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Abstract 

 Speech enhancement in assistive hearing devices has been an area of research for many 

decades. Noise reduction is particularly challenging because of the wide variety of noise sources 

and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed 

in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties 

of undesired signals. This could be disadvantageous in accurate estimation of different noise types, 

which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored 

technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise 

reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the 

performance of the deep learning model was evaluated objectively and compared with that of open 

Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep 

Neural Network (DNN) based model. It was found that the RNN model can suppress noise and 

improve speech understanding better than the conventional hearing aid noise reduction algorithm 

and the DNN model. The same RNN model was shown to reduce reverberation components with 

proper training. A real-time implementation of the deep learning model is also discussed.  
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Chapter 1 

1. Introduction  

This chapter deals with the background, a brief history of hearing aids (HAs), conventional 

signal processing algorithms in hearing aids, machine learning in hearing aids and thesis outline. 

1.1 Background   

Individuals who are unable to listen clearly like those with normal hearing ability i.e. 

hearing thresholds (sound level below which a person’s ear is unable to detect any sound) of 25 

dB (decibels) or better in both the ears are known to be suffering from hearing impairment [1]. In 

other terms, hearing loss is characterized by an increase in hearing, threshold for a sound 

frequency. It implies that the hearing sensitivity decreases, eventually, making it difficult for the 

listener to detect soft sounds. The magnitude of hearing loss can range from mild to moderate, 

severe, or profound, affecting either a single ear or both the ears thereby making it difficult to hear 

conversational speech or loud sounds. The reasons for loss of hearing or deafness may be 

congenital or acquired. 

Statistics reveal that approximately 466 million individuals around the world have 

problems of disabling healing loss of which 34 million are reported to be children. Disabling 

hearing loss indicates hearing loss greater than 40 decibels (dB) in the better hearing ear in adults 

and a hearing loss greater than 30 dB in the better hearing ear in children. Studies reveal that by 

the year 2050 roughly nine hundred million individuals (one in every ten people) are likely to 

suffer from disabling hearing loss [1]. 

The exposure of the younger generation aged between 12 and 35 years, to loud noise in 

recreational settings have posed a risk of hearing loss to about 1.1 billion people in this cohort. 

The annual world-wide cost of unaddressed hearing impairment is estimated to be US$750 billion 

[1]. Preventing, identifying and addressing hearing impairment issues are cost-effective, bring 

huge benefit to people. Majority of these hearing-impaired people require custom assistive hearing 

devices. 

The intelligibility of human speech is quite significant in hearing and communication. It is 

not only a measure of comfort but also that of comprehension. Various factors such as the physical 



2 
 

characteristics, conditions in communication and capacity of information as well as the ability to 

gather information from a specific context, mimics and gesture determine the quality and 

intelligibility of speech [2]. Intelligibility can be better understood by discussing the distinction 

between real and recorded speech. In a real conversation, individuals will be able to 

identify/distinguish the sounds in the background and focus on the speech of the person 

conversing, thus filtering the desired information from the audio environment. This helps to 

significantly increase the speech intelligibility and comprehension although the communication 

may happen in a noisy environment [2].  

            The environment in which speech signals are transmitted are typically noisy in real-time 

situations. Persons with normal hearing may understand speech in a moderately noisy environment 

since speech is an extremely redundant signal [3]. Therefore, even if part of the signal is masked 

by noise, the unmasked part may still allow the speech segments to be intelligible for effective 

communication. Comparatively, there is reduced redundancy in speech signal for individuals 

suffering from hearing impairment because the either the speech is partially audible or is severely 

distorted. Background noise that masks even a small portion of the remaining speech signal will 

degrade intelligibility significantly. Thus, people with hearing loss have a greater difficulty in 

understanding speech in a noisy environment than the people with normal hearing [3].  

            The noise potential for masking speech is expressed by the Signal-Noise Ratio (SNR) 

which is the ratio of the power of speech signal to the power of noise, when both are presented 

concurrently. Lower the value, bigger is the loss in understanding of speech for both normal 

hearing and hearing impaired [4]. Consequently, as the SNR increases, the speech intelligibility 

improves significantly. 

1.2 A brief history of hearing aids 

Hearing aids are small electronic devices that amplifies sound and makes it easier to 

understand speech. They are designed in a way that they can capture sound waves using a very 

small microphone, modify softer sounds into audible sounds, and finally pass the same to the ear 

by means of a tiny speaker, enabling individuals with hearing disability to perceive sounds again, 

and enhance their ability to hear. Thus, it can acquire, process and feedback acoustic signal in real 

time in noisy conditions [2]. In the modern day, with the help of microchips, hearing aids are not 

only smaller in size but also are able to demonstrate a better quality.   
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The invention of hearing aids is centred on no single person. Though there are no recorded 

dates, it is believed that ear horns have existed in every civilization for thousands of years since 

humans first created carved objects. Giovanni Battista Porta was most likely the first to describe 

ear trumpet, a metal version of the ear horn, around 1588 [5]. The 17th century saw the growth of 

speaking tubes as assistive hearing devices until pre-electric horns and trumpets became popular.  

In the 1800s the introduction of decorative and functional hearing aids which could be 

concealed and made less obvious, addressed the concerns regarding public perception about 

hearing aids [5].  Finally, in the nineteenth century the idea of electrically-powered hearing aid 

instruments was introduced which consisted a battery box, earpiece and microphone, made of 

carbon dust which was to be refined later. 

The first electronic hearing aids were devised after the invention of the telephone (the 

technology within which increased how acoustic signal could be altered) and microphone in the 

1870s and 1880s. In 1898 Miller Reese Hutchison created the first electric hearing aid and named 

it Akouphone [6]. The use of carbon transmitter assisted in amplifying the sound by taking a weak 

signal and making the same stronger with the help of electric current.  

The invention of microprocessor led to the miniaturization of hearing aids. In 1987, the 

first commercial digital hearing aids was invented. Until then, the hearing aids were analog in 

nature. In analog hearing aids, incoming noise are dealt with by taking electrical sound waves 

emerging from the microphone, amplifying the same ‘as is’ and transmitting it to the ear while 

digital hearing aids transforms soundwaves from a microphone into digital binary code which is 

in turn altered by a microchip within the hearing aids prior to transforming back into analog signals 

and delivering to the speaker [7].  

The functionalities of both analog and digital hearing aids are basically similar i.e taking 

sounds to amplify them so that they can assist with better hear. Both analog and digital hearing 

aids are programmable, whereby the microchips within can be customised to improve the sound 

quality and matched with the individual user. At the same time, they can be customised to develop 

several settings for use in various environments. For example, the settings can be adjusted in a 



4 
 

quiet environment and can be readjusted while in a noisy restaurant and further readjusted in large 

auditoriums. 

Compared to analog hearing aids, digital hearing aids contain additional features and 

flexibility which are perceived to be user-configurable as it has the ability to modify sound in 

digital form. For example, digital hearing devices offer numerous channels and memories, 

providing advantage of being able to save more location-specific profiles. Additionally, digital 

hearing aids possess the capability to decrease surrounding noise automatically, eliminate 

feedback or whistling, or the capability to favour human voices over any other noise.   

1.3 Signal processing in hearing aids 

Digital Signal Processing (DSP) is a relatively recent technique that involves the sampling 

of an analog signal and the processing of these samples in digital form. This processing can be 

accomplished using standard digital integrated circuit technologies such as complimentary metal 

oxide semiconductor (CMOS), which is space and energy efficient. The digital processing of 

speech is a mature technology and a wide range of algorithms is available for filtering, 

compression, noise reduction, dereverberation, feedback reduction and special effects as well as 

coding for bandwidth reduction. Many of these techniques would prove beneficial to the hearing 

impaired if tailored correctly to their needs and implemented in a hearing aid [8]. 

Signal processing research on digital hearing aids encompasses signal acquisition, 

amplification, transmission, measurement, filtering, parameter estimation, separation, detection, 

enhancement, modeling, and classification [9]. They can be broadly categorised into four areas. 

The first area adopts advanced signal processing methods to characterize and compensate for 

hearing loss like loudness and frequency selectivity loss. The second area focuses on effective 

target signal improvement and reducing noise, including adaptive microphone array technologies, 

spectral subtraction algorithms, and blind source separation methods. The third area consists of 

practical usage of hearing aids to address problems like flexibility, convenience, feedback 

cancellation, and artifact reduction. Finally, the fourth area concentrates on developing hearing aid 

technology into devices, the functions of which can also be used for hand phones and music players 

[9]. Here the focus is mainly placed on problems like echo cancellation, bone conductive 

microphones, and wireless voice link. However, faced with constraints pertaining to hardware 

http://www.salemaudiologyclinic.com/
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necessities, computational speed, consumption of power and other pragmatic issues, the 

advancement and application of signal processing methods in digital hearing aids have faced 

numerous challenges in the last decade [9]. 

1.4 Introduction to machine learning 

Machine learning is a technique of analysing data, which helps to automate building of 

analytical models. It is that branch of artificial intelligence, which adopts the idea that data can be 

learnt effectively from the systems, patterns can be identified, and decisions can be made with 

little human involvement. This field of computer science uses statistical methods and provides 

computer systems a learning ability to improve performance, gradually on specific tasks, either 

with or without explicitly programming the data. 

Machine learning has applications in various areas such as image recognition (face 

detection and recognition in Facebook), speech recognition (as in Siri in Apple phones and Alexa 

for home automation), medical diagnosis (prediction of disease progression), product 

recommendation (as in Amazon, Netflix or Youtube websites), basket analysis (learning 

association between products people buy), classification and prediction of potential customer 

behaviours in terms of loan repayment in banks, real-time information extraction from web pages, 

data security (predicting which files are malware), fraud detection (in PayPal), traffic and route 

recommendations (as in Google Maps) etc. 

While implementing conventional signal processing algorithms in digital hearing aids, the 

speech characteristics need to be learnt, analysed and then hard coded to segregate speech in audio 

segments. Similarly, the types of noise and various environments that the hearing-impaired 

listeners are subjected to, must be known during design to be able to program the noise 

characteristics into the hearing aids. Recently, machine-learning approaches to enhancement of 

speech have been promising in refining speech intelligibility for people with hearing impairment. 

A machine learning model understands the underlying details and learns to differentiate speech 

from noise when trained with features of speech and noise separately. The recent researches also 

indicate that deep learning can be used for automatic speech recognition where latency is not 

important [18]. This project focuses on speech enhancement using a combination of signal 

processing and deep learning techniques in real-time, where latency is of paramount significance.  
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1.5 Problem statement and contributions  

 Conventional noise reduction techniques in modern hearing aids work well with stationary 

noise. They may also provide improvement in SNR. However, the improvement in SNR does not 

necessarily enhance speech intelligibility as per behavioural studies. The conventional 

methodologies have limitations processing non-stationary noise. Recently, deep learning-based 

models have been found to perform better than conventional algorithms for hearing aid 

applications. This thesis focuses on training and implementation of a deep neural network for the 

purposes of noise reduction and dereverberation, evaluation of its performance using objective 

predictors of speech intelligibility and quality and real-time implementation of the algorithm in a 

portable computing platform. 

1.6 Thesis outline 

This thesis is organized in chapters that discuss conventional signal processing algorithms 

in a bit more detail (chapter 2), Machine Learning (ML) and its speech applications so far (chapter 

3), the implementation of speech enhancement algorithm, database used to evaluate it, the 

objective metric and comparison between Gammatone and Bark filters (chapter 4), results from 

the objective assessment of pretrained and trained Bark RNN and their comparison with a couple 

of reference algorithms (chapter 5), followed by conclusion and future work (chapter 6). 
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Chapter 2 

2 Conventional signal processing algorithms 

Signal processing in hearing aids has come a long way over the past few decades. This 

chapter briefly discusses the advancement in digital signal processing (DSP) over the past few 

decades, outlines the various DSP algorithms incorporated into hearing aids, and finally focuses 

on the conventional noise reduction DSP algorithms and their effectiveness in enhancing speech 

perception by hearing impaired listeners. 

2.1 DSP over the years 
The world is becoming more and more digital in our daily activities since the invention of 

integrated circuits. Not only did the size of microelectronics shrink, but the computational power 

of the microelectronic systems doubled almost every two years. This follows the “Moore’s law of 

microelectronics” which led to a remarkable influence on the technology within hearing aids. An 

all-digital hearing aid was reported to be developed in the 1980s [10]. Researchers created several 

prototype hearing aids with the help of customised DSP chips using less power as well as very 

large scale integrated (VLSI) chip technology. These hearing aids were put to use for research on 

individuals with hearing-impairment. Now, most of the commercially available hearing aids are 

digital. Modern hearing aids have become intelligent systems providing a wide variety of 

algorithms for specific and diverse hearing and communication challenges of users in various 

acoustic environments [10]. 

Numerous hearing aids, in the modern times, comprise application-specific integrated 

circuits (ASICs) as well as reprogrammable DSP cores and microcontroller cores providing 

advantages of flexible reuse of the microelectronics for different signal processing algorithms. 

There has been significant improvement in the performance of digital hearing aids during the last 

two decades [10]. The objectives of hearing aids have been upgraded to improve quality of sound 

by reducing the artifacts and providing more natural sound output, in addition to improving speech 

intelligibility. These requirements must be met in dynamically changing listening environments in 

everyday life situations. 

Newer DSP platforms provide computational abilities to implement advance functions like 

reducing frequency, cancelling noise impulses and adaptive directional microphones. Another area 
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where there has been a huge improvement is in systems integration [10]. Adaptive algorithms 

could sometimes counteract each other, just like algorithms for noise-cancellation and acoustic 

feedback controlling algorithms are likely to decrease gain and work in opposition to amplification 

schemes. These effects are taken into consideration during design, implementation as well as in 

choice of parameters for signal processing algorithms.  A more detailed description of individual 

DSP algorithms within hearing aids is given next. 

2.2 Signal processing in hearing aids 

The types of hearing loss are so diverse that each of them needs custom prescriptions. One 

listener may need frequency-dependent gain, the other may need level-dependent and the third 

listener may need a combination of both. Thus, technology in hearing aids must be flexible enough 

to be able to meet revised requirements and digital hearing aid is the solution available today.  

Figure 2.1 provides a framework of signal processing algorithms in digital hearing aids of modern 

times. The signals from the environment that come to listener’s ear are picked up by one or more 

omnidirectional microphones. These signals would be analog in nature. Hearing aids in the early 

stages used to process analog signals only which means amplification of input in simple terms. 

This may not help the hearing-impaired listeners much and in fact amplification could just cause 

distress. 

 

Figure 2.1: Signal processing in hearing aids 
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  The analog signal (sound waves) is converted to electrical signal by the vibration of 

diaphragm in microphones which is caused by the changes in air pressure. This electrical signal is 

then sampled and digitized using an Analog-to-Digital Converter (ADC), which usually provides 

a usable audio bandwidth of 8 to 16kHz. The resultant discrete time signal may be analyzed 

spectrally either in frequency domain or in time domain depending on the signal processing 

algorithm used in the device [10]. Either of the methods will involve trade-offs in time-frequency 

resolution. The hearing devices these days are expected to have a delay no more than 10-12ms to 

avoid incongruity between the speaker’s lip movement, echo and the audio signal [10]. The 

spectral resolution is dependent on frequencies with bandwidth proportional to center frequency.  

 The time domain analysis of speech signals can be done using a bank of infinite impulse 

response (IIR) filters as: Signal from microphone → Filter bank (Combination of low pass, band 

pass and high pass filters) → Sound cleaning → Loudness adjustment → Recombination of signals 

into single output. Each of the filters in filter bank may allow or stop a specific range of frequencies 

that form a band. The channel width increases with center frequency with more frequency 

resolution at lower frequencies. IIR filters require much lesser computation to achieve desired filter 

slopes when compared to FIR filters. However, a cautious design is required to evade the artifacts 

that may be produced otherwise. It is recommended to process a block of samples instead of 

processing each sample when it comes for computational efficiency [10]. 

 The analysis in frequency domain is done by taking Fourier transform of the signal: Store 

specific number of samples in a buffer → Multiply the values with a window function (to avoid 

discontinuities at the edges) → Apply Fourier transform (FFT) → Sound cleaning → Loudness 

adjustment → Inverse FFT → Output synthesis [10].  

 Hybrid analysis systems combine the time domain online processing with frequency 

domain offline processing. The signal collected by microphone is processed first in time domain 

up to sound cleaning, which is summed across channels before passing it on to the filter bank in 

frequency domain. Such systems join lower quantization sound as well as the time domain filter 

distortion with the higher frequency resolution of FFT systems. At the same time there is little 

need to smoothen the gain across frequency or have large temporal overlap between consecutive 

blocks. Time-frequency analysis schemes form the basis for different adaptive algorithms though 

the scope is limited in hearing aids when compared to human auditory system [10].  
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 The signal processing algorithms are broadly classified into three types based on their 

functionality: 

1) Frequency and level-dependent gain application to provide a satisfactory volume for 

the respective hearing profile (usually audiogram) 

2) Sound cleaning by removal of stationary and non-stationary noises and reducing 

acoustic feedback through the use of various algorithms for noise reduction. 

3) Environment classification for automatic adjustment of hearing aid settings to choose 

suitable signal processing algorithm for a given condition 

No single algorithm may provide optimal performance in all these aspects. Though 

different manufacturers may have or come up with entirely different signal processing strategies 

and solutions the underlying class of these strategies remain same with premises and scope clearly 

defined for each of these solutions. 

2.3 Audibility 

 There are a couple of important strategies to restore audibility. Most people suffering from 

sensorineural hearing impairment endure loudness recruitment, a phenomenon which causes the 

loudness to grow rapidly for any sound above the absolute threshold. The gain should reduce when 

input levels increase to compensate this effect, which means the input-output function is 

compressive and the process by which we achieve it is called multichannel compression. For lower 

inputs, up to about 40 dB SPL, the gain is kept constant. The applied gain decreases with further 

increase up to 100 dB SPL which compensates loudness recruitment and the compression ratio is 

made infinite beyond 100 dB SPL for limiting [10]. The compression algorithms can be slow-

acting (like in Adaptive Dynamic Range Optimization) based on input sound level which will help 

maintain signals for localization of sound based on Interaural Level Differences (ILD) or fast-

acting which will have comparatively shorter attacks and release times and are able to make 

loudness perception level closer to normal. 

Many a times it is quite tough to restore audibility at high frequencies for individuals 

suffering from extreme hearing loss. Applying gains at these frequencies could cause acoustic 

feedback or loudness discomfort, especially when they have narrow dynamic range.  Frequency 

lowering is an alternative approach in such situations. This would be perceptually beneficial 

because of the lower threshold in lower frequencies. Frequency lowering methods can be classified 
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into three categories: a) frequency transposition – a block of higher frequency component is shifted 

downward to a frequency in destination band, b) frequency compression or frequency division – 

frequency components up to a frequency stay unaffected and the components above are shifted 

downward with a lower slope and c) spectral envelope warping - lowering of part of the spectral 

envelope, keeping the spectral components unchanged.  

2.4 Sound cleaning 

 It is important to note that restoring audibility alone will not suffice for speech perception 

in acoustically challenging environments.  It is indeed challenging for hearing-impaired people to 

understand speech (intelligibility) in noisy environments. Though reducing noise may sound an 

easier task, this has been a prime area of focus since the invention of digital hearing aids. There 

are so very divergent types of speech and background noise to deal with. What makes it more 

difficult is the constantly changing speech and noise in realistic sound scenarios. The target speech 

differs due to the characteristics of speaker, vocal effort, distance and orientation of the speaker, 

the amount of reverberation in the listening environment and the presence/absence of visual cues. 

Due to this variability, a single algorithm for optimal noise reduction is not available.  

The most successful approach for noise reduction uses directional microphone, that can 

help when there is a spatial separation of target speech from source of the noise. Hearing aids using 

this technique will have two omnidirectional microphones – one at the front and the other toward 

the back side. The signal collected from one microphone is delayed and added with the other to 

form a beam pattern. In this manner, the target signal from the beam’s direction will be captured 

and others will be attenuated. The shape of beam pattern is constant in a static beamformer whereas 

it dynamically adapts based on environment in an adaptive beamformer. When the direction of 

highly interfering sound changes, the adaptive beamforming system shall adjust itself to maintain 

the good suppression of the interference. The beamformer may be independently applied to various 

frequency bands instead of the entire broadband signal.  

Directional microphones provide 2-5 dB improvement in the threshold of speech reception 

in realistic conditions [10]. Though use of these microphones is advantageous in many ways, these 

may not help in understanding of speech coming from side or back like a vehicle coming from 

behind the listener or sounds coming from side and back at movies. The placement of these 
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microphones such as in the Behind-The-Ear (BTE) hearing aids, far from the pinna may also affect 

their directivity. 

Binaural beamformer is a technique combining the four microphones of two bilaterally 

worn hearing aids that forms a four-microphone directional system. The outputs of two 

microphones on both sides are initially combined before exchanging over a wireless link with the 

hearing aid on the other side. Thus, the ipsilateral and contralateral signals in each hearing aid are 

combined using a frequency dependent weighting function to create binaural directivity pattern, 

which is narrower than the monoaural one. This static beamformer can be made adaptive by 

combining the resulting signal in one hearing aid with the current spatiotemporal distribution of 

undesired signals. Researches earlier have demonstrated the way this approach can enhance speech 

intelligibility while reducing the effort made to hear. 

The above two approaches assume that source of speech is directly at the front side of the 

listener. However, this is not the case in many of the communication scenarios, just like the target 

could be on the side while driving. A solution for such a situation is to pick up signal from the ear 

that is ipsilateral (better ear) to the target and transmit the same to the contralateral side. This will 

allow both the ears to receive a reasonably clean representation of the target.  

In situations where speech and noise are spatially co-located, or in small-size custom 

hearing aids which preclude the placement of two microphones due to size restrictions, additional 

strategy is required for noise reduction.  Single microphone noise canceling algorithms are such 

strategies and represent one of the most widely used techniques in digital hearing aids today. It 

works on the premise that speech signal has different temporal properties than that of the 

interfering sounds and that low-rate temporal fluctuations are relatively scarce in case of the 

background sounds. These temporal fluctuations in speech signal are used to estimate the SNR, 

which is used in computationally efficient algorithms like spectral subtraction, harmonic 

extraction, and Wiener filtering techniques to reduce interference.  These algorithms are briefly 

described next. 

One of the initial noise reduction algorithms that was first proposed for single channel 

speech improvement was spectral subtraction (BSS) [11].  It is a technique to restore power or the 

magnitude spectrum observed signals in additive noise, by subtracting the estimated average noise 

spectrum from a noisy signal spectrum. An estimation of the noise spectrum is done and updated, 
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from the periods when there is no signal while the noise alone exists. In this manner, the estimation 

of noise spectrum is made when there are pauses in speech and is deducted from the spectrum 

when the speech is noisy. While doing so, an assumption is made that the noise is not correlated 

with speech and that the noise is additive in nature. Many variants of spectral subtraction are 

present, and the principle for all the variants is to estimate short time speech spectral magnitude 

by deducting sound from noisy speech or by multiplying the noisy spectrum with gain functions 

and combine with the phase of noisy speech. 

Spectral over-subtraction (SOS) introduced two extra parameters such as over-subtraction 

factor and noise spectral floor in basic spectral subtraction method to reduce remnant noise 

(processing distortion), which is one of the two drawbacks of BSS, the other being narrow band 

musical noise [11]. The over-subtraction factor restricts the quantum of noise power spectrum 

subtracted from the noisy speech power spectrum in each frame. The spectral floor parameter helps 

to dissuade the ensuing spectrum from dipping beyond a pre-determined minimum level instead 

of setting to zero (spectral floor). This implementation considers that the speech spectrum is 

affected by noise evenly and the subtraction factor subtracts an over-estimate of noise from noisy 

spectrum. In order to draw a balance between the surrounding noise and remnant noise elimination, 

numerous combinations of over-subtraction factor α, and spectral floor parameter β provides a 

trade-off between the quantity of residual noise in the background and the extent of perceived 

remnant noise. Because noise is perceived to influence speech spectrum equally and that the over-

subtraction feature is constant across frequencies, the enhanced speech may be distorted.  

In reality, noise is colored and influences speech signal in a different way throughout the 

spectrum and subtraction factor is expected to be frequency dependent to explain various types of 

noise. The non-linear spectral subtraction (NSS) idea, extends this ability by forcing the 

dependency of the over-subtraction factor frequency while the subtraction process remains non-

linear. Bigger values are deducted at frequencies with low SNR levels, and lesser values are 

deducted at frequencies with high SNR levels giving better flexibility for compensation of errors 

in the estimation of noise energy in various frequency bins [11].  

Multi-band spectral subtraction (MBSS) groups frequencies into bands and multiple bands 

constitute the speech spectrum. It implements four uniformly spaced frequency bands and spectral 

subtraction in each band is independent of the other [11]. Since the real-world sound is extremely 
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random in nature, enhancement in MBSS algorithm is required for the reduction of WGN. The 

MBSS algorithm usually performs better than other subtractive-type algorithms. 

In a Wiener filter (WF) design it is assumed that speech and noise are not correlated [11]. 

They are considered to be in normal distribution and this filter aims to reduce the mean squared 

error criterion. The gain function of WF is fixed at all frequencies and it requires power spectral 

density (PSD) of clean signal and noise for filtering, which are the main drawbacks of WF. It is 

not possible to apply non-causal WF directly in order to estimate clean speech since it is not 

possible to assume that speech is stationary. An adaptive WF implementation decreases each 

component of frequency by a certain amount that depends on the power of noise at that frequency. 

The gain function in WF is calculated using power spectrum of noisy speech, rather than 

clean speech which will degrade its accuracy. An iterative algorithm is used to solve this problem. 

In the iterative spectral subtraction (ISS) algorithm, the improved speech output is taken to be the 

input for following iteration and consequently for spectral subtraction, the remnant noise is re-

estimated in every iteration. Therefore, a larger number of iterations will provide a better enhanced 

speech when compared to WF. 

 

Figure 2.2: A comparison of performance of different spectral subtraction methods [11] 

The use of fixed subtraction parameter is one of the major drawbacks of spectral 

subtraction while the noise spectrum in real time is changing constantly. Although MBSS will 

allow the adaptation of parameters, the remnant noise is not completely suppressed especially at 

low SNRs. The speech signal quality and intelligibility can be improved by the perceptual 
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properties of spectral subtraction [11]. By incorporating the masking properties of human auditory 

system into enhancement process, it is possible to attenuate components of noise that were 

previously inaudible as a result of masking. Based on the masking properties, the subtraction 

parameters are adapted in the algorithm. Through the calculation of noise masking threshold, 

masking properties are modelled. 

The spectral subtraction effectiveness is highly depending on estimation of accurate noise 

that is mostly a tough task. Since the power spectrum and magnitude are non-negative variables, 

the negative estimates of these variables, if any, must be mapped into a non-negative value. The 

distribution of the restored signal is distorted by this nonlinear rectification method and the 

distortion is more visible when the SNR reduces. Spectral subtraction that is based on perceptual 

properties (SSPP) performs better in comparison to above discussed algorithms for speech 

improvement. WF leads to reduced remnant noise, however, the structure of noise is musical and 

speech regions, especially fricative consonants, are reduced. Such spectral subtraction can lead to 

distortion of speech. Thus, using SSPP algorithm for enhanced speech is more pleasant reducing 

the remnant noise with least speech distortion, if any. A comparison of various spectral subtraction 

methods is demonstrated in figure 2.2, which indicates the advantage of SSPP algorithms [11].  

It is important to note that difference exist among manufacturer-specific implementations 

of the aforementioned spectral subtraction and Wiener filtering algorithms. Estimation of speech 

and noise spectra and rules for engaging/disengaging noise are proprietary. As such, assessment 

of noise reduction feature, either objectively or through subjective measurements, is of great 

importance. Few studies have investigated the effectiveness of noise reduction algorithms as 

implemented in commercial hearing with hearing impaired listeners. For example, Ricketts et al. 

studied the effect of digital noise reduction (DNR) in hearing aids on speech recognition and 

quality [12]. This subjective study with 14 adults wearing hearing aids presented that there is no 

impact on speech understanding with the use of conventional noise reduction techniques although 

there may be an improvement in speech quality. Another study by Bentler et al. showed that DNR 

can improve listening comfort but has no effect on speech perception of even with visual cues [13]. 

Desjardins et al. found that speech recognition in noise score did not change much with noise 

reduction in place for 12 hearing-impaired listeners with BTE hearing aids [14]. Brons et al. 
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observed different perceptual effects among hearing aids and that none of the noise reduction 

algorithms actually improved speech intelligibility while they may reduce annoyance of noise [15]. 

Single microphone noise canceling is usually effective for noise spectrum that hardly 

changes over time and does not take into account the undesirable effects from an enclosed 

environment [10]. In environments such as office, lecture rooms and big halls, the target speech 

will have multiple paths from the source to listener. Apart from shortest direct path from source to 

listener, the target signal could hit any part of the room (floor, ceilings or walls) and objects in the 

room and reflect from them before it adds on to the direct path to listener. This process is called 

reverberation and can cause severe impact on the ability to perceive speech. The performance of 

beamformers depreciates when distance between target and listener increases and with increasing 

reverberation. The reverberated speech can be represented as the convolution of original speech 

and the impulse response of the environment. Dereverberation would need an algorithm to estimate 

and segregate the parts of speech that are reflected off the objects in the reverberating environment 

from the speech collected by the hearing aid.  

Thus, dereverberation is a highly complex task in real-time due to its need to estimate the 

constantly changing original speech target and the unknown impulse response of the room or hall. 

The dereverberation approaches are generally very complicated to implement them in hearing aids 

leading to time delays, which may not be acceptable for hearing aids. Lebart et al. [16] took a 

simpler approach to this problem by estimating parts that are decaying over time and attenuating 

them. This signal processing was done by converting the time-domain signal into frequency 

domain and comparing the decay rate with respect to standard reverberation time. This method 

definitely has shown improvement in quality of sound and hearing ease but does not enhance 

speech intelligibility [17]. 

Signal processing algorithms provide a wide range of solutions to improve speech 

intelligibility in adverse listening environments. However, there are limitations for every algorithm 

based on environment in which it is assessed. The objective and subjective results may vary most 

of the time because of the change in premises in realistic environments. Hence it is important to 

specify the testing conditions and every result would be slightly or largely different from the other 

based on these conditions. 
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To summarize, signal processing in hearing aids, the conventional signal processing 

techniques to restore audibility and sound cleaning are discussed. Though there are many noise 

reduction techniques available, the increase in SNR provided by these methods does not 

necessarily improve speech intelligibility. The same is observed with dereverberation though there 

are evidences of improvement in speech quality. Emerging evidence suggests that algorithms 

incorporating machine learning are effective in enhancing speech understanding by hearing-

impaired listeners in noisy environments. Machine learning techniques are discussed in detail in 

the next chapter. 
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Chapter 3 

3. Machine learning in hearing aids 

 Speech enhancement in noisy conditions has always been a challenging task for better 

speech recognition and further processing, not just in hearing aids but also in all 

telecommunication systems. The objective of speech enhancement is to reduce noise and to 

increase intelligibility of the input noisy speech. However, the results using conventional signal 

processing methodologies are not always satisfactory in terms of speech intelligibility and speech 

quality, in adverse conditions. Hence there is always a need for better performing adaptive noise 

reduction algorithms because of the non-stationarity of speech and noise signals. 

 Machine learning is that branch of artificial intelligence which has been recently found 

useful in various speech recognition and natural language processing tasks. Specifically, deep 

learning has the capability to learn complex patterns underlying speech data. Healy et al. used deep 

neural network (DNN) to segregate speech from noise for hearing-impaired listeners [18]. This 

work focused on ideal binary mask estimation with a classification approach using a Restricted 

Boltzmann Machine (RBM). Chen et al. extended the work with ideal ratio mask estimation 

instead using a deep neural network [19]. This chapter explains a bit about machine learning, deep 

learning, artificial neural networks and their learning process. 

3.1 Types of machine learning 

 ML algorithms are generally classified into three, based on the way the models learn.  

1) Supervised learning - This algorithm includes a target or outcome variable (also known as 

dependent variable) which will be predicted from a set of predictors (independent 

variables).  The algorithm attempts to model the relationship and dependencies between 

the dependent and independent variable with the help of the given set of variables, in a way 

that the output values for a new data set based on those relationship can be predicted This 

training process goes on till the model is able to achieve the desired accuracy level on the 

training data. Example: Regression and classification tasks 

2) Unsupervised learning - In this algorithm, no target or outcome variable is available to 

make predictions.  It is used for detecting patterns and descriptive modeling. Clustering of 
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population in different groups generally uses unsupervised technique for segmenting 

customers in different groups for specific intervention. 

3) Semi-supervised learning – This method falls in between the above two. The cost of getting 

labeled dataset is usually high and, in such situations, we obtain some labeled data along 

with lots of unlabeled data for training. 

4) Reinforcement learning - Here, the machine is exposed to an environment where it trains 

itself repeatedly through trial and error and has to determine the ideal behaviour within the 

given context to maximize performance. Q-learning, temporal difference and deep 

adversarial networks are some of them. 

ML can be further categorized into three based on the objective the model is trying to achieve. 

1) Regression: For prediction of a continuous real number 

2) Classification: For prediction of a discrete number 

3) Clustering: For segmentation 

Deep Learning (DL) uses different architectures of Artificial Neural Networks (ANNs) to learn 

from data. These ANNs are a family of machine learning models that have taken inspiration from 

human brain and the biological nervous system. 

3.2 Artificial neural networks (ANNs) 

 An ANN is composed of neurons, which are the basic functional units inspired from 

neurons in biological neural network. These neurons are interconnected to form a network of 

neurons that takes in and processes a set of inputs to provide a set of outputs. The neurons (also 

called as nodes) are organised in layers containing specific number of them in every layer and 

connected with specific ones in another layer. Each of these connections (called edges) has a 

weight that is multiplied with the conveyed value. Figure 3.1 illustrates a neuron for which 𝜃1, 

𝜃2,…,𝜃N are the weights for incoming values with 𝜃0 and 1 being the weight and input representing 

the bias to the neuron. The sum of weighted inputs to the neuron is passed to an activation function 

that computes the output or activation of the neuron. 
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Figure 3.1: Artificial neuron 

3.2.1 Activation function 

An activation function is a function that transforms the input value to an output to 

determine whether the neuron must be activated or not. 

𝑦 = 𝑓(∑ 𝜃𝑖𝑥𝑖 + 𝜃0
𝑁
𝑖=1 )          (3.1) 

𝑦 = 𝑓(𝜃𝑇𝑥)            (3.2) 

where, 𝜃 is the weight vector, x is the input vector and w0 is the bias 

If 𝜇 = 𝜃𝑇𝑥, a sigmoid activation function would have the following representation: 

𝑓(𝜇) =  
1

1+𝑒−𝜇           (3.3) 

            

Figure 3.2 (from left to right) a) sigmoid activation [20] b) ReLU activation function 

A Rectified Linear Unit activation (ReLU) function and a leaky ReLU are given by  

𝑅𝑒𝐿𝑈: 𝑓(𝜇) = max(𝜇, 0)         (3.4) 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈: 𝑓(𝜇) = max(𝜇, 0) +  𝛼min (𝜇, 0)       (3.5) 
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The sigmoid activation function is linear when the weights are small and the corresponding 

weighted sum is close to zero. However, it will turn non-linear as the weighted sum grows in both 

the positive and negative directions as in figure 3.2a. This would result in neuron be considered on 

or off as the weighted sum tends to infinity. The magnitude of bias value acts as the threshold 

weighted sum that the inputs must provide to activate the neuron and contribute to output. Recent 

years have seen the development of rectified non-linear activation functions like Rectified Linear 

Unit (ReLU, figure 3.2b), which increases linearly for positive inputs and gives zero output for 

any negative input. The drawback with ReLU is that it is not differentiable for negative inputs, 

which provides no further learning. Leaky ReLU is a variant of ReLU that has a non-zero gradient 

for any negative input, which is more popular for image classification tasks than conventional 

ones.   

Rectified non-linearity is observed to provide significant boost to the performance of object 

recognition system as per [21]. [22] found that types of ReLU can provide a better model of 

biological neurons than conventional hyperbolic tangent or sigmoid functions. [23] recommends 

replacement of sigmoid with ReLU in feedforward neural networks. 

3.2.2 Feedforward neural network 

 Feedforward neural networks are a subclass of ANNs in which the nodes are organised in 

a directed acyclic graph (DAG) from input to output. A unique type of these networks is the 

multilayer perceptron (MLP) as in figure 3.3. Here the nodes are arranged in layers where 

connections are provided only between neighbouring layers. The features are fed in to the first 

layer which is the input layer. The output is taken from the final layer of the network termed as the 

output layer. The layers between input and output layers are termed as the hidden layers. The 

number of layers is identified by counting the number of layers in the network and neglecting the 

input layer since it does not perform any computations. By this convention, the network in figure 

3.3 is a 2-layer MLP.  
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Figure 3.3: Multilayer Perceptron (MLP) 

3.3 Learning process in neural networks 

 Multilayer perceptrons are usually trained in supervised manner using labeled data. 

Problem identification is the first step in any machine learning task, followed by collecting data. 

The training data is a collection of input-output pairs [{xk, yk}, k = 1 to m] where xk is feature set 

of kth training example, yk is the corresponding label and m is the total number of examples.  

3.3.1 Forward propagation 

The inputs are multiplied with respective weights progressively layer after layer. The 

output from final layer is the prediction by the network. A cost/loss function is defined to measure 

the difference between actual (target) output and the output predicted by the network. The training 

process calculates the loss value after every pass of specific number of examples specified by batch 

size from input to output (forward propagation) and updates the parameters so as to minimize the 

loss value [24]. For a 3-layer network (2 hidden layers and an output layer),  

a(1) = x(i)     (inputs) 

z(2) = 𝜃(1) a(1) 

a(2) = g (z(2))     (add  a0
(2)

) 

z(3) = 𝜃(2) a(2)  

a(3) = g(z(3))    (add a0
(3)

) 

z(4) = 𝜃(3) a(3)  
a(4) =  hѲ(x)  = g (z(4))  (prediction) 
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The (MSE) cost/loss function is defined as: 

J(𝜃) =  ∑ [ℎ𝜃(𝑥𝑖) – 𝑦(𝑖)]2𝑚
𝑖=1          (3.7) 

 

A few widely used loss functions are mean squared error (MSE), sum of squared error (SSE) mean 

absolute error (MAE) and cross entropy error. The objective of the network is to find the set of 

weights or parameters that minimize the loss function: 

𝑚𝑖𝑛
𝜃

   J(𝜃)                     Need code to compute J(𝜃) ,    
𝜕

𝜕𝜃𝑖𝑗
𝑙  J(𝜃) 

The most critical part of training is the update of parameters which is done using backpropagation 

in MLPs. The neural network is initialized with small weights and once the loss value is calculated, 

the derivates of loss with respect to the weights of the networks are calculated and the resulting 

value times learning rate (a factor that determines the rate of update of parameters) is subtracted 

from the previous weights.   

𝜃  : =   𝜃 - ∝ 
𝜕

𝜕𝜃
 J(𝜃)          (3.8) 

 

𝜃 is the weight vector, 

∝ is the learning rate and 
𝜕

𝜕𝜃
 J(𝜃) is the gradient vector 

 

3.3.2 Backpropagation (BP) 

BP uses a gradient based update rule and hence the cost and activations must be 

differentiable. The differentiation of the objective cost function with respect to output will result 

in an error term. Derivatives are calculated with respect to all output elements and these terms are 

propagated backwards in the network using chain rule.  

𝛿𝑗
(𝑙)

 = error of node j in layer 𝑙 

𝛿𝑗
(4)

 = 𝑎𝑗
(4)

 – y4 or 𝛿4 = a(4) – y 

 

 

𝛿3 = (𝜃(3))T 𝛿4 . ∗ g′(z(3)) a(3)   . ∗ (1 – a(3)) 
𝛿2 = (𝜃(2))T 𝛿3 . ∗ g′(z(2)) 

No (𝛿1) 

 

Back Propagation   (3.9) 
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In general, the partial derivatives can be given by  

 
𝜕

𝜕𝜃
𝑖𝑗
(𝑙)  J(𝜃)  = 𝑎𝑗

(𝑙)
 𝛿𝑗

(𝑙+1)
  (ignoring regularization part)      (3.10) 

 

∆𝑖𝑗
(𝑙)

 := ∆𝑖𝑗
(𝑙)

 + 𝑎𝑗
(𝑙)

  𝛿𝑖
(𝑙+1)

          (3.11) 

 

𝐷𝑖𝑗
(𝑙)

 := 
1

𝑚
  ∆𝑖𝑗

(𝑙)
 +  𝜆 𝜃𝑖𝑗

𝑙   if  j ≠ 0        (3.12a) 

 

𝐷𝑖𝑗
(𝑙)

 := 
1

𝑚
  ∆𝑖𝑗

(𝑙)
   if  j = 0           (3.12b) 

 
𝜕

𝜕𝜃𝑖𝑗
𝑙  J(𝜃) = 𝐷𝑖𝑗

(𝑙)
            (3.13) 

The training set size is usually large (>>1) and a summation over the gradient term is 

necessary to get the derivatives of objective function. The update of weights is sometimes done 

using the entire training data, called as full batch learning. It is recommended to update weights 

more frequently using a subset of the entire training data called mini-batch or after every training 

example is passed through the network which can be considered as batch size = 1. 

3.4 Regularization 

The key to successful training of a neural network is to have large enough training 

examples proportional to the dimensionality of features. This will enable the network to learn 

various combinations of features and generalize well for unseen data. However, if the neural 

network has too large number of parameters compared to the number of training examples or if 

the training data is not representative enough, then there is a risk of overfitting the network 

parameters with the limited number of training examples. This would mean that the model will 

memorize the feature mapping from training data and perform less better when it is exposed to 

unseen data. This results in high accuracy or performance with training data and low accuracy or 

performance with testing data. Reducing the complexity of the model will obviously make 

overfitting less likely but this can limit the ability of the network to learn complex pattern and 

cause underfitting.  

 The solution to overfitting is to have a complex enough model with large number of 

training examples. Though this looks like a straight forward solution, the size of data that can be 

obtained is domain dependent and getting a huge labeled dataset may be costly or unrealistic. 
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Fortunately, there are many alternatives in place to avoid overfitting in complex models. These are 

collectively called as regularization. One of the regularization methods aims to avoid the weights 

of the network from growing too big. This is done by incorporating an additional term in loss 

function which penalizes the loss when the values of weights increase, which will essentially make 

the learning smoother and less susceptible to outlier occurrences.  

An example of such a regularization function is L2 that adds a parameter times the sum of 

square of weights to the cost function. If the regularization parameter has a big value, the only way 

to reduce loss and optimize the network is by reducing the sum of square of weights small, which 

means the weight values must be small. L2 or weight decay ensures that the weights with small or 

zero gradient terms are slowly scaled towards zero, reducing the effect of unnecessary parameters 

and simplifying the model. Thus, regularization is a method to improve performance on unseen 

test data by probably making the performance on training data conservative.  

Another example of regularization is L1 which penalizes the sum of absolute values of 

weights rather sum of squared values. This method is chosen when the result is desired to be sparse 

and many weights will have an optimal value of zero.  

3.5 Recurrent neural network 

Artificial neural networks typically process a set of features and predict the dependent 

variable without considering time. They assume that subsequent inputs are independent of each 

other. However, there are applications like speech recognition, natural language processing and 

time series forecasting where the values of input at different time instants may be important for 

prediction of future output. A recurrent neural network is a type of artificial neural network which 

uses its internal state or memory to process sequences of input and this makes it applicable to such 

time dependent tasks.         
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Figure 3.4: Recurrent Neural Network  

Recurrent Neural Networks (RNN) were developed in 1980s. A recurrent neuron has 

connection to itself apart from the connections to those in previous and next layers as in ANNs. 

This will form a directed graph along a sequence. The idea here is to use sequential information. 

If the task is to estimate the subsequent word in the sentence, it is important to know which words 

came prior to it. RNNs can store the information captured from the previous inputs in its memory.  

In figure 3.4, x is the input, h is the hidden state and y the output in an ANN. The figure b 

shows its recurrent representation – A is the set of weights from hidden layer to output layer, B 

the weights from input to hidden layer and C being the weights for recurrent connections. 

3.5.1 Back propagation through time 

 Backpropagation through time (BPTT) is a gradient-based method used to train RNNs. 

BPTT applies backpropagation training algorithm to recurrent neural network to sequence data 

like that of time series. A recurrent neural network represents one input each timestep and estimates 

one output by unrolling every input timestep. Every timestep has single input, a copy of the 

network, and a single output. In figure 3.5, x and y are the inputs and outputs for different time 

instants 0, 1, …, t-1, t, t+1, … to/from RNN with parameters A, B and C and hidden state h. Errors 

are calculated and accrued for every timestep. The network is rolled back up and the weights are 

revised. Spatially, every timestep of the unrolled RNN may be viewed as an added layer, given the 

order dependence of the problem and the internal state from the previous timestep is accepted as 

input for the succeeding timestep. 
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Figure 3.5: RNN unrolled in time 

The algorithm can be summarized as: Present a sequence of timesteps of input and output pairs 

to the network →Unroll the network then calculate and accumulate errors across each timestep 

→ Roll-up the network and update weights → Repeat. 

3.5.2 Vanishing gradient problem 

BPTT can get costlier with the increase in the number of timesteps. If input sequences 

constitute thousands of timesteps, then the number of derivatives required for one weight update 

will also count into thousands. As the length of time interval between latest output and its oldest 

dependent input increases, the number of error values that need to be calculated increases and these 

error values have to be propagated all the way to the first layers. If the gradient values are smaller 

and close to zero, any multiplication between the error values and weight matrix will result in a 

set of even lower values for the layers in the beginning during backpropagation. This can cause 

weights to vanish or explode (go to zero or overflow) in the early layers and make slow learning 

and model skill noisy. 

There are a few solutions to overcome the vanishing gradient problem:  

1) Global search methods that do not use gradient information investigated by Bengio et al. [25] 

such as simulated annealing, multi-grid random search, discrete error propagation and random 

weight guessing (though it is unclear how it can handle complex problems). Angeline et al. 

proposed a genetic approach that also avoids gradient computation.  

2) Methods that force higher gradients by time-weighted pseudo-Newton optimization, but they 

have restrictions in learning to store accurate real-value information over time [26].  
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3) Ring proposed a method to add a higher order unit influencing appropriate connection every 

time a unit in the network receives contradictory error signals [27]. However, Ring’s net was not 

able to generalize well for unobserved lag durations.  

4) Mozer used time constants that influence unit activations, however these time constants must 

be fine tuned externally for extended time lags [28]. Sun et al proposed to update the activation of 

a recurrent unit by summation of old activation and scaled current net input [30]. The net input, 

however, might disturb the stored information. Lin et al. proposed alternatives of time-delay 

networks like NARX networks in which the reduction of error is slacked due to the shortcuts taken 

for back propagation [31]. Nevertheless, the suggested alternatives are unable to solve the general 

problem since they can increase only by a constant multiplicative factor, the duration of temporal 

dependencies that can be learned. 

5) The hierarchical chunker systems by Schmidhuber could possibly bridge random time lags 

although the success depends only on the local predictability through the sequences leading to time 

lags [32]. The performance of hierarchical recurrent networks with self-organizing time scales for 

grammar learning tasks has been found to deteriorate when noise level intensifies, and the 

sequences of input becomes less compressible. 

3.5.3 Long short-term memory 

RNNs come with a great advantage of being able to connect previous information to the 

present task. This is especially useful when we need only the previous word to predict the next 

one. For example, if we are attempting to predict the next word in “the clouds are in the …”(sky), 

we will not require additional information to predict the same. RNNs can learn to predict such 

cases where the gap between required information and the place where it is needed is small. 

However, there are instances where more information is required. For example, in order to predict 

the last word in “I grew up in Quebec, Canada……. I speak fluent … “(French), more information 

would be needed since the word to be predicted in the last line is a language. The additional 

information is obtained from previous timesteps that is then being narrowed down to the exact 

language. There are many such situations where the gap between relevant information and the 

place it is required can be large. Though RNNs were considered to be capable of handling such 

situations, [25] and [29] found the results otherwise. The problem of vanishing gradient makes the 



29 
 

conventional RNNs hard to train. Long Short-Term Memory (LSTM) networks can address this 

problem [33]. 

LSTMs are novel, efficient, gradient-based models that are developed by [33] to mitigate 

the vanishing gradient problem. They observed that BPTT in RNNs may blow up or vanish the 

error signals that flow backwards in time. This may cause oscillation of weights or take an 

undesirably long time to learn the underlying pattern or does not work at all. LSTMs can learn to 

bridge gaps of the order of 1000 time steps even during noisy sequences. This is achieved by 

enforcing constant error flow through internal states of special units.  

 

Figure 3.6: Mathematical model of RNNs [34] 

Recurrent neural networks are composed of recurrent neurons, the mathematical model of 

the internal components of which is given in figure 3.6. This repeating module will have a simple 

structure in RNNs, such as a tanh layer. LSTMs also have such structure depicting chain, although 

the repeating modules have a different structure. There are four neural network layers interacting 

in a unique manner, refer figure 3.7 and 3.8.  
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Figure 3.7: Mathematical model of LSTMs [34] 

 

 

Figure 3.8: Operations 

The important part of LSTMs is the cell state. It cannot be manipulated but can be regulated 

to allow information to pass through. This is done using a sigmoid layer. There are three ways this 

regulation happens. The first sigmoid layer acts as forget gate which decides the information that 

can be let through from previous cell state:  

𝑓𝑡  = 𝜎 (𝜃𝑓* [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑓)          (3.14) 

The second one known as input gate which decides the values to be updated. This is done in 

combination with a vector of new candidate values.  

𝑖𝑡 = 𝜎 (𝜃𝑡* [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑖)          (3.15) 

Č𝑡 = 𝑡𝑎𝑛ℎ (𝜃Č* [ℎ𝑡−1,  𝑥𝑡] + 𝑏Č)         (3.16) 

Actual update of cell state requires multiplication of old state by forget gate value and adding the 

result to the product of new candidate values and input gate values. 

𝐶𝑡 = 𝑓𝑓* 𝐶𝑡−1 +  𝑖𝑡 * Č𝑡          (3.17) 

The third sigmoid layer decides parts of the cell state that will go to output.  
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𝜎𝑡 = 𝜎 (𝜃𝜎* [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝜎)          (3.18) 

ℎ𝑡  = 𝜎𝑡 * 𝑡𝑎𝑛ℎ  (𝐶𝑡)           (3.19) 

The updated cell state is put through a tanh function to ensure values be between -1 and 1and 

multiply by the output of the sigmoid gate. 

 3.5.4 Gated recurrent unit 

 

Figure 3.9: Gated Recurrent Unit [34] 

Researches involving LSTM use different versions of this architecture. [35] used the one 

with peephole connections in all the sigmoid layers. Another variant uses coupled connection of 

forget and input gates. A more interesting version is the gated recurrent unit (GRU) proposed by 

[36] (figure 3.9). In this variant, the forget and input gates are combined to form an update gate.  

𝑧𝑡 = 𝜎 (𝜃𝑧* [ℎ𝑡−1,  𝑥𝑡])           (3.20) 

𝑟𝑡 = 𝜎 (𝜃𝑟* [ℎ𝑡−1,  𝑥𝑡])         (3.21) 

It combines the cell state and hidden state as well.  

ĥ𝑡 = 𝑡𝑎𝑛ℎ (𝜃 * [ℎ𝑡−1,  𝑥𝑡])         (3.22) 

ℎ𝑡  = (1 − 𝑧𝑡)* ℎ𝑡−1 + 𝑧𝑡 * ĥ𝑡          (3.23) 

GRUs are much simpler than LSTMs and hence are becoming more popular these days. 

 To summarize, machine learning and its types, applications of deep learning in speech 

enhancement, what are recurrent neural networks and their drawback and how these drawbacks 

can be addressed in modeling time sequences are discussed. In the next chapter, a specific deep 

learning model is discussed in detail for speech enhancement application in hearing aids. 



32 
 

Chapter 4 

4. Implementation 

This chapter explains the implementation details of the machine learning model including 

feature extraction, neural network architecture, training, the database used for training, evaluation 

metrics and speech enhancement with another set of features using Gammatone filterbank. 

A typical noise reduction technique will include a noise spectral estimator, driven by voice 

activity detector (VAD) or a similar algorithm. There are mainly three estimators (figure 4.1) that 

need to be accurate but are difficult to tune [37]. The VAD will check if there is speech content in 

the given segment and if yes, it gives update to noise spectral estimator to estimate the noise 

spectrum. The noise spectral estimator has to estimate the spectral contents of noise and convey 

the information to spectral subtractor to adapt accordingly. If there is no speech content, the noise 

spectral estimator has no work to be done and spectral subtractor remains deactivated.  

          Noisy signal 

                                          

 

    

             when to what to   

                     adapt    subtract                                                                                                                         

                                                                                       

 

                                     optional 

                                    
                     Denoised signal 

Figure 4.1: Noise reduction scheme 

Though improvements have been made in conventional noise and spectral estimators, it remains 

difficult to design them and requires a lot of time to manually tune it. This is why advanced 

technologies like deep learning have found application in speech enhancement. Deep learning is 

found useful in applications like automatic speech recognition where latency and computational 

factors are of less importance [37]. The selected approach focuses on evaluation of deep learning 

in real-time applications with low complexity. The conventional end-to-end systems use signal 

processing for noise reduction. This results in increased complexity of the solution and requires a 

lot of manual efforts.  

Voice activity 

detection 

Noise spectral 

estimation 

Spectral 

subtraction 
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Instead, a hybrid approach proposed by JM Valin is chosen which uses deep learning in 

place of most of the conventional signal processing steps and estimators [37]. Some basic signal 

processing blocks were used where they are considered to be more straightforward. In this method, 

full-band (48kHz) speech is used for further processing. Majority of the noise reduction is done 

using gains computed by a GRU RNN on a low-resolution envelope. A pitch comb filter is used 

to suppress the noise that remains between pitch harmonics. 

The entire algorithm may be seen as having the following three components:  

4.1 Feature extraction  

The input noisy signal would be in time domain which needs to be converted to frequency 

domain for any processing. This is done on a frame level and the frame size is kept at 480. A 

window function is applied before transforming to frequency domain for analysis/synthesis based 

on time domain aliasing cancellation: 

w(n) = sin [ 
𝜋

2
sin2 (  

𝜋𝑛

𝑁
)]         (4.1) 

 

where N is window length. 

 

This is in accordance with Princen-Bradley criterion and achieves efficient reconstruction 

of the signal from frequency domain after processing. Fourier transform is applied to convert the 

windowed signal into spectral domain, based on opus codec. The FFT size is kept at twice the 

frame size i.e, 960. The main processing is based on 20 ms with 50% overlap (10ms offset). Figure 

4.2 provides a summary of processes involved in construction of cleaner speech from a noisy one 

using the RNN model. 

There are tens of thousands of frequency bins in the audible range of 20Hz to 2kHz. 

Research shows that estimating all of them would require thousands of neurons in the neural 

network with millions of weights and around 400 outputs. This would jeopardize the very objective 

of reducing complexity of the model. This can be addressed by assuming that the envelopes of 

speech and noise have less resolution than frequency bins. Here, Bark scale is used in grouping 

frequencies and form a scale of 22 bands in the audible range.  
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 The bandwidth of frequency bands grows as we move from low to high frequency regions. 

The energy in each band, E(b), in Bark scale is calculated using the amplitudes of signal in 

frequency domain and band size: 

𝐸(𝑏) =  ∑ 𝑤𝑏 (𝑘) |𝑋(𝑘)|2
𝑏          (4.2) 

 

where, wb (k) is amplitude of band b at frequency k 

 

∑ 𝑤𝑏(𝑘) = 1𝑏            (4.3) 

X (k) is magnitude of signal at frequency k.  

 

The bands are constrained with the condition of at least four bins at low frequencies as in Opus 

codec. The frame analysis is followed by pitch down sampling and pitch search. A pitch shifted 

version of the input signal is created based on the pitch values and values in buffer. The window 

function is applied to this signal as well before transforming into Fourier domain and then energy 

 

 

 

Input 

    

 

 

 

 

 

Output 

 

Figure 4.2: Speech enhancement using RNN model 

is computed. The product of real parts of original and pitch shifted signals for a given bin in each 

band and the product of corresponding imaginary parts are added. The resultant is multiplied by 

the fraction of band size and the process is repeated with all segments of band to get the band 

correlation. This band correlation is scaled by the energies in both the original signal and pitch 

shifted signal. 

pb = 
𝛴𝑘𝑤𝑏(𝑘)  𝑅 [𝑋 (𝑘)𝑃∗(𝑘)]

√𝛴𝑘𝑤𝑏(𝑘)|𝑋(𝑘)|2.  𝛴𝑘𝑤𝑏(𝑘) |𝑋(𝑘)|2  
        (4.4) 

where X(k) and P(k) are the original and its pitch shifted version in frequency domain. 
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Discrete Cosine Transform (DCT) is applied to the log spectrum which will give 22 Bark 

Frequency Cepstral Coefficients (BFCC). The other features include first and second temporal 

derivatives of first six BFCCs, six coefficients of the result of DCT of pitch correlation across 

frequency bands, pitch period and spectral non-stationarity metric. The 42 features extracted from 

one of the frames in training set are plotted in figure 4.3 for understanding. 

 

Figure 4.3: Features from an audio frame 

The target values are the gains in each band and VAD output. The gain in each band is 

calculated as the ratio of energy in clean speech to that in noisy speech: 

gb = √
𝐸𝑠 (𝑏)

𝐸𝑥 (𝑏)
            (4.5) 

where, Es (b) is the energy in clean speech and Ex (b) is the energy in noisy speech. 
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Figure 4.4: Gains computed for an audio frame during Bark frequency analysis 

Figure 4.4 shows the gain values computed for the 22 bands during feature extraction 

process that will be applied to input to reconstruct a cleaner version of the noisy frame. 

4.2 Neural network architecture 

The neural network designed for training consists of feedforward, fully connected (dense) 

layers and the recurrent layers (figure 4.5). The input layer has 42 neurons to accept the Bark 

features and 22 neurons at the output layer to provide an estimate of the gai values in each band. 

The architecture may be looked at as two sequential models – one for voice activity detection and 

the other for gain estimation. It is a 6-layer network with 4 hidden layers and 2 output layers.  

The VAD section of the neural net consists of 3 layers besides the input layer. The 42 

features are transformed to another set of features using a dense layer, which are fed to the GRU 

layer. The GRU layer uses ReLU activation function to capture non-linearity. During feature 

extraction, the speech content in a frame is checked based on the energy of clean speech in that 

frame. If the frame energies indicate speech content over consecutive frames, VAD activation is 

estimated with a fully connected dense layer. 

The gain estimation section can be viewed as a combination of noise estimation and 

subtraction. It has 3 layers – 2 GRU recurrent layers and 1 output dense layer. The first GRU layer 

takes in the features and the outputs of dense and GRU layers in VAD section as input. This layer 
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acts as a noise spectrum estimator. The next GRU layer considers input features and the outputs 

of previous two GRU layers as essential features. This layer together with the fully connected 

dense layer at the output learns to estimate gain values based on ideal critical band gains calculated 

in the feature extraction process. 

The GRU layers together are the backbone of this architecture. This deep learning network has a 

total of 215 units with 49 units in VAD section and 166 units in the other. Though there were trials 

done with different number of units and layers, the outputs suggested that there is no significant 

improvement in performance with further increasing complexity and that this architecture is the 

optimal one. The way we construct the training data has a larger impact on final quality.  

 

Figure 4.5: RNN model [37] 

4.3 Training 

There are in total 42 features that are extracted using the feature extraction procedure. 

These features are extracted from both clean speech and noise-only signals. During this feature 

extraction, the clean and noise signals are mixed at different SNRs randomly. The number of 

features required for training can be changed based on the duration of clean and nose-only contents 

available. The 22 gain values are also extracted and written into a file. These features/gains 

together written in a binary file are then exported to a h5 file for efficient use of main memory.  
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The neural network is defined using Sequential, Dense and GRU modules in Keras library. 

The h5 file will have 65 columns – 42 features, 22 gain values and 1 vad ouput. The number of 

rows depends on the number of speech/noise segments used for feature extraction. This data has 

to be converted to 3 dimensions to create inputs for recurrent layers at different time steps. Hence 

a window size is defined which decides the duration of noisy sequence considered at once. The 

ratio of the number of training examples in h5 file to window size will give us the number of 

sequences for training.  

4.3.1 Loss function 

The first 42 columns in the file are considered for input and the last 23 columns (gains and 

VAD) are taken as true values for training. A form of the difference between predicted and true 

values can be used to update the weights as the network learns. Typically, mean squared error is 

the loss function used in wide range of applications. This metric performs very well in any given 

offline application or where noise is relatively stationary. However, a modified form is 

recommended for speech perception application.  

To be able to match the perceptual effect, a perceptual parameter γ is proposed by JM Valin 

that can control the degree of noise suppression. Having calculated the true value of gain during 

feature extraction, the loss function for a given gain estimate is given by: 

L(gb, g̃b) = ( g𝑏
𝛾
 - ĝ𝑏

𝛾
)2               (4.6) 

 

The loss function minimizes the MSE on log-energy, which would make the suppression 

way too aggressive and may cause speech distortion. The value of γ is recommended to be ½ to 

have a good trade-off between noise suppression and speech distortion. A smoothing function is 

applied to the gain values estimated by the model to provide minimum expected level of 

reverberation. Standard cross entropy loss function is used for VAD output.  

4.3.2 Optimization 

 Training on a full dataset via batch gradient descent is time consuming and the weight 

update will be less frequent. On the other hand, stochastic gradient descent may make progress 

more frequently, but the speedup obtained by vectorization is lost to the time required for 

processing of each example separately. It does not guarantee to converge too. Here, a version of 



39 
 

the mini-batch gradient descent is used during training. This algorithm will pull a mini-batch 

specified by batch size from the entire dataset randomly for training update. This process is 

repeated until the number of samples equal to size of the dataset is trained per epoch. This will 

preserve the vectorization benefits and makes good progress towards minimum. 

Gradient descent may cause oscillations (which can be imagined as oscillations 

perpendicular to the plane in which contour plot of the cost function is drawn) that slows down the 

learning process [38]. In addition, gradient descent will overshoot if learning rate is chosen high. 

Being conservative in learning rate selection will make the learning significantly slower. To curb 

the vertical oscillations and make progress in the horizontal direction, exponentially weighted 

average concepts called momentum and RMSProp were introduced.  

𝑣dw = β1 𝑣dw+ (1 – β1) dW         (4.7a)  

𝑣db = β1 𝑣db + (1- β1) db          (4.7b)  

sdw = β2 sdw + (1 - β2) dW2          (4.8a) 

sdb = β2 sdb + (1 - β2) db          (4.8b) 

W = W - ∝ 
𝑉𝑑𝑤

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑠 𝑑𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝜀

          (4.9a) 

b = b - ∝ 
𝑉𝑑𝑏

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑠 𝑑𝑏
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝜀

           (4.9b) 

where, W and b represent the horizontal and vertical movement components, ∝ is the learning rate, 

β1 and β2 are the weighted average components of momentum and RMSProp respectively, 

Adam, an optimization algorithm that combines the advantages of momentum and RMSProp, is 

used during training.  
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4.4 Database 

The objective of this project is to evaluate/predict the performance of machine learning 

algorithms with hearing impaired individuals under a variety of noisy conditions. Hence the dataset 

chosen is as close to realistic situations as possible. There have been different trials with various  

                                                                                                                                

Figure 4.6: (from left to right) Time domain representation of a) clean speech b) babble 

noise c) speech shaped noise 

combinations of speech (figure 4.6a) and noise (4.6b, 4.6c) for training and testing. In general, the 

clean speech and noise only segments are obtained from Hearing in Noise Test (HINT) database 

and Edinburgh datashare [39]. 

There are 250 clean utterances in the HINT database overall. They are arranged in 25 lists 

with 10 sentences in each list (one of them given in figure 4.6a and 4.7a). Edinburgh datashare is 

a digital repository of data produced with the infrastructure available at University of Edinburgh. 

The last 42 of the clean speech files (out of 292) are carefully chosen from this datashare so that 

they are understandable for a normal hearing individual before evaluating with hearing loss 

settings. 47 different noise-only segments have been used for training. 42 of them come from the 

same Edinburgh datashare by subtracting the clean speech part from the noisy ones. Besides, 

noises like cafeteria, traffic, white, multitalker babble (figure 4.6b, 4.7b) and speech shaped noise 

(figure 4.6c, 4.7c) are used in combination. Testing is done with speech from HINT database and 

babble, speech shaped noise and traffic and the results are shown for speech with babble noise. 

The majority of the speech and noise files were originally sampled at a sampling frequency 

of 44.1 kHz. They were resampled to 48 kHz as the RNN model is developed to work with that 
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Figure 4.7: (from left to right) Spectrogram of a) clean speech b) babble noise c) speech 

shaped noise 

frequency. All the clean speech files were then added together to form a single file. The same 

process is followed for noise-only files too. The feature extraction is coded in C language. The 

clean speech and noise-only portions have to be in separate files for the model to learn their 

features during training and detach them during testing. These files are in 16-bit pcm formats for 

efficient use of memory and are provided as parameters for the program executable. 

 The features are extracted in a binary format which are then transferred to an h5 file again 

for better use of memory. The features for further processing are extracted from this file during 

training. The neural network to learn the gain values in each band of Bark scale based on frame 

representation is defined in Python. Keras provides suitable APIs to establish complex models and 

is a highly popular library that is in use today.  

4.5 Pretrained RNN model 

As a preliminary study, the pretrained model was used to evaluate how well the model, as 

it is, performs with new types of noise. The feature extraction and gain computation using RNN 

developed from scratch are combined in a single code for real-time purposes. The weights of saved 

model from training are used in the RNN developed in C for testing. Testing is done with clean 

speech mixed with babble noise at -3dB, 0dB and 3dB respectively. The input noisy signal is close 

to 2 seconds long, amplitude is non-zero for many frequencies though it is very low for frequencies 

above 2000Hz.  
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4.6 Evaluation metrics 

Speech enhancement algorithms in assistive hearing devices aim to improve either the 

speech intelligibility, quality or both. In a noise reduction system, this is done by estimating the 

characteristics of noise and remove the segments of speech where similar characteristics are 

observed. In this process, the signal degradation due to noise may be improved but it can often 

create modifications to speech in the form of artifacts. These artifacts can further affect 

intelligibility.  

 Subjective listening test is usually the methodology used to confirm the effectiveness of 

any speech enhancement algorithm. However, it can often be time consuming and costly, 

especially in algorithm development stage. The other systematic way of evaluating the 

performance of algorithm is to have an objective measure that estimates the speech intelligibility 

or quality. 

4.6.1 Short-time objective intelligibility (STOI) measure 

 The objective intelligibility measures (OIMs) like articulation index (AI), which is one of 

the first ones, speech intelligibility index (SII) and speech transmission index (STI) are found to 

be suitable for various types of degradations like additive noise, reverberation, filtering and 

clipping. Nevertheless, they are less appropriate for speech enhancement systems where noisy 

speech is processed by a time-frequency weighting. For instance, when spectral subtraction is 

applied, the STI-based measures estimate an improvement in intelligibility though the subjective 

tests suggest otherwise. Similarly, coherence SII (CSII) and covariance-based STI show low 

correlation with the actual intelligibility of ideal time frequency segregation (ITFS) processed 

speech [40]. 

Most of the OIMs estimate intelligibility based on long-term statistics of entire speech signal. It is 

important to have an intermediate measure that takes the short time statistics in ITFS processed 

speech into consideration. Consequently, Taal et al. proposed STOI [40], which is based on short-

time (~400ms) TF regions. STOI assumes that the clean and processed signal are time- aligned. 

The model resamples both the signals to 10 kHz frequency before processing. The signals are 

segmented, Hanning-windowed with 256 samples zero padded up to 512 samples and then a short-

time DFT is applied.  
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Figure 4.8: STOI model 

STOI works with 15 1/3 octave bands by grouping DFT bins. The TF-representation of 

both the clean and processed speech are essentially the square root of sum of the square of the DFT 

bin values in a band. A normalization factor is applied to every TF-region of processed signal in 

order to equalize the energy of processed speech with that of clean speech. This signal is applied 

with a bound for signal-distortion ratio. The intermediate intelligibility measure is the linear 

correlation between the clean and modified processed TF-units (figure 4.8). And finally, STOI is 

calculated by taking the mean of the intermediate measure over all bands and frames. 

 

Figure 4.9: Comparison of STOI values between noisy speech and the output of pretrained 

RNN model at SNRs -3 dB, 0 dB and 3 dB 
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4.6.2 Hearing aid speech perception index (HASPI)  

 Additive noise degrades speech by filling the short silent segments in speech with the 

random fluctuation of noise. This can also corrupt the temporal fine structure (TFS) of the speech. 

The speech processing in hearing aids involve suppression of this noise and dynamic range 

compression that would adapt amplification/attenuation over time. This time-varying gain can 

cause distortion of signal envelope and introduce modulation sidebands as well.  

Changes in both TFS and signal envelope are being used to predict speech intelligibility. 

TFS changes are measured using indices like coherence-based SII. Coherence is the ratio of cross 

correlation of clean unprocessed and noisy processed signals to the product of their RMS 

intensities. This is then converted to SDR which can be used like SNR for CSII calculation. 

Changes to signal envelope are measured using STI, speech-based STI or STOI, the latest of all.  

Christiansan et al. [41] and Kates et al. [42] observed that the intelligibility predicted by 

CSII with IBM-processed speech was low whereas the actual intelligibility was high. In our case, 

the STOI results in figure 4.9 suggested that intelligibility of speech input to the pretrained network 

is higher than expected. However, there is this poor correlation between objective predictions by 

STOI and actual subjective tests as explained by other researchers.  

 

Figure 4.10: HASPI model [42] 

The coherence-based speech intelligibility indices do not evaluate the envelope 

modifications well and the envelope correlation-based measures do not consider the short-time 

variations. A procedure that combines coherence with envelope modulation changes called HASPI 

was developed by [42] to get accurate results. It uses an auditory model (figure 4.10) that combines 



45 
 

coherence and envelope fidelity and incorporates aspects of normal as well as hearing-impaired 

auditory functions.  

HASPI resamples both the reference and target signal to 24 kHz. It requires the signals to 

be time aligned. There are three time alignment steps. The first time alignment step is after 

resampling, followed by a middle ear filter to capture the low-frequency and high-frequency 

attenuations in equal loudness contours at low signal levels. The resultant signal is passed through 

a linear auditory filter bank with the filter bandwidth adjusted to input signal intensity and outer 

hair cell (OHC) damage. Dynamic compression is provided based on the signal from filter bank. 

A parallel gammatone filter-bank is used to cover frequencies in the range 80 to 8000 Hz with 32 

bands. It processes the signal in two ways: one that takes envelope and incorporates the hearing 

loss due to OHC damage from the control filter bank and the other that considers the basilar 

membrane motion. The last temporal alignment will compensate the frequency-dependent group 

delay of gammatone filters. Thus, both the envelope and vibration level are modeled for speech 

intelligibility and they are converted to dB above the auditory threshold. 

 

Figure 4.11: Comparison of HASPI values between noisy speech and the output of 

pretrained RNN model at SNRs -3 dB, 0 dB and 3 dB 

The envelope output from the auditory model in frequency domain is the short-time log 

magnitude spectrum. A set of half-cosine basis functions are applied to the short-time spectrum of 

each segment of the envelope output to get the cepstral sequences. The inverse Fourier transform 
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will give cepstral coefficients equivalent to MFCC. If the low frequencies of the signal have more 

energy than high frequencies, the envelope samples after fitting the basis function for spectral tilt 

would give a positive value in time domain and vice versa. The basilar membrane (BM) output of 

auditory model is divided into 16-ms segments as well. The short-time normalized cross 

correlations for the low, mid and high-level segments (classified based on intensities) are averaged 

across time and frequency to get auditory coherence values. These three coherence values linearly 

weighted together with the normalized cross-correlation of the cepstral sequences (after removing 

the silences) for the reference and processed signals, followed by a logistic transformation will 

give the HASPI intelligibility index value. The HASPI values for input and output of pretrained 

RNN model (figure 4.11) look more closer to subjective perception. 

4.6.3 Hearing aid speech quality index (HASQI) 

 HASQI is a quality index developed by [43] that combines envelope and TFS 

characteristics to provide a more accurate and robust prediction. It works with both normal hearing 

and hearing-impaired situations. It has four components: the envelope-based cepstral correlation, 

TFS-based vibration correlation, a cepstral-vibration product and a spectral shape component. The 

cepstral correlation (CC) is calculated in a similar way as that of HASPI. The third power of the 

average cepstral correlation will give the CC component. 

 The vibration correlation part is similar to the short-time coherence used in HASPI. The 

BM vibration signals in each band of the segment in clean and processed speech are cross 

correlated and then a frequency-dependent weight is applied. Finally, the vibration correlation 

component is the third power of the value obtained after summing all the weighted cross-

correlations across segment and frequency bands and weighting the sum by the sum of weights. 

The cepstral-vibration product takes the product of square of cepstral correlation index and the 

BM vibration index. The above three components constitute the non-linear model. 

 The linear index is based on changes in long-term spectrum of the signal. Specifically, it 

uses the differences in excitation pattern and differences in slopes of excitation patterns. The 

standard deviation is calculated for both changes in excitation pattern and their slopes and a linear 

combination of them is subtracted from 1 to get the output of linear model. HASQI version 2 is 

the product of the index from non-linear processing and linear processing, which is found to be 
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the most accurate in estimating the subjective ratings. The HASQI values of output of pretrained 

RNN model in figure 4.12 show improvement in speech quality at all SNRs. 

 

Figure 4.12: Comparison of HASQI values between noisy speech and the output of 

pretrained RNN model at SNRs -3 dB, 0 dB and 3 dB 

4.7 Gammatone filter bank-based speech enhancement 

The RNN-based model is built with Bark scale as reference. This architecture looks at 

energy in 22 different frequency bands for the deep learning model to estimate gains in these bands. 

The Bark scale has just 10 bands in the low frequency region up to 2000Hz. The speech content 

will be usually more in low frequencies. Therefore, it is important to have higher spectral 

resolution in low frequencies to recover clean speech from noisy ones. 

There are other scales in which the number of bands are higher and can improve the 

frequency resolution significantly. Choosing a scale with too many numbers of bands would 

increase the complexity of the model. GammaTone (GT) filter bank with 32 bands can 

accommodate 10 bands up to 1000Hz and 15bands up to 2000Hz. Hence Gammatone filter bank 

is selected to evaluate if the increase in frequency resolution provides better speech intelligibility. 

GT filter bank is a widely used scheme to model human auditory system. It was introduced 

by [44] to explain the impulse response of auditory system based on neural firing times. The 

impulse response of GT filter is given by  
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𝑔𝑡(𝑡)     𝛼      𝑡𝑛−1𝑒𝑥 𝑝(−2𝜋𝑏𝑡) 𝑐𝑜𝑠(2𝜋𝑓0𝑡 +  ∅)    (𝑡 ≥ 0)     (4.10) 

n is the order of GT filter 

b controls the relative shape of envelope and duration 

𝑓0 frequency of amplitude modulated carrier tone 

∅ phase of the carrier tone 

It is equivalent to an amplitude modulated carrier tone with an envelope proportional to the 

magnitude indicated in the above equation. Increasing n will make the envelope less skewed and 

the duration of impulse response decreases as b increases. The GT scale has 32 bands (Table 4.1) 

with following center frequencies:  

Band 1 2 3 4 5 6 7 8 

Center 

frequency  

50 92 140 195 258 331 415 512 

Band 9 10 11 12 13 14 15 16 

Center 

frequency  

622 750 896 1065 1259 1481 1738 2032 

Band 17 18 19 20 21 22 23 24    

Center 

frequency  

2370 2760 3207 3721 4313 4993 5775 6673 

Band 25 26 27 28 29 30 31 32 

Center 

frequency  

7707 8895 10261 11832 13637 15714 18100 20845 

Table 4.1: Gammatone frequencies 

In this study, the GT filterbank is designed using Malcolm Slaney’s Auditory toolbox. 

MakeERBFilters function can be used to create the filter coefficients. As per Nyquist criterion, the 

coefficients are in the frequency range 50 Hz to 24000 Hz since we use full-band speech. The 

ERBFilterBank in the toolbox extracts the filter output for an impulse response with FFT size of 

960 based on the filter coefficients created. The frequencies and the filter output will be created in 

the descending order and hence, fliplr (Matlab) is applied to the output to set it right. 

4.7.1 Band energy 

The time domain values of each frame have to be transformed into frequency domain for 

computation of energy. Fourier transform is applied to the time domain value and 481 values are 
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considered for further processing. The real and imaginary parts are squared and added for every 

sample of the frame. For a given band, the square of the signal and GT filer response for each 

sample are multiplied and added. Here again, only 481 values of filter response are considered 

since the other 479 values form a mirror image. The energy in each band is calculated using 

equations (4.2) and (4.3) but with a different set of wb vectors specific to Gammatone filterbank. 

4.7.2 Band correlation 

 The band correlation is dependent on the original signal and a pitch delayed version of it, 

both in Fourier domain. The product of real parts and that of imaginary parts are added together, 

for every sample in the frame. The resultant is a 1x481 vector which is weighted with the filter 

response (481x32) to get the band correlation for each band (refer equation 4.4). 

4.7.3 Interpolated band gain 

The gain values for each band is calculated using equation (4.5). The resultant values are 

brought to the range -1 to 1. During testing, these 32 values estimated by the neural network have 

to be interpolated to create 481 values and are then multiplied with the input signal values in 

frequency domain. These interpolated gain values are used to amplify or attenuate the speech 

signal: 

𝑘(𝑏) =  
𝑐𝑓

𝑓𝑠
∗ 𝑁           (4.11) 

𝑐𝑓 is center frequency, 𝑓𝑠 is sampling frequency and N is the FFT size 

𝑔[𝑘(𝑏) + 𝑗] = 𝑚 ∗ [𝑘(𝑏) + 𝑗] + 𝑐         (4.12) 

𝑚 =  
𝐸(𝑏+1)− 𝐸(𝑏)

𝑘(𝑏+1)−𝑘(𝑏)
 is the slope, 

𝑐 = 𝐸(𝑏) − 𝑚 ∗ 𝑘(𝑏) is the intercept component, 

k(b) is the band start and j is the frequency component within the band for which gain must be 

interpolated. 

Inverse transform is applied to this signal followed by windowing and overlap add to resynthesize 

the time domain signal. The comparison of HASPI values indicating the change in speech 

intelligibility with the use of Gammatone features is given in figure 4.13. RNN trained with GT 

features gives inferior intelligibility index values than respective inputs at -3, 0 and 3 dB SNRs. 
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Figure 4.13: Comparison of HASPI values between input and output of RNN trained with 

Gammatone features at SNRs -3dB, 0dB and 3dB 

 The implementation of the RNN model, database, evaluation metrics and results for 

Gammatone filterbank based gain estimation are discussed in this chapter. 
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Chapter 5 

5. Experimental results 

Chapter 5 elaborates the noise suppression results obtained using two machine learning-

based models and compares them with a more conventional digital signal processing technique 

in openMHA. It also describes the portable implementation that would be helpful for subjective 

listening tests. The chapter also has the results for dereverberation trials. 

5.1 Open Master Hearing Aid 

Open Master Hearing Aid (OpenMHA) is an open source software platform for real-time 

hearing aid software development [45]. It is developed by Hoertech gGmbH together with 

University of Oldenburg. The large rate of hearing loss (~13% of US population) and its high 

economic impact without adequate rehabilitative solutions tell us that this is an area that needs 

more attention. Therefore, National Institutes of Health came up to fund and facilitate a project 

that provides new technical solutions through research and development.  

This open-source platform comes with a software development kit (C/C++ SDK) including 

a library for signal processing for algorithm development. It also has a set of Matlab and Octave 

tools to support offline testing. OpenMHA provides real-time runtime environments for PC 

platforms that have standard sound hardware and ARM platforms. It has some baseline algorithms 

that can be used individually or in combination for signal processing. 

            

Figure 5.1: OpenMHA framework [45] 
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This 5-year project started in 2017 with an upgrade plan for every year. The first-year 

version of this program aimed at utilities for algorithm development and real-time support under 

Linux on PC platforms and for Beaglebone black ARM platforms. OpenMHA can be split into 

four components (figure 5.1). MHA is a command line application (CLA) that can be used to start, 

process and quit the audio processing. The second component is plugins part which provides 

functionalities of built-in signal processing algorithms. The MHA command line application can 

incorporate various built-in plugins during algorithm development. The other components are 

audio input-output modules (IO) and openMHA toolbox library (libopenmha).  

The MHA CLA is a plugin host and can load other plugins and IO modules. The IO module 

for real-time signal processing is “MHAIOJack” which interfaces with Jack Audio Connection 

Kit, whereas “MHAIOFile” and “MHAIOTCP” for audio file access and TCP/IP based signal 

exchange respectively. Every plugin implements one algorithm and in combination, they can serve 

like a virtual hearing aid. The openMHA toolbox library provides a user-friendly mechanism to 

integrate real-time safe runtime configuration updates into every plugin. The entire framework can 

be controlled using Matlab or Octave environments.  

The audio in and out can be offline or real-time based on the audio backend required. The 

real-time processing in openMHA requires JACK to be installed and activated. The framework 

and plugins require configuration of settings for a given signal processing task. This can be done 

through a text-based configuration language. The number of input channels could be single or 

multiple based on the type of waveform used or the number of microphones that the hearing 

support system uses in real-time. The number of output channels, “nchannels_in”, is automatically 

learnt by MHA and can be read from the read-only variable “nchannels_out”. Signal processing in 

real-time is done with chunks of audio data just like any other conventional algorithm and it can 

be done in either time-domain or frequency domain. In case of spectral domain, the frame size, 

specified by “fragsize”, is kept at 64 samples, window length to be 128 and FFT length at 256 for 

a sample rate “srate” of 44100 Hz in many applications.  

An openMHA plugin can behave like a plugin host. Plugins that can load other plugins in 

this way are called bridge plugins. When a bridge plugin is called by openMHA, it will perform 

its analysis and invoke the particular signal processing part in loaded plugin. The processed signal 

is cleanly transferred to next plugin until call to that plugin returns and then signal is resynthesized. 
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This allows combination of analysis and synthesis methods in a single plugin. The processed signal 

is then returned in the original domain back to the caller of bridge plugin. 

 

Figure 5.2: (from left to right) Waveform representation of a) Input noisy speech b) Output 

of pretrained RNN c) Output of MHANR algorithm 

There are a variety of baseline algorithms in openMHA. These include linear predicted 

coding (LPC), beamforming, adaptive feedback cancellation, FFT filter bank, combining filter 

channels, IIR filter, NLMS algorithm, dynamic compression, resample, overlapadd and so on. Of 

these the single channel noise reduction scheme is used here for evaluation and comparison. 

Now, speech enhancement in noisy speech (figure 5.2) is tested with the more conventional 

signal processing method used in openMHA. OpenMHA comes with a built-in algorithm for single 

channel noise reduction. It works at a sampling frequency of 16 kHz. It breaks the entire noisy file 

into fragments of 256 samples. The single channel noise reduction (SCNR) scheme is developed 

to work in frequency domain. The window length is 512 with FFT size equal to window length. 

The output of SCNR has improved speech intelligibility as well.  

The first plugin that is loaded in SCNR scheme is overlapadd. MHA can support different 

audio backends like sound cards, JACK, sound files or the network. The backend is specified to 

be MHAIOFile in this scheme. The mhachain plugin acts as bridge plugin for processing. It 

loads algorithms like noisePowProposedScale and timoSmooth for noise reduction and sends the 

processed frame back IO plugin after overlapadd operation. 

The speech intelligibility of the processed speech from pretrained RNN network and MHA 

noise reduction algorithm are compared with that of input using HASPI in figure 5.3. The HASPI 
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values are improved by 4-9% with both the algorithms and the conventional signal processing 

method and the pretrained machine learning based model are comparable at this stage. 

 

Figure 5.3: HASPI comparison between pretrained RNN and MHANR 

5.2 DNN-based speech enhancement 

In this method proposed by [46], a DNN is modeled as mapping function from noisy to 

clean speech features. Log-power spectral features from pairs of noisy and clean speech data are 

used as they are found to offer perceptually relevant characteristics. These are calculated by taking 

short-time Discrete Fourier transform of each windowed frame of input signal.  

The framework is developed in two stages, refer figure 5.4. In the training stage, a DNN-

based regression model is trained using these log-power spectral features. The model architecture 

for this training is a feed-forward neural network with components to learn non-linearity. 

Specifically, a deep generative model is pretrained with these features of noisy speech, which are 

all normalized to zero mean and unit variance. This is done by stacking multiple restricted 

Boltzmann machines (RBMs), after training in an unsupervised greedy fashion as indicated by 

[57] Contrastive Divergence (CD) is the optimization algorithm used to update parameters during 

this pre-training process. Then BP with MMSE-based objective metric between the log-power 

spectral features of the estimated and reference clean speech is used to train the DNN.  
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In this method, there is no assumption about the relationship between clean and noisy 

speech during training. It can learn to separate speech from noise automatically. This model also 

captures acoustic context information along the time-axis as well as frequency-axis while 

assuming the standard independence among different dimensions. The post processing involves 

global variance equalization to address the over-smoothing problem in the reconstructed signal 

based on network estimates. Dropout regularization is used to improve generalization. This DNN 

is also provided with the online noise information to better predict clean speech. The reconstruction 

of the enhanced signal is done by taking exponent of enhanced features, followed by inverse 

Fourier transform and overlap-add method.  

 

Figure 5.4: Speech enhancement by DNN model [46] 

 The DNN has 3 hidden layers with 2048 units in each of them. It is trained with clean 

speech from TIMIT database. The noise types used are babble, restaurant, street, white Gaussian  

 

Figure 5.5: (from left to right) Waveform representation of a) input noisy speech b) output 

of pretrained RNN model c) output of RBM-based DNN model 
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noise and 100 other environmental noises. The speech and noise were mixed at six different SNRs 

ie, 20, 15, 10, 5, 0 and -5 dB to build a variety of training examples. In total, 2500 hours of noisy 

training data were created. The clean speech and noise signals were sampled at 8kHz with frame 

length of 32 msec and an overlap of 50%. The log-power spectral feature set had a dimensionality 

of 129.  

This RBM-based model has shown great promise in noise reduction in unseen sounds. The 

research work performed by authors suggested that it can perform much better than conventional 

techniques in non-stationary noise conditions. The model is trained in different configurations and 

an optimal configuration was chosen by the developers after evaluating their performances 

carefully. The waveform representation of output of pretrained model and RBM model are given 

in figure 5.5. The HASPI values of RBM model (figure 5.6) point out that it can perform better 

than the pretrained RNN-based model for -3 dB SNR and SNRs in that range while pretrained 

RNN gets a slight advantage as the SNR of input increases above zero.  

 

Figure 5.6: HASPI comparison between pretrained RNN and DNN models 

5.3 Bark filter bank-based speech enhancement 

The speech segments are usually concentrated in the frequencies up to 10 kHz though the 

audible range extends up to 20 kHz. The gammatone filter bank provided better spectral resolution 
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at lower frequencies and was expected to support better speech enhancement than the Bark scale, 

with the help of more features from speech-specific frequencies. However, our results (figure 23) 

suggest that Bark filter bank is still able to provide better performance for this dataset. Therefore, 

the Bark filter-bank based enhancement is further explored in this section.   

5.3.1 Scaling of input waveforms 

 Here, the RNN model is trained with different scales of input. The input waveforms were 

scaled by max value in one iteration and in the range -1 to 0.9 in another. The results as in figure 

5.7 indicate that the unscaled waveforms provide better results when compared to scaled ones. 

                  

Figure 5.7: HASPI values for different scaling configurations 

5.3.2 Different SNRs 

 The level of noise in realistic situations could be arbitrary. It is important to eliminate or 

reduce the background noise to a level in which speech can be understood. The energy of speech 

with respect to noise is indicative of the speech intelligibility and it can be specified by SNR. Many 

different SNRs were tried for training in this section (figure 5.8).  
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Figure 5.8: HASPI values for different SNR configurations 

Speech and noise were mixed at 10 different SNRs manually during the initial trial. The following 

trial had 31 SNRs in the range -10dB to 20dB. For more SNRs, speech and noise were mixed based 

on a random number generator that would randomly select an SNR between -40dB and 20dB. It is 

seen that the performance gets better as more and more SNRs are included during training. 

5.3.3 Acoustic context 

 

Figure 5.9: HASPI values for different window size 
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 A noise estimation algorithm usually needs time to estimate the noise spectrum and help 

spectral subtraction or any equivalent algorithm to extract clean speech out of noisy speech. It is 

again dependent on a given dataset to decide the duration of context required and is defined by 

window size. It is the number of frames that needs to be considered per sequence for training. The 

window size is varied in steps from 10 to 2000 and found similar performance in training and 

validation sets with 2000 frames (figure 5.9).  

5.3.4 Final configuration 

 A final iteration of training is done with the parameters learnt in previous trials. This is 

followed by testing with a combination of clean speech in HINT database and multitalker babble 

noise. The HASPI value comparison (figure 5.10 and table 5.1) and the spectrogram of output are 

compared with that of outputs of previously discussed models.  

SNR Input 
Pretrained 
Bark RNN  MHANR DNN output 

Trained GT 
RNN 

Trained Bark 
RNN 

-3dB 0.331 0.3932 0.3953 0.4967 0.2833 0.6189 

0dB 0.5269 0.6174 0.6194 0.6199 0.3645 0.7372 

3dB 0.8014 0.8474 0.8431 0.8369 0.7159 0.9364 

Table 5.1: Intelligibility (HASPI) index values - Speech with multitalker babble for 

different models  

 

Figure 5.10: Graphical representation of HASPI values - Speech with multitalker babble 

for different models 
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There is an improvement in intelligibility index of at least 15% with trained Bark RNN model. In 

case of SNRs of the range -3dB, the improvement goes up to 85%.  

SNR Input 
Pretrained 
Bark RNN MHANR 

DNN 
output 

Trained GT 
RNN 

Trained 
Bark 
RNN 

-3dB 0.0703 0.0771 0.078 0.0797 0.0643 0.1237 

0dB 0.102 0.1088 0.1185 0.0972 0.0762 0.1599 

3dB 0.1643 0.1679 0.1742 0.1445 0.1385 0.2513 

Table 5.2: Quality (HASQI) index values - Speech with multitalker babble for different 

models 

The HASQI values are calculated too (table 5.2 and figure 5.11) and they indicate a minimum of 

53% increase (at 3dB) when compared to input and it goes up to 76% for -3dB SNR. The 

spectrograms (figure 5.12) reflect this prediction as well with the modulation in lower frequencies 

recovered better by this trained RNN than others. This makes the model clearly a preferred one 

out of the five algorithms compared here. 

 

Figure 5.11: Graphical representation of HASQI values - Speech with multitalker babble 

for different models 
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Figure 5.12 (Top from left to right): Spectrogram of a) Noisy input at 0dB SNR, b) Output 

from pretrained RNN model, c) OpenMHA output (Bottom from left to right) d) RBM 

model output, e) Output from trained GT RNN model and f) Output from trained Bark 

RNN model 

5.4 Dereverberation 

Reverberation is a phenomenon that causes reflection of sounds from surfaces to add to the 

signal when it is being listened to at a distance from source. It is prominent in enclosed 

environments where sounds may reflect from hard surfaces like walls, ceiling, and other objects. 

Hence the design of environments that can cause reverberation may take the inverse square law 

drop-off of sound intensities. However, there exists many reverberating environments in realistic 

scenarios that can deteriorate speech intelligibility.  

The low frequency components are the ones that can usually travel farther than high 

frequencies during reverberation. This would mean that the direct signal is overlapped by the low 

frequency reflected components and may have a larger impact on hearing-impaired listeners. 

Reverberation is specified by the reverberation time, which is the time taken by the signal to 

drop its intensity by 60 dB. It is important to reduce the reverberation time and limit it to 

minimum required during speech enhancement.  

 Different versions of RNN model are tested with reverberated speech to evaluate their 

performance under reverberating conditions. The impulse response for every type of enclosed 

environment was calculated based on data in Aachen Impulse Response (AIR) database [47]. 



62 
 

The data is collected using a setup shown in figure 5.13, which consists of a dummy head that is 

placed at a specific distance from the sound source. The two microphones placed close to the ear  

 

Figure 5.13: Measurement for Room Impulse Response calculation [47] 

position of the dummy head will collect the reverberated speech for that environment. The impulse 

response for the environment was extracted based on a suitable deconvolution technique. 

Figure 5.14 (Left to right): a) Speech with impulse response of Aula Carolina b) Speech with 

lecture c) Speech with booth d) Speech with office 

Reverberated speech for training is created by convolving the signal with the impulse 

response of the environment (figure 5.14). A dataset was created using the speech samples from 
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HINT database and the impulse response from AIR database. AIR database includes data for Aula 

Carolina, Lecture, Booth and Office environments. 

5.4.1 Convolution and addition 

 In this experiment, three experiments were done to check the difference in performance 

with the way speech is convolved with impulse response. The initial trial was done by convolving 

every sentence of each list in the HINT database with impulse response of the environment and 

then adding them together. This would create a file with N1 + L1 -1 samples for training where N1 

and L1 are the length of individual clean speech file and impulse response respectively. The 

training data includes environments like aula Carolina, lecture and booth. In order to compare this 

reverberated speech with equivalent clean speech, L1-1 zeros are added at the end of each sentence 

of clean speech. A single clean speech and reverberated speech are created by adding all these 

convolved files respectively. 

The second trial involved addition of all individual clean speech files in each list together 

and then applying convolution. Here again, the length of the single reverberated speech file created 

after convolution would be N+L-1 samples where N is the length of the single file created after 

adding all individual clean speech files and L is the length of impulse response respectively. The 

length of the single clean speech file is also adjusted to N+L-1 using zero padding at the end. 

 

Figure 5.15:  HASQI values with different methods for convolution 
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HASQI is used to evaluate the quality of input and output. The results in figure 5.15 

indicate that convolving individual file and comparing them with respective clean speech file zero 

padded at the end facilitates better learning of the network and yields better results during testing. 

The third trial was using the same reverberated speech file from second trial but only to the length 

of clean speech and the quality index considered the clean speech length as well. The results from 

third trial indicate an improvement over the second one. However, it is the convolution of 

individual file and zero padding of clean speech that gave the best results. 

5.4.2 Acoustic context 

 We have seen that the context in which speech is listened to has been found to have an 

impact in the effectiveness of noise reduction. Therefore, different iterations of training were 

conducted by varying number of frames of reverberating speech. The window size is varied from 

100 frames to 2000 frames. As in figure 5.16, the window size with 2000 frames yields the best 

results for all kinds of reverberating conditions. 

  

Figure 5.16: HASQI values for different window size 
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5.4.3 Comparison of results 

 

Figure 5.17: Graphical representation of HASPI values - Speech with reverberation for 

different models 

 

  Input 
Pretrained 
RNN 

RNN trained with 
noise 

RNN trained with 
reverberated speech 

Aula_carolina_200 0.9031 0.9257 0.9158 0.935 

Lecture_1020 0.8565 0.8031 0.8383 0.903 

Office_200 0.9432 0.9378 0.9418 0.9636 

Table 5.3: Intelligibility (HASPI) index values - Speech with reverberation for different 

models 

In this section, the performance of RNN trained with reverberated speech is compared with 

other RNN models dealt with so far, in terms of speech intelligibility and quality. In general, the 

intelligibility in reverberating environments will be high (figure 5.17 and table 5.3). However, both 

HASQI and HASPI values are evaluated for the final configuration. 
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Figure 5.18 (from left to right) a) Input reverberating (office) speech, b) Output of pretrained 

RNN model, c) Output of RNN model trained with noise, d) Output of RNN model trained 

with reverberated speech 

 

 

Figure 5.19: Graphical representation of HASQI values - Speech with reverberation for 

different models 

  Input Pretrained RNN 
RNN trained with 
noise 

RNN trained with 
reverberation 

Aula_carolina_200 0.2008 0.2084 0.2053 0.211 

Lecture_1020 0.178 0.1543 0.169 0.1792 

Office_200 0.2527 0.2394 0.2519 0.2731 

Table 5.4: Quality (HASQI) index values - Speech with reverberation for different models 

The HASPI values indicate an improvement of up to 5% (in case of lecture). Since the 

HASPI values are already high even with reverberation, the main focus here is on speech quality. 

In figure 5.19 (table 5.4), the HASQI values for pretrained RNN when subjected to babble noise 
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is compared with that of RNN trained with noise and RNN trained with reverberation. The 

improvement in speech quality is the best with RNN trained with reverberation, providing 5-8% 

HASQI increase when compared to input. It is also interesting to see good generalization of this 

model for the unseen office reverberation data.  

5.5 Portable implementation 

Speech enhancement algorithms that are being developed need to be incorporated in a small 

assistive hearing device for the listeners to get benefited. Besides, subjective listening test is the 

validation procedure that can evaluate the performance of an algorithm based on user experience. 

This is usually done with a lab setup and all listeners need to be in the lab for testing. It is often a 

difficult task to get many listeners to a particular facility. However, if the testing device can be 

physically taken to the listener, just like an assistive hearing device, that would be a great assistance 

to the listener and would help getting more listeners attend the test. The present work also focuses 

on these aspects and make a portable implementation of the noise reduction algorithm. 

 Intel Minnowboard is chosen for the portable implementation. It is a compact Single Board 

Computer with 2.9” x 3.9” form factor and has a 64-bit Intel Atom processor for intensive 

computations. The main advantages are it can support a wide range of OSs and IDEs and comes 

with a built-in firmware for basic operations until an OS is in place. The hardware is open source 

and all the design specs can be accessed.  

The Minnowboard is setup with Linux Ubuntu OS and is installed with all frameworks to 

run a real-time application. It is also installed with openMHA and a few built-in plugins were 

executed. In addition, a plugin has been developed that incorporates the RNN-based model into 

openMHA and is successfully implemented. This will enhance the list of algorithms that can be 

executed with openMHA. There are provisions to add peripheral devices like display and 

keyboard, which can be done as future work.  

Here, the concept of openMHA and the reference algorithm based on DNN are explained. 

The performance of trained Bark RNN with different configurations are evaluated and compared 

with these two algorithms apart from the pretrained and Gammatone versions of the same model 

for noise reduction. The same is done for dereverberation as well. 
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Chapter 6 

6. Conclusion 

 Noise reduction has been a challenging area of research since the invent of hearing aids. 

Most of the realistic scenarios in which communication happens is noisy. This affects both the 

intelligibility of speech and quality. This will have more impact on hearing-impaired listeners than 

the normal hearing ones because of the increased threshold for hearing. Therefore, it is important 

to have a robust noise reduction system in assistive hearing devices. 

 Digitization of analog signals offered a lot of opportunities to have custom speech 

enhancement for listeners. It has options to provide frequency or level-dependent gain based on 

audiogram. Digital signal processing (DSP) was found effective for many specific hearing 

impairments. However, DSP algorithms must be built for every type of undesired characteristic 

(noise) that needs to be reduced or removed from noisy or reverberating speech. This requires 

manual efforts to tune the algorithm and is time consuming. Statistical assumptions are also made 

about unseen signals which can be detrimental for accurate estimation of noise and thereby its 

reduction. Research shows that machine learning, a cutting-edge technology, is effective in many 

speech enhancement applications. 

6.1 Summary 

 This thesis focused on exploring and evaluating deep learning models that can help reduce 

noise in different conditions for hearing-impaired listeners. An RNN model was trained with 

speech and noise from HINT and Edinburgh database and the speech intelligibility and quality 

were calculated using HASPI and HASQI respectively. The RNN model was trained with 

reverberating speech as well. The performance was compared with that of openMHA (a framework 

based on conventional digital signal processing), RBM-based model and a pretrained RNN model. 

The speech intelligibility of RNN trained with noise is found to be better than all other models 

along with improvement in speech quality. The speech intelligibility and quality were enhanced to 

a larger extent with the model trained with reverberating speech.  

Sound cleaning is an integral component of speech enhancement in assistive hearing 

devices. Conventional signal processing techniques try to address stationary noise, impulsive/wind 
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noise or reverberation. The main focus of this project was on noise reduction using machine 

learning which can handle non-stationary noise apart from the ones that do not change over time. 

This methodology reduces the huge manual effort involved in studying different noise 

characteristics, developing custom algorithms that can reduce or remove different noise types and 

fine tune them for realistic environments. The performance of the deep learning model was 

evaluated objectively for hearing impaired listeners, which was based on both the intelligibility 

and quality aspects. Besides, the performance under reverberation was evaluated as well.  

Hearing aids are expected to have fast acting algorithms while causing no artifacts or 

distress because of the resulting rapid switch of algorithms within it. The design of digital signal 

processing algorithms needs a careful tuning to find an optimum balance between noise reduction 

and the consequent artifacts. Machine learning techniques do not make any assumptions about 

noise properties to reduce noise and are purely based on the target signals in case of supervised 

learning. This would cause less speech distortion when compared to conventional algorithms. The 

project also demonstrated real-time implementation in a portable platform.  

6.2 Future work 

This research has witnessed impact of acoustic context and other hyperparameters on 

training and performance during testing. Large scale training has a bigger effect since a dataset 

with many features need to be accompanied with many rows of training examples for a deep 

learning model to learn complex patterns underlying the data. The data available for the project 

was limited and therefore, training with a bigger dataset is one of the primary objectives in future 

work.  

The future work may include extending the same methodology to address environment 

classification. This in combination with machine learning-based noise reduction can make a robust 

speech enhancement approach. This is particularly suitable for real-time implementation in small 

hearing devices when the deep learning model is made with low complexity (just like the model 

used here). 
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