81 research outputs found

    Adaptive gain processing to improve feedback cancellation in digital hearing aids

    Get PDF
    Journal ArticleAdaptive filters are commonly used to cancel acoustic feedback in hearing aids. The sound quality of hearing aids deteriorates as the hearing aid gain is increased. This paper presents a method to alter the gain function in digital hearing aids to provide additional amplification and better output sound quality. This approach employs a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. The increase in stable gain over traditional methods and the output sound quality were evaluated with a psychoacoustic experiment on normal-hearing listeners. The results indicate that the method of this paper provides more hearing aid gain and less distortion in the output sound quality than feedback cancelers with fixed gain functions

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Objective Assessment of Machine Learning Algorithms for Speech Enhancement in Hearing Aids

    Get PDF
    Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the performance of the deep learning model was evaluated objectively and compared with that of open Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep Neural Network (DNN) based model. It was found that the RNN model can suppress noise and improve speech understanding better than the conventional hearing aid noise reduction algorithm and the DNN model. The same RNN model was shown to reduce reverberation components with proper training. A real-time implementation of the deep learning model is also discussed

    Frequency Domain Active Noise Control with Ultrasonic Tracking

    Get PDF
    In this work, a new type of feedback control is presented which operates primarily in the frequency domain for use in 3D active noise control problems. Within the controller, a so-called time advance filter is designed to overcome the delay caused by the acoustics and the FFT. The filter is able to manipulate the phase response of the input so that the output appears time advanced. This nonlinear frequency domain feedback control method is shown to have more versatility, improved stability, and significantly reduced waterbed effect as compared to linear feedback control methods. An ultrasonic tracking system is also presented as a way to identify the location of a person\u27s ear in real-time within a 3D environment. This position information is then provided to the controller which can adapt based on the user\u27s position to achieve improved performance. Although ultrasonic tracking of a microphone is not new, this is the first time its potential for use in active noise control is shown

    Design of a reusable distributed arithmetic filter and its application to the affine projection algorithm

    Get PDF
    Digital signal processing (DSP) is widely used in many applications spanning the spectrum from audio processing to image and video processing to radar and sonar processing. At the core of digital signal processing applications is the digital filter which are implemented in two ways, using either finite impulse response (FIR) filters or infinite impulse response (IIR) filters. The primary difference between FIR and IIR is that for FIR filters, the output is dependent only on the inputs, while for IIR filters the output is dependent on the inputs and the previous outputs. FIR filters also do not sur from stability issues stemming from the feedback of the output to the input that aect IIR filters. In this thesis, an architecture for FIR filtering based on distributed arithmetic is presented. The proposed architecture has the ability to implement large FIR filters using minimal hardware and at the same time is able to complete the FIR filtering operation in minimal amount of time and delay when compared to typical FIR filter implementations. The proposed architecture is then used to implement the fast affine projection adaptive algorithm, an algorithm that is typically used with large filter sizes. The fast affine projection algorithm has a high computational burden that limits the throughput, which in turn restricts the number of applications. However, using the proposed FIR filtering architecture, the limitations on throughput are removed. The implementation of the fast affine projection adaptive algorithm using distributed arithmetic is unique to this thesis. The constructed adaptive filter shares all the benefits of the proposed FIR filter: low hardware requirements, high speed, and minimal delay.Ph.D.Committee Chair: Anderson, Dr. David V.; Committee Member: Hasler, Dr. Paul E.; Committee Member: Mooney, Dr. Vincent J.; Committee Member: Taylor, Dr. David G.; Committee Member: Vuduc, Dr. Richar

    Ultra-low-voltage self-body biasing scheme and its application to basic arithmetic circuits

    Get PDF
    The gate level body biasing (GLBB) is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold voltage MOSFET (DTMOS) circuits under different running conditions. Postlayout simulations demonstrate that, at the parity of leakage power consumption, the GLBB technique exhibits a significant concurrent reduction of the energy per operation and the delay in comparison to the conventional CMOS and DTMOS approaches. The silicon area required by the GLBB full adder is halved with respect to the equivalent DTMOS implementation, but it is higher in comparison to conventional CMOS design. Performed analysis also proves that the GLBB solution exhibits a high level of robustness against temperature fluctuations and process variations

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    An application of an auditory periphery model in speaker identification

    Get PDF
    The number of applications of automatic Speaker Identification (SID) is growing due to the advanced technologies for secure access and authentication in services and devices. In 2016, in a study, the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR FAC) cochlear model achieved the best performance among seven recent cochlear models to fit a set of human auditory physiological data. Motivated by the performance of the CAR-FAC, I apply this cochlear model in an SID task for the first time to produce a similar performance to a human auditory system. This thesis investigates the potential of the CAR-FAC model in an SID task. I investigate the capability of the CAR-FAC in text-dependent and text-independent SID tasks. This thesis also investigates contributions of different parameters, nonlinearities, and stages of the CAR-FAC that enhance SID accuracy. The performance of the CAR-FAC is compared with another recent cochlear model called the Auditory Nerve (AN) model. In addition, three FFT-based auditory features – Mel frequency Cepstral Coefficient (MFCC), Frequency Domain Linear Prediction (FDLP), and Gammatone Frequency Cepstral Coefficient (GFCC), are also included to compare their performance with cochlear features. This comparison allows me to investigate a better front-end for a noise-robust SID system. Three different statistical classifiers: a Gaussian Mixture Model with Universal Background Model (GMM-UBM), a Support Vector Machine (SVM), and an I-vector were used to evaluate the performance. These statistical classifiers allow me to investigate nonlinearities in the cochlear front-ends. The performance is evaluated under clean and noisy conditions for a wide range of noise levels. Techniques to improve the performance of a cochlear algorithm are also investigated in this thesis. It was found that the application of a cube root and DCT on cochlear output enhances the SID accuracy substantially

    Blockwise Frequency Domain Active Noise Controller Over Distributed Networks

    Full text link
    © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).This work presents a practical active noise control system composed of distributed and collaborative acoustic nodes. To this end, experimental tests have been carried out in a listening room with acoustic nodes equipped with loudspeakers and microphones. The communication among the nodes is simulated by software. We have considered a distributed algorithm based on the Filtered-x Least Mean Square (FxLMS) method that introduces collaboration between nodes following an incremental strategy. For improving the processing efficiency in practical scenarios where data acquisition systems work by blocks of samples, the frequency-domain partitioned block technique has been used. Implementation aspects such as computational complexity, processing time of the network and convergence of the algorithm have been analyzed. Experimental results show that, without constraints in the network communications, the proposed distributed algorithm achieves the same performance as the centralized version. The performance of the proposed algorithm over a network with a given communication delay is also included.This work has been supported by the European Union (European Regional Development Fund) together with Spanish Government through TEC2015-67387-C4-1-R project, the grant BES-2013-063783 and Generalitat Valenciana through the PROMETEOII/2014/003 project.Antoñanzas-Manuel, C.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2016). Blockwise Frequency Domain Active Noise Controller Over Distributed Networks. Applied Sciences. 6(5). https://doi.org/10.3390/app6050124S1246
    corecore