

matched	 mismatched

i.e. the image space of the matched part lies within the span of the nominal g,.
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In the context of Feedback Linearization, the matched uncertainties are the uncer-

tam terms that appear at the same order of differentiation as the inputs during the

Input-Output Linearization procedure. This implies that the relative degree remains

unchanged so that the matched uncertainties do not affect relative orders, tangent man-

ifolds, coordinate transformations, etc. Arbitrarily large uncertainties of this kind can

be compensated for by well designed robust control laws.

The design of robust control laws tends to be based entirely on the matched uncer-

tainty. The mismatched uncertainty is usually tolerated provided its bound is less than

a certain critical threshold. Uncertainties exceeding this threshold are likely to cause

noticeable degradation in controller performance. The literature review in Chapter 1

gives more details of the work by Barmish and Leitmann [3] in this area. The uncer-

tainties considered in this thesis are of the matched kind and Chapter 5 provides the

justification of this for the helicopter problem. In view of this, the analysis that follows

will omit any unmatched uncertainties, i.e. fmm(X) and Gmm(X) will both be set equal

to zero.

4.2 Lyapunov-Based Robust Control

The Lyapunov-based control adopted in this thesis utilizes the Lyapuriov Mm-Max

approach presented by Gutman [24]. The robust control law designed by this method

depends explicitly on finding a suilable Lyapunov function, which for nonlinear systems

is generally quite difficult. However, as shown later, by starting with the Input-Output

Linearization approach a Lyapunov function can be found readily. Before presenting

the analysis for Input-Output Linearized systems it is essential to discuss Gutman's

ideas and some of the later developments that are relevant to the design of robust

control laws exploiting the Feedback Linearization concept.

First a few important definitions are stated using the following time varying system:

± = f(x,t)
	

(4.4)

where a solution to (4.4) is given by x( . ) : [to, oc) -+	 for every x(to) = xo.

The equilibrium x = 0 of (4.4) is Uniformly Stable if for all E > 0 there exists a
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6(e) > 0 such that:

I	 II < S(E)	 =	 x(t) < e	 for all	 t > t 0 > 0	 (4.5)

The equilibrium x = 0 of (4.4) is Uniformly Asymptotically Stable if it is uniformly

stable and, in addition, there exists a T(r) > 0, for all r > 0, and a y(r) > 0 such that:

xo < -y(r)	 =	 x(t) ^ r	 for all t ^ to + T(r), to ^ 0	 (4.6)

The solution x(t) of (4.4) is Uniformly Ultimately Bounded with respect to a set

S C	 if there exists a non-negative constant T( xo, S) < oo such that:

	

x(t) ES	 for all t ^ to+T(xo, S)	 (4.7)

4.2.1 Lyapunov Mm-Max Approach

Gutman [24] considered the following type of uncertain system:

± = f(x,t) + B(x, t) u + if(x, t) + B(x, t) u	 (4.8)

x(to) = xo,	 uEU

where

x is the state vector

u is a control vector

x, f, 'f E	 and B, LB E nXm

f, if, B, LxB are continuous in all their arguments

It is also assumed that for all (x, t) E 	 x	 there exists a continuous vector

function h(x, t) E m and a continuous matrix function E(x, t) E mxm such that:

if(x,t) = B(x,t)h(x,t)	 (4.9)

zB(x,t) = B(x,t)E(z,t)	 (4.10)

Using the above matching conditions, (4.9, 4.10), it is possible to rewrite system

(4.8) as:

th = f(x,t)+B(x,t) ( u + ij)	 (4.11)

where	 = h(x,t)+E(x,t)u
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Define:

M={iEm: IIiII < p(x,t)}
	

(4.12)

which represents a set of norm-bounded uncertain signals.

The problem can now be stated as follows: given system (4.11) where x(t) is a

solution of (4.11) at t generated by u(t), find a control strategy p( . ) :	 x

satisfying u(t) = p(x(t), t) such that the origin {O} is uniformly asymptotically stable

in the large for all e( . ) :	 x	 m satisfying j(t) = e(x(t), t) E M.

Note that (4.12) effectively specifies the maximum possible bound on the uncer-

tainties. This does not preclude cases where uncertainties exceed this bound, it does

mean however, that under those circumstances the control law's performance will not

be guaranteed.

To find the control strategy that ensures uniform asymptotic stability, it is necessary

to assume that there exists a scalar function V :	 x	 —p ?' satisfying:

• V(x,t) is positive definite, i.e. V(O,t) = 0 for all t ^ 0 and there exist contin-

uous, increasing scalar functions -y( . ) and 3( . ) with -y(0) = 0 and (0) = 0, such

that Vt E	 and Vx E ?' :	 7(II X II) ^ V(x,t) ^ /3(IlxII).

• 7(II x II) —* oo as Il x II —	 .

• —Wo(x,t) is positive definite where Wo(x,t) = (	 + VV . f).

This assumption implies that the free system th = f(x, t) is uniformly asymptotically

stable in the large. If it does not have this property but (4.11) is stabilizable, then this

is first stabilized.

The next step is to choose V as a Lyapunov function to system (4.11), then differ-

entiating V along a solution x( . ) of (4.11) generated by {u, ij} gives:

=	 +VVf+VVB(u+)
	

(4.13)

= Wo(x(t), t) + VV . B(u + i)
	

(4.14)

If

mm max

U E U '1 E M [VX V . B(u + ii)]	 0	 V (x, 1) E
	

(4.15)



(4.16)

(4.17)

(4.18)
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then V( . ) decreases along a solution x( . ) of (4.11) and is therefore a Lyapunov function

for the system which is stable. Condition (4.15) is satisfied by choosing:

u(t) = p(x(t), t)
a(x, t)

	where	 p(x, t) = —p(x, t) 
Ia(x, t)

	and	 a(x,t)	 BT(x,t)VV(x,t)

Since p( . ) is undefined for a(x, t) = 0 then p*(.) is introduced as:

p*(xt) =
—p(x, t) cçx,?

IIc(x,i)II

{ {u e m : huM ^

if	 hI & ( x , t )II	 0

if	 hI a (x , t )II = 0
(4.19)

This control law ensures that the system remains asymptotically stable for all ad-

missible uncertainties, the proof of this is readily available in Gutman [24]. This control

law is in fact discontinuous and direct implementation would lead to chattering of the

control when the state reaches the discontinuous region, i.e. the control would oscillate

at very high frequency between its limits. Under such conditions control actuators fail

prematurely due to fatigue. Leitmann [43] showed that a continuous approximation

to the discontinuous control derived above no longer guarantees uniform asymptotic

stability but assures a performance that is arbitrarily close to it, i.e. uniform ultimate

boundedness. That study also demonstrated the application of the Mm-Max approach,

i.e. the approach outlined above, to linear systems.

Due to the presence of a linear subsystem arising from the application of the Input-

Output Linearization technique, it is necessary to consider Leitmann's specialization of

the Mm-Max approach to linear systems. This will become clear in Section 4.2.2 when

the analysis is applied to Input-Output Linearized systems. First a brief description of

Leitmann's contribution is given.

Leitmann [43] considered a linear system of the form given below. Note however

that error in the measurement of the state and uncertainty in the input, which are

present in the original system, are omitted here since they are not necessary to the

analysis considered later:

th(t) = [A + A(r(t))] x(t) + [B + LB(s(t))] u(t) 	 (4.20)

x(to) =	 ( not known )
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where

A ïi x n matrix x E	 L.A(r) n x n matrix r E s?"
B n x m matrix u E m	 SB(s) n x m matrix s E q

The following assumptions are made:

• A( .) and zB( .) are prescribed functions which are continuous on P and q

respectively.

• Uncertainty parameters r( . ) :	 —+ R and s( . ) :	 —* S are Lebesgue

measurable where R C 3 and S C .

• (A, B) is controllable.

• The matching assumptions are met:

A(r) = BD(r)	 Vr E R	
421

B(s) = BE(s)	 VsES

Using the above matching conditions system (4.20) can be rewritten as:

(t) = Ax(t) + B (u(t) + r)	 (4.22)

where	 = D(r) + E(s) u(t)

This system suggests a state feedback control given by:

U = K + Prob	 Vs E	 (4.23)

where K is a matrix such that A A + B K is stable. Clearly the control law contains

an element responsible for stabilizing the nominal system, = A x + B u, in the case

that it is not already stable. After stabilization of the nominal system it is possible to

determine a matrix P, which will be of use later, the solution to the following Lyapunov

equation:

PA+ATP+Q = 0
	

(4.24)

for any constant positive definite matrix Q.

Now the saturation control, Prob( • ) :	
°, that compensates for the uncer-

tainty is given by:

Prob( X ) = 
I
	

if	 Lj >	

(4.25)

I HPv(X)
	

if
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where

p = BPx

e is a prescribed positive constant

and pv( • ) :	 is determined in the following way. Rewriting (4.22) with

control u of (4.23) as:

i(t) = A x(t) + B Prob( X ) + B 5(x, t)	 (4.26)

where, for all (x,t) E	 X

5(x, t)	 D(r) x + E(s) K x + E(s) Prob(X)	 (4.27)

Pv is defined by applying matrix norms to (4.27) in order to bound the maximum

uncertainty:

max	 max	 max
II 5 (x , t)M	 € II D ( r ) x li + SE S li E (s) Rx + s ES li E (s) II Pv(X) = Pv(X)

This equation can be solved for Pv(X) if [1 -	 II E (s)il] > 0. Then:

max	 —1 max
Pv(X) = [1 — SE S ll E (s)lI I	 {	 ll D ( r) x li + a ES li E ( s) Kx ll }	 (4.28)

The proof of the stabilizing nature of the control law appears in Leitmann's paper.

Corless and Leitmann [14] generalized this to the design a control law for the non-

linear system below:

i(t) = f(x(t), t) + B(x(t), t)u(t) + B(x(t), t)e(x(t), t)	 (4.29)

x(t0) =	 (4.30)

where t E	 is time, x(t)	 " is the state and u(t) E m is the control. A matched

uncertain element is given by e(x(t),t) and its norm is bounded by a known function,

that is for all (x,t) E	 x ,	 li e (x , t)ll < p(x,t)

The control which guarantees ultimate boundedness of all possible system responses

within an arbitrarily small neighbourhood of the zero state is given by:

I - IH p(x, t)	 if il p ( x , t) > £

Prob(X,t) =	 (4.31)

I. —p(x,t)	 if	 lp(x,t)Ii ^
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where	 j.t(x,t)	 BT(x,t)VV(x,t)p(x,t)

This was later developed by Chen [11] for the following system:

±(t) = f(x(t), t) + zf (x(t), a(t), t) + {B(x(t), t) + LB(x(t), a(t), t)}u(t) (4.32)

where t E	 is time, x(t) E	 is the state and n(t) E m is the control. The time-

varying parameter a(t) E T' represents the uncertainty. The uncertainty parameter

a( . ) :	 —+ E is Lebesgue measurable where E C	 . The uncertain elements are

matched and are given by:

B(x,a,t) = B(x,t)E(x,a,t)
	

(4.33)

f(x,a,t) = B(x,t)D(x,u,t)
	

(4.34)

max
In addition it is assumed that c E II E (x , a, t)II = A(x,t) < 1

It was proved that the following control law guaranteed uniform ultimate bounded-

ness of all system responses:

where

=	
- II,x,tII

Pr06(x, t)	

{	

lL(,t 
Pv(X, t)	 if iIii(x , t)I >

—4p(x,t)	 if IIit( x , t )II ^

	

11(x,t)	 BT(x,t)VV(x,t)p(x,t)
max

	

p(x,t)	 [1— A(x,t)]' [ €E IID(x,a,t)II]

(4.35)

(4.36)

(4.37)

To summarize, using the Lyapunov Mm-Max approach of Gutman, robust satura-

tion type control laws were derived by Leitmann, Corless and Leitmann and Chen, for

both nonlinear and linear systems. The next stage is therefore to show how these ideas

can be utilized in conjunction with Feedback Linearization to produce control laws that

are robust to the effects of uncertain dynamics.

4.2.2 Input-Output Linearization Framework

The study by Chen and Chen [10] shows how the Mm-Max approach is used in the

design of a robust controller for the stabilization of single-input single-output nonlinear
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systems. The nonlinear systems considered include a nominal part that is fully lineariz-

able using In put-State Linearization. Even though this thesis is concerned with the the

multivariable Input-Output Linearization problem, some of the ideas from Chen and

Chen have been helpful to the analysis that follows.

In order to combine and directly apply the ideas of Chen (nonlinear) and Leitmann

(linear) described in the previous section, it is necessary to express the Input-Output

Linearized system in Leitmann's form given below, i.e. (4.26):

1(t) = AX(t)+BPro6(X)+B5(X,t)

First consider the nonlinear system (4.1):

I = 1(x) + f(x) +	 () + g(x)} tj

= f(x) + f(x) + [G(x) + G(x)] u

(4.38)

= h(x)	 i=1...m

where the following matching assumptions hold:

if(x) = G(x)S(x)	 (4.39)zG(x) = G(x) T(x)

and, in addition, where the nominal system:

I = f(x) + G(x) u	 (4.40)

= h,(x)	 i=1...m

is Input-Output Linearizable.

Applying a partial coordinates change to system (4.38) gives:

- I-i
- "2

i_1 =

I-	 = L?hs(x)+Erowiu+zL2'h,(x)+1Erowiu 	 (4.41)

Ti = p(x)+q(x)u+Lp(x)+q(x)u



where:

E(x) =

LL,h(x) =

E(x) =

(4.42)

(4.43)

(4.44)

For the entire system, the external dynamics of (4.41) can be written as:

	

(1	 A1	 0	 ...	 0	 (1	 B1	 0	 ...	 0

	

(2	 =	 0 A 2 	0	 (2 + 0 B2 	0

00.:
00 ...Am	 (	 00 ...Bm

L'h i (x)+ Erowi tL+IL2'hl(X) + 1E rowi U
L7h2 (x) + Erow 2 U + 1L?112(X) + LErow2 U

L m hm(X) + Erowm + L m hm (X) + LErowm U

or more compactly as:

(= A (+ B { L,h(x) + Eu + L2h(x) + zE u }
	

(4.46)
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Lg1L'hi(x)	 ...	 Lg L' 1 h i (x) 1

Lgi L m_l hm (X) ... LgmL2m_lhm(X) ]

Lh(x) 1

Lhm(X)]

LA91 L''h i (x) ... L g Li 1 h i (x) 1

Lg i L'hm(x) ... L	 Lrm_lhm(X)]9m f

(4.45)

010...0
001...0

where	 A1=

000...1
000...0

0
0

B1=
0
1

I1

(i

tt

f-I

and A 1 is a r-x	 matrix while B1 is a rxlvector and i= 1...m.

Recall from Section 3.4 that output tracking is achieved by stabilizing the error

system. With the error coordinates defined as:	 = yi (x) -	 = ((x) - y,. for

i = 1 . . . in. The error system dynamics are given by:

é = A e + B {L2h(x) + Eu + L2h(x) + zEu - (r)}
	 (447)
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If the nominal system's In put-Output Linearizing control law:

u = E' [—L,h(x) + v]	 (4.48)

is applied to system (4.47), the following is obtained:

è = Ae+ B{v+L\Lh(x) + LEE' (_Lrjh(X) +v) - (r)}	
(4.49)

System (4.49) is now in the form of Leitmann's (4.22), therefore similarly to Leit-

mann's control (4.23), the control variable v can be chosen as:

= K e +	 + Prob	 (4.50)

(r) .	 . .where K e + Yd is a stabilizing and output tracking control for the nominal part of

the system, and the robustifying term Prob can be designed to ensure that effects of the

uncertainties are minimised.

To find Prob the control law (4.50) is substituted into (4.49):

é = Ae+BProb +B{L,h(x) +

E' (—L2h(x) + K e +	 + Prob) }	 (4.51)

where A=A+BK.

Noting now, that error system (4.51) is equivalent to Leitmann's (4.26) and taking

into account the nonlinear uncertainty, Chen [80], present in this case it is possible to

use the following saturation control for the error system:

I -	 Pv(X)	 if IIi(x )lI >
Prob = —p(x)sat((x)) = 1	 (4.52)

I	 Pv(X)	 if Ili()II^
where

= BT Pepv (x)	 (4.53)

and the matrix P > 0 is the solution of (4.24) where Q is an arbitrary constant positive

definite r x r matrix. The positive constant affects the size of the achievable steady

state tracking error as will become clearer later.

To determine pv() :	 -*	 , compare (4.51) to (4.26) and then note that Leit-

mann's 5 is equivalent to M given below:

M = iL2h(x) + L\E E 1 (—Lh(x) + K e +	 + Prob)	 (4.54)
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Taking the norm of (4.54) and defining pv(X) leads to:

(r)
11 M 112	 ^	 IIi L2 h ( x ) + L\EE' (—L2h(x) + A + lid )11 2 +

II EE 'II2 Pv(X)	 Pv(X)	 (4.55)

Note that all vector norms are Euclidean and the matrix norms are defined by:

4112 
= [Anar (A*A)] were A* denotes the conjugate transpose of A and )'max is the

maximum eigenvalue.

So, provided that [1— Il' EE 'II2] > 0 ,then

Pv(X) = [1 - -'	 112

[II Lh(x) + iEE' (—Lh(x) + Ie +	 )11 2 1	 (4.56)

Finally the saturation control law, where Prob(X) is given by (4.52), is as follows:

u = E' [—L2h(x) + K e +	 + Prob]	 (4.57)

This control law guarantees that the states of the external system and the output

tracking errors are bounded for all initial conditions. In fact the tracking errors will

converge to a ball around 0 whose radius is affected by the positive constant €, as seen

in the next section.

Note that, like the basic Input-Output Linearization, this control law does not

directly address the internal dynamics, these modes must however, be inspected, to

ensure that their behaviour is at least predictable. This issue is discussed further in

the section entitled Internal Dynamics.

Guaranteed Boundedness of Tracking Errors

In this section the error dynamics are examined and it is shown that the control law

derived in the previous section will ensure that the external dynamics are robustly

stable and the steady state tracking error is necessarily non zero as a result of the

saturation control.

Consider a Lyapunov function for the error dynamics as follows:

V(e) = eT P e	 (4.58)
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Differentiating V(e) along trajectory (4.51) gives:

= eT (PA+AT P)e+2eT PB{L r h+AEE (—Lh

+ K e + y )} - 2 e' PB Pv (I + LE E' ) sat Gu)	 (4.59)

Noting that

e' (PA + AT P) e =	 Q e	 (4.60)

and

	

)rnin(Q) I!e11 2 < eT Qe ^ )'rnar(Q) h e M 2	 (4.61)

and also using i(x) from (4.53) and pv(X) from (4.56) leads to the following inequality:

V ^	 Am,n(Q) IIe11 2 + 2 1111 112 [1— IlEE'Il2]

- 2 IIitII2 I +	 EE' 112 Il sat (p) 112	 (4.62)

Since

II I + zEE' 112 ^ 11 1 112 - II	 I'12	 (4.63)

Then

—hhI+/.EE' 112 ^ —[1 - II IEE ' 1121	 (4.64)

Also noting that sat(t) = sat( J14 ) allows (4.62) to be rewritten as:

V ^	 Am(Q) 11e11 2 + 2 [1 - Il E E1 1121 { IhiL II2 - hh/L 112 sat( Ih1hI2 ) } (4.65)

With the saturation function sat(11) given by:

I 1T1T	
if	 Ih,1hI>c

sat(11) =	 (4.66)

if IJi<c

Then sat( 111111) is as follows:

sat(111111)	

{ 

llii	 if	 [JLL > C

=	 (4.67)

	1li41	
111111^
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Now considering the second term in (4.65) i.e.

2 [1 - II L\EE '112 I { 1111 112 - 1111112 sat( 1111112) }	 (4.68)

if 1111112 > e then the above term (4.68) becomes zero. If on the other hand 1111112 ^

then (4.68) becomes:

2 [1— ll E E '11 2 I { 
1111112— 11111121111112 1	 (4.69)

C

The maximum valve of {jiI2 IIIII2II1II2 }, found by differentiating and setting the

derivative to zero, is given by . Since the maximum value of {1 - lI EE 'II} is 1

then:

Max { 2 [1— II LEE 'II2I { 1111112-1111112 II sat (11) 112 } } =	 (4.70)
2

Finally, using the above statements:

^ _A 1,(Q) 11e11 2 +	 (4.71)

Clearly for V to remain negative definite then:

eli2 
>	

-	 (4.72)
2 Am(Q)

which implies that the introduction of the saturation control to ensure the error system

stability leads to the existence of a tracking error that depends on the size of e.

Internal Dynamics

This section examines the problem of the internal dynamics with uncertainties and the

effect of the robust control law on them. It will be shown that, provided the internal

dynamics of the nominal system is stable, then the internal dynamics of the uncertain

system will remain within a bounded set BR a ball in with radius R, where R

depends on the size of the uncertainties affecting the internal dynamics. The analysis

that follows utilizes and generalizes some of the ideas developed by Liao et al [45] for

dealing with the internal dynamics of single-input single-output nonlinear systems with

mismatched uncertainties.



(4.77)

(4.78)

(4.79)
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The internal dynamics of the uncertain system is given by:

= p(( , ri)+q((, ij)u+p((, q)+Lq((, ?7)u

where the Input-Output Linearization control law is:

u= E'{ — L2h+vJ

Applying control law (4.74) to system (4.73) results in:

=

(4.73)

(4.74)

(4.75)

At this point certain assumptions are made, the crucial one being that the zero

dynamics of the nominal system are exponentially stable.

Recall from Chapter 3 that the zero dynamics of the nominal system are

7 = 15(07))
	

(4.76)

If (4.76) is exponentially stable then by a converse theorem of Lyapunov, Hahn [26],

there exists a Lyapunov function Vo(i1) which satisfies the following inequalities:

k, 11 7) 11 2 < Vo(q) < k2 1q112

8VO(0) < 
—k3q2

ovo
II	 II	 <	 k411q11

where k1 ... k are appropriate positive constants.

In addition, if jS((, q) is assumed to be locally Lipschitz in (and q, then there exists

a positive constant L such that:

11j5 ((', q') - 
15((2, 

7) 2 )11 ^ L (1K' - (
2 11 + ll' - 7)211)

Now substituting control law (4.50) into (4.75) produces:

=

where:

q((, q, v) = ((, q){ Ke + y + Pro6}+ z 15((, q)+

tfl(, q) {Ke + r) + Prob}

(4.80)

(4.81)

(4.82)
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If G, f and z\ G are smooth then constants 11 and 12 will exist such that V ((, ij) E

lIc((, ii, v)	 11 (11(11 + IIilI) + 12	 (4.83)

This assumption will be satisfied within a compact set BR; a ball in with radius

R, where 1 and 12 depend on R which can be arbitrarily large. The desired output

trajectory yd(t) and its first r derivatives are all assumed to be bounded and satisfy:

(1)	 (r)
II (yj, 11d ' ..., Yd ) II	 ^	 bd	 (4.84)

for some positive constant bd. Finally, it is also assumed that

11(1! ^ h e ll + bd	 (4.85)

To obtain the boundedness result for the internal dynamics, choose a Lyapunov

function:

V((, ij) = pVo(ij)
	

(4.86)

where ,t is a positive constant to be determined later.

Differentiating Vo(77) along trajectory (4.81) and using inequalities (4.77) to (4.79)

along with (4.83) to (4.85) gives:

= 8V0	
i) + q5 ((, ij, v)}	 (4.87)

=	 {j3(0, i) + ((, ij) - (0, i) + ç((, i, v)}	 (4.88)

- k3 11 77 11 2 + k4 L hIill 11(11 + k4 117711 {l (11(11 + 117711) + 12]	 (4.89)

- k3 11 77 11 2 + k4 11 11 77 11 2 + k4 (L + 1 ' ) 117711 hell

+ k4 (12 + (L + i i ) bd) 117711	 (4.90)

Therefore the derivative of the Lyapunov function for the internal dynamics is given

by:

- p (k3 - k4 Ii) 11 11 11 2 + p k (L + li) hlihl hell

+ p k4 (12 + (L + i) bd) llihl	 (4.91)

- p ( k3	 k4 ii) 1111112+ 
hlehh2	 IIehI	

2

4 
____k4(L+li)hhlihh}



(4.96)

(4.97)

(4.98)
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+(jik4 (L+l i )) IIiI -	 k3	

}2

	

2	 i 2	
k3 { 

IIiII	 k4 ( 12 + (L + 1) bd)

{k4 (1 2 + (L + i i) bd)}2
(4.92)+/2	

Ic3

Removing the two negative terms, i.e. the third and the fifth, from the right hand

side of the above inequality, leaves:

V ^	 12 ( k3 - k4 l i ) IIII2 +	 12 + 
(12k4 (L +11) )2 III2

+ /2 
{k4 (1 2 + (L+ 1) b4}2	

(4.93)

Now i-' must be chosen to ensure that:

- 12(k3 - k4 1 1 ) + (12k4 (L+ 11) )2 <0

Therefore

k3 —k411
12<

k42(L-f-11)2

but since /1 is a positive constant

k3 - k411
0<

k42(L-i-11)2

k4 1 1 <

11 < 3k3

So making

k3

11=4-i

satisfies (4.98) and therefore

8 k3
12<	 2(4 k4 L + k3)

is positive and ensures that (4.94) is true.

By choosing

(4.94)

(4.95)

(4.99)

(4.100)

2 Ic3

Ii— (4k4L+k3)2
(4.10 1)
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and substituting and l back into (4.93):

h e ll 2	
{k4 (1 2 + (L + 1) bd)}2

k3	
(4.102)

Since the tracking error e is quite small the second term of the right hand side

of (4.102) is negligible so, as long as ij is comparatively large, V is negative and the

internal dynamics are bounded.

4.3 Robust Sliding Mode Control

Slotine and Li [69] and Zinober [82] provide good references for the Sliding mode tech-

nique. Sliding mode control employs a high speed feedback control law to drive the

nonlinear plant's state trajectory onto a specified and user chosen surface in the state

space (called the sliding or the switching surface) and to maintain the plant's state

trajectory on this surface for all subsequent time. This property of the state trajectory

remaining on the switching surface once intercepted is called a sliding mode. The sur-

face is called a switching surface because if the state trajectory is above the surface a

control path has one gain which switches sign if the trajectory drops below the surface.

By proper design of the switching surface, Sliding mode control attains conventional

goals of control such as stabilization and tracking.

Sliding mode control essentially involves a two phase procedure

1. Construction of a switching surface so that the original system restricted to the

surface responds in a desired manner.

2. Development of a switching control law (i.e. appropriate switched feedback gains)

which satisfy a set of sufficient conditions for the existence and reachability of a

sliding mode, i.e. such that the system state is on the switching surface.

The objective in this section is to design a high speed switching control law, within

the Input-Output Linearization domain, which will compensate for uncertainties and

at the same time provide an asymptotic tracking force. Before examining this, the

Sliding mode control (SMC) concept is illustrated by considering the following n-th

order single-input single-output dynamic system:

x(t) = f(x, t) + b(x, t) u(t) + d(t) 	 (4.103)
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y=x

The function f(x, t) is generally nonlinear and uncertain, the extent of the impre-

cision ILf I on f(x, t) is upper bounded by some known continuous function of x and t.

Similarly the control gain b(x, t) is uncertain but is of known sign and is bounded by

some known continuous function of x and t. Both f(x, t) and b(x, t) are assumed to be

continuous in x. Now the disturbance d(t) is unknown but bounded in absolute value

by a known continuous function of time.

The control objective is to have the output y track a specified reference trajectory

Yd in the presence of model imprecision. Defining:

e = YYd	 (4.104)

For asymptotic tracking choose a switching surface in the state space	 defined

by the scalar equation:

s(x,t)=0	 (4.105)

such that the state trajectory restricted to this surface achieves the control objective.

One such surface can be defined as follows:

s(x, t) =	 e +	 e + . . . + /3n-2	 +	 (4.106)

Clearly, choosing /3 for i = 0. . . n - 1 so that the polynomial:

I3 + S + . . . + P2 8 + . + fin-2 s' ) +	 (4.107)

is Hurwitz, ensures that on the surface, i.e. when s(x, t) = 0:

(n-2) +	 = 0	 (4.108)L3oe+/3iê+...+fi_2e

(4.108) implies that e() -^ 0 as t —* oo for i = 0. . . n — 1, thus asymptotic tracking

is achieved.

After designing the switching surface, the next step is to guarantee the existence of

a sliding mode. An ideal sliding mode exists only when the state trajectory x(t) of the

controlled plant satisfies s(x, t) = 0 at every t > to for some to. Following the tutorial in
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Dc Carlo et al [15], an ideal sliding mode exists if the tangent or the velocity vectors of

the state trajectory always points towards the switching surface. Consequently, if the

state trajectory intersects the sliding surface it remains on the surface for all subsequent

time. Note that if a sliding mode exists on s(x, t) = 0 then this surface is termed a

sliding surface.

Now ensuring the existence of a sliding mode requires infinitely fast switching. In

practice all facilities responsible for switching control functions have imperfections such

as delay, hysteresis, etc. which forces switching to occur at finite frequency. The value

of the state trajectory then oscillates within a neighbourhood of the switching surface.

This oscillation is called chattering and is shown in Figure 4.1 for a second order system.

Also shown is an ideal case in which sliding actually occurs. The problems associated

with chattering will be dealt with later.

x

Sliding Mode

1

tr	

Convergence

ant -

Fite me	

const

seeaching Pha slope - o

	 Sliding Suace
5=0

Figure 4.1: Ideal Sliding along with Chattering

The existence of a sliding mode requires stability of the state trajectory to the

sliding surface s(x, t) = 0. This problem resembles a generalized stability problem,

hence existence of a sliding mode requires selection of a generalized Lyapunov function

V(x, t) which is positive definite and has a negative definite time derivative.

A candidate Lyapunov function is:

V=s2	 (4.109)

Ensuring that the time derivative of V is negative definite, guarantees that s(x, t) —* 0

since:

-s2(x,t) = s. ^ 0	 (4.110)



4.3 Robust Sliding Mode Control 	 84

Examination of (4.110) shows that . must have the following form . = —asgu(s),

where a is non-negative. Since è is a function of the control it implies that the control

must include the switching function sgn(s) to ensure that the controlled system remains

on the sliding surface.

Condition (4.110) may be rewritten as

ld 2--s (x,t) < — 711 s 1	 (4.111)
2 dt

where ij is a positive constant to adjust the speed at which the state trajectory reaches

the surface, see Figure 4.1 for the second order case.

The Sliding Condition (4.111) geometrically states that the squared distance to the

surface as measured by s2 decreases along all system trajectories. Thus it constrains

trajectories to point towards the surface s(x, t) = 0. Once on the surface the system

trajectories remain on the surface and the system behaviour is then in the Sliding Mode.

Thus, satisfying the sliding condition (4.111) makes the surface an invariant set and,

as we shall see later, this implies that some disturbances or dynamic uncertainties can

be tolerated while the surface remains an invariant set.

Returning to the problem of chattering, this phenomenum is undesirable since it

involves high control activity and possible excitation of high frequency dynamics ne-

glected during modelling. This chattering may be eliminated by smoothing the control

discontinuity in a thin boundary layer neighbouring the switching surface. Define the

set:

B(t) = {x, Is(x,t) I ^ }	 c >0	 (4.112)

as the boundary layer. This is shown schematically in Figure 4.2 for a second order

system.
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x

Figure 4.2: Boundary Layer

When a boundary layer is introduced, instead of ensuring that s(x, t) = 0 is attrac-

tive, it is the boundary layer that is made to be attractive, hence invariant. Therefore

all trajectories starting inside B(t = 0) remain inside B(t) for all t > 0. The con-

trol may then be chosen to satisfy the sliding condition and hence guarantee that the

boundary layer is attractive. However, inside the boundary layer the control is no

longer switching but is interpolated by replacing sgn(s) by , replacing the signurn

function by the saturation function shown below in Figure 4.3.

sat(s)	 sgn(s)

Figure 4.3: Saturation and Signum Functions

The result of this smoothing is the introduction of a trade-off between chattering

and tracking accuracy. Tracking is guaranteed within a certain precision determined
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by the boundary layer width.

4.3.1 Robust Tracking of Input-Output Linearizable Systems

The control law derivation presented next exploits many of the ideas presented in Fu

and Liao [20] where a Sliding mode control was used in conjunction with an Input-

Output Linearizing control. The system was a square multi-input multi-output system

added to which the nominal internal dynamics were stable. The structure of the system

considered and the matching conditions ensured that the internal dynamics of the

uncertain system were exactly the same as those of the nominal system.

The control presented here as in the section on Lyapunov based control, is directly

concerned only with the external dynamics. Therefore the control presented by Fu and

Liao [20] suffices for this purpose. However, unlike Fu and Liao, the internal dynamics

is treated as uncertain and an analysis similar to that carried out earlier in the section

on internal dynamics should demonstrate the boundedness of these dynamics provided

the previous conditions are satisfied.

The following development is a two step procedure, where the first task is to define

a set of sliding surfaces, s(x, t) = 0, that represent the desired dynamics of the errors.

The set s(x, t) is defined as a function of the output space vector, the initial conditions

and time.

{	 (ri—i)	 (ri—i) (1)	 (i)	 'ISi	 - !'ld	 + 2; = 2 i3; (Yi -	 )

= {	 } =	 (rm-1)	 (rm—l)	
(4.113)

2 m	 ()	 (j)	 JYm	 Yma	 =c /3 ( ym Ymd)

where (°) = y and	 for j = 0. . . - 2 and i = 1 . . . m, are appropriate constants to

be specified.

Rewriting s in error coordinates:

(ri—i)
s	 ei	 +>2/3;e) 

1 (4.114)

{ s, }	 { (rm_1)+rm_2 m (j)
em	 j=O i3, em j

Now	 are chosen so that the polynomials:

H(s) = /3 +f3' s + ... +/3; a + ...+f3,_2S(r._3) +(r,_2) i = 1...m (4.115)
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are Hurwitz. Thus when the output error trajectories reach the sliding surface, s = 0,

and stay on it:

f3 e +	 é + .. . + /3	 e(r,_2) + e"' = 0	 i = 1 . . . in	 (4.116)

This implies that 	 -+ 0 as t -^ tx for j = 1 .. . (r - 1) and i = 1 . . . in. This obviously

includes the control objective of e = (y - Yd) —+ 0 as t -* x.

The sliding condition for the multivariable case which guarantees the existence of

a sliding mode, i.e. that the error trajectories reach the switching surface and remain

on it, can be derived in a similar way to that given in the previous section.

In this case with m surfaces a possible candidate Lyapunov function is:

V = ST S	 (4.117)

Ensuring that the time derivative of V is negative definite, guarantees that s(x, t) -^ 0,

therefore the following is a valid sliding condition:

.	 ^ -7) III2	 (4.118)

Since . appears in the sliding condition, (4.114) is differentiated to give:

/ .	 (ri)	 'ç-r i -2	 (j+1)
i s 1	e1 mL.,1=o p3e1

=	 :	 (4.119)

I m J	 em) + ;2 j rn e('')

The second stage of the design is to find a control law for the nonlinear system such

that the sliding condition is verified. Consider part of the uncertain nonlinear system

after Input-Output Linearization:

y(r) = Lrjh(X) + iL2h(x) + [E(x) + E(x) I u	 (4.120)

Substituting (4.120) into (4.119) gives:

=	 (r) 
+ Lh(x) + zLh(x) + [E(x) + AE(x)] u+ e	 (4.121)

where

/ c-'ri-2 /3 e3+)

=	
rm-2 pin +') }
	

(4.122)



4.3 Robust Sliding Mode Control
	

88

To achieve tracking control, the sliding condition with (4.121), suggests a control law

of the form:

u = E'(ü-Ksgri(s))

where

-	 (r)
U = Yj -Lh(x)-e

(4.123)

(4.124)

This is a predictor-corrector control law where E' i accounts for the nominal system

and -E' K sgn(s) is the switching control part responsible for robustness to uncer-

tainty. K is a non-negative real number selected to ensure that the sliding condition is

satisfied.

To design K, substituting . of ( 4.121) into the sliding condition (4.118) yields:

then:

8T { (r) + Lh(x) + L 1 h(x) +

[E(x)+iE(x)]E'(ii-Ksgn(s))+e} ^	 iIIII

Now substituting for ü and expanding gives:

ST { Lh(x) - K sgn(s) +

zE E' (y - Leh() - e - K sgn(s)) } 	 —i IIsl

If is defined to be

(r)
= lid -e

5T	 Lh(x) + iE E' - iE E1 L2 h (x ) } -

K 8T sgn(s) - K ST tE E' sgn(s) < - III!2

(4.125)

(4.126)

(4.127)

(4.128)

At this point the above expressions are simplified in stages using the matrix norm

technique of Chang [8]. The first step is to write:

sT { AL .h(x) + iE E' - AEE 1 Lh(x) } <

11 S 112 Ik Lh ( x ) + LEE- 'e - SEE' Lh(x)Il 2	 (4.129)
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If 1,t'2 is such that:

L\L5.h(x)+ L\EE' - LEE Lh(x)II 2	 hI'2

then

ST { I.Lrjh(X) + zE E' - IE E' Lh(x) } ^ 1l s I12 11)2

For the second step note that:

_KsTsgn(s) = —K11s111

Since II Il ^ II ll then (4.132) can be replaced by:

_KsTsgn(s) 
^ —KIIsII

Finally, for the third step:

—K 5T E E' sgn(s) = K ST E E 1 sgn(—s)

K ST E E' sgn(—s) < K IlII2 Il E E' sgn(—s) 112

Since the following is true:

II LEE ' sgn(—s)J 2 = II LEE ' sgn(s)2

then this too is assured:

—K ST E E' sgn(s) < K IIII2 II E E' sgn(—s) 112

In which case:

EE'sgn(—s)2

It is now apparent that:

j< 5T zE E' sgrt(s) ^ K 11 S 112 11'i

(4.130)

(4.13 1)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

Therefore equation (4.128) becomes:

i12 — K+R11i < —n
	

(4.140)
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Rearranging (4.140):

K(l—?,bi) ^ 7+I'2
	 (4.14 1)

Since K is a non-negative real number then it is well defined if i/' < 1.

K > 
1 -
	 (4.142)

The discontinuous control law derived from the above analysis is now smoothed and

the resulting nonlinear Sliding mode control law is:

u = E' (y - Lh(x) - e - K sat(s))	 (4.143)

where sat(s) depends on the positive constant f.

To understand the action of the smoothing function, consider the system trajectory

inside the boundary layer which can be expressed by as follows. Applying (4.143) to

(4.121) yields:

a + K (1 + E E') sat(s) =	 L2h + E E' 
(cr) - Lh - e) (4.144)

Inside the boundary layer sat(s) = , therefore (4.144) becomes:

K
a + —(1 + iEE') s =	 L',h + iEE' (y —Lh - e)	 (4.145)

E

From (4.145) it is apparent that the variable s, (where s is a measure of the distance

to the surface s(x, t) = 0), can be viewed as the output of a low pass filter.

+

(r)EE (Yd —Lh—e)

Low Pass Filter

determined by	 s

choice of

The filter structure enables chattering to be eliminated. The choice of allows the

tuning of the control law so as to achieve a tradeoff between tracking accuracy and

robustness to unmodelled dynamics. In fact € is selected to ensure that the unmodelled

high frequencies are not excited while still maintaining an acceptable degree of tracking

precision.
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Although not presented here the analysis given in the Section on Internal Dynamics

is valid for the treatment of the internal dynamics of the system subject to the Sliding

mode control.

In summary, two robust control laws have been presented within the Input-Output

Linearization framework. The framework actually facilitates the robust control law de-

sign using the Lyapunov based and the Sliding mode control methods. The application

of these ideas follow in Chapter 5 where robust control laws are designed for a heli-

copter. The performance of these designs is examined by means of computer simulation

and these results are presented in Chapter 6.



Chapter 5

Helicopter Control System Design

This chapter describes the procedure involved in the design of robust control laws for

helicopter systems. The first section is concerned with the application of Input-Output

Linearization to the nonlinear helicopter model without uncertainties. The nonlinear

control terms that appear in the helicopter model are effectively dealt with by a new it-

erative scheme that reduces design complexity by enabling the standard Input-Output

Linearization Theory to be applied. The uncertainty considered is assumed to arise

as a result of deficient rotor modeling and as such this representation of uncertainty

is matched due to the structure of the dynamic equations. The level of uncertainty

selected in this work is compared directly to previous uncertainty representations in

Hstudies. The Lyapunov design described in Chapter 4 is next applied to the un-

certain system inorder to increase the robustness properties of the closed ioop system.

In addition a second robust controller based on Sliding mode control is constructed.

The internal dynamics of the system are also examined and it is shown that an outer

loop design can practically control these modes by exploiting the time scale separation

between the translational velocities and the angular velocities.

5.1 Tracking Control Using Input-Output Linearization

Before designing the tracking controller based on Input-Output Linearization, the out-

puts required to track desired trajectories must be specified. In the case of a helicopter,

the most demanding flight regime is during low speed and hover. To provide maximum

control benefit under these conditions an Attitude Command - Attitude Hold (ACAH)

and a Rate Command (RC) system is required. This type of system should comply

with the recommendations of the U.S. Handling Quality Requirements document [1].

92
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Since four inceptors:

Main Rotor Collective
	

00

Tail Rotor Collective
	

oot
Longitudinal Cyclic
	

Ols
Lateral Cyclic
	

dc

are available to the pilot then only four outputs can be directly controlled. The outputs

selected for tracking are:

y1
	 0

Y2

y3
	 = [q sin + r cos q] sec 0

y4
	 h = u sin 0—v sin cosd - w cos cosd

Pitch Angle
Bank Angle
Heading Rate
Altitude Rate

(ACAH)

(ACAH)

(RC)

(RC)

These outputs are consistent with the ACAH and RC system of the Aeronautical

Design Standard [1] for the low speed and hover flight regimes. These outputs are

also the same as those selected in the H design study by Yue and Postlethwaite

[81]. The study by Yue and Postlethwaite is important since it represents the state

of the art in linear robust helicopter control and as such provides a useful benchmark

for qualitative comparisons. Furthermore the uncertainty model derived later in this

chapter is compared directly to the level of uncertainty introduced in the H study.

To apply Feedback Linearization the system is generally assumed to be in the form

= f(x)+g1(x)u1+...+g(x)u

= f(x)+G(x)u
	

(5.1)

This form implies that the differential equations are linear in the control variable u.

This setting is often assumed since many systems can be expressed in this manner

and because the additional complexity required in direct application of differential ge-

ometric methods to more general nonlinear systems is considerable. Nijmeijer and van

der Shaft [54] provide further insight into the analysis required for general nonlinear

systems. Unfortunately the helicopter system is not actually linear in the control, there- -

fore, utilizing a knowledge of the system's properties, an iterative scheme is proposed

to overcome this problem without significant increase in complexity. Essentially the

problem is to transform the helicopter equations into the form of (5.1) by grouping the

nonlinear coefficients of the control variables into a physically meaningful arrangement.



5.1 Tracking Control Using Input-Output Linearization	 94

To show how this is done and to understand the subsequent role of the iterative scheme,

it is necessary to examine the general helicopter equations presented in chapter 2.

Recall that the general form of the dynamic equations is as follows:

th = f(x)+gi(x)O0+g2(x)0i,+g3(x)0i+g4(x)900,3+g5(x)00Oj

+g6 (x) O +g7 (x) Oj	 +g8(x)	 +g9 (x) O +gi o(x)	 (5.2)

th = 1(x) + G(x, )
	

(5.3)

where ® = [ On , Ols, °lc, O0 ]T is the input vector. Note also that only the equation

describing the normal acceleration has the unique form:

ii, = f(x) +g21 (x) 0 +9z2 (X) 01 3 +gz3 (x) O	 (5.4)

The problem arises because of the presence, in the other equations, of the following

input product terms:

g4 (x) 00 0, , g5 (x) 0 0,	 g6 (x) O , g7 (x)	 g8(x) 0 ,	 g9 (x) 0

It is first proposed that such terms are represented as:

g(x)O0 -4 [g6(x)0]O0

g8 (x) 0	 —+ [g8 (x)	 ] oij

g9 (x) 0	 —+ [gg(x) :] O

where the square bracketed terms are the new system input vectors gj and 0 is a

nominal value of 0. In the iterative scheme proposed, one uses the value of 0 from the

previous time-step for 9.. During simulation such an iterative scheme, described fully

later, is such that the performance of the controller remains very satisfactory despite

the replacement of 9 with 0 0 and the continual updating of 9.

The other product terms are represented as follows:

g4 (x)00 013 —3 {g4(x)0]0j3

g5 (x)O0 Oi 	 -.3 [gs(x)O0JOi

g7 (x) 01 3 Oie —* [g7 (x) Ols] Ole
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The first two representations provide a computationally stable iteration loop since

variations in the collective 0, tend to be smaller than either the longitudinal cyclic 0

or the lateral cyclic 01c The final representation is also computationally stable as is:

g7 (x)	 Oic —+ [g7 (x) ic] 0is

This is so, because 013 and 01c both vary significantly. Further, simulation using both

representations has been to found to converge and provide the same results in both

cases. However for the control laws presented here the first option was used. Appendix

B gives the full G(x, E) matrix incorporating the representations discussed above.

The state equations can now be written as:

th = f(x)+ g1( x ,e) 00+ g2(x ,e) 9j+ g3(x ,e) 013+ g4(x ,e) 00 	 (5.5)

where 0 = [00 , Ols , Oi,, °0t 
1T is the input vector.

For Input-Output Linearization, the vector 0 appearing in the nonlinear vectors

gi (x,®), is assumed to be constant. Therefore the system to which Input-Output

Linearization is applied is:

= f(x)+ g 1(x,) 00+ g2(x ,) 9,+ g3(x ,®) 0i3+ g4(x , 0) 00t 	 (5.6)

During simulation the constant 0 is the value of ® from the previous time-step.

For the actual dynamic equations given in Appendix B, the Input-Output Lin-

earization computations were carried out symbolically using a program written in the

Mathematica programming language.

• The outputs were differentiated repeatedly until the inputs [0, 0k, 0, °ot 
1T

appeared.

• The relative degree and the decoupling matrix were then found.

• Finally the input space transformation was determined.

The vector of relative degree is r = {2, 2, 1, 1} for the output vector selected. Since

there are eight states and r = 6, this implies the presence of two unobservable

states. Part of the nonlinear state space transformation is given by:

0	 (5.7)



-- 'I'i

-
-

111 =

7)2 =

for	 1.. .4

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

= qcoscb—rsincb

=

= p + [qsinq5+ rcosq]tanO

= [qsin+rcosq]secO

= u[sinO] - v[sinqcosO] - w[coscosO]

To describe the hidden part of the system it is possible to find n - r = 2 more

functions 4r and 4'g such that the mapping:

= col[/.(x),(x),	 (x),	 (x),	 (x),	 (X),7(X), 8(X)]

has a nonsingular Jacobian matrix at x 0 and therefore qualifies as a state space coor-

dinates transformation, for example = u and q s = v. The Jacobian matrix is shown

in Appendix B and has a determinant of cosq5. Thus the matrix is only singular if

= ± 90 degrees. Since a bank angle of 90 degrees is an uncommon helicopter flight

mode, then the coordinates transformation is, practically speaking, global. Thus the

system in new coordinates is a globally valid representation of the original system. The

new state defined by the nonlinear state-space transformation is given by:

As a result of the repeated differentiations, the input-space transformation is given

by:

tLl	 Vi - L'h1(x)

=E'

	

	
(5.18)

Vm_Lmhm(X)

where E and L2h(x) are given in Appendix B.

The validity of this control law depends on the invertibility of E, however, for the

system concerned proof of the non-singularity of E is not trivial. Further discussion of

this is postponed until Chapter 6, where the setting is more appropriate for such ideas.
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Linear Equivalent System

State-Space
Transformation

Input-Space
v	 u	 Nonlinear System

Transformation	 X	 I	 6

u=E1 [v-Lh(x)I	 = f(x) + G(x) U

4i,=v

Figure 5.1: Transformed System

Applying the state space and the input space transformations decomposes the sys-

tem as shown schematically in Figure 5.1.

The resulting dynamic system is:

0 1 0 0 0 0
0 0 0 0 0 0

- 0 0 0 1 0 0
- 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

1(1	 10 0 0 01
Ii 0001 lvii

1/21	 lo 000' 1v2 1I	 I	 I	 I	 i

Ici	 10100111)31
I	 I	 lo 0 1 ol Lv4]

Li	 Lo 0 0 ii

= it = f(x)+g(x,E1[v—Lh(x)])

'72 =	 = f(x)+g(x,E[v_Lrjh(x)])

(5.19)

(5.20)

(5.21)

The linear subsystem is given by (5.19) while equations (5.20) and (5.21) represent

the nonlinear internal dynamics. Note that the internal dynamics are given in the

original state coordinates for simplicity.

For the tracking control law described in Chapter 3 the helicopter error system is

first defined.

= I/i - Yd 1 = 0 -	 =	 - 0d

=	 -	 = 9 - Od = (21 -

= Y2 - Yd2 = -	 = (I -

e = Y2 - Yd2 =	 - d =	 - '1d

= J3 - lid3 =	 - I'd = ( -

Ci = Y4 - Yd4 = Ii -	 = (;1 -

(5.22)
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The matrix K is chosen to provide adequate speed of response, and the tracking

control is given by:

Ct

2Ci
2e2

4e1

v1	k11 k12	 0
v2	-	 0	 0 k1
V3	 -	 0	 0	 0
V4	 0	 0	 0

o	 o	 0
k22	 0	 0

o	 k31	 0
o	 o	 k41

(2)
Yi d

(2)

+	 Y2d	 (5.23)
3d
(1)
4d

Recall from Chapter 3 that the Input-Output Linearization control law decomposes the

original system into in = 4 linear decoupled subsystems where the order of each i-th

subsystem is given by r. This explains why the K matrix has this special decoupled

form.

5.1.1 Iterative Scheme

With the control law:

u	 E'(x,u)[V_Lh(x)]
	

(5.24)

an iterative scheme is useful in finding u and E'(x,u) simultaneously. To be more

explicit about what is actually being achieved, begin by rearranging (5.24) as follows:

v = L%h(x)+E(x,n)u
	

(5.25)

where u = [0 Os., Ok 0, 1T

Each of the four rows of the above matrix equation is given by:

v1 = Lh ( x). + E21 (x) 0 + E 2 (x) 01 3 + E 3 (x) 01c + E14 (x) 00 01 3 + Es(x) Oo 9k

+ E16 (x) 0 + E7(x) 013 9k + E18 (x) o? + E,g(x) 0 + E i o(x) 0ot

Given v2 for i = 1 . . .4 at each timestep it is necessary to find each component of u.

As discussed earlier values of u are assumed from the previous time-step to begin the

iterative solution as follows:

v = Lh ( x). +

00

[ E 1 +E 6 O0 I E,3(x)+E5O0+E17Oj3+E9Oi I E2(x)+E,4O0+E,gO13 I E1o(x)]

0ot
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where 0. is the value of the particular control from the previous time-step.

The entire E matrix is assembled this way and then inverted leading to an iterative

solution of (5.24) as the schematic below, Figure 5.2, shows.

i-i From Previous Time-step
I	

I	 Initialization
I	 lip	 I

U t = Ut_1

Calculate E(x, u)

Invert E

Iteration
= E [v - Lh]	 Loop

For each k-th
no

I	 I <

component of u
yes

S	
Nonlinear System

Figure 5.2: Iteration Scheme

At the beginning of each time-step, the value of u is passed from the previous time-

step to compute E. The value of u is then updated by computing E' and applying

(5.24). The iteration ioop is terminated when the updated input u is within some

specified tolerance of the previous value u2_1

A controller based on Input-Output Linearization has been designed for a helicopter

system. The incorporation of an iterative scheme facilitated the application of the

theory to a system that is not linear in the control variable. This controller will next
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be used in conjunction with robust techniques to ensure that the final controller's

performance does not degrade significantly in the presence of uncertainties. At this

point the internal dynamics have not been investigated, however this will be discussed

at the end of the chapter since the robust techniques also affect the behaviour of the

internal dynamics.

5.1.2 Full State Feedback

The full state feedback used in this study was based on the availability of the following

measured variables, Mullen [53]: Ii q p r 0 as well as the normal and lateral

accelerations. In addition to the measured variables good estimates of the other states,

namely u v w, are required.

5.2 Robust Controller Design

The robust helicopter control system designs are outlined in this section. There are

two designs: one derived from the Lyapunov theory of Section 4.2 and the other from

the Sliding mode control theory of Section 4.4. Both control laws utilize the Input-

Output Linearization decomposition of the nonlinear system as the basis for the design

procedure.

5.2.1 Uncertainty Characterization

For the helicopter, the dynamic equations for the iterative scheme are expressed as

th = f(x)+gi(x,)00+g2(x,®) 9,C+ g3( x ,O) 0,3+ g4( x , O)	 (5.26)

or	 ± = f(x) + G(x, u) u	 (5.27)

Note that g,(x) for i = 1 . . .4 are coefficients containing aerodynamic force and

moment contributions. Additionally 1(x) can be decomposed as follows

f(x) = frb( X ) + faer(X)	 (5.28)

into rigid body and aerodynamic components. Appendix B gives the component parts

of the full equations.
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Here we assume that G(x,u) and faer(X) are uncertain with regard only to their

norms.

Therefore the system is given by

th= frb( X )+faer(X )+ L faer( X ) + G ( X , U ) U + L G(X,U)U 	 (5.29)

where

	

Lfaer(X) = 'I1 faer (X)	 (5.30)

	

G(x,i) = 'I'G(x,i)	 (5.31)

As we shall see later 111 is necessarily upper bounded by 1, i.e. 'I' < 1.

To justify this choice of uncertainty representation, comparisons were made with

previous work on H, helicopter control, namely that of Yue and Postlethwaite [81]. In

order carry out this comparison it is necessary to outline the structure of the perturbed

system in Yue and Postlethwaite [81].

Figure 5.3 below shows how the uncertainty, mostly due to deficient modelling of the

rotor dynamics, is characterized as an unstructured input multiplicative perturbation.

U	 V
I+(s)	 .	 Go(s)

Figure 5.3: Input Multiplicative Uncertainty

where Go(s) is the transfer function matrix of the nominal system, u is the input vector

and y is the output vector. The matrix s(s) represents the unstructured uncertainty.

The actual system is given by G(s) and is defined as follows:

G(s) = Go(s) (I + L(s))	 (5.32)

Thus rearranging:

Go(s) t(s) = G(s) - Go(s)	 (5.33)

Typically a measure of the uncertainty in a system is given by plotting the maximum

singular value of z.(jw), i.e. a[(jw)], against frequency.
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For the nonlinear models, i.e. with uncertainty and without, used in this thesis,

small perturbation linearization about the trimmed hover position yields a linear sys-

tems in state space form. The following transfer functions matrices can be calculated

using this state space form:

Go(s)	 for the nominal system, i.e. ( II' = 0).

G(s)	 for the actual system including uncertain terms.

For the system considered here it was possible only to find Go(s) and G(s), therefore

to find [(jw)], it was necessary to express [(jc)] in terms of Go(s) and G(s). Begin

by noting that the Hubert or the Spectral norm is defined in Maciejowski [48] as:

j L (jw)II3 = U[z(jw)]	 (5.34)

now observe that

IKm Gmo II, = IG, 0 L mII,	 (5.35)

Using norm inequalities

11 Gm0	 mII3 ^ IKm0 Il II L mIIs	 (5.36)

So substituting (5.36) into (5.35) gives:

11 Gm - Gmo us
^ IImlI s	 (5.37)

11 Gm0 113

Plotting the left hand side of the inequality (5.37) against frequency, ( noting that this

is actually less than or equal to the uncertainty term ), and comparing it to the results

of the H design, gives an indication of the validity of the uncertainty representation.

Figure 5.4 below shows several singular value plots with varying levels of uncertainty

determined by the magnitude of 'I'.
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25	
1-infinity Exar*

10	 10'	 100	 10'	 102	 10
Frequency - red/sec

Figure 5.4: Comparison of Uncertainty Levels at hover

it is evident that the uncertainty levels designed for in this thesis is at least com-

parable if not greater than that of previous robust controller designs. In the designs

that follow, a large uncertainty factor of 'P = 0.8 was chosen as the level of imprecision

in the model. This factor actually represents an 80 % magnitude variation over the

nominal aerodynamic contributions to the system.

5.2.2 Robust Controller Using a Lyapunov-Based Design

With the model including uncertainty given by:

X = frô() + faer(Z) + 0.8 faer(Z) + G(x, ii) U + 0.8G(z, Il) u	 (5.38)

differentiating the output set, y = [9 4' i h], and noting the particular structure of

f,. in Appendix B leads to the following input-output relationship for this model:

y(r) = L b h(z) + Lh(x) + 0.8 Lrfacrh(X) + [E(z) + 0.8 E(x)] u	 (5.39)



for	 k , 	0	 (5.44)

0
0
0

k41
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Since the uncertainty is matched, the vector of relative degree remains the same as the

nominal case, {2, 2, 1, 1} and the error dynamics is given by:

(r){e} = [A] {e} + [B] {L? . b h(X)L r h(x) + Eu + 0.8 Lh(X) + 0.8 Eu - Yd } ( 5.40)facT

where matrices A and B are

010000
000000

A— 
0 0 0 1 0 0

- 000000
000000
000000

0000
1000

B— 0 0 0 0
- 0100

0010
0001

Comparing equation (5.40) with those presented in Chapter 4, indicates that L E =

0.8E.

Substituting the following control law:

u = E' [—Lbh(x) - Lh(X) + K {e} +	 + Prob]

into (5.40) gives:

{e} = [A] {e} + [B] 
Prob+ 

[B] {0.8L h(x) +j ocr

0.8 [I] {—L?bh(x) - U h(x) + K {e} + 	 + Prob} }foer

(5.41)

(5.42)

(5.43)

where A = A + B K, and K given below is chosen to ensure that the eigenvalues of A

lie in the open Left Half Plane.

k11 k 12	 0	 0	 0

	

K -
	 0	 0 k21 k22 0

	

-	 0	 0	 0	 0 k31
0	 0	 0	 0	 0

Since E = 0.8E, then:

= 0.8 [1]	 and

Additionally 
Pv 

is given by:

I 
0.8 [I] 112 = 0.8

0.8 [I] {_Lbh(X) - L	 h(x) + K {e} + y} + 0.8 Lh(x) 
11 2facT (5.45)Pu =

	 [1-0.8]

P is the solution to the Lyapunov equation PA + AT p =



0
	

0

0
	

0

0

0

2k31

0

0

0

0

1
2k41

(5.46)
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Since there appears to be no optimal choice for Q when only matched uncertainties

are present, it was nevertheless chosen to be Q = I, since Chen and Leitmann [12]

showed that Q = I maximises a certain mismatch threshold.

Using th above K and Q matrices, P is found to be:

k?1+ k 2 —K11	 — k12	 0	 02k 11 k 12	 2k11k12

—k 12	 I—k11	 0	 02k 1 1 k 12	 2k1 1k12

0	 0	 k1+k2—K21	 —k22

	

2k21 k22	 2k21k22

0	 0	 —k2	 1—k21

	

2k21 k22	 2k21k22

0	 0	 0	 0

0	 0	 0	 0

By choosing different values of E for each decoupled channel, independent regulation of

the robustness to tracking trade-off in each channel is achieved. Hence

-	 Pv(X)	 if Ii t (x)l >
Prob =	 (5.47)

Pv(X)	 if Iit(x)I ^ ci

where

= {BT Pepv },	 (5.48)

For 1.. .4.

c can be chosen to provide a trade-off between tracking accuracy and robustness as

a result of using the saturation control law.

5.2.3 Robust Controller Based on Sliding Mode Control Theory

For the system with relative degree {2,2, 1, 1}, the set of sliding surfaces can be defined

as:

S1

=	
=0

	

83	 e3

	

84	 e4

In keeping with the error notation given earlier, note that:

	

e1 =	 = e

	

e2 =	 e	 =

(5.49)

(5.50)
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Now from Chapter 4, the control law is of the following form:

u	 E' (r)
=	 [Yd —L2h(x)—ep—Ksat(s)]	 (5.51)

where:

-
e	

{ /31=L3e

}	

(5.52)
-	 0

0

K is then designed as:

K 1 -
	 (5.53)

where

=	 0.8 L' h(x) + 0.8 [1] {_Lnj b'(X) - L' h(x) - e +	 12	
(5.54)foer facT

= II 0.8 [1] sgn(—s) 112	 (5.55)

j can be varied to change the time taken to reach the switching surface, while the

boundary layer thickness for the saturation control £, is selected to provide a good

tradeoff between tracking performance and robustness.

5.3 Internal Dynamics

Recall that that the internal dynamics are given by the 'a and the i, equations. In a

theoretical sense these are unstable. Practically however, a helicopter is flown under

these conditions because a pilot controls the fore-aft motion by pitch angle demands

and the lateral translational motion by bank angle demands. In the context of Input-

Output Linearization the pilot may be thought of as an outer ioop feedback control that

uses the external dynamics to control the internal system behaviour. This is possible

because the angular rates evolve much faster than the translational velocities.

Linear studies such as Low et al [47] and Man ness et al [49] in which controllers were

designed to provide tracking of 0, j, h, i/, have stabilised the modes associated with

the longitudinal and the lateral motion. It was found however that the best that could

be achieved, without compromising certain controller properties such as decoupling and

tracking performance, is placement of the eigenvalues associated with these modes at:
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-0.002	 -0.005	 Low et a! [47]

	

-0.006	 -0.008	 Manness et al [49]

with ) for the longitudinal motion mode and X,, for the lateral motion mode.

For mathematical completeness these modes may also be stabilized in the nonlinear

case by again using an outer ioop feedback control that can be designed as follows.

Recall the equations associated with the internal dynamics:

IL = fu(x)+G(x,U*)_gsin9

=

where

Xj(x) X

	

J(x) = vr—wq+	 +
m	 m

Yj(x) Y	 ____ ___

	

= wp—ur+	 +
m	 m	 m	 m

=	 Inner Loop Robust Control Law Design

The actual design will assume that the equations take the following form:

Ii = –gsin9

I, = gsinqcosO

(5.56)

(5.57)

(5.58)

(5.59)

This assumption is valid since the most significant terms in these equations are –g sin 9

and g sin 4' cos 9. The objective is to stabilize these dynamic equations using 9 and 4' as

controls. To follow the Input-Output Linearization approach, the output are selected

as as Yi = u and Y2 = v. These are differentiated repeatedly until the inputs appear to

yield the following input-output relationship:

= –gsin9
	

(5.60)

Y2 = gsin4'cos9
	

(5.61)

This suggests a control law of the form:

–V1
0 = arcsin(—)

V2
4' = arcsin(	 )g cos9

(5.62)
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where

V1 = — 0.005u
	

(5.63)

V2 = — 0.008 v
	

(5.64)

The following block diagram, Figure 5.5, shows how this could be done.

Redefined

[	 Output

Linear Equivalent System
-----------------------------------------------------------

Desired

Reference	 State-Space	 C
Trajectory	 :	 Transformatio

LTTTc5Ijl[IIIJIE.1j' •
Inner Loop

Tracking Controller

Outer Loop
Stabilizing Controller
(Internal Dynamics)

Figure 5.5: Internal Dynamics Outer Loop Stabilizing Feedback

If the effects of the neglected dynamics are felt to be of significance then the Feed-

back Linearization control law may be augmented by the Sliding mode or the Lyapunov

techniques.

The outer ioop design outlined above is somewhat similar to the more formal ap-

proach of Gopalswamy and Hedrick [23] in which the output redefinition approach is

used to ensure that the internal dynamics are stable. Essentially their approach is to

find analytically a new output such that tracking of it leads to approximate tracking of

the actual desired output while at the same time ensuring that the internal dynamics

are bounded.

The approach of Figure 5.5 redefines the output on-line and leads to a tradeoff

between boundedness of the internal dynamics and decoupled tracking performance



5.3 Internal Dynamics	 109

of the external dynamics. The magnitude of the outer ioop gains must therefore be

restricted if good decoupled performance of the external dynamics is to be maintained.

This restrictive condition is also recognised by Gopalswamy and Hedrick and shows

further similarity in the methods.



Chapter 6

Discussion of Results

This chapter commences with a brief outline of the simulation model and describes the

simulink block diagram constructed for this work. This is followed by time responses

obtained due to step demands in each of the four decoupled axes. Results are presented

for the helicopter model excluding uncertainty controlled by a standard Input-Output

Linearization control law. These responses are then compared to those obtained when

uncertainty is introduced into the model. Following this the robust control laws, i.e.

the Lyapunov-based and the Sliding mode control laws are tested on the uncertain

system to demonstrate the improvement in performance achieved when such techniques

are used to augment the basic Input-Output Linearization control. In addition, an

assessment of the closed loop system response is made with regard to the Handling

Qualities Requirements of ADS 33-C. This is followed by other manceuvres such as a

bob-up mancuvre to further illustrate the versatility of the designs. This chapter is

concluded by examining the determinant of the decoupling matrix through simulation

since analytical conclusions regarding the continuous invertability of the decoupling

matrix have at present proved difficult make.

6.1 Model

The nonlinear helicopter model described in Padfield [55], was implemented in Matlab's

Simulink. To reduce the workload involved in creating the entire model from the

graphical Simulink blocks and for increased speed of execution, the equations of motion

were programmed in the C Language and accessed in Simulink via C-Mex files. Figure

6.1, overleaf, shows the Simulink diagram for the entire system.

110
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Figure 6.1: Closed Loop Simulink Block Diagram
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Note the presence of the actuator authority limits on the main rotor collective and

cyclic commands and the tail collective command. The following typical limits given

in Smith [71] are used in the model:

Main rotor collective 00	 —5	 to +20.3 degrees
Longitudinal cyclic	 0	 —15.7 to +7.5	 degrees
Lateral cyclic	 —7.5	 to +7.5	 degrees
Tail rotor collective	 —8.5	 to +33.5	 degrees

The signals computed by the controller first pass through the actuator authority

limiting blocks before entering the helicopter model. This model contains the dynamic

equations and calculates the helicopter state which is fed to the controller. As well as

the state, step (or other user defined) demands along with their time derivatives, of the

order specified in Chapter 5, enter the flight control system block for the computation

of the demand tracking control law.

In Figure 6.1 the reference signals have the following correspondence:

Theta_d	 -+	 Demand in pitch angle	 0
PhLd	 -^	 Demand in roll angle
Psidot_d	 -+	 Demand in heading rate
Hdot_d	 -*	 Demand in altitude rate h

In addition to the above inputs to the controller, the tuning parameters from Chap-

ter 5, associated with the use of a boundary layer to smooth the discontinuous control

law, are given by:

epsilon 1	 -*	 i
epsilon2	 -*	 2
epsilon3	 -*	 (3

epsilon4	 -+	 (4

The outputs sideslip and airspeed are calculated by:

Sideslip	 =

Airspeed =

V
arctan -

U

/u2 + v2 + w2

Finally the model data used for the simulations is found in Padfield [55].
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Most of the cases presented here represent aggressive mancuvring, in that large

amplitude step inputs are demanded. These inputs often result in sizeable actuator

displacements in order to satisfy the ferocity and amplitude of these demands. In real

actuators only finite displacement is possible and therefore it was felt that the inclusion

of these authority limits is necessary to provide a realistic view of how the system will

perform under these conditions. It will become clear later that it is precisely this

limiting of the actuator authority that causes much of the transient coupling that is

observed.

6.2 Simulation Results

The computer simulation results presented in this section reveal the performance achiev-

able by using the nonlinear control laws described in Chapters 3 and 4. The actuator

authority limits are present in all cases unless otherwise stated. When uncertainty is

introduced into the helicopter model as described in Chapter 5, a factor of 'P = 0.8

is assumed. Recall from Chapter 5 that this represents a large uncertainty since, by

virtue of the uncertain system theory applied to the factor case, Wmar must be less

than 1. The first set of time domain simulation results serves to illustrate the tracking

and decoupling properties of the control laws. To do this the following step demands

are made:

± 30 degrees pitch angle

+60 degrees/sec heading rate

±40 degrees bank angle

+30 ft/sec altitude rate

The pitch angle and heading rate demands represent the minimum requirement

for Level 1 aggressive large amplitude mancEuvring. The importance of this Level 1

requirement is discussed later. The bank angle demand is less than the +60 degrees

minimum required for the above manuvres. This was chosen however because for

demands in excess of about +50 degrees actuator saturation occurs about one second

after achieving the desired demand. This saturation causes the subsequent response to

become unrepresentative of the real situation since in practice an additional trimming
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control would be used to null the cockpit controller forces, i.e. the pilot input, at any

achievable steady state attitude. Finally with the helicopter model data representative

of a Lynx helicopter, the altitude rate level was chosen to be in line with the maximum

vertical rate of climb of 25 ft/sec that is achievable by the Royal Navy Lynx helicopters

[41].

In all the figures that follow, which begin on page 115, the results are presented in a

uniform manner to facilitate ease of reading. Each figure consists of twelve sub-figures,

presented in four rows. The first row shows the longitudinal axis responses given by

pitch angle 0 and pitch rate q also shown in this row is the control associated with

this axis, i.e. the longitudinal cyclic 913. The next row shows the lateral axis responses

given by bank angle 4' and roll rate p along with the control associated with this axis,

i.e. the lateral cyclic 0k The third row shows the yaw axis responses given by heading

rate ,b and yaw rate r along with the control associated with this axis, i.e. the tail rotor

collective 0. The final row shows the normal axis response given by altitude rate Ii

along with the control associated with this axis, i.e. the collective 00 . The airspeed VT

is also shown in this final row for convenience. Note that the first sub-figure of each

row represents a decoupled output that is intended to follow an appropriate tracking

demand.

The first four figures show the basic Input-Output Linearization control law applied

to a nominal system and also to a system containing uncertain terms. Note the following

line styles that have been maintained in these four figures:

Nominal System
	

Positive Demand	 -4 Dot Dashed Line
Nominal System	 Negative Demand -4 Dotted Line
Uncertain System Positive Demand 	 -4

	
Solid Line

Uncertain System Negative Demand -4 Dashed Line

The other figures showing the Lyapunov based control and the Sliding mode control

laws applied to the uncertain system, follow the convention below:

Positive Demand	 -4	 Solid Line
Negative Demand -4 Dot Dashed Line . - . -
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6.2.1 Input-Output Linearization Control Law

Figures 6.2 to 6.5 show a comparison between the nominal Input-Output Linearization

tracking control law applied to the nominal system and the same nominal control law

applied to the uncertain system. First considering Figure 6.2 where the nominal control

law controls the nominal system, a positive step demand in pitch angle (the dash-dot

line) is achieved in about 1.75 seconds. The other axes corresponding to roll angle,

heading rate and altitude rate produce very small amplitude transient responses and

are therefore well decoupled. The maximum value of the longitudinal cyclic actuator

0j3 , that is the authority limit placed on that actuator, is reached at the beginning of

the manuvre due to the substantial power required for such a large amplitude step

input. This causes an unobtrusive delay to the pitch angle, 9, in reaching its steady

state value which is physically expected. The responses to a corresponding negative

step demand (the dotted lines) are similarly decoupled. Under these circumstances

however the pitch angle demand is achieved in less time, about 1.2 seconds. This is

a direct consequence of greater actuator displacement allowable for negative travel as

indicated by negative limit of 15.25 degrees of travel compared to the positive limit of

7.5 degrees of travel.

The inclusion of uncertainty into the helicopter model causes the nominal control

law's performance to degrade noticeably. Even though pitch angle continues to track

the demand very well, small coupling in the roll and yaw axis arise while rather larger

excursions in altitude rate occur. To explain these observations it is necessary to return

to the equations of motion.

th = fr(X) + faer(X) + G(x u)	 Nominal System	 (6.1)

= fr() + (1 + 'I') faer() + (1 + 'I') G( u)	 Uncertain System	 (6.2)

where W = 0.8.

From these equations it is apparent that for some value of the control variable u the

state derivative in the uncertain system is greater than that of the nominal system th

due to the presence of the uncertainty factor 'I' = 0.8. Roughly speaking, for tracking

systems this implies that reaches its desired value following a step demand in less

time than it would take x for an identical demand. This mechanism is clearly visible

for the pitch angle response where 9 achieves the input demand 9d for the system with

uncertainty faster than in the case of the nominal system. This further means that the
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actuator signal O,, in the uncertainty case, decreases quicker than in the nominal case

since the system achieves a steady state in less time.

The large excursion in altitude rate is also attributable to the uncertainty factor.

Recall that the vertical rate equation is given by:

ii = usinG - vsin cos9 - wcoscosO	 (6.3)

For this manuvre the —V sin cosO component in h is small since q5 is small. The

term u sin 9 is small at the beginning of the manceuvre while 9 is small and tz which

depends on the evolution of 9 is also small. Therefore the main component in equation

(6.3) is —wcoscos9 with to given by:

th = uq—vp+gcos9cos4+Wfaer (x)+WG(x,u) 	(6.4)

Without uncertainty, i.e Ji = 0, the nominal control law produces to such as to counter-

act the small effects in (6.3) thus ensuring that h remains at zero. With the uncertainty

factor however, to changes faster under the nominal control law than the small effects

in equation (6.3) thus causing i to drift away from zero. As the altitude rate drifts,

the collective pitch 9 decreases in order to reduce the main rotor lift and ultimately

retard the altitude rate development. The decrease in collective causes a corresponding

decrease in the torque generated by the main rotor, therefore the yaw compensation

provided by the tail rotor collective for the reduced torque is itself reduced to ensure

that heading remains virtually unchanged.

Figure 6.3 depicts the responses to positive and negative 40 degree bank angle

demands. Similar comments apply here with regard to nominal performance. For the

uncertainty model tracking of the demand is still good under the nominal control law.

Small coupling exists in all axes except the normal axes, where excursions are quite large

and similar to that observed in Figure 6.2. The positive and negative demands produce

symmetrical responses in this case because the actuator responsible for effecting changes

in the roll axis, allows equal travel in both the negative and positive directions and

because its dynamics effect is symmetrical.

The response to heading rate demands in Figure 6.4 shows that decoupling in the

other axes is quite good despite the uncertainty, however as expected the normal axis

coupling is still present. In addition, as mentioned earlier, the increase in tracking
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speed due to the uncertainty factor is now quite visible. One anomaly that exists

however is the drift in airspeed even when uncertainty is not present, that is when

the nominal control law is applied to the nominal system. This is due to the very

low damping of the modes associated with forward velocity u and lateral velocity v.

With the dependence of these modes to variations in the body attitudes 9 and , small

perturbations introduced into these variables cause the observed drift in the airspeed.

This deviation would normally be alleviated by the use of an additional trimming

controller which ensures that under steady conditions the helicopter can be trimmed

to achieve a state of equilibrium.

Apart from the, by now, anticipated responses to the ±30 ft/sec demands in altitude

rate of Figure 6.5, some interesting details arise as a result of the —30 ft/sec command.

Consider the nominal system with nominal control (the dotted line). As the demand is

made the collective pitch O is reduced to bring about a decrease in lift thus enabling

the helicopter to translate downwards. For this demand the 9 actuator saturates

which causes a delay in Ii achieving its demanded value. The tail rotor collective

also changes to provide a level of yaw compensation corresponding to the new torque

developed as a result of the change in collective. However the actuator also saturates

and therefore provides insufficient compensation for this new torque, consequently a

drift in & arises. This digression is rapidly eliminated during the first 0.5 seconds by

further reduction in
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6.2.2 Robust Control Laws

In this section comparisons of the performance of the nominal control law are made

against that of the Sliding mode and the Lyapunov control laws. The eight manuvres

considered are the same as those illustrated in Figures 6.2 to 6.5. The figures begin on

page 121.

Sliding Mode Control Law

For the system with uncertainty, the responses to pitch angle demands using the Sliding

mode control law are given in Figure 6.6. The speed of response is still very good,

greater control power is now needed to overcome the effects of uncertainties and this is

clearly visible by the extended length of time that the Gj actuator remains at its limiting

values. The most noticeable difference between the achievements of the nominal control

law and this robust control law is the almost complete decoupling that is now possible

in all the axes. The normal axes shows the most significant recovery with the steady

state altitude rate reduced down to about 0.07 ft/sec compared to the level of 7 ft/sec

when the only nominal control law was is use. This remaining level of coupling is small

enough to be virtually ignored.

The bank angle responses in Figure 6.7 also illustrate the virtue of using the robust

Sliding mode control law. However the effects of positive heading demands in Figure

6.8 are not quite as tidy as the last two cases. This is due to the presence of certain

coupled transients in the pitch and roll axes which arise as a consequence of actuator

saturation. The roll induced by yaw changes is not adequately countered because the

lateral cyclic actuator 0j saturates at the beginning of the response. The presence of

roll deviations itself induces pitching which again is not fully eliminated due to the

saturation of the longitudinal cyclic Oj. Now by the time pitching develops the rolling

motion begins to subside as 9k is no longer limited, this causes the effects of the roll

induced pitching to be smaller. Since all the above coupling is transient and decays

to zero in about 0.5 seconds these effects are not problematic. Note that in contrast

almost no transients develop in response to a negative heading rate demand since the

actuators only saturate momentarily.

To further illustrate the point Figure 6.9 shows the response of the helicopter with
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Sliding mode control law to positive heading rate demands. Two cases are shown,

one in which the actuator authority limits are present (the dash-dot line) and the

second case where no limits are imposed (the solid line). With no limits specified no

transients appear in either the pitch angle or the bank angle responses. In addition the

desired heading rate is achieved almost instantaneously. However this ideal response is

achieved because of the large actuator demands that occur almost instantaneously at

the beginning of the manceuvre. The numbers on the scales of the actuator responses are

indicative of these large maximum and minimum actuator demands. A small coupling

still exists in altitude rate but this is due the smoothing of the control discontinuity in

a thin boundary layer of thickness c Chapters 4 and 5, provide more details of this

method which is required to eliminate the chattering associated with discontinuous

control. The penalty incurred with this approach is that only ultimate boundedness as

opposed to asymptotic tracking is achievable and this of course causes the persistence

of a steady state error in h.

Responses to the ±30 ft/sec altitude rate demands are shown in Figure 6.10. Here

all four actuators are saturated at the beginning of the response. Limiting the control

power available to the collective 9 causes a sluggish response in altitude rate. Transient

excursions in 9, j and are noticeable due to the associated actuators saturating. As

the collective 90 changes in response to the step demand in altitude rate, the main

rotor torque is then altered and must be compensated for by a change in yaw. This

yaw compensation is not fully achieved because is constrained thus inducing a certain

amount of sideslip which is coupled to rolling motion. This rolling motion is itself not

fully countered due to the saturation of the lateral cyclic 0k, this then causes the roll

to pitch coupling to manifest itself under the momentary loss of full decoupling control.

Fortunately all the coupling occurs in a very short period of time and is unlikely to

cause the pilot difficulty.



C,

, ft
/	 Ia20•

/	 -10

	-40 	 '	 I
-is

-6C

	

0	 1	 2	 3	 4	 0	 1	 2	 3	 4
secs	 secs	 secs

p	oc

	04 	
6

4

0	 1	 2	 3	 4	 01234	 0i234
sees	 sees	 sees

'V	 r

a,
V

1'

a,

6.2 Simulation Results	 124

e	 q

	0.4 	 30

	

02	 20

a,	0 	 - . - - - - -.

	

2	 3	 4	 3	 4
secs	 secs	 secs

	

v1	 0

	

--	
20

I.
	0.1 )('\	

40	 15

	

s	 30	 .	 10	 —.
-	

20	 /

0.1	
10	

V	 __.

0

C '_________________________	 _________________________	 -5	 -
0	 1	 2	 3	 4	 0	 1	 2	 3	 4	 0	 1	 2	 3	 4

secs	 secs	 secs

Figure 6.6: Sliding Mode Controller: ±30 degrees Demand in Pitch Angle



U
S

0

-20

-40

6%	
;	 2	 3	 4

secs

V

0.5
o
0

0.
I

-05

I	 2	 3	 4
secs

h

secs

eat

a,
SV

0.5 -
U

VT

	

0	 1	 2	 3	 4
secs

00
8C	

-	 20

secs	 secs	 secs

Figure 6.7: Sliding Mode Controller: +40 degrees Demand in Bank Angle

0

6,

6.2 Simulation Results	 125

secs

q

-0.5

1	 2	 3	 4
secs

p

ols



6.2 Simulation Results	 126

0
	

q

4
	

20

2

-4

1	 234
	

i4
sees	 sees

60
	

60

40
	

40

20
	

20

-20	 -20

-40	 -40

-60	 -60

$

	

ic	 -

5

-ic
	0 	 1	 2	 3	 4

sees

'1'

0	 1	 2	 3	 4

sees

h

p
40

40

0	 1	 2	 3	 4
sees

VT

8

61

10	
34

00,

30

20

3	 4

00
U .S.	 -

20

0.1 ____________________	 15
	 15

10
0

V 

5 -5-

-0.1	 5	 0

-	 n
	 -5 ___________________________

0	 1	 2	 3	 4	 0	 1	 2	 3	 4	 0	 1	 2	 3	 4
sees	 sees	 sees

Figure 6.8: Sliding Mode Controller: ±60 degrees/sec Demand in Heading Rate



6.2 Simulation Results	 127

0

4

2

'I
-2

-4

01234
secs

4,
IC	 -

5

c
.' •/

-5 •/

-lC	 -
1	 2	 3	 4

sacs

'V

40!

20!

-20

-40

-60

1	 2	 3	 4
sacs

q

20

10

C

-io	 !

-20

01234
sacs

p
40

20

V

-20.
1

-4C
0	 1	 2	 3	 4

sacs

r

40

20

V -20

-40

-60

0	 1	 2	 3	 4
secs

05

10

I'
C

V

-10 II

-15

	

-20	 -

	

0	 I	 2	 3	 4
sacs

8C

60

40

20

L

-20
0	 I	 2	 3	 4

sacs

00
54:

c-f

-50

V
-100

-150

-204:
0	 1	 2	 3	 4

sacs

I,	 VT

	

0i	 -	 20
	

1L

8

	

0.1	 _-	 15

	

0	 10
V

4

	

-0.1	 5
2

A
0	 1	 2	 3	 4	 0	 1	 2	 3	 4	 0	 1	 2	 3	 4

secs	 sacs	 secs

Figure 6.9: Sliding Mode Controller: ±60 degrees/sec Demand in Heading Rate



V

C'
a'
V

a

a'
V

6.2 Simulation Results	 128

0	 q	 °Is

0	 1	 2	 3	 4	 0	 1	 2	 3	 4	 0	 1	 2	 3	 4
secs	 secs	 secs

•	 p
1	 8

__ 0i234 __
sacs	 sacs	 sacs

V	 r
'C

30

5	 5
20

a'	 a'	 a,
0[I	 0(T

1	 2	 3	 4	 I	 2	 3	 4
sacs	 sacs	 sacs

h	 VT	 00
6C	 4C 20
40

_____________________	 15
20f_________

0.

0	 1	 2	 3	 4	 0	 1	 2	 3	 4	 0	 I	 2	 3	 4
sacs	 sacs	 sacs

Figure 6.10: Sliding Mode Controller: ±30 ft/sec Demand in Altitude Rate



6.2 Simulation Results	 129

Lyapunov Based Control Law

Figures 6.11 to 6.14 show the performance of the Lyapunov control law to the same

mancuvres executed in Figures 6.6 to 6.10 using the Sliding mode controller. In all

cases very little difference exits between the responses produced using one robust control

law rather than the other. However in all cases the transient coupling is reduced when

the Lyapunov control law is applied. No conclusion regarding the superiority of one

law over the other can be drawn since these small discrepancies are most certainly

attributable to the differences in the tuning of parameters of each control law to provide

a reasonable trade-off between tracking accuracy and robustness.

A final illustration of the performance of the robust control laws over the nominal

control law is given in Figure 6.15 which shows the errors in pitch angle, roll angle,

heading rate and altitude rate over four seconds following a +40 degrees demand in

roll angle. As expected the nominal controller used with the nominal system provides

decoupled responses. Coupling appears as uncertainty is introduced into the system

and the nominal control provides insufficient compensation under these circumstances.

The Sliding mode control law however eradicates most of this coupling reducing these

effects to small transients that decay very quickly and at most takes about 2 seconds.

These results are further improved using the Lyapunov control law where even the

coupled transients are almost eliminated. It should be stressed again that the better

performance achieved by the Lyapunov controller is related to the best selection of the

tuning parameters that has been achieved to date.

Before concluding this section it should be noted that the step inputs applied to

the system in producing the time responses shown, all followed the classical definition

of a step, that is, an instantaneous change from one magnitude to another. However

as pointed out in ADS 33-C [1], the step may be defined as a rapid change from

one constant value to another with the input being made as rapidly as possible without

exciting undesirable structural or rotor modes or approaching any aircraft safety limits,

i.e. a ramp. This represents a less hostile input than that considered here and should

certainly lead to even less coupled transient responses.
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6.3 Handling Qualities Requirements

In addition to the above computer simulated results to step demand mancuvres, the

control laws' performance was further investigated with regard to compliance with the

handling qualities requirements of ADS 33-C [1]. These specifications are intended to

ensure that no limitations on flight safety or on the capability to perform intended

missions will result from deficiencies in flying qualities.

The acceptability of flying qualities is quantified in terms of Levels that are defined

in the Cooper-Harper scale shown in Figure 6.17 overleaf. From this diagram it is clear

that achievement of Level 1 flying qualities is most desirable for ease of pilot workload,

ride comfort and safety. The complete specifications to be given shortly actually define

the minimum responses to certain inputs for the attainment of a Level 1 rating. Corn-

puter simulation again allows for the evaluation of the system's performance against

the Low speed and Hover specifications documented in [1].

Certain dynamic response characteristics that are important in each axis are next

specified in order to show compliance with the relevant specifications. Not all of the

Low speed and Hover requirements are applicable, however, and where they are not,

comments will be made as to why this is so. To demonstrate that the response char-

acteristics required for the Attitude Command Attitude Hold (ACAH) and the Rate

Command (RC) systems are met, it is necessary to quote from the relevant sections of

the design standard [1].

One technical detail is that some of the handling quality specifications are given in

terms of the cockpit control inputs and some in terms of direct actuator inputs. The

relationship between the two is illustrated in Figure 6.16

Direct Actuator Input

Cockpit ________________	
I __________	

I
Control	

Input-Space i
	

. 1 	Nonlinear	 -Reference	 '	
l Transformation	 I	 System	 IA

Figure 6.16: Cockpit control
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Attitude Hold

For Level 1 handling qualities the attitude (8 or t) should return to within ± 10 % of

the peak excursion (8pak or 4)peak) in less than 10 seconds following a pulse input as

shown in Figure 6.18.

epeak

0	 t10%<lOISecSJ

C
U,

0.

0

0
Time [secsj

Figure 6.18: Response to Pulse

The peak attitude excursions should vary from the barely perceptible to at least

10 degrees. The attitude should also remain within the specified 10 % for at least 30

seconds. The pulse input should be inserted directly into the control actuator. Figures

6.19 to 6.20 below show that for both robust control laws and for both pitch attitude

and roll attitude hold, Level 1 handling qualities are easily achieved.

Pitch angle response to a pulse input In the O actuator 	 Pitch angle response to a pulse Input In the 6 s actuator
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Figure 6.19:	 Lyapunov control 	 Sliding mode control
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Bank angle response to a uss input in the 6 actuator 	 Bank angle response to a pulse input in the 9lc actuator
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Figure 6.20: Lyapunov control
	

Sliding mode control

Attitude Command

A step cockpit pitch (roll) controller force input, should produce a proportional pitch

(roll) attitude change within 6 seconds. The attitude should remain essentially constant

between 6 and 12 seconds following the step input. A separate trim control must be

supplied to allow the pilot to null the cockpit controller forces at any achievable steady

attitude.

From the time responses of Figures 6.6, 6.7, 6.11 and 6.12 it is clear that the first

part of the specification is satisfied with the steady state values reached in less than 2

seconds. In the absence of a separate trim control (which was not included in the initial

research objective) the attitude for large amplitude demands between 6 and 12 seconds

does not remain constant. This is because the inability to null the controller forces

causes them to rise continuously until actuator saturation occurs, at which point the

controllers' performance degrades. Of course this is why a separate trim controller is

essential if unnecessary continuous control effort is to be avoided. Flowever for smaller

amplitude demands such as —15 degrees demand pitch angle, the specification is easily

met as shown in the Figure 6.21.
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Heading Rate

The rate response should satisfy certain bandwidth requirements mentioned later. No

requirement on the specific shape of the response to control inputs is specified except

that the initial and the final cockpit control forces required to change from one steady

heading to another shall not be of opposite sign.

Garrard and Low [47] found that the transfer function - = satisfies the Level 1

bandwidth requirements for yaw response. From this transfer function the time taken

to reach 60 percent of the steady state value of r is 0.25 seconds. Figure 6.22 shows

the responses to ±50, +30, +10 degrees/sec demands in heading rate. From this figure

the time constants for both control laws are close to 0.25, this indicating that at least

the Level 1 rise time requirements are met.

60	 'I'
response to +50 degfsec step demand

40/
response to +30 deg/sec step demand

::T:: demand

-40

-60
0	 0.5	 1	 1.5	 2	 2.5	 3.5	 4
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0,
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0	 05	 1	 1.5	 2	 2.5	 3	 3.5	 4
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Figure 6.22:	 Lyapunov control	 Sliding mode control

Altitude Rate Command

For a rotorcraft in trim, a constant deflection of the vertical axis controller provides a

constant steady state vertical velocity. It should also be possible for the pilot to null

the cockpit controller force at any achievable vertical rate.

As above, Garrard and Low found that the transfer function -- = --- satisfies the
wd	 54-4

Level 1 bandwidth requirements. Figure 6.23 shows the responses to +30, +20, +10

ft/sec demands in altitude rate. Again by inspection of this figure one can see that the
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Level 1 rise time requirements for vertical rate are met.
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h
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Sliding mode control

Moderate Amplitude Pitch (Roll) Attitude Changes

The variation of the ratio of the

peak pitch (roll) rate to peak change

in pitch (roll) attitude, ;:k

(k) with minimum change

in pitch (roll) attitude

(4'(min)), as defined in Figure 6.24,

should exceed the limits specified in

Figures 6.25 and 6.26 below.
Time

Figure 6.24: Change in Attitude
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Under both control laws, the pitch axis specification is easily satisfied. However, at

very low roll angle demands the Level 1 boundary is traversed. This arises due to the

necessity of constraining the speed of response of bank angle in order to suppress the

transient coupling that occurs when a demand in heading rate is made.

Note that the limits shown are those for the most challenging mission tasks, i.e.

Target acquisition and Tracking. For other less challenging mission tasks the Level 1

boundary is considerably lower and therefore for the control laws presented they provide

no difficulty.
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Large Amplitude Pitch (Roll) Attitude Changes

The minimum achievable attitude change from trim should not be less than + 30 degrees

in 9 and ± 60 degrees in i for Level 1 requirements under aggressive mana3uvring.

These attitudes must be achieved in each axis while limiting (limits not given in ADS

33 C) excursions in the other axes with appropriate control inputs. Other less stringent

mission task elements require lower minimum achievable angles for Level 1.

The time responses, Figures 6.6 and 6.7, verify the capability of the control systems

in enabling large amplitude demands to be achieved with a minimum of coupling in the

other axes.

Moderate Amplitude Heading Changes

The ratio of peak yaw rate to peak change in heading as a function of the

minimum heading change L iI'(mjn), should exceed the limits specified in Figure 6.27

below.

Target acquisition and tracking (heading) 	 Target acquisition and tracking (heading)
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Figure 6.27: Lyapunov control

This requirement was easily satisfied for both control laws.
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Large Amplitude Heading Changes

The achievable yaw rate shall be no less than +60 degrees/sec for Level 1 under the

aggressive manceuvring mission tasks. Again the time responses in Figure 6.8 indicate

that this is not a problem.

Interaxis Coupling

The general requirement states that control inputs to achieve a response in one axis

shall not result in objectionable responses in one or more of the other axes. This

requirement is formalized below where specific limits on interaxis coupling are given.

Pitch to Roll and Roll to Pitch Coupling during Aggressive Manceuvring

The ratio of the peak off-axis response to desired response - () following an abrupt

lateral (longitudinal) cyclic step input shall not exceed ±0.25 for level 1 handling qual-

ities for at least 4 seconds after the input is initiated.

Pitch to roll coupling	 Pitch to roll coupling
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Figure 6.28: Lyapunov control 	 Sliding mode control
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In Figures 6.28 and 6.29, OrnoX (c6max) is the maximum attitude achieved over 4 sec-

onds; as shown the coupling between the longitudinal and the lateral axes has virtually

been eliminated by both control laws.

Yaw due to Collective

Finally, the yaw rate response to abrupt collective inputs with the directional controller

free shall not exceed the boundaries specified in Figure 6.30 below. Additionally there

shall be no objectionable yaw oscillations following step or ramp collective changes in

the positive and negative directions. Oscillations involving yaw rates greater than 5

deg/sec shall be deemed objectionable.
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Figure 6.30: Lyapunov control 	 Sliding mode control
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The results indicate that the Level 1 handling qualities requirements have not been

satisfied for most collective step changes. Only at quite large collective inputs does the

helicopter response enter the Level 1 region. To see why this is so consider as shown in

Figure 6.31 the typical response that occurs following a step demand in altitude rate.

0

.-c

0
0	 Time [secs]	 1

rPk_ r1

0	 Time [secs]

Figure 6.31: Typical Response

The parameters given in ADS 33-C are as follows:

l'j
	 =	 The first peak in r before three seconds

r (3)
	

=	 r at three seconds

=	 r i —r(3)	 if r1<O

i(3)	 =	 Ii at three seconds

For the typical response achieved in this study as shown in Figure 6.31

r 1 = rk,	 r(3) = 0,	 r3 =	 h(3) = lid

Also in this study r 1 = r is small and varies very little with changes in Ii. Therefore

as lid = h(3) —* cc then —+ 0, it therefore becomes clear that the Level 1 zone is

entered for large collective demands.

The requirement is, however, fairly questionable since, as shown next, the presence

of a non zero steady state yaw rate enables the helicopter to satisfy the Level 1 require-
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ments. If it is assumed for the moment that r(3) ^ 0 and that r has some steady state

value close to r 1 = r then r3 = r1 - r(3) 0 as shown in Figure 6.32 below.

0

0	 Time [secs]

0

r3 = r Pk -r(3) = 0

rk

Time [secs]	 1

Figure 6.32: Possible Response

For this case, a persistent steady state error in r, the response then leads to satis-

faction of the level 1 handling qualities as shown in Figure 6.33

-

(3)	 (3)

Leveti

-0.15	 0.15	
r3	 0
- -

I	 I(3)I

Figure 6.33: Yaw to Collective Coupling if r

Since a steady state error in yaw rate can always be found such that the require-

ment is met, then the requirement is not well-defined. For this reason, the failure of
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the control laws to yield Level 1 performance in this single regard is deemed of little

consequence.

6.4 Other Mancxuvres

The response of the helicopter with Lyapunov controller to a bob-up manuvre, i.e.

a change from one altitude to another and then back down to the original altitude, is

presented in Figure 6.34. These changes are effected by appropriate demands to altitude

rate and causes the helicopter to rise quickly to a new altitude and maintain it for a

certain period of time before descending back to the starting height. The response shows

that throughout the mancuvre the other variables 0, ', 1' remain virtually decoupled.

The only problem is the large deviations in forward and lateral displacements arising

from constraining 0 and at zero and not at appropriate attitudes to minimise such

drifts. This is where a pilot enters the loop and alters speed and displacement through

changes in the decoupled pitch and roll attitudes.

The response of the helicopter with Lyapunov controller to a quick-step manuvre,

i.e. an acceleration to a new velocity followed by a deceleration back to the original

velocity, is presented in Figure 6.35. This is effected by issuing appropriate demands

to pitch angle which in turn causes the helicopter to accelerate quickly from hover to

a certain forward speed, and then maintain it for about 5 seconds before decelerating

back down to hover - or so it should. Notice that while the forward speed u correctly

changes with corresponding pitch angle demands, the overall airspeed begins to drift

after about 15 seconds. This is due to the small perturbations in causing the weakly

damped lateral velocity v to meander. This is normally avoided by having a trimming

controller or having the pilot enter the loop as in the bob-up manuvre to minimise

the deviations of v.

Figure 6.36 shows the gust response of the uncertain system with the Sliding mode

controller. Following a positive 30 degrees demand in bank angle a 5 m/s (approx. 10

knots) gust, modelled as a step input in forward velocity u, is encountered one second

after the demand. Decoupling of 0 and still occurs and tracks the demand almost

unaffected. The presence of the gust which is clearly visible in the u response, affects the

altitude rate causing a somewhat minor change in the achievable steady state response.
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6.5 Decoupling Matrix

As mentioned before, the Input-Output Linearization control law depends on the de-

coupling matrix, E(x,e), being nonsingular. Showing that E(x,®)' exists for all x

and all e is quite difficult since E(x, E) as shown in Appendix B is an almost fully pop-

ulated 4 x 4 matrix whose entries are complex nonlinear expressions. Indeed it appears

to be beyond the current capabilities of Mathernatica to do this. It is however possible

to show through simulation that, during the following general mano3uvres, (though any

others may be tried):

• Pitching through ± 25 degrees

• Rolling through ±40 degrees

• Yawing through rates of ±50 degrees/sec

• Vertical Translation through ±30 ft/sec

the determinant of the decoupling matrix is non zero. Even though the simulation was

only run for four seconds it is clear that no singularities should arise in the near future.

The figures shown were derived using a model with uncertainty and with a Lyapunov

controller present. The determinant of the decoupling matrix using the other controllers

is not shown since it is very similar.

Figure 6.37 shows the variation of the determinant, Det, of the decoupling matrix

with changing demands in pitch angle over a period of four seconds. At large demands,

about ±30 degrees, the variation in Det is quite prominent, this is consistent with the

significant actuator activity including saturation that is observable in Figure 6.11 for

such demands. For smaller demands the changes in Det are quite small and again this

is consistent with only low actuator activity for these demands.

The variations seen in Figure 6.38 can be similarly explained to those above. In

Figure 6.13 greater control activity and control saturations occur for large positive

demands in b than for similar amplitude negative demands, this phenomena is again

apparent in Figure 6.39. Due to the scale in Figure 6.40 Det appears to have a minimum

near to zero, however this is not actually so the minimum value is of the order of lx i05.
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Figure 6.37: Lyapunov Controller: Determinant of Decoupling Matrix during Pitch
Angle Demand Manuvres
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Figure 6.38: Lyapunov Controller: Determinant of Decoupling Matrix during Roll
Angle Demand Manuvres
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Figure 6.39: Lyapunov Controller: Determinant of Decoupling Matrix during Heading
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Figure 6.40: Lyapunov Controller: Determinant of Decoupling Matrix during Altitude
Rate Demand Manuvres
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6.6 Summary

This presentation of results shows that the design objective to construct robust nonlin-

ear hover and low speed controllers has been achieved. Furthermore the satisfaction of

Level 1 handling qualities has also been demonstrated for both the Lyapunov and the

Sliding mode control laws. The presence of limits on the available control power while

causing a certain coupled transient response does not contribute to any unacceptable

closed ioop behaviour. In addition to the usual time responses intended to illustrate

the decoupled behaviour of the closed loop system, manuvres such as the quick step

have been demonstrated thus further illustrating the functionality of the designs. Due

to the current difficulty in showing analytically that the Decoupling matrix is indeed

non-singular for all flight conditions, 3-D plots have been presented to illustrate the

variation of the determinant of the matrix with time under various flight conditions.

The plots clearly show that under the conditions considered the determinant is unlikely

to become zero.



Chapter 7

Conclusions

The design of robust nonlinear control laws for helicopter systems has been demon-

strated. The basic designs which employ methods from nonlinear geometric control

theory are augmented by Lyapunov based and Sliding mode control techniques in or-

der to enhance the robust stability properties of the closed ioop systems.

By first implementing the full nonlinear model derived by Padfield [55] into the

Sirnulink environment it was then possible to assess the performance of the controllers

by means of computer simulation. The results illustrate good stable tracking, robust-

ness to uncertainties and satisfaction of many Low Speed and Hover flying quality

requirements documented in the Military Rotorcraft Handling Qualities Specification

[1].

The controllers presented here are intended for use over the full flight envelope since

the designs are based on the full nonlinear dynamics rather than linearized models. As

a result, unlike linear designs, these control laws obviate the need for gain scheduling

and the associated difficulties and deficiencies outlined in Chapter 1.

From a comparison of the performance of the Lyapunov controller with that of the

Sliding mode design only small differences were evident, lending credence to the sug-

gestion that the disparity generally arises as a result of differences in tuning parameters

of each control law. The tuning of these parameters, which is required to achieve an

adequate trade-off between tracking performance and robustness to uncertainties, still

remains rather ad hoc. The availability of optimal tuning schemes to achieve desired

performance characteristics may, however, eliminate the discrepancies altogether.

Even for systems exhibiting non-minimum phase properties, in this case instability

of the internal dynamics associated with forward velocity u and lateral velocity v, it
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is possible to utilize attributes of the physical system to overcome such instability

problems. For the helicopter it is well known that the longitudinal and the lateral

velocities are indirectly controlled by appropriate changes in the vehicle's attitude since

the angular velocities evolve much faster than the translational ones.

The certain avoidance of additional complexity associated with finding the Input-

Output relationship of a non-affine system was demonstrated by using an iterative

scheme and exploiting a knowledge of the dynamic behaviour of the system.

To summarize, it has been demonstrated that nonlinear control laws which are

valid over the entire flight envelope can be designed for a helicopter. These control

laws which are based on the Differential Geometric Control theory of Input-Output

Linearization have eliminated the gain scheduling requirement which is quite often an

obstacle to achieving optimal performance using linear designs. Due to the nonlinear

control terms in the helicopter model a straightforward application of the standard

Input-Output Linearization techniques was not permitted, however the introduction of

a new iterative scheme presented in Chapter 5 enabled the standard procedure to be

applied and so avoided additional complexity involved in using a more general type

of analysis. The closed loop robustness properties of the system has been enhanced

by augmenting the Input-Output Linearization control laws in one of two ways; either

employing a Sliding mode control technique or a Lyapunov-based control scheme. Both

robust controllers perform well and simulation studies presented in this chapter confirm

this. Furthermore compliance with the Pilot Handling Qualities Requirements of ADS

33-C was demonstrated with the Level 1 specifications achieved in almost all cases.

The internal dynamics was addressed and it was shown in Chapter 5 that the modes

associated with the internal dynamics can be indirectly controlled either by the pilot

acting as a secondary outer loop or automatically by using feedback of the internal

states. The issues surrounding an analytical proof of the invertability of the Decoupling

matrix have not been resolved but 3-D plots of the evolution of the determinant of this

matrix with time during certain flight conditions go some way towards a practical

demonstration of the range of validity of the control laws, that is validity while the

determinant remains non-zero.
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7.1 Recommendations for Further Development

Several areas for further development are now apparent in order to build on the success

of the current findings.

The first area to address is that of inclusion of a more comprehensive rotor dynamics

model into the overall system description. This can be done either directly, i.e. having

the rotor model present during the Input-Output Linearization procedure or indirectly

by using this model to refine the uncertainty model for use with the robust control

laws.

The addition of actuator saturation limits in the closed loop system has served

the useful purpose of providing an initial glimpse at the effects of actuator systems

on control law performance. Implementation of a comprehensive nonlinear actuator

description, Stirling [72], is warranted since controller performance is generally known

to degrade when limits, time lags, backlash and other nonlinearities associated with

actuator systems are encountered.

As well as modelling the actuator, implementation of the Conditioning Technique

of Hanus et al [27] to preserve (as much as possible) the control law integrity when

encountering amplitude and rate saturation, may be required. This technique has been

used successfully in H control law designs such as Hyde and Glover [33] and there is

every reason to believe that it could also prove useful here.

An alternative approach to dealing with saturation once it has occured is to take

its effects into account at the control law design stage. To do this the following avenue

of investigation may be of use. Essentially the idea is to include the actuators with

limits into the overall system model before undertaking Input-Output Linearization.

Consider the system given by:

th = f(x)+G(x,n)
	

(7.1)

where x is the system state and u E m is the input to the system. In fact

the presence of the actuation system shown schematically in Figure 7.1 creates a more

realistic model:



U U -	 x
x = f(x) + G(x,u)Actuator System
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Figure 7.1: Effect of Actuator Dynamcis

In the usual case, i.e. not explicitly considering the actuator, the input u is designed

to provide the state x with some desired properties, but u is not fully realizable due to

the actuator dynamics. As a result the overall system properties tend to be somewhat

less than desirable. The alternative is to insert the dynamics of the actuator into the

system model by considering smooth approximations to the actuator limits such as the

following authority limiting function in Figure 7.2:

Smooth Approximation to Saturation Function

-4	 -2	 0	 2	 4	 6
U

Figure 7.2: Approximate Authority Limiting Function

For this dual system, the control u may be designed since the original system is now

aware of the corresponding value u that will actually affect it. Although this outline is

very rudimentary and further thought maybe necessary, it is nevertheless believed to

be worth investigating.

Even though full envelope controllers were designed here, these control laws gen-

erally sought to satisfy the low speed and hover requirements of [1] and as such their

performance under high speed conditions may not satisfy the Level 1 specifications.

This issue may be resolved with the addition of outer loop modes as suggested by
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Postlethwaite et at. [57]. One such mode enabling coordinated turns, an important

high speed quality, to be accomplished, may be achieved by augmenting heading rate

demand as a function of bank angle at high speeds.

Another outer loop mode, implemented by Postlethwaite et at, provides a possible

candidate for the additional trimming controller which is mandatory for (ACAH) de-

signs. A trim-map may be used to offset the inner loop controller with the appropriate

trim attitude. Further as noted in the reference the latter mode can be used continu-

ously which in the cases presented in this thesis should help to eliminate the drifts in

airspeed obtained during some of the manuvres shown in Chapter 6.

The nonlinear control laws were designed here for continuous-time smooth systems;

the possible digital implementation of these control laws may not, however, be straight-

forward. Arapostathis et at [2] found that sampling does affect linear equivalence and

Feedback Linearization. More specifically they found that if a continuous system is

linearizable by state coordinate changes then the discrete representation of the system

is also linearizable by the same coordinate changes. On the other hand if the continu-

ous system is linearizable by state coordinate changes and feedback then the sampled

system will not necessarily be linearizable by state coordinate changes and feedback.

This is because in the digital case the control input is necessarily a constant between

sampling times. Clearly the issue regarding digital implementation of the Input-Output

Linearization control laws requires investigation since coordinate changes and feedback

are fundamental to such control laws.

In addition to Feedback Linearization considerations it is known, Utkin [77] and

Fossard [19], that discontinuous controls smoothed by means of a boundary layer are

sensitive to delays and that this smoothing causes the reappearance of the control chat-

tering phenomenon. Although both the Lyapunov and the Sliding mode control laws

will be affected by sampling, the resulting chattering may be eliminated by increasing

the width of the boundary layer. Unfortunately, a subsequent degradation of the con-

trol law performance ensues with an increase in the magnitude of the tracking errors.

The extent to which sampling will affect these controls needs quantifying.

The problem of determining analytically when (or if ever) the decoupling matrix

is singular should be examined further. Perhaps a more in-depth knowledge of each

component of the dynamic equations as well as their relative contributions under various
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conditions will provide insight into making the problem more tractable.

Finally, the compromise that exists between robustness and tracking accuracy was

investigated by Chang [8] and it was found that the introduction of a first order plus

integral sliding condition eliminated this trade-off. One might incorporate this result

into the helicopter Sliding mode control law derived in Chapter 5 in order to ascertain

whether any further improvement to the results of Chapter 6 is possible. In addi-

tion, Singh [68] improved the tracking performance of his Lyapunov-based control law

by means of integral feedback of the tracking errors. It would also be of interest to

implement this idea.
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Appendix A

Inertia Coefficients

I (I - l) - (1)2
'1=

lxx Izz -

12 - ___________

	

-	 ixx L1 -
Izz

	

13 -
	 Ixz
- IJ _(r '2

1XZ)

	

14 -
	 (1)2

- ixxIxz(T \2'xz)
15 - ______

	

-	 Iyy

Ixz

Iyy
1

17 =-
1yy
(1)2 -	 + (I)2

'8= '2'xx Izz - (Ixz)

19 - ___________

	

-	 Lrr Lr -
	 'xxIxz

	

110 =
	 Izz

Ixxlxz(T 
\2

xz)
Ix lxx

'11 =
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Appendix B

Equations of Motion

x=f(x)+G(x, u)u

where

x = [uvwpqrOq5]T

= [ G 9k Oh 00t 1T

xf = vr—wq—gsinO+ 
j(x) + Xro(X)
m	 m

= wp— ur+gcosOsinq5+ 
Yj(x) + Yj(x) + Yr0(X) 

+ 
Y0(x)

m	 m	 m

1 = m	 m	 m
f, = Il qr+I2pq+13{Ljn(x)+Lr0(x)+Lj0(x)}+

14 {Nj (x) + Nj (x) + Nro (X) + N0(x)}

fq = 15 P+ 16 
(7.2_ 

p2 ) + 17 {Mj (x) + Mt (x) + Mro(x)}

fr = I8 pq+I9 qr+ '10 {Ljn(X)+Lro (X) +L i0 (x)} +

Iii {Nj (x) + Nj (x) + Nro(X) + Nt0(x)}

fe = qcos4—rsin

f, = p+[qsin+rcosJtanO

Reducing 1(x) to its the rigid body and aerodynamic components yields, the following:

frb(X) =

yr - wq —gsin 9
wp - ur + g cos 0 sin 4
uq - VP + g cos 0 cos

I q r + '2 p q
15 rp+16 (r 2 —p)

'8 P q + 19 q r
q cos - r sin q5

p + [q sin q + r cos q] tan 9
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faer(X) =

Xj(x) + Xrp(X)

+ Yitx) + 
YrX) + Y0(x)

+ Z(x) +

13 {Lf (x) + Lro(X) + L 10 (x)} + 14 {Nj (x) +Nj (x) + N 0 (x) + Nt0(x)}
17 {Mj (x) + M(x) + Mro(X)}

jto {Lj,(x) + Lr0 (X) + L 10 (x)} + Iii {Nj (x) + Nj (x) + Nr0 (X) + N0(x)}
0
0

Also

G(x, U) =

where

G11 C12 C13 0
C21 C22 G23 G24
G31 C32 C33 0
C41 G42 C43 C44
C51 C52 C53 0
C61 C62 G63 G64

o	 0	 0	 0
o	 o	 0	 0

G11 
= Xri(X)Xr6(X)Oo

m	 m

12 
= Xr3(C) + Xr5 (X) Oo + Xr7 (x) Gis + Xr9 (X) lc

m	 m	 m	 m

C13 
= Xr2 (x) + Xr4 (x) o 

+ Xr
8 (x) 8

m	 m	 in

G21 
= Yri(X)Yr6(x)Oo

in	 m

	

= Yr3(X) + Yr5(X)	
+ Yr

7 (x) 0,8 
+ Yr

9 (X) lc

m	 m	 m	 in

C23 
= Yr2(X) + Yr 4 (X) 0o + Yr8 (X) j

m	 m	 m
Y, (x)

G24 =
m

Zri(x)
C31 =

m
Zr3(x)

G32 =
in

Zr2(X)=
m

C41 = [13 Lr i (x) + 14 Nr i (x)] + [13 Lr6 (x) + 14 Nr6 (x)] Co

C42 = [ 13 Lr3 (x) + 14 Nr3 (x)] + [13 Lr5 (x) + 14 Nr5 (x)] 00 +

[13 Lr7 (x) + 14 Nr7 (x)} 0, + [13 Lrg (x) + 14 Nrg (x)] Olc
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C43 = [13 Lr2 (x) + 14 Nr2 (x)] + [13 Lr4 (x) + 14 Nr1 (x)] 00 +

[13 Lr8 (x) + 14 Nr8 (x)] 1s

G44 = [13 L 1 (x) + 14 N 1 (x)}

C51 = I7Mrj(x)+I7Mr6(x)Oo

G52 = 17 Mr3 (x) + 17 Mr5 (x) &, + 17 Mr7 (x) 1s + 17 Mrg (x) 0i

C53 = 17 Mr2 (X) + 17 Mr4 (X) 90 + 17 Mr8 (X) Ols

C61 = [h o Lr i (x) + 111 N,. 1 ('c)] + [Ito Lr6 (x) + Iii Nr6 (x)] 90

G62 = [1 0 L ,.3 (x) + 1u Nr3 (x)1 + [Ito L ,.5 (x) + I N,.5 (x)] o +

[h o Lr7 (X) + 1u N,.7(x)1 is + [I Lrg (x) + Iii Nrg (X)] °i

G63 = [h o Lr2 (x) + I Nr2 (X)] + [h o Lr4 (x) + I Nr4 (X)1 Oo +

[Ito L,.8 (x) + 111 Nr8(X)]

C64 = [h o L g (x) + ju N 1 (x)]

State Space Transformation - Jacobian Matrix

(x)The Jacobian Matrix	 is as follows:

	

•0
	

0

	

0
	

0

	

0
	

0

	

0
	

0

	

0
	

0
sin 0 - (cos 0 sin )

	

1
	

0

	

.0
	

1

0
0
0
0
0

- (cos cos 0)
0
0

0
	

0
0
	

cos
0
	

0
1 sin 4 tan 9
0 sec0 sin4
0
	

0
0
	

0
0
	

0

0
—sin

0
cos 4 tan 0
cos sec 0

0
0
0

1
0
0

sec2 9 (r cos4+q sinq)
sec0 (rcos+qsincb) tanO

u cos0+ (w cosq5+v sin4) sinG
0
0

0
- (r cos) - q sin j'

1
(q cosç - r sin) tanG
sec9 (qcos—rsin4)

cos9 (—(vcosq)+wsinq5)
0
0
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Input Space Transformation - Terms

The vector
I L7h1(x) 1

- I L7h2(x) ILh(x) - 
I Lr/h3(x) I
L L7h4 (x) ]

where:

L'hi (x) = {17 (Mj +Mr0 +M)+1spr+I6(—p2+r2)} cos4 - {I1o(Lj+

Lro + L 0 ) + Iii (N1 + N1 + Nro + N 0 ) + '8P q + 19 q r} sin +

{—(r cost) - q sin 4} {p + r cos 4 tanG + q sin 4 tan 8}

L7h2 (x) = 13(Ljn+Lro+Lto)+14(Nj+Njn+Nro+Ng0)+I2pq+Iiqr+

{q cos - r sin } {r cossec2 0 + qsec2 9 sin q5 } +

{ Iio (L1 + Lro + L 0 ) + lu (N1 + N1 + Nro + N 0 ) + I8pq+

1gqr}costan0+{I7(Mj+Mr0+Mtp)+Ispr+I6(_p2+

r2 )} sin 4 tan 8 + {p + r cos tanG + q sin tanG)

{q cosq5 tanG— r sin4 tan0}

L7h3 (x) = { Iio (L1 + Lro + L t0 ) + Iii (Nj + N1 + Nro + N 0 ) + Ispq+

Igqr} cos4 sec9 + {17 (Mj +Mro +M) +Ispr+16 (—p2 +

r2 )} sec0 sin q + sec0 {r cos + q sin } {q cos -

r sin	 tan 0 + sec 0 {q cos - r sin q5 } {p +

r cos4 tan 9+ q sin tanG)

L?h4(x) = —cosq cos0{qu - pv+ Z
1 + Zro +	

+ g cosq5 cosO} -

cos 0 sin {—(r u) + p w + Y
f + Yjn ± Yro + o +

Xi+Xr
g cos 8 sin } + sin 0 {r v - q w +	 m 

° - g sin 0} +

{q cos - r sin } {u cos0 + w cos sinG +

v sin 4 sinG) + {- ( t7 cos cosO) + w cosO sin } {p+
r cos tan0+ q sin tanG)

While the decoupling matrix E is:

E=[E1 E2 E3 E4]
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where

C51 cos - G61 Sfl

	

E -
	 G41 +G61 cos tanO+Gs i sin tan9

	

1 -
	 sec9 (G61 cos+G5i sin)

- (C31 cost cos9) - C21 cosO sin+ C11 sinO

G52 cos - G62 sin 4

E -	
C42 +G62 cosq5 tanO+G52 sin tanG

2	 sec 9 (G62 cos j + C52 sin )
- (G32 cs	 9) - C22	 C sin + C12 sin 9

G53 COS - G63 sin j'

E -
	 G43+Gcosq5tan9+G53sinqtan9

secO (C63 cosq5+ C53 sin)
- (G33 cos cos 0) - G23 cos 9 sin ' + C 13 sin 9

I	 —(G sin)	 1
E4 - 

I C44 + C64	 tan 9 I

- I	 Gcossec9	 I

[ - (G2 cos 9 sin 4) ]
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