
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Robust Controller Design for an Autonomous
Underwater Vehicle

Carlos Hugo Ribeiro Mendes

Dissertação para obtenção do Grau de Mestre em
Engenharia Aeronáutica
(Ciclo de estudos integrado)

Orientador: Prof. Doutor Kouamana Bousson

Covilhã, Outubro de 2017



ii



Dedication

To my parents for all the support and dedication.

”A dream is your creative vision for your life in the future. You must break out of your
current comfort zone and become comfortable with the unfamiliar and the unknown.”

-Denis Waitley

iii



iv



Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Kouamana Bousson, for pro-
viding me guidance and support throughout this work.

I would like to express my deep gratitude to both of my co-supervisors, Tiago Rebelo and Cris-
tiano Bentes, and all the engineers at CEiiA, who provided outstanding support during my In-
ternship at CEiiA.

My special thanks to my parents, Carlos and Maria, to my brothers, Cátia and Pedro, and to
my girlfriend, Mafalda, for the unconditional love, patience and support.

Finally, thank to my friends who kept me sane during periods of great frustration.

v



vi



Resumo

É visível, a nível mundial, um aumento considerável do interesse em Veículos Autónomos Sub-
aquáticos (Autonomous Underwater Vehicles - AUV). O que torna esta tecnologia tão atraente é
a capacidade de operar sem intervenção humana. Contudo, a ausência do ser humano restringe
a operação do AUV ao seu sistema de controlo, computação e capacidades de detecção.
Desta forma, conceber um controlo robusto é obrigatório para viabilizar o AUV.

Motivado por este facto, esta tese tem como objetivo apresentar, discutir e avaliar duas soluções
de controlo linear, a propor a um AUV desenvolvido por um consórcio liderado pelo CEiiA. Para
que o projeto do controlador seja possível, o modelo dinâmico deste veículo e respectivas con-
siderações são primeiramente abordados.

Com a finalidade de possibilitar a operação do veículo, torna-se essencial a elaboração de leis
de guidance adequadas. Para este efeito são apresentados algorítmos de Waypoint following e
Station keeping, e de path following.

Para a projeção dos controladores é derivada uma versão linear do modelo dinâmico, con-
siderando um único ponto operacional. Através da separação do modelo linear em três sub-
sistemas são criados quatro controladores Proporcional Integral Derivativo (PID) para cada grau
de liberdade (Degree Of Freedom - DOF) do veículo. É também projetado um Regulador Linear
Quadrático (LQR), baseado na separação do modelo linear em dois subsistemas, longitudinal e
lateral. É ainda apresentada uma lei de alocação de controlo para distribuir o sinal de saída dos
controladores pelos diferentes atuadores. Esta provou melhorar a manobrabilidade do veículo.
Os resultados finais apresentam um desempenho sólido para ambos os métodos de controlo. No
entanto, neste trabalho, o LQR provou ser mais rápido do que o PID.

Palavras-chave

Veículo Autónomo Subaquático; Controlo Robusto; Proportional Integral Derivativo (PID); Regu-
lador Linear Quadrático (LQR); Simulação.
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Abstract

Worldwide there has been a surge of interest in Autonomous Underwater Vehicles (AUV). The
ability to operate without human intervention is what makes this technology so appealing. On
the other hand, the absence of the human narrows the AUV operation to its control system,
computing, and sensing capabilities. Therefore, devising a robust control is mandatory to allow
the feasibility of the AUV.

Motivated by this fact, this thesis aims to present, discuss and evaluate two linear control solu-
tions being proposed for an AUV developed by a consortium led by CEiiA. To allow the controller
design, the dynamic model of this vehicle and respective considerations are firstly addressed.

Since the purpose is to enable the vehicle’s operation, devising suitable guidance laws becomes
essential. A simple waypoint following and station keeping algorithm, and a path following al-
gorithms are presented.

To devise the controllers, a linear version of the dynamic model is derived considering a sin-
gle operational point. Then, through the decoupling of the linear system into three lightly
interactive subsystems, four Proportional Integral Derivative controllers (PIDs) are devised for
each Degree Of Freedom (DOF) of the vehicle. A Linear Quadratic Regulator (LQR) design, based
on the decoupling of the linear model into longitudinal and lateral subsystems is also devised.
To allocate the controller output throughout the actuators, a control allocation law is devised,
which improves maneuverability of the vehicle. The results present a solid performance for
both control methods, however, in this work, LQR proved to be slightly faster than PID.

Keywords

Autonomous Underwater Vehicle; Robust Control; Proportional Derivative Integral Derivative
(PID); Linear Quadratic Regulator (LQR); Simulation.
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Chapter 1

Introduction

The ocean plays a significant role in the human life. It is the central engine of energy and chem-
ical balance that sustains humanity [1]. The ability to understand and to predict the ocean de-
pends upon our ability to understand the processes within it. However, the rough environment
is the biggest stumbling block in the ocean’s data acquisition.

The first knowledge of the oceans came from a direct observation made from vessels, later air-
planes, and finally from instruments placed in the water. However, these techniques only work
on the surface [1], which falls short of what underwater exploration is all about. According to
Steinar Ellefmo [2]: ”There are large unexplored ocean areas, and there is an enormous amount
we do not know about them. We actually know more about the moon than the seafloor”.
Underwater vehicles (UV) are perfect for the job since they provide a window to the oceans’
deep secrets. Figure 1.1 divides UVs into two categories: manned vehicles and Unmanned Under-
water Vehicle (UUV). UUVs are subdivided in Remotely Operated Vehicles (ROVs), Autonomous
Underwater Vehicles (AUVs), and hybrid vehicles, which can be autonomous or remotely oper-
ated [3].

Figure 1.1: Underwater vehicle class division.

Manned underwater vehicles are human occupied, and despite the ability to perform complex
missions, they are still limited to low endurance, due to human physical and psychological lim-
itation. Doing an analogy with space exploration, citing Mark Henderson: ”Human beings are
poorly designed for the job. They need food, water and oxygen (...) Mechanical probes have
none of these shortcomings. They can fly further and faster(...) ” [4].

Remotely operated vehicles are tethered vehicles that draw power from the surface vessel
and, as the name suggests, are remotely operated. They are used for routine inspection and
maintenance tasks. However, the operation range is limited by the size of the umbilical cable,
and as the cable size rises the drag upon itself and the signal delay increases as well, making it
difficult to maneuver, requiring a skilled pilot for the task [1].
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In contrast, autonomous underwater vehicles are systems that carry their power supplies and
are fully autonomous, releasing the vehicle from the surface vessel and therefore eliminating
the costly handling gear, which a tether entails. However, the absence of a human operator
narrows AUV operations to its control system, computing, and sensing capabilities. Robustness
in control is mandatory to allow the feasibility of such tool [5].

The AUV concept started to be studied in the 60s [6]. The SPURV, Self-Propelled Underwa-
ter Research Vehicle, developed at the University of Washington, is the first reported AUV [7].
In the following decades (1970 to 2000) advances outside the AUV community greatly affected
the AUV development [6]. The small low-power computers enabled the guidance and control
algorithms implementation on autonomous platforms. Proof Of Concepts (POC) prototypes were
tested and evolved to the first generation of operational systems able to accomplish predefined
objectives. Autonomous Oceanographic Sampling System (AOSN) is an example of that [8]. In
this decade, the AUV technology commercialization is becoming a near reality [6]. Currently,
there are different solutions for different applications. Marport’s AUV SQX-500, Girona 500
from University Of Girona Center for Research Underwater Robotics (figure 1.2) and SeaBED
from Woods Hole Oceanographic Institution (figure 1.3) are examples of multiple body AUVs.

Figure 1.2: SQX-500 AUV (left) and Girona 500 AUV (right) (adapted from [9][9]).

Figure 1.3: Seabed AUV (adapted from [9]).

In May 2009, Portugal submitted a proposal to the United Nations to expand the continental
shelf beyond the 200 nautical miles from the coastline [10]. Having tools for exploration and
monitoring is therefore essential. In that sense, CEiiA (Centre of Engineering and Product De-
velopment), in collaboration with other partners, preceding actual and forthcoming demands,
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started to develop an AUV [11].

1.1 The AUV

CEiiA is a non-profit organization, located in Porto, Portugal. In September 2015, a consortium
led by CEiiA started the development of a lightweight AUV (figure 1.4) with the main goal to
reinforce the national capacity for mobile autonomous deep-sea exploration and monitoring
[11]. Capable of a NDD1 of 3000 meters, the AUV follows a double-hull configuration.

Figure 1.4: 3D model of the developed AUV at CEiiA (courtesy of CEiiA).

Payload

The vehicle’s payload is distributed by both hulls. The batteries are on the lower hull and the
necessary dry systems and sensors on the upper hull. For the purpose of navigation, the AUV is
equipped with the following sensors:

• Depth Cell - This system allows the determination of the vehicle’s depth, based on pressure
values;

• Doppler Velocity Log (DVL) - This device uses the Doppler principle [13] to determine the
velocity of the vehicle;

• Magnetometer - This device determines the magnetic north;

• Inertial Navigation System (INS) - Through inertial measurement units (IMU), accelerom-
eters and gyroscopes, this system calculates the current position, with the knowledge of
the initial position;

• Underwater Altimeter - This device sends acoustic signals towards seafloor, and captures
the ”reflected” signal. The time between measurements, and knowing the speed of sound
in water, the vehicle altitude is calculated.

For the propulsive system, the AUV has four identical thrusters. Two are placed on the vertical
plane and the other two on the horizontal plane. The vertical thrusters are located in both
of the hulls: the forward thruster is embedded in the lower body and the aft thruster on the

1Nominal Diving Depth - the diving depth for the unrestricted operation of the submersible [m] [12].
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upper. The horizontal thrusters, as can be seen in the figure 1.4, are located in the aft horizontal
fairing.

Mission

According to [11], the system was mainly designed to comply with three missions scenarios:
1. Data download and water column profiling, figure 1.5;

2. Resource exploration and mapping, figure 1.6;

3. High resolution habitat mapping, figure 1.7.

With respect to operational scenario, the AUV mission is divided into:

1. Dive - In traditional submarines, the dive maneuver is accomplished through ballast tanks.
By the ”in hail” of water, negative buoyancy is achieved, allowing the dive. For this AUV,
these compartments do not exist, and the scenario of using the vertical thrusters to reach
the depth goal is nonviable, concerning energetic consumption. Therefore, the AUV carries
an extra mass in the bow, allowing the descending movement, with nose down attitude.
By reaching the predefined operational depth, the extra mass is released, and the residual
buoyancy is achieved. Through this stage, it is possible to accomplish mission scenario (1).

2. Data acquisition - During this stage, mission scenarios (2) and (3) can be performed.

3. Ascent - Although the residual buoyancy will always bring the AUV to the surface, and to
avoid energy wasting to speed up the ascent, the AUV carries an extra mass in the stern.
When the data acquisition is over, the mass is released and the ascent will begin. Given the
fact that the center of buoyancy is aft the center of gravity, the ascent will happen with
nose down attitude. Therefore, on the surface, the GPS, global positioning system, which
is located in the upper hull’s vertical fin, is above the water line, ensuring the continuous
position transmitting.

Figure 1.5: Ascent and descend scenario (courtesy of CEiiA).
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Figure 1.6: Resource exploration and mapping (courtesy of CEiiA).

Figure 1.7: High resolution habitat mapping (courtesy of CEiiA).

1.2 AUV Motion Control Techniques Overview

1.2.1 Dynamics

The dynamic model is essential to design the motion control algorithms [14]. The dynamics can
be divided into kinematics and kinetics [15]. A brief description will be hereby presented to
introduce the general concepts of the AUV dynamic model.

1.2.1.1 Reference Frames and Terminology

To derive the equations of motion that describe the AUV kinematics, the definition of two ref-
erence frames is mandatory. The notation that will be used from now on is the one defined [16]
by SNAME2, with slight differences, as in [15].
As seen in figure 1.8, the chosen reference frames are:

• The body-fixed {b}, the non-inertial frame, composed by the axes {xb,yb,zb}, and the 0b is
chosen, for simplicity, to coincide with the Center of Gravity (CG) of the AUV.

• The local NED (North-East-Down) {n}, the inertial reference frame, composed by the or-
thonormal axes {xn,yn,zn}, the origin is represented by 0n.

The CG and the Center of Buoyancy (CB), which is the hydrostatic buoyancy center, are defined
with respect to the 0b, and are represented by:

2Society of Naval Architects and Marine Engineers.
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rbg =
[
xg yg zg

]T
; rbB =

[
xB yB zB

]T

Figure 1.8: Body-fixed and local NED reference frames.

Therefore, to determine the position and orientation of the vehicle, six independent coordinates
are needed, namely (x, y, z, ϕ, θ, ψ), which are expressed in the inertial frame, {n}. For linear
and angular velocity, the six coordinates are (u, v, w, p, q, r), and (X,Y, Z,K,M,N) for control
forces/moments, both expressed in the non-inertial frame, {b}. The six motion components can
be expressed as in table 1.1, or, in the vector form, as:

• η=
[
x y z ϕ θ ψ

]T
expressed in the {n} frame;

• ν=
[
u v w p q r

]T
expressed in the {b} frame;

• τ=
[
X Y Z K M N

]T
expressed in the {b} frame.

Table 1.1: SNAME notation for underwater vehicles.

Terminology Forces and Moments Linear and Angular Velocities Position and Euler angles
Motion along xb direction (Surge) X u x
Motion along yb direction (Sway) Y v y
Motion along zb direction (Heave) Z w z
Rotation along xb axis (Roll) K p ϕ

Rotation along yb axis (Pitch) M q θ

Rotation along zb axis (Yaw) N r ψ

1.2.1.2 Kinematic Equations

Kinematics deal with the geometrical aspects of motion and relates the velocities with positions
[14]. To transform linear velocities from the body-fixed frame to the inertial coordinate frame,
a transformation matrix, J, is defined, resulting in the kinematic equation [15]:

η̇ = J(η)ν (1.1)

where:

J(η) =

[
Rn

b (Θnb) 03×3

03×3 TΘ(Θnb)

]
(1.2)
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where Rn
b (Θnb) represents the rotation matrix that allows the linear velocity transformation,

from b to n frame, and is defined by [15]:

Rn
b (Θnb) =

cos(ψ)cos(θ) cos(ψ)sin(θ)sin(ϕ)− sin(ψ)cos(ϕ) cos(ψ)sin(θ)cos(ϕ) + sin(ψ)sin(ϕ)

sin(ψ)cos(θ) sin(ψ)sin(θ)sin(ϕ) + cos(ψ)cos(ϕ) sin(ψ)sin(θ)cos(ϕ)− cos(ψ)sin(ϕ)

−sin(θ) cos(θ)sin(ϕ) cos(θ)cos(ϕ)

 (1.3)

The TΘ(Θnb) represents the Euler attitude transformation matrix and is defined as [15]:

TΘ(Θnb) =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)

0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)/cos(θ) cos(ϕ)/cos(θ)

 (1.4)

Equation 1.4 produces a singularity in pitch, θ = ±90◦. Since the vehicle will operate at around
θmax ≈ ±25◦, Euler representation can still be used. In alternative, the quaternion representa-
tion can be used, as shown in [17].

1.2.1.3 Kinetics

Rigid-Body Equations

Kinetics address the relationship between motion and forces. By applying Newton’s law in the
body-fixed frame {b}, it is possible to express the rigid-body equation as [15]:

Mrb · ν̇ + Crb(ν) · ν = τrb (1.5)

whereMrb represents the rigid-body mass matrix, Crb the rigid-body Coriolis force, and τrb the
external forces and moments action on the vehicle.
The rigid-body mass matrix is defined as [15]:

Mrb =

[
m · I3×3 −m · S(rbg)
m · S(rbg) Ib

]

=



m 0 0 0 m · zg −m · yg
0 m 0 −m · zg 0 m · xg
0 0 m m · yg −m · xg 0

0 −m · zg m · yg Ix −Ixy −Ixz
m · zg 0 −m · xg −Iyx Iy −Iyz
−m · yg m · xg 0 −Izx −Izy Iz


(1.6)

where m is the mass of the vehicle, I3×3 is a 3 x 3 identity matrix; S(rbg) is the skew-symmetric
matrix of rbg, which represents the location of the vehicle’s CG, with respect to the body-fixed
frame, (rbg = [xg yg zg]

T ); and Ib represents the body’s inertia tensor.
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The Coriolis and centripetal matrix, Crb, is defined as [15]:

Crb(ν) =

[
03×3 −m · S(ν1)−m · S(ν2) · S(rbg)

m · S(ν1) +m · S(rbg) · S(ν2) −S(Ib · ν2)

]

=



0 0 0

0 0 0

0 0 0

−m(ygq + zgr) m(ygp+ w) m(zgp− v)

m(xgq − w) −m(zgr + xgp) m(zgq + u)

m(xgr + v) m(ygr − u) −m(xgp+ ygq)

m(ygq + zgr) −m(xgq − w) −m(xgr + v)

−m(ygp+ w) m(zgr + xgp) −m(ygr − u)

−m(zgp− v) −m(zgq + u) m(xgp+ ygq)

0 −Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq

Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq + Ixp

−Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0



(1.7)

where ν1 = [u v w]T , and ν2 = [p q r]T .

The external forces and moments acting on the vehicle, τrb, can be decomposed in [14]:

τrb = τ + τA + τD + τR (1.8)

• τ - Vector of forces and torques created by the surfaces/thrusters. Usually treated as the
control input, and defined as:

τ = L · U (1.9)

where, L represents the mapping matrix and U the force vector representing the thrust
of each thruster.

• τA - The vector due to the hydrodynamic added mass. In fluid mechanics, an accelerating
or decelerating body must move some volume of the surrounding fluid with it. The mass
representative of this volume is called the added mass. The added mass vector is defined
as [15]:

τA = −MA − CA(ν)ν (1.10)

where MA is the added mass matrix, expressed as [15]:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(1.11)

where, for example, the term Xu̇ represents the hydrodynamic added mass force X along
the x-axis due to an acceleration u̇ in the x direction [16]. For the Coriolis and centripetal
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forces due to added mass [15]:

CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1
0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0


(1.12)

Where:

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 =Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

• τD - The vector due to lift, drag, skin friction, etc; defined as [15]:

τD = −D(ν)ν (1.13)

withD(ν) being the hydrodynamic damping matrix. If moving with low speed, it is common
to use a quadratic approximation [17]:

D(ν) = Dl +Dq(ν) (1.14)

where:

Dl =



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


(1.15)

and:

Dq(ν) = −

Xu|u| | u | Xv|v| | v | Xw|w| | w | Xp|p| | p | Xq|q| | q | Xr|r| | r |
Yu|u| | u | Yv|v| | v | Yw|w| | w | Yp|p| | p | Yq|q| | q | Yr|r| | r |
Zu|u| | u | Zv|v| | v | Zw|w| | w | Zp|p| | p | Zq|q| | q | Zr|r| | r |
Ku|u| | u | Kv|v| | v | Kw|w| | w | Kp|p| | p | Kq|q| | q | Kr|r| | r |
Mu|u| | u | Mv|v| | v | Mw|w| | w | Mp|p| | p | Mq|q| | q | Mr|r| | r |
Nu|u| | u | Nv|v| | v | Nw|w| | w | Np|p| | p | Nq|q| | q | Nr|r| | r |


(1.16)

• τR - Represents the hydrostatic restoring force due to gravity and fluid density. According
to [15], two forces are considered in the hydrostatics: the buoyancy force, fB, which acts
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upwards, on the CB, and the gravitational force, fg, that acts downwards on the CG.

Archimedes’ principle gives the buoyancy force, B = ρg∇, where ρ is the density of the
fluid, g the gravitational acceleration and ∇ the volume of fluid displaced by the vehicle
[15]. In the {n} frame:

fnB =

 0

0

−B

 (1.17)

The gravitational force is derived from the Newton’s 2nd law, W = mg, where m is the
mass, and g the gravitational acceleration. In the {n} frame [15]:

fng =

 0

0

W

 (1.18)

For the {b} frame:

f bB = Rn
b (Θnb)

−1fnB (1.19)

f bg = Rn
b (Θnb)

−1fng (1.20)

The restoring force vector is equal to [15]:

τR = −g(η) (1.21)

And:

g(η) = −

[
f bB + f bg

rbBf
b
B + rbgf

b
g

]
(1.22)

Finally, expanding these equations will result in [15]:

g(η) =



(W −B) sin(θ)

−(W −B) cos(θ) sin(ϕ)

−(W −B) cos(θ) cos(ϕ)

−(ygW − yBB) cos(θ) cos(ϕ) + (zgW − zBB) cos(θ) sin(ϕ)

(zgW − zBB) sin(θ) + (xgW − xBB) cos(θ) cos(ϕ)

−(xgW − xBB) cos(θ) sin(ϕ)− (ygW − yBB) sin(θ)


(1.23)

1.2.1.4 Complete Dynamic Model

By associating the kinematic and kinetic equations and expanding equation 1.8, the complete
dynamic model is written as [15]:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (1.24)
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η̇ = J(η)ν (1.25)

Where M =Mrb +MA and C = Crb + CA.
The dynamic model can be conveniently arranged to the form ẋ = f(x, t) as:

ν̇ =M−1[−(C(ν)ν +D(ν)ν − g(η) + τ ] (1.26)

1.2.2 Motion Control

An autopilot for an AUV is a GNC, Guidance, Navigation and Control, system in its most basic
form [15]. The communication sequence can be seen in the figure 1.9 [15].

Figure 1.9: GNC signal flow diagram.

For proper operation, each block should work in accordance with the other. That means imper-
fections/errors in one will reduce the efficiency of the other [18]. Since the controller works
on guidance data, developing a controller without addressing guidance may not be prudent.
Therefore, both of these blocks are covered in this thesis, while navigation block is consid-
ered to provide all readings of the current state of the vehicle. A brief literature review was
performed to assess the state-of-the-art in this matter.

1.2.2.1 Guidance

According to Fossen [15], guidance is the act of determining the course, attitude and speed of
the vehicle, relative to some reference frame, to be followed by the vehicle.
It is the guidance system that decides the best trajectory to be followed by the vehicle, based
on target location and vehicle’s capabilities [18]. For a remotely operated vehicle, those refer-
ences are sent from a human trained operator. However, for autonomous underwater vehicles,
the guidance system plays a vital role in bringing autonomy to the system [18].

Among current solutions, waypoint guidance by Line Of Sight (LOS) is the most common ap-
proach for guidance in underwater vehicles [18]. In [19] an improved LOS law, which calculates
an additional angle by taking into account AUV’s current position and the next waypoint, is pre-
sented. Path following algorithms are also common solutions [15]. A three-dimensional path
following algorithm is presented in [20] .
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1.2.2.2 Control

This block is accountable for calculating the necessary forces and moments to achieve the con-
trol objective [15].
The AUV’s dynamics is inherently nonlinear and time-variant. The uncertain external distur-
bances that the vehicle is subjected to make the AUV controller design task a very challenging
one. Therefore, and with the growing need for advanced capabilities and features, a necessity
for more capable control systems is mandatory [1].
Numerous control strategies have been developed, being possible to classify them into two main
groups, the linear methods and the nonlinear methods [21].

• Linear methods: The linear theory has evolved over the years and powerful design tools,
to meet control robustness and stability requirements, were developed. By linearizing the
AUV dynamic equations, it is possible to make the control problem more tractable [22].
Despite the nonlinear environment, there are successfully implemented linear controllers
in the nonlinear environment. Among the solutions, the most common two will be studied
in this thesis.

1. PID (Proportional Integral Derivative) Controller: As stated in [15], a state-of-the-
art control system is designed using PID control methods. Jalving [23] proposed a
simple PD, to the steering control system, and PI to the speed control system. In [24],
to control each Degree Of Freedom (DOF) of the DepthX AUV, 4DOFs, four independent
loops were implemented, each loop containing an experimentally tuned PI controller.

2. LQR (Linear Quadratic Regulator): In [25], the dynamics were divided into three
subsystems. The dynamic model was linearized around a set of operating conditions,
namely, surge velocity u = 1.5m/s, and for the remaining states, to zero. In [26],
an LQR controller was proposed to control depth; [27] the Linear Quadratic Gaussian
(LQG) was the technique suggested to control the AUV REMUS in the horizontal plane.
Finally, [18] proposed an LQG to the autopilot of Hammerhead AUV.

• Nonlinear methods: As stated before, linear techniques can be applied to the nonlinear
environment. However, for high-speed motion, nonlinear effects are significant, and lin-
ear control may not deliver the required performance [28]. There is a rich collection of
alternatives and complementary techniques, to answer the AUV nonlinear needs. Sliding
Mode Control (SMC) [21, 29], gain-scheduled LQR approach [30], fuzzy logic [31, 32], NN
(Neural Networks) [33], adaptive control [34], nonlinear model predictive control [22],
among others; are examples of nonlinear controllers implemented in underwater vehicles
[1].

1.3 Motion Control Fundamentals

Some fundamental concepts need to be addressed when developing a motion controller. Namely:
operating spaces, actuation properties, and motion control scenarios [35].

1.3.1 Operating Spaces

When designing a controller it is useful to distinguish between two operating spaces: workspace
and configuration space [15]. The workspace, also known as the operational space, represents
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the physical space in which the vehicle moves. For a car, the workspace is bi-dimensional (pla-
nar position) [35].
The configuration space represents all the possible states of a given vehicle in the workspace
[35].

1.3.2 Vehicle Actuation Properties

According to Fossen, Degree-Of-Freedom, DOF, is the set of independent displacements and
rotations that completely specify the displaced position and orientation of the vehicle [15].
The type, amount, and distribution of the vehicle’s actuators (thrusters and control surfaces)
will determine the actuation of the vehicle. The vehicle can be underactuated or fully actuated
[35].
A fully actuated vehicle can control all its DOFs simultaneously independently. In opposite, an
underactuated vehicle can only independently control some DOFs simultaneously [15]. However,
a vehicle that cannot satisfy a 6 DOF control objective can still achieve meaningful tasks in its
workspace [35].
Let us consider an AUV in the horizontal plane. The vehicle needs to follow a path, and it is
equipped with one thruster and one rudder, which are the surge and yaw actuators. Although
the vehicle does not have active control in sway motion, it can still achieve the control objective
with a combination of the action of both actuators. So, even though the AUV is underactuated in
the configuration space (three-dimensional: surge, sway and yaw), the vehicle is fully actuated
in the workspace (bi-dimensional) [15].
In conclusion, if the vehicle is underactuated in the configuration space but fully actuated in
the workspace, it is possible to achieve the control objective [15].

1.3.3 Motion Control Scenarios

To design amotion control system is essential to properly define the control scenarios/objectives,
to meet the safe operational requirements of the vehicle. According to [15], motion control ob-
jectives are divided into:

• Setpoint regulation: The control objective is to track a desired position, or a desired
attitude [15];

• Trajectory tracking: Is a time dependent method, where the system output y(t), is forced
to track the desired one yd(t). For an AUV (6 DOF), this means that the signal represents
the desired position/attitude, velocity and acceleration as function of time [15];

• Path following: The control objective is to track a predefined path independent of time
[15].

Tracking scenario can also be designed as target tracking and path tracking. On target tracking,
the control objective is to track the target’s motion that is either stationary or that moves,
which in that case, only the instantaneous motion is known. On the path tracking scenario, the
control objective is to track a target that moves along a predefined path [35].
These scenarios are typically defined by control objectives given as configuration space tasks.
However, for underactuated vehicles, these control objectives should be defined as workspace
tasks [15].
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1.3.4 Motion Control Hierarchy

Motion control systems can usually be conceptualized into a three-level hierarchical structure:
high-level control, intermediate level control and low-level control, figure 1.10.
The high-level control, labeled as kinematic control is accountable for prescribing vehicle ve-
locity commands to achieve the control objective in the workspace [35]. Therefore, this level
deals with the geometrical aspects of motion.
Once calculated the reference speeds, the intermediate level deals with the calculation of the
forces that the different actuators have to perform to achieve the input references. Kinetic
controllers do the calculation of the forces, and the control allocation is responsible for the
distribution of the kinetic control commands among the vehicle actuators. These controllers
are often designed by model-based methods, and must handle both parametric uncertainties
and environmental disturbances [35].
The last level, low-level control, will ensure that the individual actuators will behave as re-
quested by the intermediate level control.

Figure 1.10: Motion control hierarchy (adapted from [35]).

For the purpose of this thesis only high and intermediate control levels are addressed.

1.4 Control Systems Fundamentals

1.4.1 Open loop and Closed loop systems

Designing a controller is about making dynamic systems perform certain tasks, to behave in a
desired way [36]. Among the control systems configurations, two major will be discussed: open
loop and closed loop, or feedback. Although both of the configurations start with the input
or reference, and both achieve one output, the open-loop configuration, figure 1.11, cannot
compensate for any added disturbance [37]. As an example, if the control system in figure 1.11,
represents an electronic amplifier, and the Disturbance 1 represents noise, both input signal and
noise will be amplified.

14



Figure 1.11: Block diagram of a generic architecture of a open-loop system.

The feedback configuration by taking into account the system’s output, figure 1.12, will correct
disturbances, creating a much more accurate and robust control [37].
From this point on, only feedback control systems will be discussed.

Figure 1.12: Block diagram of a generic architecture of a closed-loop system.

The design of control systems usually starts with modeling the system’s plant[36]. To model a
system, the designer uses physical laws, like Kirchhoff’s laws for electrical networks, and New-
ton’s law for mechanical systems. Such laws will lead to mathematical models that describe
the relationship between input and output, I/O.
Therefore, two approaches are available for the analysis and design of feedback control systems,
namely: classical, or frequency-domain, technique, and modern, or time-domain, technique
[38].

1.4.2 Classical Control

The classical approach is based on converting the system’s differential equation, into a transfer
function. Thus generating a mathematical model that algebraically relates the output and the
input. The main advantage is that information, like stability and transient response, is promptly
provided. Therefore, the variation in the system parameters can instantly be seen and adapted
to fulfill the requirements [37].

1.4.2.1 Transfer Function

The transfer function represents the relationship between the system’s input r(t) and system’s
output y(t). A physical system that can be represented by an LTI, Linear Time-Invariant, differ-
ential equation can be modeled as a transfer function [37].
Considering the feedback system from figure 1.13:

Figure 1.13: Feedback system block diagram.
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The transfer function is given by:

G(s) =
Y (s)

R(s)
(1.27)

where R(s) and Y (s) are the Laplace transforms from r(t) and y(t). Reminding that the Laplace
transform is defined as:

L[f(t)] = F (s) =

∫ ∞

0

f(t)e−stdt (1.28)

where s is a complex variable (s = σ + jω). Hence, knowing f(t) and that the integral from
equation1.28 exists, it is possible to find the Laplace transform, F (s) from f(t) [37].
This transformation (time-domain to frequency-domain) will result in a polynomial fraction:

G(s) =
b(s)

a(s)
(1.29)

where the roots from b(s) represent the zeros from the system, and the roots of a(s) the poles.
Therefore, in the complex plane, the magnitude of G(s) will go to zero at each zero, and to
infinity at the poles [39].

1.4.2.2 PID Control Theory

Proportional integral derivative control, figure 1.14, is by far the most common control tech-
nique, due to the general applicability to most control systems [40]. In particular, when the
plant’s mathematical model is unknown, PID control design methods can still provide satisfactory
control. However, in some situations, these may not provide optimal control [38].

Figure 1.14: Feedback block diagram with PID controller.

This controller works on the principle of closed-loop feedback, where the proportional term
is linear to the error, the integral term accumulates the error over time, and the derivative
measures how fast the error is changing. So, the control law is given by:

u(t) = Kpe(t) +Ki ·
∫ t

0

e(τ)dτ +Kd ·
de(t)

dt
(1.30)

where, Kp, Ki and Kd represent the proportional, integral and derivative gains, respectively.
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The controller also can be parametrized as:

u(t) = Kp(e(t) +
1

Ti
·
∫ t

0

e(τ)dτ + Td ·
de(t)

dt
) (1.31)

where Ti is called integral time and Td derivative time [40]. The respective transfer function
between the input, error, and the output, control law, is then:

U(s)

E(s)
= Kp(1 +

1

Tis
+ Tds) (1.32)

The gains are tuned according to system’s requirements. By increasing the proportional gain,
the system responsiveness will increase, but for high values, instability can occur, and the
steady-state error will remain. Adding the integral term (PI) the steady state can be eradi-
cated. However, it can cause overshoot. Therefore, the addition of the derivative term (PID)
increases damping and reduces overshoot [22].
From figure 1.15, it can be seen how the PID controller works. The integral term accounts for
the error up to time t (past), (shaded portion); the proportional term accounts for the instan-
taneous value of the error (present); and the derivative estimates the growth, or decay, of the
error over time (future) [40].

Figure 1.15: Action of a PID controller (adapted from [40]).

Integrator Wind-up

Linear models can provide an understanding of many aspects of control systems. However, some
nonlinear effects should be accounted for when designing a controller, namely the physical limi-
tations of the actuators. For example, a thruster has limited speed, and a valve cannot be more
than fully opened or fully closed.
When this happens, the feedback loop is no longer doing its job since, at the moment that the
system reaches the desired state, the value of the integrator output is still significant. To com-
pensate that, the error needs to have opposite sign for an extended period, as shown in figure
1.16. This phenomenon is referred to as integrator wind-up [40].
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Figure 1.16: Wind-up effect.

Literature presents different solutions to this problem [40], two common ones are clamping,
or conditional integration which prevents the output from accumulating when the controller
output is saturated, and back-calculation (figure1.17). In this last method, when the extra
feedback path becomes active (saturation in actuators) the integral term is recomputed, so
that its new value helps to stabilize the integrator. It is advantageous to not instantaneously
reset the integrator, but instead do it dynamically, with a constant Tt [40].

Figure 1.17: Controller with back-calculation loop (adapted from[40]).

1.4.3 Modern Control

During the 1950s, several authors, including Kalman, began working on the Ordinary Differential
Equations (ODEs), as a model for control systems, known as the state-space approach. Allied
to these works, the advances in the digital computers allowed the direct work with ODE in the
state form. Even though this work’s foundation took place in the 19th century, this state-space
approach, for control purposes, is often referred to as modern approach [41].
In the first stage, modern control allows the study of the system’s controllability and observ-
ability. Considering an initial time as t0, the terms are defined as:

• Controllability: The system is controllable if and only if exists a control vector that can
drive any arbitrary state x(t0) to any other, in a finite interval of time.
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• Observability: The system is observable at a time t if, in the x(t0) state, it is possible to
determine this state from the observation of the output, over a finite time interval.

To prove controllability and observability lets consider the linear continuous-time system in the
state-state space form, where n is the number of states, p the number of inputs and q the
number of outputs [37]. ẋ = Ax+Bu

y = Cx+Du
(1.33)

where:
x = state vector, x ∈ ℜn

u = input or control vector, u ∈ ℜp

y = output vector, y ∈ ℜq

A = system matrix, A ∈ ℜn×n

B = input matrix, B ∈ ℜn×p

C = output matrix, C ∈ ℜq×n

D = feedforward matrix, D ∈ ℜq×p

For the system to be controllable, the controlability matrix Co needs to have rank n.

Co =
[
B AB A2B ... An−1B

]
(1.34)

In the same way, the system is observable if, and only if, the observability matrix Q has rank n.

O =
[
CT ATCT (AT )

2
CT ... (AT )

n−1
CT
]

(1.35)

According with [42], the controlability condition is enough to prove the closed loop stability;

1.4.3.1 Linear Quadratic Regulator

Linear quadratic regulator (LQR) is an optimal feedback controller that in its original form,
forces all the states to go to zero. With some modifications can be used to track a reference as
seen in the figure 1.18 [39].

Figure 1.18: Linear quadratic regulator system.

To derive the LQR control, controllability and observability need to be ensured [38]. Assuming
the state-space form:

ẋ = Ax+Bu (1.36)

Considering that all states are available for the controller, the optimal control problem deter-
mines the feedback gain, K matrix, of the optimal control vector:

u(t) = −Kx(t) (1.37)
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The feedback control law for the system is found by minimizing the quadratic cost function, or
performance index:

J =

∫ ∞

0

(xTQx+ uTRu)dt (1.38)

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric matrix,
Q ≥ 0, and R is a positive-definite Hermitian or real symmetric matrix, R > 0. They act like
weights, i.e. theQmatrix, for being related with the system state x, will account for the errors’
importance, and R, by being related to the control u, will account for the expenditure of the
energy in control signal [38].
The solution to the minimization problem is the positive-definite Hermitian or real symmetric
matrix P , which corresponds to the Algebraic Riccati Equation (ARE) [38]:

ATP + PA− PBR−1BTP +Q = 0 (1.39)

Resulting in the feedback law:

u = −R−1BTPx (1.40)

If working as set point tracker, the feedback law can be given by [39]:

u = −R−1BTP (x− xdesired) (1.41)

With the goal of making the weight selection step more intuitive, Bryson’s method suggests that
each element of the diagonal matrices Q and R is the inverse square of the maximum expected
value for the variable [42], i.e.:

Q = diag(Qi), Qi =
1

x2i,max

(1.42)

R = diag(Ri), Ri =
1

u2
i,max

(1.43)

Where x2i,max and u2
i,max are the maximum expected values for the xi and ui.

The design process can be summed up by the following steps [42]:

1. Dynamic system definition (A,B);

2. Weight selection (Q,R);

3. ARE solution (P );

4. Control matrix solution (K);

5. Feedback through equation 1.37.

Integral Action

As in the PID controller, it is also possible to add an integral term to the LQR controller. The
basic approach in integral feedback is to create a state within the controller that computes the
integral of the error signal, which is then used as feedback term. Lets consider the new variable
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z defined by [15]:

ż = y = Cx (1.44)

Where C matrix is used to extract potential integral states from the state vector x. The system
is now defined as:

ẋa = Aaxa +Bau (1.45)

Where;

xa =

[
z

x

]
;Aa =

[
0 C

0 A

]
, Ba =

[
0

B

]
(1.46)

The performance is now calculated by:

J =

∫ ∞

0

(xTaQaxa + uTRu)dt (1.47)

Where Qa = QT
a ≥ 0 and R = RT > 0 are the weighting matrices. Then the solution to the LQR

setpoint regulation is given by:

u = −R−1BT
a P∞xa (1.48)

Where P∞ is the solution to the Riccati equation:

P∞Aa +AT
a P∞ − P∞BaR

−1BT
a P∞ +Qa = 0 (1.49)

Now, the control objective is to regulate the xa state to zero using u [15]. Reminding that:

z =

∫ ∞

0

e(τ)dτ (1.50)

Remarks about LQR

There are some key characteristics of LQR worth mentioning [18]:

• Excellent stability margins: according to [18], the gain margin up to infinity and over 60
degrees of phase margin. That means robustness for all magnitude of disturbances [43];

• Optimality: Since the closed-loop eigenvalues are found according to the minimization of
the cost function J, there is no need for pole placement and therefore the resulting value
is optimal;

• Unique analytical solution.

1.4.4 Stability

The first and most important question about the various properties of a control system is whether
it is stable or not. An unstable control system is useless and potentially dangerous [28]. There-
fore, every control system whether linear or nonlinear involves a stability problem and must be
addressed properly [28].

21



1.4.4.1 Linear Systems

Concerning linear time-invariant systems, there are two concepts that need to be addressed:
natural response and forced response.
The natural response describes the way that the system dissipates or acquires energy. The
nature of this response only depends on the system, not on the input. Contrarily, the forced
response is dependent on the input [37]. For an LTI system, it is allowed to say [37]:

Output response = Natural response+ Forced response (1.51)

Using these concepts, a system is:

• Stable if the natural response approaches zero as time goes to infinity;

• Unstable if the natural response grows without bounds, as time goes to infinity;

• Marginally stable if the natural response neither decays nor grows but remains constant
or oscillates as time goes to infinity.

Therefore, the definition of stability states that only forced response remains as the natural
tends to zero [37].
Considering the natural response stability, many techniques, such as solving a differential equa-
tion or taking the inverse Laplace, enable the evaluation of this output response. However, many
are time-consuming and painstaking [37]. A simple and faster method to determine whether the
system is stable or not is to analyze the transfer function, namely the poles’ location in the com-
plex plane (s = σ + jω), as can be seen in figure 1.19. Therefore, according to [37] a system
is:

• Stable if all the poles are located in the Left Half Plane (LHP);

• Unstable if one or more poles are located in the Right Half Plane (RHP);

• Marginally stable if at least one pole is located in the imaginary axis (jω).

Figure 1.19: Stability in the complex plane.

Looking now at stability from the perspective of state-space. Considering the linear system:

ẋ = Ax (1.52)

The solution is given by [44]:

x(t) = e(t−t0)Ax0 (1.53)
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where x0 is the initial state. The exponential of a matrix is defined by the Taylor series [44]:

eX = I +X +
1

2
X2 +

1

3!
X3 + ... (1.54)

By assuming that the matrix X, with the dimension n×n, has n distinct eigenvectors, i.e is non
defective, the solution is given by [44]:

eX = PeΛP−1 (1.55)

where Λ is the eigenvalues diagonal matrix and P the matrix of eigenvectors. Applying now to
equation 1.53:

x(t) = Pe(t−t0)ΛP−1 (1.56)

where the quantity e(t−t0)Λ, namely the values of Λ, will determine if the system converges to
the origin. Therefore, the linear system is:

• Stable if all eigenvalues of A are strictly in the left-half complex plane;

• Unstable if at least one eigenvalue of A is strictly in the righ-half complex plane;

• Marginally stable if all eigenvalues of A are strictly in the left-half complex plane, but at
least one is on the imaginary axis jω.

1.4.4.2 Nonlinear Systems

Physical systems are inherently nonlinear. However, no universal technique has been devised
for the analysis of nonlinear control systems [28]. However serious efforts have been made to
provide the right tools for this task [28]. Among those tools is the Lyapunov theory. The basic
Lyapunov theory is comprised of two methods to address the nonlinear system stability, the
indirect method, and the direct method [28]. For this thesis purpose, only the indirect method
will be addressed.
According to Lyapunov, a system is stable if it starts near an equilibrium point and stays around
it ever after [28]. Since nonlinear systems may exhibit much more complex behavior than the
linear systems, some additional/refined stability concepts are required.

Asymptotic Stability and Exponential Stability

In some systems, knowing that the state will stay in the neighborhood of the equilibrium is not
enough. Therefore it may be a necessity to understand if the state actually converges to the
original value. Hence, [28]:

An equilibrium point is said to be asymptotic stable, in addition to the Lyapunov stability,
if the states that start close to the equilibrium point actually converge to it.

In many application, there is a need to estimate how fast that convergence occurs. There-
fore [28]:

23



An equilibrium point is said to be exponentially stable if there is two strictly positive num-
bers α and λ such that:

∀t > 0, ∥x(t)∥ ≤ α∥x(0)∥e−λt (1.57)

where λ is a positive number and it is called as the rate of exponential convergence.

Linearization and Local Stability

The nonlinear system can be linearized around an operating point, or equilibrium point, through
a Taylor expansion, and then linear control techniques can be used to control the system.
The Lyapunov indirect method, or Lyapunov’s linearization method, is concerned with local
stability of the nonlinear system. This method justifies the use of linear control techniques on
nonlinear systems. Therefore, the Lyapunov indirect method states that [28]:

• If the linearized system is strictly stable (i.e all eigenvalues of A are strictly in the left-
half complex plane), then the equilibrium point is asymptotically stable for the actual
nonlinear system.

• If the linearized system is unstable (i.e at least one eigenvalues of A is strictly in the
righ-half complex plane), then the equilibrium point is unstable for the actual nonlinear
system.

• If the linearized system is marginally stable (i.e all eigenvalues of A are strictly in the
left-half complex plane, but at least one of them is on the imaginary axis jω), then one
cannot conclude about the linear approximation.

1.4.4.3 Stability Margins

Knowing that the system is stable, in practice, is not enough [40]. Control design is usually done
based on mathematical models or through experimental tests in a controlled environment. Both
of these methods may not consider all the process variations that can affect the control system.
Since the designer cannot have perfect knowledge of the process variations margins must be
accounted [43].
First the concepts of phase and gain need to be addressed.

Considering a LTI system G(s). Assuming that the system is subjected to a sinusoidal input
[40]:

u(t) = sin(ωt) (1.58)

the output is distorted based on the properties of G(s). For an LTI system, the distortion is
presented in two ways: in the magnitude of the signal and in the phase of the signal. The
response will be in the form [40]:

y(t) = A(ω)sin(ωt+ ϕ(ω)) (1.59)

where A(ω) is the amplitude, and ϕ(ω) the phase shift [40]. The gain is the proportion of the
magnitude of the output, to the magnitude of the input at steady state, and phase is the shift
of the signal, measured as an angle [43].
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Considering a closed loop system G(s), the transfer function is given by [43]:

G(s)

1 +G(s)
(1.60)

Reminding that the instability happens if at least one pole is on the Right Half Plane (RHP), it
is concluded that this system is unstable if 1 + G(s) = 0, which corresponds to the case where
G(s) = −1. Therefore, G(s)must be kept away from −1 for the closed loop system to be stable.
This condition corresponds to the case where the gain of the system is 1, or 0dB, and the phase
is −180◦ because it flips the input upside down [43]. Margin corresponds to how far away from
this point the system is.
Gain and phase margins are the amount of gain and phase that can be added to the system be-
fore it goes unstable. These margins can be inferred from a Bode plot [43]. However, since the
system is subjected to external disturbances, some results may mislead the designer to assume
that the system is robust. Therefore, sensitivity is as important to analyze, like gain and phase
margin.

Considering the simplified system in figure 1.20.

Figure 1.20: Closed loop system subjected to external disturbances.

The transfer function of the system is [43]:

Y (s) =
C(s)G(s)

1 + C(s)G(s)
R(s) +

1

1 + C(s)G(s)
N(s) (1.61)

where N(s) represents the disturbances. The sensitivity function is given by the second term
of this equation. Using this result, it is possible to determine the process sensitivity across the
spectrum of frequencies. According to [43], the typical values of maximum sensitivity are in the
range of 1 to 2. Closest to 1 represent a more conservative controller and closest to 2 a more
aggressive controller.
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1.5 Purpose and Contribution

Control systems are an integral part of the modern society [37]. Being able to develop a control
system is being capable of understanding the system at its most basic level.
For autonomous vehicles, there is a continuous demand for advanced features. Therefore, the
control system design must be able to provide the right performance, ensuring both task accom-
plishment and the integrity of the system.
Developing a control system for an underwater vehicle is not straightforward. The highly non-
linear underwater environment [45] makes the mathematical modeling of the vehicle a complex
task and the outcome may not be an accurate representation of the AUV’s dynamics, affecting
the controller performance. It is therefore paramount to devote the necessary effort to develop
a control that can be robust to disturbances.

In this context, the purpose of this thesis is to, among the fields of study that the AUV de-
velopment entails (figure 1.21), design and analyze two control solutions for the AUV being
developed at CEiiA. This work is aimed at increasing CEiiA’s capabilities in the field of control
for underwater vehicles.

Figure 1.21: AUV’s fields of study.

An overview of the controllers shows that state-of-art motion control systems are usually de-
signed using PID control methods [15]. However, more advanced control systems have been
devised. Example of that is the LQR controller. Therefore, two control designs are proposed
based on both of these methods. Since the controller can only be as good as its guidance inputs,
it will be proposed two guidance solutions, one based on waypoint following and other on path
following. For the simulation/validation purpose, the nonlinear model devised in [17] will be
used.
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1.6 Thesis Outline

This thesis is organized as follows.

• In chapter 1 the research developed in this thesis is contextualized, by providing an
overview of the AUV in study and the required bibliographic review.

• Chapter 2 addresses the nonlinear model devised in [17].

• Chapter 3 highlights two guidance solutions, one based on waypoint following and the
other on path following.

• Chapter 4 presents the linearization of the complete nonlinear model, the control design
of PID and LQR and the control allocation law.

• In chapter 5 are simulated both guidance methods for PID and LQR controllers.

• Chapter 6 concludes the thesis, reporting the remarks about this work and guidance for
further works.
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Chapter 2

AUV Dynamic Model

The dynamic model allows for controller design and respective simulation and validation. In this
chapter, the nonlinear dynamic model of the AUV being developed at CEiiA is briefly described,
as well as an overview of the modeling process used to estimate vehicle’s parameters. For a de-
tailed description of the modeling process of this AUV, please refer to [17]. Some modifications
in the damping term, later to [17], are also presented.

2.1 General Dimensions of the AUV

The dimensions of interest for the AUV are presented in table 2.1, which corresponds to figure
2.1.

Figure 2.1: General dimensions of the AUV (not to scale).

Table 2.1: Dimensions for figure 2.1 in meters obtained from 3D model.

L 2.800
H 1.563
HCB 0.093
LLT 0.689
HVT3 0.326
HVT4 0.549
LLT1 0.300
LLT2 0.300

As stated in section 1.2.1, the origin of the body fixed frame is chosen to coincide with the CG,
i.e. rbg = [0 0 0]T . The inertial frame is the local NED (figure 1.8). According to figure 2.1,
the CB, defined with respect to the body fixed frame, is given by rbB = [0 0 −HCB]T .
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2.2 Dynamic Model of the AUV

In literature, there are several methods to estimate the dynamic parameters, such as exper-
imental, analytical, and computational methods [46]. In [17], the parameters were obtained
resorting to analytical and computational methods. Computer Aided Design (CAD) software was
used to determine the inertial parameters of the vehicle, analytical methods to the estimation
of added mass, and Computational Fluid Dynamics (CFD), which involves solving the Navier-
Stokes flow equations numerically using a computer [46], to the hydrodynamic coefficients.
These methods allow for fast estimation of the parameters and, because there is no need for
experimental methods, at a reduced cost [17].

As mentioned in section 1.1, the AUV during the mission has three different stages. For this
thesis purpose, only the data acquisition stage will be considered.

2.2.1 Rigid Body Term

The rigid-body matrices parameter of the AUV, namely the mass and the inertia, were obtained
from the CAD software according to [17], are:

M = 440.48 kg

Ix = 58.35 kg ·m2

Iy = 148.71 kg ·m2

Iz = 94.04 kg ·m2

Ixz = −2.44 kg ·m2

Therefore, the rigid body matrix, Mrb, as seen in the equation 1.6, results in:

Mrb =



440.48 0 0 0 0 0

0 440.48 0 0 0 0

0 0 440.48 0 0 0

0 0 0 58.35 0 2.44

0 0 0 0 148.71 0

0 0 0 2.44 0 94.04


(2.1)

With respect to the rigid body Coriolis and centripetal matrix, Crb(ν), as stated in 1.7, is given
by:

Crb(ν) =



0 0 0 0 440.48w −440.48v

0 0 0 −440.48w 0 440.48u

0 0 0 440.48v −440.48u 0

0 440.48w −440.48v 0 2.44p+ 94.04r −148.71q

−440.48w 0 440.48u −2.44p− 94.04r 0 2.44r + 58.35p

440.48v −440.48u 0 148.71q −2.44r − 58.35p 0


(2.2)
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2.2.2 Added Mass Term

As presented in equation 1.10, the added mass term is divided into two terms: the added mass
matrix (equation 1.11) and the hydrodynamic Coriolis and centripetal matrix (equation 1.12).
In [17], the added mass was estimated using ellipsoid approximation for both hulls and flat plate
approximation for fairings. The resulting values, from the sum of all components, are:

Xu̇ = −11.64kg

Xq̇ = 1.74kgm

Yv̇ = −450.58kg

Yṗ = −23.33kgm

Yṙ = −82.23kgm

Zẇ = −419.13kg

Zq̇ = −76.78kgm

Kṗ = −60.82kgm2

Kṙ = −2.92kgm2

Mq̇ = −155.56kgm2

Nṙ = −181.84kgm2

The added mass matrix, for this AUV, is:

MA =



11.64 0 0 0 −1.74 0

0 450.58 0 23.33 0 82.23

0 0 419.13 0 76.78 0

0 23.33 0 60.82 0 2.92

−1.74 0 76.78 0 155.56 0

0 82.23 0 2.92 0 181.84


(2.3)

For the Coriolis and centripetal term due to added mass, the values from equation 1.12 can be
devised [17]:

a1 = −11.64u+ 1.74q

a2 = −450.58v − 23.33p− 82.23r

a3 = −419.13w − 76.78q

b1 = −23.33v − 60.82p− 2.92r

b2 = 1.74u− 76.78w − 155.56q

b3 = −82.23v − 2.92p− 181.84r

2.2.3 Hydrodynamic Term

In [17] only CFD analysis on damping due to linear velocities were available. The coefficients that
will be presented were updated due to small changes in geometry. Also, a quartic approximation
of damping term was developed in CEiiA. This accounts for different dynamics in reverse motion,
which is actually true because there is no symmetry in the yz plane.
The damping coefficients provided are:
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• Damping due to motion in surge:

Table 2.2: Linear damping coefficients due to
motion in surge.

Xu = −24.6

Yu = 0

Zu = 1.8

Ku = 0

Mu = 0

Nu = 0

Table 2.3: Quadratic damping coefficients due to
motion in surge.

Xu|u| = −5.2

Yu|u| = 0

Zu|u| = 3.1

Ku|u| = 0

Mu|u| = 0

Nu|u| = 0

Table 2.4: Cubic damping coefficients due to
motion in surge.

Xuu|u| = −21.1

Yuu|u| = 0

Zuu|u| = 1.4

Kuu|u| = 0

Muu|u| = 0

Nuu|u| = 0

Table 2.5: Quartic damping coefficients due to
motion in surge.

Xuuu|u| = 3.79

Yuuu|u| = 0

Zuuu|u| = 0

Kuuu|u| = 0

Muuu|u| = 0

Nuuu|u| = 0

• Damping due to motion in sway:

Table 2.6: Linear damping coefficients due to
motion in sway.

Xv = 0.0

Yv = −219.5

Zv = 0.0

Kv = 79.7

Mv = 171.8

Nv = −246.1

Table 2.7: Quadratic damping coefficients due to
motion in sway.

Xv|v| = 0.0

Yv|v| = −1844.4

Zv|v| = 0.0

Kv|v| = −170.7

Mv|v| = −52.6

Nv|v| = −215.3

• Damping due to motion in heave:

Table 2.8: Linear damping coefficients due to
motion in heave.

Xw = 0.0

Yw = 0.0

Zw = −284.8

Kw = 0.0

Mw = 100.3

Nw = 0.0

Table 2.9: Quadratic damping coefficients due to
motion in heave.

Xw|w| = 0.0

Yw|w| = 0.0

Zw|w| = −43.8

Kw|w| = 0.0

Mw|w| = 56.1

Nw|w| = 0.0
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Table 2.10: Cubic damping coefficients due to
motion in heave.

Xww|w| = 0.0

Yww|w| = 0.0

Zww|w| = −255.5

Kww|w| = 0.0

Mww|w| = 206.9

Nww|w| = 0.0

Table 2.11: Quartic damping coefficients due to
motion in heave.

Xwww|w| = 0.0

Ywww|w| = 0.0

Zwww|w| = 10.8

Kwww|w| = 0.0

Mwww|w| = −55.1

Nwww|w| = 0.0

• Damping due to rotation:

Table 2.12: Linear damping coefficients due to
rotation.

Kp = −34.0

Mq = −59.0

Nr = −45.0

Table 2.13: Quadratic damping coefficients due to
rotation.

Kp|p| = −84.0

Mq|q| = −148.0

Nr|r| = −100.0

Replacing the coefficients into equations 1.15 and 1.16, plus the cubic and quartic damping
matrix yields:

Dl =



24.6 0 0 0 0 0

0 219.5 0 0 0 0

−1.8 0 284.8 0 0 0

0 −79.7 0 34.0 0 0

0 −171.8 −100.3 0 59.0 0

0 246.1 0 0 0 45.0


(2.4)

Dq(ν) =



5.2 | u | 0 0 0 0 0

0 1844.4 | v | 0 0 0 0

−3.1 | u | 0 43.8 | w | 0 0 0

0 −170.7 | v | 0 84.0 0 0

0 52.6 | v | −56.1 | w | 0 148.0 | q | 0

0 215.3 | v | 0 0 0 100 | r |


(2.5)

Dcub =



21.1uu 0 0 0 0 0

0 0 0 0 0 0

−1.4uu 0 255.5ww 0 0 0

0 0 0 0 0 0

0 0 −206.9ww 0 0 0

0 0 0 0 0 0


(2.6)
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Dqt(ν) =



−3.79 | u | uu 0 0 0 0 0

0 0 0 0 0 0

0 0 −10.8 | w | ww 0 0 0

0 0 0 0 0 0

0 0 55.1 | w | ww 0 0 0

0 0 0 0 0 0


(2.7)

2.2.4 Hydrostatic Term

Reminding that the CG is denoted as rbg = [0 0 0]T and CB as rbB = [0 0 − 0.093]T . It
can be concluded that CG is aligned with CB in x and y axis, but misaligned in the z axis. The
distance of 0.093 meters between the two centers, according to [47], provides sufficient height
for inducing a righting moment that passively controls vehicle’s roll and pitch angles.
The weight is found to be 3482.6 N and the buoyancy as 3486.5 N. Therefore the residual buoyancy
has the value of 3.9240 N.
According to equation 1.23, the resulting hydrostatic term yields:

g(η) =



−3.9240 sin(θ)

3.9240 cos(θ) sin(ϕ)

3.9240 cos(θ) cos(ϕ)

−324.24 cos(θ) sin(ϕ)

−324.24 sin(θ)

0


(2.8)

2.2.5 Thrust Term

The AUV has four thrusters, as mentioned in section 1.1. Each of the thrusters, according to
[48], is capable of 120 N of forward thrust, and 85 N of backward thrust. The vector location,
with respect to CG, of each thruster is [17]:

• Right longitudinal thruster (Thruster 1):

rgT1 =
[
−0.689 0.300 0

]
• Left longitudinal thruster (Thruster 2):

rgT2 =
[
−0.689 −0.300 0

]
• Forward vertical thruster (Thruster 3):

rgT3 =
[
0.910 0 0.326

]
• Aft vertical thruster (Thruster 4):
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rgT4 =
[
−0.910 0 −0.549

]
Therefore, the mapping matrix L, from the equation 1.9, is devised as:

L =



1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 −|rgT3(1)| |rgT4(1)| 0 0

−|rgT1(2)| |rgT2(2)| 0 0 0 0


=



1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0.910 −0.910 0 0

0.300 −0.300 0 0 0 0


(2.9)

The force/control vector, U, is expressed as:

U =
[
U1 U2 U3 U4 0 0

]T
where U1, U2, U3 and U4 are the thrust force of thruster 1, 2, 3, 4, respectively.
The vector of forces and torques created by the thrusters, is then expressed as:

τ =



1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 −0.910 0.910 0 0

−0.300 0.300 0 0 0 0





U1

U2

U3

U4

0

0


(2.10)

From the mapping matrix analysis, it is possible to understand that the AUV can only indepen-
dently control 4 DOF. Despite the vehicle’s underactuation, the metacentric height suggests
that roll DOF is passively controlled. With respect to sway DOF, even though it is not passively
nor actively controlled, the ability to control yaw allows for complete freedom of movement.

From this point on, the term common mode will be used to describe the external force in surge
(τ1) and external force in heave (τ3); and the differential mode to describe the external torque
about the z axis (τ6) and external torque about the y axis (τ5).

2.3 Dynamic Model Considerations

The methods used to estimate the vehicle’s parameters induce two limitations [17]:

• Hydrodynamic coefficients estimation is only valid for angles of attack (α) and side-slip
(β) within −25◦ and 25◦;

• Added mass and inertia parameters are underestimated.

The underestimation is considered a common practice when modeling underwater vehicles [49].
Despite the fact that the result may load the model-based control, it does not necessarily com-
promise the performance significantly. On the other hand, for the overestimation scenario, the
controller might compensate for forces that are not there, leading to abnormal control [49].
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Furthermore, to improve the controller performance, it is possible to tune the controller gains
resorting to experimental tests.
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Chapter 3

Guidance

Guidance systems play a vital role in bringing autonomy to an AUV. Its purpose is to determine
the reference values to be used in the control block. Thus, this chapter highlights two guidance
laws: a waypoint and station-keeping guidance algorithm, characterized by steering by Line Of
Sight (LOS) law and a path following algorithm characterized by the lookahead-based steering.

3.1 Waypoint and Station-keeping Guidance

3.1.1 Steering Guidance by Line Of Sight

The LOS guidance algorithm provides a reference angle (ψr) that will guide the AUV from its
current position (P (x, y)) towards the waypoint (W (xk, yk)), figure 3.1. The solution for this
problem is [19]:

ψr = arctan

(
yk − y

xk − x

)
∈ [−π/2, π/2] (3.1)

where ψr can be calculated by the four-quadrant version of arctan(y/x) ∈ [−π, π], usually de-
fined as atan2(y, x) in mathematically oriented programming languages [19]. The waypoint is
reached if the vehicle lies inside a Circle Of Acceptance (COA) of radius ρk, around the waypoint.
That is [19]:

dk =
√
(xk − x)2 + (yk − y)2 ≤ ρk (3.2)

According to [45], a good initial value for the size of ρk is 2 × L, where L stands for vehicle’s
length.

Figure 3.1: Line Of Sight guidance in the steering plane.
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3.1.2 Reference Speed Law and Station-keeping

As in [14], the speed reference (uref ) is calculated as function of the distance to the waypoint
by:

ud = ku sin
−1

(
du

|du|+ ks

)
2

π
(3.3)

where ku is the upper limit of the reference speed, ks > 0 a parameter for tuning, that adjust
the reference speed value according to the distance error (figure 3.2), and du is defined as:

du = dk − ρu (3.4)

where ρu is a secondary COA. This is defined to avoid unnecessary usage of batteries with the
thrusters once close to the waypoint. Soon as the vehicle exits this COA, due to external per-
turbations, the thrusters will bring the AUV back. Since ρk > ρu, the reference speed never
reaches zero, unless the current waypoint is the last one.

Figure 3.2: Influence of the parameter ks in the reference speed.

3.1.3 Diving Guidance

Underwater vehicles often control depth by adjusting the pitch angle. In this case, the vertical
common mode can be added to the equation. Therefore, there are two alternatives to dive,
one via controlling pitch angle (differential mode), and the other via controlling heave speed
(common mode).

For the differential mode, as in steering, the desired depth can be achieved through a com-
bination of velocity and pitch angle. The reference pitch angle (θr) is given by:

θr = atan2(zk − z, xk − x) (3.5)

For the common mode, it is possible to calculate the vertical velocity as function of the vertical
distance, as in the reference speed law. The new commanded vertical velocity (wd) is given by:

wd = kw sin−1

(
ez

|ez|+ ks

)
2

π
(3.6)
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where kw is the upper limit of the vertical velocity, ks a tuning parameter, and ez the difference
between the depth of the waypoint and the current depth of the AUV expressed as:

ez = (zk − z); (3.7)

To devise a guidance law, there is a need to understand the advantages and disadvantages of
both approaches for the diving scenario.
Concerning common mode, this strategy cannot be used effectively at high speeds since the
power consumption increases due to reduction of thruster effectiveness with forward motion
[50], and the increased cross-sectional area when diving generates higher hydrodynamic forces
that counter the ones produced by the thrusters.
On the other hand, the pitching approach can take advantage of forward motion which is hy-
drodynamically more efficient. However, the effectiveness of pitch is as greater as the forward
velocity.
Therefore, a unified control strategy that enables the operation of the AUV for an entire range
of operating speeds is proposed. As in [51, 52], a weight factor for both θr and wd that manages
the contribution of each mode is added a function of the forward velocity. The resulting weights
are:

Wcm = 1− 1

2

(
tanh

(
u− (ucmS+ucmI)

2

σ∗
cm

)
+ 1

)

Wdm =
1

2

(
tanh

(
u− (udmS+udmI)

2

σ∗
dm

)
+ 1

) (3.8)

where ucmS, ucmI, udmS and udmI correspond to the upper limit and lower limit of the transi-
tional speed zone for common mode and differential mode respectively, σ∗

cm and σ∗
dm shape the

steepness of the transitional speed for both modes, i.e. for lower values the transition will be
faster and vice-versa. The resulting action can be seen on figure 3.3.

Figure 3.3: Mode weight funtion: ucmS=udmS=0.5 m/s; ucmI=udmI=0.3 m/s and σ∗
cm=σ∗

dm=0.05.

As velocity increases the common mode weight decreases and, at a predefined speed, only dif-
ferential mode is nonzero, and vice-versa. Since the same thrusters provide both modes, it is
important not to exceed the thruster capacity. For the real scenario, some experimental trials
should be conducted to access the critical velocity values and power consumption, to adapt
the above-presented law. However, two extra laws are suggested to tackle two problems in
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different scenarios.
Let us consider the vehicle performing a two-dimensional path (xy plane). Once in the desired
depth, it is useful to maintain the pitch angle at zero and avoid pitching up and down to cor-
rect depth deviations. Therefore, common mode weight (Wcm) should be 1 and the differential
(Wdm) 0 if already at the reference depth.
The other scenario is that, when the vehicle starts the mission, the common mode will be on just
for a few seconds, until it reaches the operational velocity. The initial effort to accelerate the
vehicle to reference vertical speed will be worthless since right after the reference will be zero.

Therefore, in addition to 3.8, it is proposed:

if |ez| < 1

Wcm = 1;

Wdm = 0;

elseif d > 2

Wcm = 0;

(3.9)

The waypoint acceptances is now done for both horizontal and vertical coordinates. Therefore,
the condition for acceptance becomes:

| z − zr | | < εz ∧ dk =
√
(xk − x)2 + (yk − y)2 ≤ ρk (3.10)

where εz is the acceptance depth error.
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3.1.4 Waypoint Following and Station Keeping Algorithm

Considering the aforementioned laws, figure 3.4 represents the implementation details of the
waypoint following and station keeping algorithm.
Firstly, the n waypoint are defined as matrix in the form:

W =


x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 (3.11)

Then two variables are defined: K as the number of lines of waypoint matrix, i.e., the number
of waypoints; and i as 1, which will be used to access the waypoint coordinates.
Secondly, the distance to the waypoint is calculated (dk and ez). If the vehicle is directed
towards the last waypoint (i = K), the reference values are calculated. If not, the guidance
will assess if the vehicle lies inside of the waypoint’s COA. If the condition is true, guidance
block will switch for the next waypoint, which corresponds to incrementing i.

Figure 3.4: Waypoint follower and position holder fluxogram.
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3.2 Path Following Guidance

For path following, the guidance laws are composed of speed and steering laws that can be
rearranged for the specific control objectives [35]. Assuming positive speed, only assigning
steering laws becomes necessary to accomplish the path following objective. The LOS method
is frequently used for path following [15]. For simplicity, it will be considered that the path is
two-dimensional. For the case where the path is defined at a different depth, the vehicle will
reach it according to the above-derived depth law. The reference speed is calculated as in the
previous section.

3.2.1 Lookahead-based Steering

The speed of the AUV is given by:

U(t) =
√
ẋ(t)2 + ẏ(t)2 + ż(t)2 =

√
u(t)2 + v(t)2 + w(t)2 (3.12)

while steering is:

ψ(t) = atan2(ẏ, ẋ) (3.13)

Considering a straight-line between two waypoint Wk(xk, yk) and Wk+1(xk+1, yk+1), figure 3.5.
The angle between the xn axis and the straight line is obtained by:

αk = atan2(yk+1 − yk, xk+1 − xk) (3.14)

Therefore, it is possible to calculate both along-track distance (tangential to path), s, and the
cross-track error (normal to path), e, by [15]:

s(t) = [x(t)− xk] cos(αk) + [y(t)− yk] sin(αk) (3.15)

e(t) = −[x(t)− xk] sin(αk) + [y(t)− yk] cos(αk) (3.16)

where (x(t), y(t)) is the current position of the AUV in the horizontal plane.

For the lookahead-based steering, the steering assignment is divided into two terms:

ψref = αk + ψLA(e) (3.17)

where αk is the path tangential angle [15], while the lookahead angle (ψLA) yields:

ψLA(e) = arctan

(
−e
∆

)
(3.18)

which corresponds to a velocity-path angle, which assures that the velocity is directed toward
a point on the path. This point is located a distance ∆ > 0 ahead of the projection point, of
the AUV, in the path [35].
According to the Pythagoras theorem, the expression for the lookahead distance is:

∆(t) =
√
R2 − e(t)2 (3.19)
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Figure 3.5: Path following scheme.

The steering law in equation 3.18 can also be interpreted as a saturating control law [15]:

ψLA = arctan(−Kpe) (3.20)

where Kp(t) = 1/∆(t). Therefore, the steering behavior is aggressive for high values of Kp,
which means small lookahead distances.
The along the track distance s should be used as switching criteria. Therefore, the condition is
given by:

sk+1 − s(t) ≤ ρk (3.21)

where ρk represents the radius of the COA. As in section 3.1.4, in the end of the mission the
vehicle will maintain within the COA of the last waypoint.
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3.2.2 Path Following Algorithm

Figure 3.6 represents the implementation details about the path following algorithm. Following
the same considerations as in section 3.1.4, where the waypoint matrix is defined as W , the
variable i as 1 and K as the number of waypoints.
Firstly, αk, s(t), sk+1, e(t) and ez are calculated. Then, it is verified if the vehicle is on the
last straight line, which corresponds to i + 1 = K(1). In this case, the reference values are
calculated. On the contrary, if the vehicle is not on the last straight line, guidance will assess
if the switching condition is verified, which in this case i will be incremented to generate the
next straight line.

Figure 3.6: Path following fluxogram.
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3.3 Block Representation

Simulink® is a block diagram environment integrated withMatlab R2017a1. The general structure
for the guidance block is then represented in the block diagram of figure 3.7.

Figure 3.7: Waypoint follower and position holder diagram.

3.4 Guidance Considerations

The AUV can independently control 4 DOFs, namely surge, heave, pitch, and yaw (see section
2.9). This chapter highlights the laws which determine the reference values to manipulate these
DOFs according to the control objective.
Two guidance solutions are hereby presented: following waypoints or a predefined path. How-
ever, if the AUV’s mission is to map a predefined area, the waypoint solutions may not provide
the expected mapping results. Since there is no spacial constraint, the vehicle may exit the
predefined area in the presence of ocean currents, maintaining only the heading to the next
waypoint (see figure 3.8). On the other hand, the path following solution would correct for the
predefined path in case of external disturbances.

1©1994-2017 The MathWorks, Inc.
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Figure 3.8: Illustration of the waypoint following scenario in the presence of ocean currents.

Concerning the diving maneuver, to switch between diving modes, two velocity dependent
weights are defined. The speed values presented in the graph from figure 3.3 were assumed
based on the longitudinal speed envelope of the AUV, considering the midpoint (0.4 m/s) as the
transitional velocity. For a proper choice of these values, some trials should be conducted to
understand the loss of effectiveness of the vertical thrusters, as well the hydrodynamic effi-
ciency for different velocities. However, two situations arise regarding the considerations of
the dynamic model when diving (see section 2.3).
Since hydrodynamic coefficients are valid for angles-of-attack within −25◦ and 25◦, for differ-
ential mode, the value of the reference pitch angle is limited to −25◦ ≤ θr ≤ 25◦. However, for
common mode, the angle-of-attack will reach ±90◦. For the purpose of this thesis, it will be
assumed that the hydrodynamic estimation is valid for this situation. The implications of this
assumption are addressed in section 4.2.
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Chapter 4

Controller Design

Having presented the mathematical equations that rule the dynamics of the AUV (chapter 2), it
is now possible to formulate the controller. To develop linear controllers, the dynamic model
should be adapted. On this chapter, the linearization procedure will be presented. Then, two
linear control designs, namely PID and LQR. Respective performance and stability are addressed.
To map the desired control forces generated by PID and LQR into commands of different actua-
tors a control allocation law is devised.

4.1 Linearization of the AUV model

To design a linear control system firstly is necessary to obtain a linear model. The non-linear
model for the AUV, equations 1.24 and 1.25, following a state-space formulation yields [53]:[

ν̇

η̇

]
=

[
−M−1(C(ν)ν +D(ν)ν + g(η))

J(η)ν

]
+

[
M−1

0

]
τ (4.1)

where the state vector dimension is 12, 6 components expressed in body-fixed frame and 6 on
the inertial frame. The objective is to transform into the form:

ẋ = Ax+Bu (4.2)

where A and B are the associated matrices with the linearized equation of motion, and u the
control input.

4.1.1 Linearized Model

The linear equations can be formulated by linearizing about an equilibrium point [54, 29]. Let
the perturbations be described as:

∆ν = ν − ν0 (4.3)

∆η = η − η0 (4.4)

where ν0 and ηo are the equilibrium points. Introducing the following vector notation [55]:

fc(ν) = C(ν)ν (4.5)

fd(ν) = D(ν)ν (4.6)

The linearization procedure is based on the expansion of the nonlinear function into a Taylor
series [38]. Therefore, neglecting the high order terms [38], equations 1.24 and 1.25 can be
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linearized as follows:

M∆ν̇ +
∂fc(ν)

∂ν

∣∣∣∣
ν0

∆ν +
∂fd(ν)

∂ν

∣∣∣∣
ν0

∆ν +
∂g(η)

∂η

∣∣∣∣
η0

∆η = ∆τ (4.7)

η̇ ≈ J(η0)ν0 +
∂J(η)ν

∂ν

∣∣∣∣
ν0η0

∆ν +
∂J(η)ν

∂η

∣∣∣∣
ν0η0

∆η (4.8)

Replacing η̇ = η̇0 +∆η̇0, and because η̇0 = J(η0)ν0 the equation 4.8 reduces to:

∆η̇ ≈ J(η0)∆ν +
∂J(η)

∂η

∣∣∣∣
η0

ν0∆η (4.9)

Defining the state-space as x = (x1, x2)
T , where x1 = ∆ν and x2 = ∆η, the linear equations of

motion are given by:

Mẋ1 + Cx1 +Dx1 +Gx2 = τ (4.10)

ẋ2 = Jx1 + J∗ (4.11)

where:

C = ∂fc(ν)
∂ν

∣∣∣
ν0

; D = ∂fd(ν)
∂ν

∣∣∣
ν0

; G = ∂g(η)
∂η

∣∣∣
η0

;

J = J(η0); J∗ = ∂J(η)
∂η

∣∣∣
η0

ν0;

Finally, assuming τ = u, the equations 4.10 and 4.11 lead to the following state-space model
[55]: [

ẋ1

ẋ2

]
=

[
−M−1[C +D] −M−1G

J J∗

][
x1

x2

]
+

[
M−1

0

]
u (4.12)

In many AUV applications, it is reasonable to assume that the AUV is moving with nonzero surge,
u0, and heave, w0 speed [54]. Therefore the matrices from equations 4.10 and 4.11 are given
by:

• The mass term [55]: The term of mass is the sum of the rigid body term, equation 1.6,
with the added mass term, 1.11.

• The Coriolis term [55]:

C =

[
0 C12

−CT
12 C22

]
(4.13)

C12 =

 0 −Xẇu0 + (m− Zẇ)w0 Xv̇u0 + Yẇw0

Xẇu0 − (m− Zẇ)w0 0 (m−Xu̇)u0 −Xẇw0

−Xv̇u0 − Yẇw0 −(m−Xu̇)u0 +Xẇw0 0

 (4.14)

C22 =

 0 −(Xṙu0 + Zṙw0) Xq̇u0 + Zq̇w0

Xṙu0 + Zṙw0 0 −(Xṗu0 + Zṗw0)

−(Xq̇u0 + Zq̇w0) Xṗu0 + Zṗw0 0

 (4.15)
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• Hydrodynamic damping term [55]:
Since the high order terms are neglected [38, 29], the damping matrix is simply equal to
the linear damping term (Dl) from equation 1.15.

• Hydrostatic term [55]: Since the vehicle is not neutrally buoyant i.e. B ̸= W , the hydro-
static term is given by:

G =



0 0 0 0 (W −B) 0

0 0 0 −(W −B) 0 0

0 0 0 0 0 0

0 0 0 (zgW − zBB) 0 0

0 0 0 0 (zgW − zBB) 0

0 0 0 −(xgW − xBB) −(ygW − yBB) 0


(4.16)

4.2 Linear Model Considerations

The above derived linear system has two nonzero linearization points, namely u0 and w0. Since
no flight envelope is available, some assumptions are mandatory to obtain the controllers.

As mentioned before, for this thesis purpose, it is being considered the data acquisition op-
erational scenario (see section 1.1). According to CFD analysis performed by engineers at CEiiA,
the AUV is intended to perform missions at a cruise speed of 0.8 m/s. Therefore, a good lin-
earization value for surge in cruise is u0 = 0.8 m/s.
For w0, the AUV has two distinct ways to perform diving: through differential thrust, controlling
pitch angle; or through common mode, controlling heave speed.
Diving with differential mode leads to heave speeds up to 0.05 m/s, suggesting that it could be
neglected [23].
For common mode, in addition to higher velocities (up to 0.4 m/s), it leads to angles-of-attack
of ±90◦, which means that the hydrodynamic coefficients are not valid [17]. However, this will
not be considered for this thesis. This assumption should be further addressed once the coef-
ficients are updated. Three scenarios can occur: there is no need for altering the controller
parameters; a simple change in the common mode controller gains, or the inclusion of another
linearization point, and with this adopting a gain-scheduled approach.
Therefore, since the nominal mission is planar (xy), the heave speed linearization value to be
considered is w0 = 0 m/s, resulting in the linearization point ν0 = [0.8 0 0 0 0 0]T .

A standard approach in controller design is to reduce the order of the dynamic model [55].
Healey and Marco [45] suggest that, for reduced velocities, the 6DOF linear differential equa-
tions can be divided into three non-interactive (or lightly interacting) subsystems for speed,
steering, and diving. The work presented in [17] also suggests that decoupling the lateral and
longitudinal subsystems is valid for this AUV.
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4.3 PID control

As mention before, PID control has successfully been implemented in many nonlinear systems
[22]. As in [23] the 6DOF dynamic model is divided into three subsystems. The subsystems and
their state variables are [55]:

1. Speed system state: u(t);

2. Steering system states: v(t), r(t) and ψ(t);

3. Diving system states: w(t), q(t) and θ(t).

The roll dynamic (p(t) and ϕ(t)) is neglected [23]. That is motivated by the fact that the roll is
passively controlled (see section 2.2.4).
The Matlab PID tuning tool [56] allowed for the first estimation of the gain values through the
generation of Bode and step plots. Then, by applying the controller to the nonlinear dynamic
model, the gains were manually tuned to fit the desired performance. The process can be seen
in the figure 4.1.

Figure 4.1: PID design process.

4.3.1 Speed Controller

The common mode (τ1) allows for the vehicle to control motion in surge. Surge differential
equation is:

(m−Xu̇)u̇−Xuu = τ1 (4.17)

Replacing values and applying the Laplace transform, the transfer function is given by:

u(s)

τ1(s)
=

0.0022

s+ 0.0544
(4.18)
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A PID control was applied, taking the form [23]:

τ1 = Kpũ+Ki

∫ t

0

ũ(τ)dτ +Kd
dũ

dt
(4.19)

where ũ = ud − u. To confine the output of the controller to the operational bounds of the
thrusters, saturation blocks are used. The back-calculation method is used to avoid integral
windup. Since the poles are located in the LHP, the system is stable [40]. From the analysis of
Bode plot from figure 4.2, stability margins can be inferred. The infinity gain margin and 84.7

degrees of phase margin, in addition to maximum sensitivity of 1, suggests that the system is
robust to external disturbances [18, 43].

Figure 4.2: Open- and closed-loop Bode plot of PID speed controller.

To assess the performance the controller, it is defined a time-varying reference surge speed,
and the resulting tracking of the controller using the nonlinear model can be seen in the figure
4.3.

Figure 4.3: PID speed controller simulation.

4.3.2 Heading Controller

Heading control is accomplished through the differential mode (τ6), i.e., the longitudinal thrusters
with different thrust output. For this subsystem, the state variables to account for are: v(t), r(t)
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and ψ(t). The equations are [23]:

(m− Yv̇)v̇ − Yṙ ṙ − Yvv(−Yr +mu0)r = τ2 (4.20)

−Nv̇ v̇ + (Iz −Nṙ)ṙ −Nvv −Nrr = τ6 (4.21)

ψ̇ ≈ r (4.22)

where τ2 is 0 since sway is not actively controlled. Expressing in state-space form yields:m− Yv̇ −Yṙ 0

−Nv̇ (Iz −Nṙ) 0

0 0 1


 v̇ṙ
ψ̇

+

−Yvv −Yr +mu0 0

−Nv −Nr 0

0 −1 0


vr
ψ

 =

 0

τ6

0

 (4.23)

Rearranging to ẋ = Ax+Bu form, where x = [v r ψ]T , for the above mentioned linearization
point yields:  v̇ṙ

ψ̇

 =

−0.1653 −0.4167 0

0.5672 −0.0503 0

0 1.0000 0


vr
ψ

+

−0.0003

0.0037

0

 τ6 (4.24)

The transfer function for this subsystem is:

ψ(s)

τ6(s)
=

0.003729s+ 0.0009888

s3 + 0.3549s2 + 0.2147s
(4.25)

The heading measurement (ψ) is given by a compass reading and the yaw rate (r) by a gyroscope.
As in [23] a PD controller is implemented. Moreover, the derivative term provides additional
phase margin, which increases robustness [23]. The result is:

τ6 = Kpψ̃ −Kdr (4.26)

where ψ̃ = ψref − ψ. Special attention to the yaw error. It must be redefined, as [14]:

if ψ̃ > π

ψ̃ = ψ̃ − 2π

if ψ̃ < −π

ψ̃ = ψ̃ + 2π

(4.27)

Once more, the closed-loop poles are located in the left half plane; therefore the system is
stable. The analysis of the Bode plot in figure 4.4, shows that the open-loop system has infinity
gain margin and 84.9 degrees of phase margin, ensuring robustness to external disturbances.
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Figure 4.4: Open- and closed-loop Bode plot of PD heading controller.

To assess the performance, it is defined a time varying yaw reference, and the tracking result
can be seen in the figure 4.5. The common mode (τ1) was fixed at zero.

Figure 4.5: PD heading controller simulation.

4.3.3 Depth Controller

For the depth control, as stated in section 3.1.3, there is a common mode (τ3) and a differential
mode (τ5). The associated state variables are: w(t), q(t) and θ(t). Since z(t) is controlled by the
heave speed (equation 3.6), it will not be included. The resulting equations are:

(m− Zẇ)ẇ − Zq̇ q̇ − Zww + ((m−Xu̇)u0 − Zq)q = τ3 (4.28)

−Mẇẇ + (Iy −Mq̇)q̇ + ((m−Xu̇)u0 −Mw)w −Mqq + (zgW + zBB)θ = τ5 (4.29)

θ̇ ≈ q (4.30)
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Expressing in the compact form yields:m− ZẆ −Zq̇ 0

−Mẇ (Iy −Mq̇) 0

0 0 1 0


ẇq̇
θ̇



+

 −Zw (m−Xu̇)u0 − Zq 0

(m−Xu̇)u0 −Mw −Mq (zgW + zBB)

0 −1 0


wq
θ

 =

τ3τ5
0


(4.31)

Once more rearranging to ẋ = Ax+Bu form, where x = [w q θ]T , yields:ẇq̇
θ̇

 =

−0.2604 0.4482 0.0974

−0.7934 −0.3070 −1.0902

0 1.0000 0


wq
θ

+

 0.0012 −0.0003

−0.0003 0.0034

0 0

[τ3
τ5

]
(4.32)

Through the differential mode (τ5), the controller will approach θr angle.
The transfer function of heave speed is:

w(s)

τ3(s)
=

0.00119s2 + 0.0002308s+ 0.001268

s3 + 0.5675s2 + 1.526s+ 0.3612
(4.33)

After several tests combining P, I and D, it is designed a PI controller according to [23]:

τ3 = Kpw̃ +Ki

∫ t

0

w̃(τ)dτ (4.34)

where w̃ = wd − w, where the measurement of depth is done by a pressure sensor. To avoid
integral windup the back-calculation method is used. The closed-loop poles are located in the
left half plane; therefore the system is stable. The Bode plot from figure 4.6 shows infinity
gain margin and 78.2 degrees of phase margin, therefore the system it is considered robust to
external disturbances [43].

Figure 4.6: Open- and closed-loop Bode plot of PID heave controller.

To assess the performance, the controller is applied to the nonlinear dynamic model, where τ1
and τ6 are maintained at zero. The resulting tracking is presented in figure 4.7.
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Figure 4.7: PID heave controller simulation.

The transfer function for the pitch controller is:

θ(s)

τ5(s)
=

0.003362s+ 0.001114

s3 + 0.5675s2 + 1.526s+ 0.3612
(4.35)

Implementing a PID controller:

τ5 = Kpθ̃ +Ki

∫ t

0

θ̃(τ)dτ +Kd
dθ̃

dt
(4.36)

where θ̃ = θref − θ. The negative closed loop poles assure the stability of the system. The
stability margins seen in figure 4.8, i.e., infinity gain margin and the 85.6 degrees of phase
margin, allows for the conclusion that the control system is robust to external disturbances.

Figure 4.8: Open- and closed-loop Bode plot for the PID pitch controller.

To assess the performance, the controller is once more applied to the nonlinear dynamic model
and τ1,τ3 and τ6 are maintained at zero. The resulting tracking is presented in figure 4.9.
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Figure 4.9: PID pitch controller simulation.

4.3.4 Simulink Representation

As in chapter 3.3, the block diagram of the PID can be represented by figure 4.10.

Figure 4.10: Simulink implementation of PID control.
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4.4 LQR control

The linear dynamic system is divided into [17, 29]: longitudinal subsystem and lateral subsystem.
For the initial choice of the weights Q and R, it was used the method described in [43], where Q
is initiated as the identity matrix (Q = I) and R as the identity matrix multiplied by a constant
ρ (R = ρI). Then by changing ρ, it is possible to tune the response, usually decreasing it. If the
response still far from the desired, the respective diagonal term from Q is altered. The process
used to design the controllers is presented in figure 4.11.

Figure 4.11: LQR design process.

4.4.1 Longitudinal Controller

The longitudinal controller is dedicated to control the speed (τ1) and depth (τ3 for the common
mode and τ5 for the differential mode). The sate vector is constituted by the states: u, w and θ.
Since z is controlled through w and θ (see section 3.1.3) it is not included into the state vector.
For the longitudinal state vector xL, the state and input matrices from the linearized model for
the longitudinal controller are: 

∆u̇

∆ẇ

∆q̇

∆θ̇

 = ALxL +BLuL (4.37)
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To the matrix of equation 4.31, is added the surge state, resulting in:

AL =


−0.0544 −0.0031 −0.0012 0.0045

0.0022 −0.2604 0.4482 0.0974

−0.0009 −0.7934 −0.3070 −1.0902

0 0 1.0000 0

 ; xL =


u− u0

w − w0

q − q0

θ − θ0

 ;

BL =


0.0022 −0.0000 0.0000

−0.0000 0.0012 −0.0003

0.0000 −0.0003 0.0034

0 0 0


(4.38)

Reminding that the state for the linear system is defined by [x1, x2]
T = [∆ν,∆η]T and that the

input vector is inserted as a perturbation to the equilibrium point, the desired state is:

xdL =


ur − uo

wr − w0

0

θr − θ0

 (4.39)

Therefore, the control input uL, according to equation 1.41, yields:

uL = −KL(xL − xdL) = −KH


u− u0 − (ud − u0)

w − w0 − (wd − w0)

q − q0

θ − θ0 − (θr − θ0)

 (4.40)

Since steady state errors were detected, three integrative states were added, namely the surge
error (u− ud), heave error (w − wd) and pitch error (θ − θr), resulting in:

x∫ u =

∫ t

0

(u− ud)dτ (4.41)

x∫ w =

∫ t

0

(w − wd)dτ (4.42)

x∫ θ =

∫ t

0

(θ − θr)dτ (4.43)

Therefore, the new state-space equation is:

 ẋLẋ∫ u

ẋ∫ θ

 =


AL 05×3 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 03×3


 xLx∫ u

x∫ θ

+


BL

01×3

01×3

01×3

uL (4.44)
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Replacing the values, the new state matrix is given by:

ALa =



−0.0544 −0.0031 −0.0012 0.0045 0 0 0

0.0022 −0.2604 0.4482 0.0974 0 0 0

−0.0009 −0.7934 −0.3070 −1.0902 0 0 0

0 0 1.0000 0 0 0 0

1.0000 0 0 0 0 0 0

0 1.0000 0 0 0 0 0

0 0 0 1.0000 0 0 0


(4.45)

The input matrix is:

BLa =



0.0022 −0.0000 0.0000

−0.0000 0.0012 −0.0003

0.0000 −0.0003 0.0034

0 0 0

0 0 0

0 0 0

0 0 0


(4.46)

Because there is an output limitation, the actuators will most likely saturate, inducing once
again integral windup. Therefore, an anti-windup method is used. Let us consider the case of
surge speed:

x∫ u =

∫ t

0

ϕueuτ (4.47)

where eu = (u− ud) and ϕu represents a gain which sets the area of activity of the integrative
portion, and it is obtained through [57]:

ϕu =



0, for eu ≤ −Ktrg

eu+Ktrg

Ktrg
, for −Ktrg < eu ≤ 0

Ktrg−eu
Ktrg

, for 0 < eu ≤ Ktrg

0, for eu > Ktrg

(4.48)

where Ktrg is a tuning parameter which defines the range of the integral action. The effect can
be seen in figure 4.12 . For example, if Ktrg = 0.5, the integral will only be active (ϕu ̸= 0)
when the error is within [−0.5, 0.5]. Same is defined for heave (ϕw) and pitch (ϕθ).
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Figure 4.12: Influence of Ktrg in gain ϕz.

Due to the magnitude of the longitudinal controllability matrix (WLa), this will not be presented
here. However, rank(CoLa) = 7, therefore the system is controllable. Regarding the weights,
QLa and RLa matrix are:

QLa =



25 0 0 0 0 0 0

0 60 0 0 0 0 0

0 0 60 0 0 0 0

0 0 0 40 0 0 0

0 0 0 0 5 0 0

0 0 0 0 0 15 0

0 0 0 0 0 0 10


RLa =

0.00004 0 0

0 0.00004 0

0 0 0.00004

 (4.49)

As expected, the closed-loop eigenvalues (eig(ALa −BLaKLa)) are negative, which proves that
the system is stable [28]. These weight values correspond to the situation of cheap control
(R << Q) [39]. Therefore, the cost function is dominated by the output errors, and there is no
penalty in using large u. However, since there is an output limitation two alternatives exist: in-
creasing R and confine the output to thrusters’ limitations, which results in a sluggish response,
or as in PID, limit the output by adding a saturation block. Then the second approach is chosen.

As in PID, the controllers are applied to the nonlinear model and it is set a time-varying refer-
ence. The tracking simulations with the final gains are presented in figures 4.13, 4.14 and 4.15.
These were made separately, maintaining the remaining control signals to zero.
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Figure 4.13: LQR speed controller tracking a reference over time.

Figure 4.14: LQR heave controller tracking a reference over time.

Figure 4.15: LQR pitch controller tracking a reference over time.
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4.4.2 Lateral Controller

The purpose of the lateral system is to control the yaw angle ψ. As in the PID heading control,
the state vector is constituted by the states: v,r and ψ. Assuming the state-space vector of the
lateral subsystem as xH, the state and input matrices from the linearized model are:∆v̇∆ṙ

∆ψ̇

 = AHxH +BHuH (4.50)

From equation 4.24, the state-space yields:

AH =

−0.1653 −0.4167 0

0.5672 −0.0503 0

0 1.0000 0

 ; xH =

 v − v0

r − r0

ψ − ψ0

 ; BH =

−0.0003

0.0037

0

 (4.51)

The desired state is:

xdH =

 0

0

ψr − ψ0

 (4.52)

Therefore, the control input uH, according to equation 1.41, yields:

uH = −KH(xH − xdH) = −KH

 v − v0

r − r0

ψ − ψ0 − (ψr − ψ0)

 (4.53)

As metioned in section 1.4.3.1, a definite requirement of the LQR controller is that the plant
must be controllable. Therefore, the controllability matrix is given by (see equation 1.34):

CoH =

−0.0003 −0.0014 0.0006

0.0037 −0.0003 −0.0007

0 0.0037 −0.0003

 (4.54)

The matrix WH has full rank, therefore the system is controllable. After tuning, results show
that only accounting for the weight referent to the state ψ − ψref (q3,3) leads to overshoot.
To reduce it, the weight corresponding to the yaw rate (q2,2), was chosen to be nonzero. The
resulting weight matrices are:

QH =

0 0 0

0 90 0

0 0 45

 ; RH = 0.00004 (4.55)

Again the situation of cheap control (R << Q) is verified [39]. The closed-loop eigenvalues
(eig(AH − BHKH)) are negative, which proves that the system is stable [28]. Finally, the
resulting controller performance can be seen in the figure 4.16.
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Figure 4.16: LQR lateral controller simulation.

4.4.3 Simulink Representation

The LQR block diagram can be seen in figure 4.17.

Figure 4.17: Simulink implementation of LQR control.
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4.5 Control Allocation

The above-derived control methods calculate differential mode, τ6, and the common mode, τ1,
through separate laws. This means that the two laws will compete for control authority. Without
accounting any thrust constrains, this solution will lead to actuator saturation, resulting in poor
performance and instability [58]. The control allocation law from [58] is adapted to solve this
problem. Considering now the new common mode law, τ ′1:

τ ′1 = τ1e
−β|τ6| (4.56)

where τ1 is the control signal determined by the speed controller, β is user-set and dependent on
the desired fraction of commanded surge, and τ6 the control signal determined by the heading
controller. This function gives precedence of to maintain a proper heading, over speed. The
result allows for the increase in the maneuverability of the AUV at the expense of forward
motion.
The thrust from the thruster 1, T1, thruster 2, T2, thruster 3, T3s and thruster 4, T4 is given by
the relation: 

T1

T2

T3

T4

0

0


= L−1



τ ′1

0

τ3

0

τ5

τ6


(4.57)

where L is the mapping matrix from equation 2.9.

4.6 Control Considerations

In this chapter are devised two controllers for the AUV. Firstly, the nonlinear dynamic model
is linearized around an operational point. Since the vehicle is not neutrally buoyant, the term
W −B is not depreciated.

For PID, the linearized model was decoupled into three lightly interactive subsystems. For each
DOF of the AUV, it was designed a Single Input Single Output (SISO) controller, tuned from the
respective transfer function. Since the PID method does not guarantee robustness to external
disturbances, during the tuning process, the Bode plot was used to assess if the stability margins
are within the values reported in [43].
For LQR, the linear model was divided into two subsystems, as suggested in [17, 29]. Two con-
trollers were devised: one Multi Input Multi Output (MIMO) controller to control surge, heave
and pitch; and one SISO controller to control yaw. Because LQR achieves infinity gain margin
and ≥ 60 degrees of phase margins [39], it is considered to be robust to external disturbances.

Although the considerations about the dynamic model (see section 2.3) may have an impact
on the derived controllers once corrected, this chapter provides the general recipe for deriving
new controllers by changing the gains or the linearization point.

64



Chapter 5

Computational Simulation and Validation

This chapter addresses the simulation of both guidance and control laws. Matlab R2017a1 was
used. As simulation model, it will be used the 6DOF nonlinear model above presented. The
simulations were divided according to the guidance algorithm used:

• Waypoint following for both 2D and 3D scenario;

• Path following scenario;

For the simulations, it was considered that the vehicle should stay on the last waypoint for a
predefined time (Wt).
The structure of the code used to simulate can be represented through the following algorithm:

Begin

Introduce initial position and states;
Introduce the waypoint matrix;
Define time around last waypoint (WT );
Define variable counting (counter);
Define the time step(dt);

While: counter < WT

References from guidance block (Waypoint or Path Following);
if: last waypoint is reached?

counter = counter + dt;
end

Thrust vector the control block (PID or LQR);
Calculate ν̇ and η̇;
Run numeric integration;
Store the state values;

End while
Plot data
End

1©1994-2017 The MathWorks, Inc.
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5.1 Considerations about the Simulations

5.1.1 State Feedback

A serious drawback of the LQR controller is that it assumes full state availability. That is often
not the case whether no sensors are installed on the plant to measure that particular state, or the
sensors output is corrupted with noise and the required information cannot be extracted without
proper treatment. However, for the purpose of these simulations, none of these shortcomings
will be considered.

5.1.2 Thrust Output

The thrust output was limited at 120 N, in forward thrust, and 85 N in reverse thrust. Thruster
dynamics were not considered. However, this should have an overall minor effect on the simu-
lation results, apart from an increase in the response time.

5.1.3 Simulation Parameters

The value of speed COA (ρu) was defined as 1 meter, the radius of the planar waypoint COA (ρk)
as 1.5 meters of radius, and the depth COA (ρz) was defined as 0.5 m. For the reference speed
velocity, the upper bound (ku) was set at 0.8 m/s, and for the reference heave speed (kw) 0.4
m/s.
The coordinates of the vehicle’s initial position, in the inertial frame, are: η1 = (x0, y0, z0) =

(0, 0, 0).
To improve visualization, the Down coordinate was inverted and the simulation step to be con-
sidered is 0.01 seconds.

5.1.4 Ocean Currents

For the purpose of this thesis, the effect of ocean currents are not to be considered.

5.2 Waypoint following simulation

5.2.1 Two-dimensional simulation

The waypoints were chosen to simulate an zigzag trajectory, and the coordinates are presented
in the table 5.1.

Table 5.1: Selected Waypoints coordinates.

North[m] East[m] Up[m]
W1 10 20 0
W2 20 -20 0
W3 30 20 0
W4 40 -20 0
W5 50 0 0

• PID Results:
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Figure 5.1: PID tracking results for two-dimensional simulation.

Figure 5.2: PID evolution of the vehicle’s position in North vs East plot for the two-dimensional
simulation.

• LQR Results:
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Figure 5.3: LQR tracking results for two-dimensional simulation.

Figure 5.4: LQR evolution of the vehicle’s position in North vs East plot for the two-dimensional
simulation.

On the speed controller, it is possible to notice a peak in the velocity followed by a sudden
reduction, after the waypoint switch. Such attitude is justified by the control allocation law,
which values heading accuracy over speed.

The resulting motion is plotted in figure 5.2, for PID, and in figure 5.4, for LQR. The circles
are representative of waypoints’ COA. According to [19], the radius of COA should be twice the
size of the vehicle, which corresponds to 2× 2.8 = 5.6 m. However, since the control allocation
law provides extra maneuverability, the vehicle will miss the waypoint if considered this radius.
Therefore, after several simulations, the radius was decreased to 1.5 meters to allow for the
AUV to reach the waypoint.
For the last waypoint, the vehicle will stay within 1 meter from it, because the complementary
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planar distance used to calculate the surge desired speed is du = dk − 1.
It is possible to notice a difference in the speed convergence from PID to LQR. The Time To
Target (TTT) for LQR was 5 minutes and 32 seconds and for PID 6 minutes and 10 seconds.
With respect to roll angle (ϕ), as it can be seen figure 5.5, is passively controlled, as suggested
in the section 2.2.4.

Figure 5.5: Roll angle for two-dimensional simulation.

5.2.2 Three-dimensional simulation

The waypoints used for this simulation are presented in table 5.2.

Table 5.2: Selected Waypoints coordinates.

North[m] East[m] Up[m]
W1 10 20 -20
W2 30 20 -20
W3 50 40 -20
W4 60 40 0

The tracking results for both controllers are presented in figures 5.6 for PID and 5.7 for LQR.

Figure 5.6: PID tracking results for three-dimensional simulation.
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Figure 5.7: LQR tracking results for three-dimensional simulation.

To assess the differences, PID and LQR results were plotted together. The resulting three-
dimensional graphical simulations are presented in appendix B.

In general, both controllers present a satisfactory performance. However, as it can be seen
in figure 5.8, LQR is slightly faster, which leads to a higher rate of ascend in pitch mode (bot-
tom plot of figure 5.8). The resulting TTT for LQR is 5 minutes and 13 seconds, and for the PID
5 minutes and 38 seconds.

Figure 5.8: LQR and PID results of three dimensional waypoint following scenario.
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5.3 Path following simulation

It is pretended to simulate the vehicle performing a lawn mow path, as in data acquisition stage
(figure 1.7). The path generation is done through the waypoints present in table 5.3.

There are two ways to engage the path. The first scenario is without the requirement to reach
the first point, i.e. the vehicle will converge to a point ∆ meters ahead from its current pro-
jected position on the path (see figure 3.5). The second approach, the vehicle has to pass on
first waypoint and then start the path. Both simulations are performed. The lookahead distance
(∆) was defined as 5 meters, to allow a soft steering behavior.

Table 5.3: Selected Waypoints for the path generation.

North[m] East[m] Up[m]
W1 0 10 -10
W2 50 10 -10
W3 50 20 -10
W4 0 20 -10
W5 0 30 -10
W6 50 30 -10
W7 50 40 -10
W8 0 40 -10
W7 0 50 -10
W8 50 50 -10

For the first scenario, the North-East graphical result, for both PID and LQR can be seen in figure
5.9. The three-dimensional results are presented in figure 5.10. The resulting TTT for LQR is 13
minutes and 57 seconds, and for PID 14 minutes and 37 seconds.

Figure 5.9: LQR and PID simulation of the vehicle’s position in North vs East plot for the path following
scenario without beginning constrain.
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Figure 5.10: LQR and PID three-dimensional results for path following scenario, without beginning
constrain (color bar indicates total velocity).

For the second scenario, the North-East graphical result can be seen in figure 5.11, and the
three-dimensional plot in figure 5.12. The resulting TTT for LQR is 14 minutes and 26 seconds,
and for PID 15 minutes and 19 seconds.

Figure 5.11: LQR and PID simulation of the vehicle’s position in North vs East plot for the path following
scenario, with beginning constrain.
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Figure 5.12: LQR and PID three-dimensiona results for path following scenario, with beginning constrain
(color bar indicates total velocity).
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Chapter 6

Conclusions and Future Work

The primary goal of this thesis is to devise a controller that could be implemented on the AUV
being developed at CEiiA. With no access to the vehicle, the dynamic model presented in [17]
is essential for validity of this work.
The addition of a fourth order approximation of damping allowed a more realistic representa-
tion of the vehicle. Since there is no symmetry on the yz- plane, this approximation allows for
different dynamics in backward motions, which will be essential when considering the ascent
phase (see section 1.1).
However, since this model is used to design the controller, the limitations/considerations in [17]
were object of study in this work.

Since the controller works on the guidance data, devising suitable laws is crucial. For this pur-
pose, a waypoint following and station keeping algorithm, as well a path-following based on
lookahead steering, were presented. However, due to its spacial constraints, the path follow-
ing solution should be the preferable, because it directs the vehicle to the desired path, even
in the presence of ocean currents.
To allow for the AUV to dive, two laws were devised: manipulating the pitch angle through the
differential mode, or heave speed through common mode. Due to the limitations of the dynamic
model (see section 2.3), it is considered that reference pitch angle follows the same constraints
that the angle-of-attack.

To devise the linear controllers, a linear version of the work developed in [17] was presented.
Despite the fact that the linearization point only accounts for surge speed, the results suggests
that, for the considered conditions, the remaining state variables are not critical for the dy-
namics.
As mentioned in section 1.4.3.1, LQR is a robust control method [18, 39]. However, for PID
design, the stability margins were analyzed and taken into account when tuning. The results
are within the values pointed in [43], which suggest robustness to external disturbances.
The resulting stability analysis serves as fundamental justification of using linear control tech-
niques in the nonlinear systems, i.e., stable design by linear control guarantees the stability of
the original system locally [28].
With respect to the dynamic model limitations (see section 2.3), the underestimation can be
corrected by manipulating the gains for both the controllers. However, the situation of diving
with common mode may require an extra linearization point, leading to the necessity of adopt-
ing a gain-scheduled approach.
Since heading and surge control is accomplished through manipulation of thrust output from
longitudinal thrusters, and because the control signals are calculated through separate laws, an
allocation law is proposed. The result law allowed for an increase in the manoeuvrability at the
expense of forward motion.
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Even though the simulation results proved solid performance for both controllers, LQR proved
to be slightly faster than the PID, for the design conditions mentioned in section 4.

6.1 Concluding Remarks

In general, this work provides two linear control solutions for the AUV being developed at CEiiA.
Even though only a single operational point was considered, this work provides the general ap-
proach to extend this design to multiple operational points.
To decide between the presented controllers, not only for this AUV but for future control prob-
lems, it is important to understand the factors that might have an impact on the final choice.
PID is a simpler approach and can be tuned without the system model, using methods like Ziegler
and Nichols to find the gains [39]. However, as the order of the system increases, controlling
the system becomes harder using only PID methods.
On the other hand, LQR, as stated in section 1.4.3.1, provides the optimal state-feedback law,
which minimizes a certain quadratic cost function. The optimal pole location and the unique
analytical solution [18], is what makes LQR the preferable choice. However, this controller has
a drawback that it assumes full state feedback. If that is not the case, there is a need to build
an observer to estimate the missing states. Also, it is required the model of the system.
Therefore, due to the nature of the operational environment of the AUV, and considering the
advantages and disadvantages of each, LQR appears to be the best choice.

6.2 Future Work

This work presents two controllers which were built according to the theory of robust control.
However, to prove robustness, it is essential to test control through several operational con-
ditions, and in the presence of uncertainties in the nonlinear model. Despite the results, the
work hereby presented should be extended towards nonlinear control.
Linear controllers rely on the key assumption of small operational range. However, the AUV
must be controlled under all possible operational conditions. This can be accomplished by using
a nonlinear control. The nonlinear gain-scheduling controller acts as a switch between several
linear controllers, each one designed for a specific operational point. Through the analysis of
the vehicle’s flight envelope, the controller design methodology presented in this work can be
applied to those multiple operational points, ensuring robust stability for each and one of them.
Regarding the dynamic model, some concerns should also be addressed:

• Hydrodynamic estimation for full envelope of angles of attack and side slip;

• The inclusion of ocean currents in the dynamic of the vehicle;

• The thruster dynamics should also be included.

Finally, the inclusion of a navigation block is of utmost importance.
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Appendix A

Datasheet

Figure A.1: Datasheet of the Argus Ars 800 mini thruster [48].
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Appendix B

Simulations Graphics

B.1 Three-dimensional Waypoint Following

Figure B.1: Three-dimensional waypoint following simulation of the PID controller (color bar indicates
velocity).

Figure B.2: Three-dimensional waypoint following simulation of the LQR controller (color bar indicates
total velocity).
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Appendix C

Publications

The research work conducted in this thesis produced the following paper:

• C. Mendes, C. Bentes, T. Rebelo, and K. Bousson (2017),”Guidance and robust control
of a doublehull autonomous underwater vehicle,” ICEUBI2017 - International Congress on
Engineering - A Vision for the Future, 5-7 November, Covilhã (Portugal) (Submitted for
approval).
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Guidance and Robust Control of a double-hull 
Autonomous Underwater Vehicle 
 

Introduction 
 
Autonomous underwater vehicles are unmanned robotic systems whose main goal is to explore 
the ocean environment. In recent years, the interest in autonomous underwater vehicles has 
grown, as the technology provides more feasible solutions [1]. 
CEiiA, an Engineering and Product Development Centre based in Portugal, is currently 
developing together with its partners a deep sea AUV, (Figure 1) [2]. This AUV follows a double-
hull configuration and is capable of reaching a Nominal Diving Depth (NDD) of 3000 meters. 
Control is achieved via two horizontal and two vertical thrusters. The main goal of this vehicle 
is to reinforce the national capacity for mobile autonomous deep-sea exploration and 
monitoring. However, the absence of a human operator narrows down the AUV operations to 
its control system, computing, and sensing capabilities. 
The AUV’s dynamics is inherently nonlinear and time-variant. The uncertain external 
disturbances difficult controller design. Nonetheless, there are many successfully implemented 
controllers in this nonlinear environment. Over the years linear theory has evolved to meet 
control robustness and stability requirements.  
This paper proposes two linear control designs that could eventually be implemented on the 
AUV being developed. First the AUV's dynamic model, derived in [3], is briefly described. After, 
a waypoint following guidance solution [4] is introduced. As for controller design, PID and LQR 
methods are applied to the AUV's dynamic model and computationally tested. Then, the results 
are briefly discussed. 

 
Figure 1 – 3D model of the AUV (courtesy of CEiiA). 

 
Modelling the AUV 
 
Coordinated Frames 
 
To derive the equations of motion that describe the AUV's kinematics, first it is necessary to 
define two reference frames. The body-fixed {𝑏}, which is the non-inertial frame, is composed 

of the axes {𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏}. The local NED (North-East-Down) {𝑛}, the inertial reference frame, is 

composed of the orthonormal axes {𝑥𝑛 , 𝑦𝑛, 𝑧𝑛}. 

The Centre of Gravity (CG) and the Centre of Buoyancy (CB) are defined with respect to the 0𝑏 , 
and represented by 𝑟𝑔

𝑏 = [𝑥𝑔 𝑦𝑔 𝑧𝑔]𝑇 and 𝑟𝑔
𝑏 = [𝑥𝑔 𝑦𝑔 𝑧𝑔]𝑇, respectively. 

The set of coordinates that expresses position and orientation of the vehicle are defined as: 

𝜂 =  Tzyx   expressed in the {𝑛} frame; 

For linear velocities and angular velocities (surge, sway, heave, roll, pitch and yaw) the vector 
is: 

𝜈 =  Trqpwvu  expressed in the {𝑏} frame; 

And finally, the control forces and moments vector is: 

𝜏 =  TNMKZYX  expressed in the {𝑏} frame; 
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The mathematical equation that represents the dynamics of the underwater vehicle can be 
derived by the Newton's second law. The resulting relation is given by [5]: 
 
 𝑀�̇� + 𝐶(𝜈)𝜈 + 𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏 (1) 

 

where 𝑀 is the inertia matrix including added mass, 𝐶(𝜈) is the Coriolis term including both 

rigid body and added mass term, 𝐷(𝜈) is the vector of hydrodynamic forces, and 𝑔(𝜂) is the 
vector of hydrostatic forces. The hydrodynamic data used was derived in [3]. For detailed 
description about the modeling process of this AUV please refer to [3]. 
 

Guidance 
 
This section addresses an extension of the waypoint guidance algorithm of the one presented 
in [4]. 
 
Waypoint and Station-keeping Guidance 
 

1) Steering Guidance by Line Of Sight: 

The LOS guidance algorithm provides a reference angle 𝜓𝑟 that will guide the AUV from its 
current position towards the waypoint (figure 2). The solution is [6]:  
 
 𝜓𝑟 = arctan (

𝑦𝑘 − 𝑦

𝑥𝑘 − 𝑥
)  ∈  −𝜋/2 

(2) 

 

where 𝜓r is calculated through the four-quadrant version of arctan(𝑦/𝑥) ∈ [−𝜋, 𝜋], usually 
defined as atan2(𝑦, 𝑥). The waypoint is reached if the vehicle lies inside a Circle Of Acceptance 

(COA) of radius (𝜌𝑘), around the waypoint. That is [6]: 
 
 𝑑𝑘 = √(𝑥𝑘 − 𝑥)2 + (𝑦𝑘 − 𝑦)2 ≤ 𝜌𝑘 (3) 

 
where 𝑑𝑘 is the planar distance to the waypoint. Usually [7], 𝜌𝑘  is 2 × 𝐿, where 𝐿 stands for 
vehicle's length.  

 
Figure 2 – Line Of Sight guidance in the steering plane 

2) Reference speed law:  

The speed reference is calculated as a function of the distance to the waypoint, 𝑑𝑘, by [4]: 
 
 

𝑢𝑑 = 𝑘𝑢 sin−1 (
𝑑𝑘

|𝑑𝑘| + 𝑘𝑠

)
2

𝜋
 (4) 

 

where 𝑘𝑢 is the upper limit of the reference speed and 𝑘𝑠 > 0 a parameter for tuning that 
adjusts the reference speed value according to the distance error. The reference speed never 
reaches zero because the guidance block will switch for the next waypoint as soon as 𝑑𝑘 ≤ 𝜌𝑘. 
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3) Diving by Line Of Sight: 

Underwater vehicles often control the movement in depth by adjusting pitch. In this case, the 
vertical common mode can be added to improve depth precision [6]. The reference pitch angle 

𝜃𝑟 is given by: 
 
 𝜃𝑟 = arctan (

𝑧𝑘 − 𝑧

𝑥𝑘 − 𝑥
)  ∈ [−𝜋/2, 𝜋/2] (5) 

 

Since the hydrodynamic data is only valid for 𝜃 values between 20∘ to −20∘ [3], the value of 𝜃𝑟 

follows the same constrains. Special attention to the case where 𝑥𝑘 − 𝑥 = 0, which corresponds 
to the case that the vehicle is already on the planar position (𝑥 = 𝑥𝑘). In this case, the vertical 
common will bring the AUV to the desired depth. The waypoint acceptance check is now done 
for both horizontal and vertical coordinates. Therefore, the condition for acceptance becomes: 
 
 

∣ 𝑧 − 𝑧𝑟 ∣ | < 𝜌𝑥  ∧  𝑑𝑘 = √(𝑥𝑘 − 𝑥)2 + (𝑦𝑘 − 𝑦)2 ≤ 𝜌𝑘 (6) 

 

where 𝜌𝑥 is the depth tolerance, which will be defined as equal to 1 meter.  
 

4) Station-Keeping Mode: 
For the final waypoint, the vehicle enters station-keeping mode. This is accomplished by 
defining the final planar distance as: 
 
 𝑑𝑘 = √(𝑥𝑘 − 𝑥)2 + (𝑦𝑘 − 𝑦)2 − 𝜌𝑘 (7) 

 

If 𝑑𝑘𝑓 = 0 means that the vehicle is inside the neighbourhood of the last waypoint and only 

heading control will work. On the other hand, if the vehicle is outside of this neighbourhood 
the heading and speed control will bring the AUV back. 
 

Control Design  
 
Linearization of the AUV Model 
 
The linear equations can be formulated by linearizing about an equilibrium/operational point 

(𝜈0, 𝜂0), as in [8]. Defining the state-space as 𝑥 = (𝑥1, 𝑥2)
𝑇 where 𝑥1 = 𝛥𝑣 = 𝜈 − 𝜈0 and 𝑥2 =

𝛥𝜂 = 𝜂 − 𝜂0, the linear equations of motion are given by [8]: 
 
 

[
�̇�1

�̇�2
 ] = [

−𝑀−1[𝐶 + 𝐷] −𝑀−1𝐺
𝐽 𝐽∗ ] [

𝑥1

𝑥2
] + [−𝑀−1

0
] 𝐮 

(8) 

 
In many AUV applications, it is reasonable to assume that the AUV is moving with nonzero surge 

speed, 𝑢0 [8]. It is assumed that the rest of steady state linear and angular velocities are zero, 
𝑤0 = 𝑣0 = 𝑝0 = 𝑞0 = 𝑟0 = 0. For this study, the operating point to be considered is 𝜈0 =
(0.8,0,0,0,0,0)𝑇. 
 
PID - Proportional Integral Derivative 
 
The Proportional Integral Derivative control will be applied to maximize the manoeuvrability 
of the AUV. For this AUV it is possible to actively control: surge 𝑢, heading 𝜓, pitch 𝜃 and heave 

𝑤. For each, one controller is designed. The roll dynamic, 𝜙, is passively controlled. The Matlab 
PID tuning tool, from the Control Systems Toolbox, was used for initial gain estimations. Then, 
by applying the controller to the nonlinear dynamic model, the gains were manually tuned to 
fit the desired performance. The process can be seen in Figure 3. 
 



 
 

ICEUBI2017 - INTERNATIONAL CONGRESS ON ENGINEERING 2017 – 5-7 Dec 2017 – University of Beira Interior – Covilhã, Portugal 

 

1) Speed Controller: 

The common mode (𝜏1), i.e. equally 
dividing the required force by both 
thrusters, allows the vehicle to control 
motion in surge. Neglecting interaction 
with the remaining Degrees Of Freedom 
(DOFs) [1], the transfer function is given 
by: 
 

 
A PI control was applied to the transfer 
function and tuned. Therefore: 
 

 

where �̃� = 𝑢𝑑 − 𝑢. To avoid integral 
windup, the back-calculation method is 

used. After tuning, since the resulting closed-loop poles are located in the Left Half Plane 
(LHP), the system is considered stable. The infinity gain margin and the 84.7∘ of phase margin, 
allied to the fact that the max sensitivity value is below 2 [9], makes the controller robust to 
disturbances (Figure 4). The respective tracking of a desired velocity can be seen in Figure 5. 
 

 
Figure 4 - Open- (blue) and closed-loop (black) bode plot for the speed controller. 

 

 
Figure 5 – Speed controller tracking a reference over time. 

1) Heading Controller: 

𝑢(𝑠)

𝜏1(𝑠)
=

0.0022

𝑠 + 0.0544
 (9) 

𝜏1 = 𝐾𝑝𝑢 + 𝐾𝑖 ∫ �̃�(𝜏)𝑑
𝑡

0

𝜏 (10) 

Figure 3 – PID design process. 
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Heading control is accomplished through the differential mode (𝜏6), i.e. dividing the required 

moment by both thrusters. For this subsystem, the state variables to account for are: 𝑣(𝑡), 𝑟(𝑡) 
and 𝜓(𝑡). For the above mentioned operating point, the result is: 
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The transfer function for this subsystem is: 
 
 𝜓(𝑠)

𝜏6(𝑠)
=

0.003729𝑠 + 0.0009888

𝑠3 + 0.3549𝑠2 + 0.2147𝑠
 

(12) 

 

Heading measurements (𝜓) may be given by compass readings and the yaw rate (𝑟) by a 
gyroscope. A PD controller provides good performance. The derivative term provides additional 
phase margin, which increases robustness [1]. The control law yields: 
 
 𝜏6 = 𝐾𝑝�̃� − 𝐾𝑑𝑟 (13) 

 

where �̃� = 𝜓𝑟 − 𝜓. Special attention to the yaw error. It must be redefined, as in [4]: 
 if  �̃� > 𝜋 (right side) 

�̃� = �̃� − 2𝜋 

if  �̃� < −𝜋 (left side) 
�̃� = �̃� + 2𝜋 

(14) 

 
The closed-loop poles, for the closed-loop transfer function, are located in the LHP, meaning 

once more that that the controller is stable. The infinity gain margin and the 84.9∘ of phase 
margin of the open loop system translates into robustness to disturbances. 
 

2) Depth Controller: 
Depth control presents a common mode (𝜏3) and a differential mode (𝜏5). The associated state 

variables are: 𝑤(𝑡), 𝑞(𝑡), 𝜃(𝑡) and 𝑧(𝑡). Once more, for this operating point, the state-space 
form yields: 
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The diving manoeuvre will be accomplished by adjusting pitch. Through the differential mode 

(𝜏5) the controller will approach the 𝜃𝑟 angle. To maneuver/adjust the vehicle to the desired 

depth, as to cancel the residual buoyancy, the common mode (𝜏3) is used. The transfer function 
of depth is: 
 
 𝑧(𝑠)

𝜏3(𝑠)
=

0.00119𝑠2 + 0.0002308𝑠 + 0.001268

𝑠4 + 0.5675𝑠3 + 1.526𝑠2 + 0.3612𝑠
 (16) 

 
The controller is designed without integral action according to: 
 
 

𝜏3 = 𝐾𝑝𝑧 + 𝐾𝑑

𝑑�̃�

𝑑𝑡
 (17) 

 

where �̃� = 𝑧𝑟 − 𝑧. Once more the infinity gain margin and the 82.2∘ of phase margin of the open 
loop system shows that the system is robust to disturbances. 
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The transfer function for pitch is: 
 
 𝜃(𝑠)

𝜏5(𝑠)
=

0.003362𝑠 + 0.001114

𝑠3 + 0.5675𝑠2 + 1.526𝑠 + 0.3612
 (18) 

 
Implementing a PID controller: 
 

 
𝜏5 = 𝐾𝑝�̃� + 𝐾𝑖 ∫ �̃�(𝜏)𝑑𝜏

𝑡

0

+ 𝐾𝑑

𝑑�̃�

𝑑𝑡
 (19) 

 

where �̃� = 𝜃𝑟 − 𝜃. An infinity gain margin and the 96.7∘ of phase margin shows robustness of 
the system. 
 
LQR – Linear Quadratic Regulator 
 
To derive the Linear Quadratic Regulator control law, controllability and observability need to 

be ensured [10]. Considering a linear model, �̇� = 𝐴𝑥 + 𝐵𝐮, and that all states are available for 
the controller, the optimal control problem determines the feedback gain for the optimal 
control vector [11]: 
 

 𝐮(𝑡) = −𝐾(𝑥 − 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑) (20) 
 
The process used to design the controllers is represented in Figure 6. The complete linear 
system is divided into two subsystems: lateral subsystem and longitudinal subsystem. 
 

 
1) Longitudinal Controller: 
The longitudinal controller is dedicated to control 

the surge speed (𝜏1) and depth (𝜏3 for the common 

mode and 𝜏5 for the differential mode). The sate 

vector is constituted by the states: 𝑢,𝑤, 𝜃 and 𝑧. 
For the longitudinal state vector 𝑥𝐿, the state and 
input matrices from the linearized model for the 
longitudinal controller are: 

 

[
 
 
 
 
𝛥�̇�
𝛥�̇�
𝛥�̇�

𝛥�̇�
𝛥�̇� ]

 
 
 
 

= 𝐴𝐿𝑥𝑙 + 𝐵𝐿𝐮𝐿 

 = 𝐴𝐿

[
 
 
 
 
𝑢 − 𝑢0 − (𝑢𝑑 − 𝑢0)

𝑤 − 𝑤0
𝑞 − 𝑞0

𝜃 − 𝜃0 − (𝜃𝑟 − 𝜃0)

𝑧 − 𝑧0 − (𝑧𝑑 − 𝑧0) ]
 
 
 
 

+ 𝐵𝐿𝐮𝐿 

(21) 

 
 

To reduce the steady state values of 𝑢 and 𝜃, two integrative states were added to the state-
space: 
 

 
𝑥∫𝑢 = ∫ (𝑢 − 𝑢𝑑)𝑑𝜏

𝑡

0

; (22) 

 
𝑥∫𝜃 = ∫ (𝜃 − 𝜃𝑟)𝑑𝜏

𝑡

0

; (23) 

 
 
 

Figure 6 – LQR design process 
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Therefore, the new state-space equation is: 
 

 

[

�̇�𝐿

�̇�∫ 𝑢

�̇�∫ 𝜃

] = [
𝐴𝐿 05×2

[
1 0
0 0

0
0

0
1

0
0
] 02×2

] [

𝑥𝑙

𝑥∫𝑢

𝑥∫𝜃

] + [

𝐵𝐿

01×3

01×3

] 𝐮𝐿 (24) 

 
Because there is an output limitation, the actuators will most likely saturate, inducing once 
again integral windup. The anti-windup method described in [12] is applied. 

 
2) Lateral Controller: 

The main purpose of the lateral system is to control the yaw angle 𝜓. As in the PID heading 

control, the state vector is constituted by the states: 𝑣, 𝑟 and 𝜓. Assuming the state-space 

vector of the lateral subsystem as 𝑥𝐻, the state and input matrices from the linearized model 
will be: 
 

 
[
Δ �̇�
Δ �̇�
Δ �̇�

] = 𝐴𝐻𝑥𝐻 + 𝐵𝐻𝐮𝐻 𝑥𝐻 = 𝐴𝐻 [

𝑣 − 𝑣0

𝑟 − 𝑟0
𝜓 − 𝜓0 − (𝜓𝑑 − 𝜓0)

] + 𝐵𝐻𝐮𝐻 (25) 

   
The control input is defined as: 
 

 𝐮𝐻 = −𝐾𝐻𝑥𝐻 (26) 
 
The operating point is the same as in PID. By defining the performance index in terms of the 

output vector, the Q matrix will only contain the element that dictates the evolution of the 

output [5]. The resulting eigenvalues of the closed-loop systems (𝑒𝑖𝑔(𝐴𝐻 − 𝐵𝐻𝐾𝐻)) are negative 

which according, to Lyapunov [13], proves that the system is stable. With respect to stability 
margins, the LQR is known to have excellent stability characteristics with gains up to infinity 

and phase margin over 60∘ [14].  
 
Control Allocation 
 

Both of PID and LQR use a differential mode, 𝜏6, and a common mode, 𝜏3, through separate 
laws. This means that the two laws will compete for control authority. Without accounting for 
thrust constrains, this solution will lead to actuator saturation, resulting in poor performance 
and instability [15]. The control allocation law from [15] is adapted to solve this problem. 

Considering now the new common mode law, 𝜏1
′ : 

 
 𝜏1

′ = 𝜏1𝑒
−𝛽∣𝜏6∣ (27) 

   

where 𝜏1 is the control signal determined by the speed controller, 𝛽 is user-set and dependent 

on the desired fraction of commanded surge, and 𝜏6 the control signal determined by the 
heading controller. 
 

Simulation Results 
 
Waypoint and Station-keeping 
 
For simulation purposes, the selected waypoint coordinates are defined in table 1. The thrust 
output was limited at 120 N, in forward thrust, and 85 N in reverse thrust. Thruster dynamics 
were not considered. However, this should have an overall minor effect on the simulation 
results. 

Table 1 – Waypoint coordinates. 

 Waypoint 1 Waypoint 2  Waypoint 3 Waypoint 4 

x [m] 10 40 50 80 

y[m] 20 20 50 60 

z[m] 10 20 10 0 
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Conclusions  
 
This paper briefly describes a guidance waypoint and station-keeping algorithm and two control 
solutions for three AUV autopilots: heading, speed and depth. 
 
Both LQR and PID controllers proved robust for this operating point. For robustness and stability 

analysis bode was used. The phase margin above 60° and the gain margin up to infinity, allied 

to the maximum sensitivity values bellow 2, for all autopilots proved robustness of PID and LQR 
controllers. 
 
Both controllers behaved satisfactorily. However, from the results in Figure 7, it is possible to 
conclude that the responsiveness of the LQR is greater than the PID’s. 
 
The control allocation law proved to reduce the overshoot on the waypoint, by prioritizing 
heading over velocity. For that reason, manoeuvrability was increased and COA had to be 
reduced to a minimum value. Otherwise the vehicle would switch to the next waypoint without 
reaching the current one. 
 
It is intended, as a continuation of this work, to verify and validate the controllers through 
further analysis and tests. Further PID tuning could lead to a better performance. Also, the 
impact of ocean currents should be studied.  
 

Figure 7 - LQR (full line) and PID (dashed line) results for the simulation. The top figures regard the 
spatial evolution of the vehicle in the vertical (left) and horizontal (right) planes. The bottom figures 
regard the evolution of the vehicle in the East (left) and Down (right) coordinates over time. 
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