
 

 

   

 

 

 

An Application of an Auditory Periphery Model 

in Speaker Identification 

 

 

 

 

Md Atiqul Islam 

 

 

A thesis submitted in fulfilment of the requirements for  

the degree of Doctor of Philosophy 

International Centre for Neuromorphic Systems  

MARCS Institute for Brain, Behaviour and Development  

WESTERN SYDNEY UNIVERSITY 

2021 

 



2 

 

Statement of Authentication 

 

The work presented in this thesis is, to the best of my knowledge and belief, original 

except as acknowledged in the text. I hereby declare that I have not submitted this 

material, either in full or in part, for a degree at this or any other institution.  

 

 

 

 

 

(Md Atiqul Islam) 

  



3 

 

Acknowledgments 

I express my deepened gratitude to my principal supervisor, Professor André van Schaik 

for choosing me as his student. I am very grateful to him for his continuous and 

contingent support to my family. I thank André for his guidance and inspiration that 

encouraged me to move forward during the time I needed them most. I am very happy 

and honoured to be a student of André. 

I am also grateful to my co-supervisors, Dr Travis Monk, Dr Ying Xu, and Dr Saeed 

Afshar, for their innovative thoughts, technical comments, writing guidance, support, 

inspiration, and encouragement. I enjoyed the teamwork with my co-supervisors. I 

could not complete this without their help. I like to express my gratitude to Associate 

Professor Tara Julia Hamilton for her support at the early stage of my PhD and on other 

occasions.  

I also thank my friends and staff at ICNS in the MARCS Institute, who have encouraged 

and motivated me to accomplish my job and made my time enjoyable. I am also grateful 

to Dr Gaetano Gargiulo for selecting me as a tutor for his ‘Instrument and Measurement’ 

course.  

I am especially thankful to my mother, who has permitted me to come abroad for a 

higher degree. I also thank my wife, who has taken care of our two daughters and has 

supported and encouraged me to conduct my PhD for full-time. 

  



4 

 

Abstract 

The number of applications of automatic Speaker Identification (SID) is growing due 

to the advanced technologies for secure access and authentication in services and 

devices. In 2016, in a study, the Cascade of Asymmetric Resonators with Fast Acting 

Compression (CAR‑FAC) cochlear model achieved the best performance among seven 

recent cochlear models to fit a set of human auditory physiological data. Motivated by 

the performance of the CAR-FAC, I apply this cochlear model in an SID task for the 

first time to produce a similar performance to a human auditory system. This thesis 

investigates the potential of the CAR-FAC model in an SID task. I investigate the 

capability of the CAR-FAC in text-dependent and text-independent SID tasks. This 

thesis also investigates contributions of different parameters, nonlinearities, and stages 

of the CAR-FAC that enhance SID accuracy. The performance of the CAR-FAC is 

compared with another recent cochlear model called the Auditory Nerve (AN) model. 

In addition, three FFT-based auditory features – Mel‑frequency Cepstral Coefficient 

(MFCC), Frequency Domain Linear Prediction (FDLP), and Gammatone Frequency 

Cepstral Coefficient (GFCC), are also included to compare their performance with 

cochlear features. This comparison allows me to investigate a better front-end for a 

noise-robust SID system. Three different statistical classifiers: a Gaussian Mixture 

Model with Universal Background Model (GMM-UBM), a Support Vector Machine 

(SVM), and an I-vector were used to evaluate the performance. These statistical 

classifiers allow me to investigate nonlinearities in the cochlear front-ends. The 

performance is evaluated under clean and noisy conditions for a wide range of noise 

levels. Techniques to improve the performance of a cochlear algorithm are also 

investigated in this thesis. It was found that the application of a cube root and DCT on 

cochlear output enhances the SID accuracy substantially.  
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1 Introduction 

1.1 Research Motivation 

Automatic Speaker Identification (SID) is a growing research field (Hansen & Hasan, 

2015; Togneri & Pullella, 2011). SID systems serve as a convenient means of biometric 

authentication. Many authentication systems, such as Siri in iPhone, Bixby in Samsung, 

and Google Assistant use biometrics to access individual devices and secure user 

information. The manufacturers of autonomous vehicles ("Self-driving car," 2021) such 

as Tesla and Waymo need an authentication of a driver in their cars to access the voice 

control system to drive them remotely. Moreover, many banks such as HSBC and First 

Direct implement SID systems for online and phone account customers (Kollewe, 

2016). 

Recently, biometric authentication has also been implemented on several neuromorphic 

systems such as TrueNorth (DeBole et al., 2019), Loihi-Intel (Davies et al., 2018), and 

BrainChip’s Akida (Rueckert, 2020). In recent years, Google has implemented 

biometric authentication APIs (application program interface) (Minter et al., 2020; 

Trelin, 2020) to improve security and provide a common platform for developers to 

integrate biometric authentication into their apps. Other biometric systems, such as 

accent segregation (Senior & Babel, 2018), speech recognition (Han et al., 2020; Wang 

et al., 2020), speaker classification (Islam & Sakib, 2019; Villalba et al., 2020), and 

gender identification (M. Islam, 2016) have also been developed. All of these systems 

achieve almost 100% accuracy in clean audio conditions. However, the accuracy of 

those systems drops substantially with an increase in noise level and different 

background sounds (Schwartz et al., 2018; Wenndt & Mitchell, 2012).  

While an automatic biometric system suffers from robustness issues in noisy situations, 

the human auditory system is capable of reliably performing a variety of speech 

processing tasks, even in very adverse conditions. Despite this reliable performance of 

the auditory system, the performance of this system reduced significantly at high noise 

level, above 95 dBA (Jafari et al., 2019). Noise also raises non-auditory complications 

such as perceived disturbance, annoyance, cognitive impairment, cardiovascular 

disorders, and sleep disturbance (Basner et al., 2014; Stansfeld & Matheson, 2003; 

Wang et al., 2016). Thus, the performance of the central nervous system is also 

influenced by noise exposure (Langguth, 2011). Despite these barriers, the performance 

of the auditory system is very robust to changing backgrounds, signal distortion, and 

communication channel variations (Wenndt & Mitchell, 2012; Zhang et al., 2018). The 

nonlinearities in the cochlea play a vital role to process a wide dynamic range of sounds 

and making the human auditory system so robust. The operation of the human cochlea 
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is nonlinear, and its nonlinearities are pervasive. The nonlinear processing of the 

auditory system is not only responsible for the noise-robust performance, but also 

attention plays a crucial role in it (Nassiri et al., 2013). The levels of attention are 

different for intermittent or continuous noise (Conway et al., 2007; Szalma & Hancock, 

2011) and the intensity of noise (Cohen et al., 2013). The study of the effect of attention 

on the SID accuracy is beyond the scopes of this thesis.    

Inspired by cochlear functions, many computational models have been developed to 

mimic cochlear mechanisms. In 2016, a study (Saremi et al., 2016) investigated seven 

recent cochlear models in response to a set of stimuli that are used to test human auditory 

system performance. The results showed that some cochlear models really can fit many 

physiological and psychoacoustic observations of the human cochlea. These models can 

be applied in various biometric applications such as speaker identification, speech 

segregation, phoneme classification, and speech intelligibility. However, very few 

cochlear models have actually been used in the SID task according to the literature. 

Most conventional methods are developed using FFT, and their performance degrades 

significantly with an increase in noise (Alam & Zilany, 2019; Ashar et al., 2020; 

Ganapathy et al., 2012).  

The paper (Saremi et al., 2016) showed that the Cascaded of Asymmetric Resonators 

with Fast Acting Compression (CAR-FAC) fits the human auditory periphery system 

best among seven established cochlear models. Moreover, the CAR-FAC can process 

sounds for mono, stereo, or multi-channel sound inputs (Lyon, 2017), applying the full 

mechanism of a healthy cochlea using one or both ears. Furthermore, a fully functional 

digital hardware implementation of this model is also available (Xu et al., 2018) to be 

utilised for real-time applications such as sound localisation, speech processing, and 

speaker or source identification. All of these features and possibilities of the CAR-FAC 

model have motivated me to explore the CAR-FAC as a front-end feature extractor in 

an automatic SID system. The CAR-FAC, with its inherent nonlinearities, provides a 

platform to investigate the effect of cochlea nonlinearities on the performance of an 

automatic SID system. Furthermore, a biologically inspired noise-robust SID system 

development using the CAR-FAC may achieve a human-level SID performance. 

Therefore, in this work, I apply the CAR-FAC cochlear model for the first time to 

develop a biologically inspired SID system. The developed system may produce a 

human-level performance due to emulating cochlear mechanisms by the CAR-FAC that 

can generate many auditory physiological data (Saremi et al., 2016; Saremi & Lyon, 

2018). To summarise, the motivations of this PhD work are 

i. Increasing demands of a biometric system,  

ii. The performance of a normal hearing listener, 

https://www.google.com/search?rlz=1C1OKWM_enAU842AU842&sxsrf=ALeKk01HGNPQEcaO6_uBiPISEYa6YNvfSw:1606969782729&q=psychoacoustic&spell=1&sa=X&ved=2ahUKEwibm8H4_LDtAhWFoOkKHVvICEIQkeECKAB6BAgWEDA
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iii. The scope and possibilities of applications of the CAR-FAC cochlear model, 

iv. The scope of development of an SID system using cochlear models, and  

v. Poor performance of FFT methods under noisy conditions. 

1.2 Research Problems and Objectives 

Speech carries unique acoustic cues, and machine learning algorithms mostly apply 

prosody-related acoustic cues such as fundamental frequency, formants, pitch, and 

energy, which define the human voice production system (Baumann & Belin, 2010; 

Edoho et al., 2018; Ghazanfar & Rendall, 2008; Stemple et al., 2018). A front-end 

feature extraction system should have the ability to extract those cues from an input 

signal. However, a human not only utilises those acoustic cues but also applies various 

other attributes to identify a speaker. These attributes include understanding the signal, 

accents, inflexions of sound, mannerisms, empathy listening, attention, interest, and 

engagement of listeners (Edoho et al., 2018; Lee et al., 2017; Park et al., 2017). This 

thesis only investigates the contribution of the front-end in the noise-robust SID task. 

The conventional front-end algorithms, such as the Mel-frequency Cepstral Coefficients 

(MFCC) (Davis & Mermelstein, 1990; Ellis, 2005) and Gammatone Frequency Cepstral 

Coefficients (GFCC) (Shao et al., 2007) use the FFT to extract speaker defining cues. 

The Fast Fourier Transform (FFT) distributes frequency channels linearly, and its 

spectral distortion under noisy conditions (Li & Huang, 2011) may affect the accuracy 

of a system. The FFT, as a frequency analyser, shows energies related to frequencies in 

an energy spectrum. Additional noise adds more energy to the signal and can be 

observed in the noisy spectrum. Thereby, the noisy spectrum causes a significant 

difference from the clean spectrum. As a consequence, an FFT method provides a poor 

performance under noisy conditions. Nevertheless, most studies (Bharath & Kumar, 

2020; Chakroun & Frikha, 2020; Venkatesan & Ganesh, 2018) apply the FFT-based 

front-end features for the recognition tasks without considering the full functional 

mechanism of the cochlea.  

Some front-end features, such as the MFCC, GFCC, and Power Normalised Cepstral 

Coefficients (PNCC) (Nayana et al., 2017), are inspired by the cochlea but still first 

apply the FFT as a frequency analyser. These auditory features have been developed 

considering only the Basilar Membrane (BM) as a filterbank. They have not considered 

cochlear nonlinearities. While they typically use either the cube root or the log operation 

to add a compressive nonlinearity to their features, they do not reflect the full nonlinear 

mechanisms of the cochlea. Moreover, their performances are not as robust as that of a 

human listener, particularly under noisy conditions. Therefore, it is necessary to 

investigate an alternative front-end approach applying the full mechanism and 

nonlinearities of the cochlea. It is expected that this new bio-inspired approach will 

provide an improved SID performance up to the level of a human listener.  
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In the state-of-the-art, many cochlear models are available to study and simulate 

physiological and psychoacoustic characteristics of the human auditory periphery 

system (Lyon, 2017; Saremi & Stenfelt, 2013; Zilany & Bruce, 2006). However, 

comparatively very few of them have been used in automatic recognition tasks yet. The 

CAR-FAC was the best cochlear model to fit the human auditory data in response to a 

set of stimuli (Saremi et al., 2016; Saremi & Lyon, 2018). Nevertheless, hitherto, 

nobody has applied this model in a speech processing task such as speaker 

identification. Therefore, the first objective of this work is to apply the CAR-FAC as a 

front-end feature extractor for an automatic noise-robust text-dependent SID system. I 

expect the cochlear model fitting human auditory data best will also achieve best 

performance and outperform FFT methods. To show the novelty of the new approach, 

the simulated results will be compared with the well-established feature-based methods, 

such as MFCC, GFCC, Frequency Domain Linear Prediction (FDLP) (Ganapathy et al., 

2012), and Auditory Nerve (AN) model (Zilany & Bruce, 2006). Note that the AN 

model also performed very well to fit the human auditory data, as found in (Saremi et 

al., 2016). I will use these features as baselines for the following reasons: MFCC is an 

FFT-based standard feature, GFCC is also an FFT-based feature and has a better 

performance over the MFCC. FDLP gives preference to a voice production mechanism, 

and the AN model is an auditory phenomenological cochlear model. 

The study in (Allen, 2001) showed that the cochlea nonlinearities, such as compression, 

two-tone suppression, and level-dependent response, play an important role in hearing. 

The CAR-FAC and AN models incorporate all of these nonlinearities to model the 

peripheral auditory system. The availability of these cochlear models allows me to 

investigate the contribution of nonlinearities in an SID task. However, most FFT 

methods (Li & Huang, 2011; Shao & Wang, 2008; Zhao et al., 2012) in automatic SID 

systems apply the cube root followed by Discrete Cosine Transform (DCT), as a 

conventional compressive nonlinearity. The second objective of this work is to 

investigate the effects of emulated nonlinearities of the cochlear models and 

conventional compressive nonlinearities on the performance of a text-independent SID 

system. To this end a comparison of performances between these two groups using these 

two types of nonlinearity has also been done. The combined effect of these 

nonlinearities on the performance of an SID system has also been investigated.  

The main focus of this work is to investigate the CAR-FAC (front-end) effectiveness 

and contribution to the SID performance. The use of a state-of-the-art classifier, such 

as x-vector embedding, with a deep neural network (Snyder et al., 2018) may provide 

state-of-the-art SID accuracy, but the complexity and nonlinearity of these neural 

networks may not allow us to clearly investigate the contribution of cochlear model 

nonlinearities in the SID task. Thus, this study will use a statistical classifier like 

GMM-UBM to investigate how the cochlear features are suitable for an SID system, as 
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these will allow us to investigate the nonlinearities in the front-end features. 

Additionally, the UBM allows us to apply noisy features to introduce noise in the GMM 

trained on clean features. 

1.3 Significance of This Work 

A biometric recognition system has an expanding area of application that includes 

online banking, chatting, shopping, earning, military applications, accessing personal 

devices (smartphones and laptops), finding a target speaker in a dataset, forensic test, 

and driver authentication in an automotive vehicle. Thus, the development of a 

biologically inspired biometric method will be a useful tool for existing biometric 

applications. The application of cochlear model that matches human auditory data in 

the SID system not only may produce a human-level performance but will also help 

cochlear researchers to understand the mechanism of a cochlear in the SID task. This 

work will explore the CAR-FAC in the SID system for the first time to see if it can 

achieve similar performance to a normal-hearing listener. This newly developed SID 

system will help researchers to study biologically inspired SID systems to achieve 

noise-robust performance. Moreover, this study introduces the CAR-FAC as a front-end 

feature extractor, including cochlear mechanisms as an alternative to FFT-based 

features. Thus, the expectation is that the performance of the proposed study will not 

drop substantially with an increase in noise level, as observed in the performance of 

FFT-based methods. 

To the best of our knowledge, no study has investigated the performance of the cochlear 

nonlinearities and conventional compressive nonlinearities in an SID system. Thus, the 

comparison between the cochlear nonlinearities and conventional compressive 

nonlinearities will allow researchers to introduce an input feature with proper 

nonlinearities to achieve a better SID accuracy. Moreover, the outcome of the 

nonlinearity investigation may be useful for auditory researchers to model the cochlear 

with fewer nonlinearities for a better automatic speaker recognition task. 

1.4 Structure of Thesis 

This thesis consists of seven chapters including conclusions. The motivations, problems 

of existing relevant works, objectives, and the significance of this work have been 

described in the first chapter. The description of the anatomy and functions of the 

cochlea is given in chapter two. Chapter three describes the cochlear models used in 

this work, their various functions to fit them to physiological and psychoacoustic data 

of a real cochlea. 

Chapter four describes the speaker classifiers such as the Gaussian Mixture Model with 

Universal Background Model (GMM-UBM), i-vector, and Support Vector Machine 
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(SVM) that were used for this work. In this chapter, I apply these classifiers to 

investigate CAR-FAC, AN model, and FFT based methods’ SID performance for a 

text-dependent SID system. The text-dependent SID system has been described in 

chapter five. Chapter six presents a text-independent SID system using cochlear and 

FFT-based features. This chapter also compares the cochlear and conventional 

nonlinearities to find which types of nonlinearity produce better performance in a 

text-independent SID system. Finally, chapter seven concludes the thesis and discusses 

future work. 
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2 The Peripheral Auditory System 

2.1 Introduction 

The human auditory system consists of the ear, spiral ganglion cells (i.e., the auditory 

nerve), the cochlear nucleus, the trapezoid body, the superior olivary complex, the 

lateral lemniscus, the inferior colliculus, the medial geniculate nucleus, and the auditory 

cortex (Winer & Schreiner, 2010). Here, I describe only the anatomy and functions of 

the ear as it is related to my research. As the input of the auditory system, the ear senses 

sound pressure waves, transduces them to mechanical vibrations, decomposes 

vibrations into time-frequency representations, and transduces the results into electrical 

signals that are then relayed to the brainstem and the auditory cortex via the auditory 

nerve system (Decharms & Zador, 2000; Oxenham, 2018). 

Knowledge of the human auditory system allows us to better understand and implement 

cochlear models for practical applications. For example, a cochlear model may be 

appropriate to study and understand the functions of auditory systems without doing 

any physical experiment or measurement. Moreover, an accurate cochlear model can be 

applied for sound processing systems, such as speaker identification, sound localisation, 

and speech recognition. This chapter describes the anatomy of the ear to provide some 

background to readers who are not familiar with the functions of the ear. The 

observations are presented here are mostly based on mammals such as cats, chinchillas, 

and rabbits. However, those observations are also largely applicable to human auditory 

data, albeit over a different frequency range (Delgutte, 1984; Young & Sachs, 1979). 

2.2 The Human Ear Anatomy  

Figure 2.1 shows the anatomy of an ear. It includes the external ear (outer), the middle 

ear, and the inner ear (Riecke et al., 2020). The following sections describe the 

anatomical details and functions of each section of an ear. 

2.2.1 External and Middle Ear 

The external ear consists of the pinna, the concha, and the external auditory canal, as 

shown in Figure 2.1. The pinna and the concha are made of cartilage covered by skin 

protruded from two sides of the skull. The pinna and the concha are convoluted in 

structure to sense omnidirectional sounds with directionally and frequency-dependent 

gains, which help to localise a sound source by altering the spectrum of incoming 

sounds (Purves et al., 2001). Together they funnel the received sounds into the auditory 

canal. The auditory canal increases the air pressure of the incoming sounds and directs 
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them into the eardrum-an element of the middle ear (Homma et al., 2010). Error! 

Reference source not found. (A) shows an example of the frequency-dependent 

pressure gain from the external ear to the middle ear. The middle ear gain shows a band-

pass filter effect with the best frequency around 900 Hz for a human.  

The middle ear is an air-filled space and linked to the back of the nose by a long and 

narrow tube called the Eustachian tube to balance the air pressure in the ear. The middle 

ear includes the eardrum (tympanic membrane) and three cascaded tiny bones: the 

malleus (hammer), the incus (anvil), and the stapes (stirrup), as shown in Figure 2.1. 

The eardrum is connected to the malleus, followed by the incus and stapes 

consecutively. The three bones are collectively known as the ossicles and construct an 

ossicular chain. The end part of the stapes is connected to the oval window, an opening 

into the inner ear. The inner ear is also called the cochlea, and the detailed description 

of the inner ear is given in the next section. The ossicular chain transduces the eardrum 

vibration to the mechanical energy in the oval window through a lever operation. The 

transduced energy causes a movement of the fluid in the inner ear. 

The ossicular chain, together with the eardrum and the oval window, provide an 

impedance matching mechanism. Impedance matching is one of the essential functions 

of the middle ear. It converts low pressure, high displacement vibrations of the eardrum 

into high pressure, low displacement vibrations that are suitable for driving cochlear 

fluids through the oval window. As a result, the cochlea fluid experiences a higher 

 

Figure 2.1: The anatomy of the human ear showing the external (outer), middle, and 

inner ear. Adapted from https://entcare.wordpress.com/, “Anatomy of human ear”. 

 

 

 

 

 

 

 

 

 

 

https://entcare.wordpress.com/


20 

 

pressure (about 22-30 folds) than the pressure applied at the eardrum. The acoustic 

impedance of the middle ear is a function of input frequency, as shown in Error! 

Reference source not found. (B). The impedance reduces with the increase of the input 

frequency.  

2.2.2 The Inner Ear 

The inner ear is a complex and fluid-filled bony structure encompassed by a bony 

labyrinth and protected by the temporal bones of the skull. The cochlea is the main 

element of the inner ear I am interested in. This name has come from the Greek word 

for a snail. It looks like a snail shell with a spiral-shaped cavity (Figure 2.3 (A)). The 

snail-shell shape of the cochlea saves space and boosts sensitivity to low frequencies 

 

Figure 2.2: (A) shows the pressure gain of the middle ear for a cat and a human (Kim 

& Koo, 2015). (B) shows the impedance of the middle ear as a function of frequency. 

The results shown in (B) are for six fresh human temporal bones in the 

stapes-cochlear level. Adapted from (Kurokawa & Goode, 1995). The unit of the 

CGS (Centimeter-Gram-Second) acoustic Ohm is equivalent to dyne .sec/m5.  

 

Figure 2.3: (A) shows the anatomy of the cochlea with the semicircular canals, and 

(B) shows the cross-section of the cochlea. The cochlea has been adapted from 

Wikipedia, “Inner ear”, and the cross-sectional cochlea has been adapted from 

Encyclopedia Britannica Inc., 1997. 
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(Monroe, 2006). The length of the cochlear canal is approximately 35 mm in a human 

ear (Rask‐Andersen et al., 2012). There are two windows in the cochlea - the oval 

window and the round window. The oval window is the bridge between the middle ear 

and the inner ear that passes the eardrum vibrations to the inner ear. The round window 

helps to release the pressure in the cochlea fluid. The movement of these two windows 

is in the opposite phase to allow fluids in the cochlea to move (Benson et al., 2020). 

The inner ear also contains semicircular canals, the vestibule, the saccule, the utricle, 

and the endolymphatic sac (shown in Figure 2.3 (A)). Figure 2.3The semicircular canals 

are fluid-filled tubes that respond to an angular displacement of the head. They are 

responsible for the balance of the body concerning gravity (Pineault et al., 2020).  

Figure 2.3 (B) shows the cross-sectional view of a cochlea. The cochlea has three ducts: 

the scala vestibule, the cochlear duct (scala media), and the scala tympani. The scala 

vestibule and the cochlear duct are separated by Reissner’s membrane. The fluid in the 

scala vestibule and scala tympani is called perilymph, and the fluid in the cochlear duct 

is called endolymph. The perilymph has high sodium (Na+) and low potassium (K+) 

contents. The endolymph has a higher concentration of K+ and a lower concentration of 

Na+ ions related to the perilymph. The potential of endolymph is around +80 mV 

compared to the perilymph (Nin et al., 2008). The Na+ and K+ actively participate in 

transducing the mechanical vibration of fluids to the electrical signals in the cochlea. 

The Basilar Membrane (BM), together with the osseous spiral lamina, is the separator 

between the cochlear duct and scala tympani, as shown in Figure 2.3 (B). The organ of 

Corti is located in the cochlear duct and supported by the BM in mammals, as shown in 

 

Figure 2.4: (A) shows the inner and outer hair cells, along with the BM and tectorial 

membrane. (B) shows the microscopic view of the inner and outer hair cells. (A) has 

been adapted and modified from (Fettiplace, 2011), and (B) has been adapted from 

(Rask-Andersen et al., 2017). 
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Figure 2.4 (A). The BM transfers mechanical vibration to sensory cells (hair cells on 

the organ of Corti). There are about 15,500 hair cells on the organ of Corti in an adult 

human (Beurg et al. 2006). There are two types of sensory cells: Inner Hair Cells (IHCs) 

and Outer Hair Cells (OHCs). The number of OHCs is higher than the IHCs, and the 

ratio is about 4:1 in an adult human (Beurg et al., 2006). This number of rows may vary 

from three to five (Rask-Andersen et al., 2017), as shown in Figure 2.4 (B). The hair 

cells are mechano-sensory cells and bathed in endolymph in the cochlear duct. The hair 

cells are rigidly attached to the BM by the supporting of Claudius’ cells, Hensen’s cells, 

Deiters’ cells, and Pillar cells, as shown in Figure 2.4 (A). 

The IHCs are flask-shaped and flexible. In contrast, the OHCs are cylindrical in shape 

and stiff. These hair cells can freely move with the vibration of the BM. The taller 

stereocilia and shorter stereocilia of OHCs are attached to the tectorial membrane 

strongly and loosely, respectively (Fettiplace, 2011). In contrast, the stereocilia of IHCs 

are not in direct contact with the tectorial membrane, as found in (Fettiplace, 2011). The 

functions of stereocilia for the OHCs and IHCs are described in the next section.  

2.3 Functions of The Cochlea 

2.3.1 BM Motion 

Figure 2.5 shows an uncoiled cochlea with the BM displacement in response to sound. 

The end of the BM closer to the oval window is the base, and the other end is the apex. 

The width of the base is 0.08-0.16 mm, whereas the width of the apex is 0.42-0.65 mm 

in a human ear (Oghalai 2004). The BM is stiffest near the base and flexible near the 

apex (Von Békésy & Wever, 1960). This structure of the BM allows it to act as a 

 

Figure 2.5: An uncoiled cochlea showing the basilar membrane and travelling wave. 

This figure has been modified from the journal of neuroscience, Fourth Edition, 

Figure 13.5 (Part 1)  
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frequency spectrum analyser. The stiffness of the base allows much faster BM 

displacement near the oval window than at the apex. The reduction of stiffness to the 

apex slows down the BM displacement by dissipating its energy. The position of 

maximum displacement on the BM varies as a function of the frequency contents of an 

input sound. The velocity and gain of the BM vary with the intensity and the frequency 

of the incoming signal (Ruggero et al., 2000), as shown in Figure 2.6. The BM has a 

high-frequency selectivity and high gain at low SPLs. The selectivity and the gain of 

the BM decrease with the increase of the SPL (Nin et al., 2008). It is noticeable that the 

BM gain is independent of SPL for frequencies significantly below 9 kHz. Thus, the 

BM behaves like a linear filter in response to tones at those frequencies (Ruggero et al., 

2000). 

2.3.2 IHC Function 

The IHCs are the sensory receptors in the cochlea. These receptors transmit the sensed 

signals to the brain through auditory nerves. The IHCs convert the mechanical vibration 

of the BM into an electrical signal through the Mechano-Electrical Transduction (MET) 

process.  

Error! Reference source not found. shows the MET process performed through the 

movement of the stereocilia. This movement is proportional to the velocity of the BM 

displacement. When the BM moves, forces are exerted on the stereocilia, as shown in 

Error! Reference source not found.. Deflection of the hair in the direction of the 

tallest stereocilia of the inner hair cells is always excitatory in direction (positive 

displacement). It applies tension to the tip links and pulls open the MET channels. The 

deflection of IHCs in the reverse direction (negative displacement) takes tension off the 

links and allows the channels to close (Gillespie & Müller, 2009). When the ion channel 

is open, ions flow into the cell, driven by the battery of the endolymphatic potential and 

 

Figure 2.6: The presentation of the (A) velocity and (B) gain of the BM responses to 

tones with various SPLs. The responses were recorded at the 3.5 mm site of the BM 

in a chinchilla cochlea. Adapted from (Ruggero et al. 2000). 
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the intracellular potential. The influx of the positive ions from the endolymph in the 

cochlear duct depolarises the cell, resulting in a receptor potential. This receptor 

potential opens voltage-gated calcium (Ca2+) channels of the cell. Ca2+ ions then enter 

the cell and trigger releasing of neurotransmitters at the basal end of the cell. 

The receptor potential response and the MET current as a function of the IHCs hair 

displacement are shown in Figure 2.8 (A) and (B), respectively. The receptor potential 

of the IHCs grows linearly with the increase of the intensity of the input until it is 

saturated (Pickles 2013). The intracellular potential varies between two asymptotes, 

which resembles a sigmoid function. The MET current curve is similar to the voltage 

response curve. 

Figure 2.8 (C) shows the receptor potential of IHC elicited by frequencies of different 

pure tones. The IHC produces a similar response to an input tone at low frequencies. At 

higher frequencies (> 1000 Hz), the IHC attenuates AC components by the membrane 

time constant and leaving sustained depolarising DC components. 

 

 

Figure 2.7: (A) Schematic diagram of the IHC afferent synapse, including a ribbon 

with tether vesicles. (B) Mechano-transduction scheme of the stereocilia displaying 

their resting and stimulated conditions. The tip link is attached to the ion channel. 

Deflection of the stereocilia, produced by mechanical force, pulls open the 

mechanically gated channel and activates the current through them. Modified from 

(Goutman et al., 2015). 
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2.3.3 OHC Function  

The part of the peripheral auditory system that allows mammals to hear audio signals 

over a large dynamic range is the OHC (Elliott & Shera, 2012). OHCs amplify the 

movement of the BM depending on the SPL and frequency of input signals (Ashmore, 

1987). This amplification is highest for a low-level input signal and at frequencies closer 

to the CF of its place along with the BM (Rhode, 1971). The OHCs has a sigmoid shaped 

mechanical response concerning to the BM movement, as shown Figure 2.9 (A). The 

nonlinear amplification of the OHCs is executed by their length changing in response 

to the input (W. E. Brownell et al., 1985; Dallos, 1992; H.-B. Zhao & Santos-Sacchi, 

1999). Similar to the IHCs, the movement of BM causes a deflection of OHC stereocilia 

and an influx of ions. The influx of the positive ions depolarises the OHC and shortens 

the cell. In contrast, hyperpolarisation lengthens the cell, as shown in Figure 2.9 (B). 

 

Figure 2.8: (A) IHC response as a function of hair displacement. Adapted from 

(Hudspeth and Corey 1977). (B) A plot of peak MET current against hair 

displacement. (C) Receptor potential of an IHC in response to pure tones of various 

frequencies. Figures (B) and (C) are modified from (Fettiplace, 2017; Palmer & 

Russell, 1986).  
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OHCs generate motile forces upon their contraction and elongation, which are 

transmitted onto the BM to alter its motion. 

2.4 Cochlear Nonlinearities 

The processing of an audio signal in the mammal auditory system is a nonlinear process. 

The cochlear nonlinearities make the human auditory system noise-robust and allow 

one to hear a wide dynamic range of audio signals. There are many nonlinear effects in 

the cochlea, such as the Distortion Tone (DT), the two-tone suppression, and the 

nonlinear amplification. In this section, short descriptions of these nonlinearities are 

described. 

2.4.1 Distortion Tone  

The production of a tone with a different frequency from the input constituent 

frequencies in the cochlea is called DT. (Kendall et al., 2014). DTs are psychoacoustic 

phenomena generated in the BM and propagated back through the middle ear. A 

Quadratic Distortion or Difference Tone (QDT) is the difference of nearby frequencies 

(f2-f1) of input tones(f1 and f2), and a Cubic Distortion Tone (CDT) is expressed as 2f1-f2 

(Gaskill & Brown, 1990; Kendall et al., 2014). DTs can be measured in the ear canal. 

Despite the similarity of the origins of these distortion tones, there are considerable 

differences between them. The CDT is detectable even at a low loudness of sound. In 

contrast, the QDT depends on a high loudness of sound. The CDT highly depends on 

 

Figure 2.9: (A) Mechanical response of mammalian OHC under voltage clamp, 

modified from (Santos-Sacchi, 1992). (B) The OHC changes its length when the cell 

is held at different membrane potentials. Motor proteins in the membrane of the OHC 

are expanded and contracted depending on their activation. When K+ ions enter the 

cell, motor proteins are activated and contract the OHC. (B) is modified from 

‘Hearing: 3.7 Hair cell tuning’. 

 



27 

 

the ratio of frequencies of pure tones f2/f1 whereas, the QDT has a little dependency on 

frequency ratios (Fastl & Zwicker, 2006). Distortion, such as the CDT, allows OHCs to 

enhance the sensitivity and tuning of the organ of Corti (Mom et al., 2001).  

2.4.2 Two-tone Suppression 

Two-tone suppression is a phenomenon in the cochlea defined by the reduction of the 

amplitude of an input signal in the presence of another signal (Recio-Spinoso & Cooper, 

2013; Ruggero et al., 1992). Two-tone suppression is an effect of masking in the 

auditory system and enhances the performance of the auditory system of mammals 

(Christensen et al., 2019). Rhode (Rhode, 1971) was the first to discover the two-tone 

suppression rate in the squirrel monkey. The study (Ruggero et al., 1992) found that a 

two-tone suppression rate is generated through an active process in the cochlea via the 

vibration of the BM, which is affected by the OHCs feedback (Dong & Olson, 2016).  

2.4.3 Nonlinear Amplification 

The nonlinear amplification (compressive nonlinearity) in the cochlea occurs via the 

feedback from the OHCs that affects the vibration of the BM (Ashmore, 1987; W. 

Brownell, 1985; H. Davis, 1983). It contributes to the sharper frequency selectivity and 

allows mammals to hear audio signals over a wide dynamic range (Elliott & Shera, 

2012; Goldstein et al., 1971; Ruggero, 1994). The fine-tuning and nonlinear 

amplification of the BM helps to perceive spoken utterances (Hoben et al., 2017). 

Moreover, the compressive nonlinearity from OHCs is responsible for the noise-robust 

performance of the auditory system (Geisler et al., 1990). 

2.5 Conclusion 

The mechanism and functions of the human ear are the keys to designing and 

understanding a cochlear model, which is the concern of this thesis. The human ear is 

sub-sectioned into three parts: the external ear, the middle ear, and the inner ear. The 

external ear senses a signal and funnels it towards the middle ear. The middle ear 

transduces the signal into mechanical energy through the lever process with the help of 

ossicles (Kim & Koo, 2015). The inner ear or cochlea is a fluid-filled and coiled 

structure. Displacement of the oval window – a part of the cochlea – creates a pressure 

wave in the fluids of the cochlea and causes different parts of the BM to vibrate in 

response to different incoming sound frequencies. The base of the BM is most sensitive 

to high frequencies, whereas the apex to low frequencies. The IHCs sense the BM 

vibration adaptively and release neurotransmitters at the basal end of the cell. The 

neurotransmitters diffuse to the afferent neuron to trigger action potentials in the 

auditory nerve. The OHCs are believed to contribute to the sharper frequency selectivity 

and higher sensitivity of cochlear amplification via a change in their length. 
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The processing of sound in the cochlea is an active and nonlinear process. Many 

nonlinearities such as two-tone suppression, masking, and nonlinear amplification 

significantly contribute to the processing of sounds. The next chapters describe the 

emulation of these nonlinearities in a cochlear model and their contribution on the 

performance of a SID system. 
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3 Cochlear Theory and Modelling 

3.1 Introduction 

In this thesis, I used two cochlear models to generate cochlear features from input audio 

signals. They are the Cascade of Asymmetric Resonators with the Fast Acting 

Compression (CAR-FAC) (Lyon, 2017) and the Auditory Nerve (AN) (Zilany & Bruce, 

2006) models. These two models closely reproduce human cochlear data (Saremi et al., 

2016; Saremi & Lyon, 2018). This chapter describes a short history of cochlear 

modelling generally and describes these two models in particular.  

3.2 Available Cochlear Models 

Cochlear models attempt to reproduce cochlear physiological and psychoacoustic data 

(Ni et al., 2014). They have been applied to several hearing applications such as Speaker 

Identification (SID) (M. A. Islam et al., 2016; Martínez–Rams & Garcerán–Hernández, 

2011), phoneme classification (Alam et al., 2017; T. R. Anderson, 1993), gender 

classification (Mamun et al., 2014), speech intelligibility assessment (Mamun et al., 

2015), and sound localisation (Kelvasa & Dietz, 2015; Xu et al., 2021). They can also 

analyse and predict functions of the cochlea without performing intrusive physical 

experiments on them. 

Helmholtz is considered as the pioneer in cochlear modelling due to his resonator theory 

and basilar membrane (BM) filter design using a resonator (Von Helmholtz, 1885). 

After more than a half-century, Fletcher (Fletcher, 1940) introduced the critical band in 

auditory filtering that inspired cochlear researchers to reproduce psychoacoustic data of 

the auditory peripheral system. The emulation of psychoacoustic data was significantly 

enhanced with the introduction of two linear filters: the rounded-exponential filter 

(Patterson, 1974, 1976) and the Gammatone filter (De Boer, 1975). Rhode further 

improved cochlear modelling after discovering nonlinearities of the cochlea in a squirrel 

monkey and guinea pig (Rhode, 1971, 1978). Subsequently, almost all modellers used 

cochlear nonlinearities such as, e.g., compression, two-tone rate suppression, 

level-dependent gain, and bandwidth variation in their models to fit them to available 

physiological data (Bruce et al., 2018; Lyon, 2011). Combining these various filters and 

nonlinearities yields a more complete and detailed cochlear model. 

Figure 3.1 is a block diagram that illustrates how a computational model (right column) 

emulates different stages of processing in the human auditory system (left column), 

from the outer ear to the auditory cortex. A computational model of the ear receives 

audio input signals and ultimately produces a spike train in the auditory nerve (spike 

generator block, Figure 3.1). The intermediate stages of processing (middle ear filter, 
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filter bank, nonlinear feedback blocks, right column) are intended to mimic their 

biological counterparts (middle ear, basilar membrane, hair cell blocks, left column). 

For example, hair cells in the ear nonlinearly feedback the output of the BM to adjust 

gain and bandwidth. The BM output is then transduced to electrical signals and 

manifests as spike trains in the auditory nerve (auditory nerve and spike generator 

blocks, Figure 3.1). Distinguishing features of speech can be extracted from that output 

spike train at higher stages of auditory processing (Bruce et al., 2018). In the human 

auditory system, the auditory cortex extracts spectral and temporal information from 

auditory nerve spikes (Rankin & Rinzel, 2019) and the timing of those spikes relative 

to an input signal (Oxenham, 2018). In computational models, the auditory cortex is 

loosely modelled by a machine learning algorithm and a classifier (feature extraction 

block, Figure 3.1). 

Lyon introduced one of the earliest versions of a full computational cochlear model 

(Lyon, 1982). He modelled the BM using concatenated resonators with a compressive 

nonlinearity added via an Automatic Gain Control (AGC) feedback. The input of this 

model was a time-varying audio signal, and the output was a cochleagram, i.e., a 

time-frequency representation of an input signal. In 2011, an updated model (Lyon, 

2011) of Lyon’s version was published called the Cascaded of Asymmetric Resonators 

with Fast Acting Compression (CAR-FAC). A modification of the CAR-FAC model 

can be found in (Saremi & Lyon, 2018). We will detail this model shortly. 

Another early example of a computational model was introduced by Carney and Yin 

(Carney & Yin, 1988) called the Auditory Nerve (AN) model. The AN model 

characterises temporal properties of AN responses to complex stimuli at various sound 

levels. Later on, many cochlear modellers (Bruce et al., 2003; Carney, 1993; Jane & 
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Figure 3.1: Block diagram showing input signal processing stages in the human 

auditory system (left column) and a computational cochlear model (right column). 

Each computational block on the right is intended to model some stage of the 

auditory pathway on the left.  
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Young, 2000; Tan & Carney, 2003; X. Zhang et al., 2001) implemented cochlear 

nonlinearities such as two-tone suppression, BM tuning, and compression to more 

closely fit the AN model to available psychological and psychoacoustic data. Next, 

another version of the AN model (Zilany & Bruce, 2006) was developed to generate 

more accurate AN fibre responses. Their model was able to process signals over a wide 

dynamic range, including very loud sounds. This model can be used to study the 

auditory peripheral system of a cat and a human. This model also can simulate hearing 

impairment. The recent version of the AN model is more realistic (Bruce et al., 2018). 

Many other cochlear models have since been introduced to emulate the human auditory 

system (Hohmann, 2002; Irino & Patterson, 2006b; Meddis et al., 2001; Verhulst et al., 

2015). In 2016, a comparative study among seven recent cochlear models was reported 

by (Saremi et al., 2016). They simulated the cochlear nonlinear filter bank (Meddis et 

al., 2001), Gammatone filter bank (Hohmann, 2002), Gammachirp filter bank (Irino & 

Patterson, 2006b), AN model (Zilany & Bruce, 2006), CAR-FAC model (Lyon, 2011), 

a biophysical cochlear model (Saremi & Stenfelt, 2013), and a nonlinear transmission-

line model (Verhulst et al., 2015). These seven models were compared over a set of 

common stimuli. The input of each model was a 30 dB pure tone at frequencies of 0.5, 

1, 2, 4, and 8 kHz, which are important in the clinical assessment of human hearing 

(Luxon et al., 2003). The output of each model was analysed and compared to available 

physiological and psychoacoustic data of the human cochlea (Saremi et al., 2016). To 

quantitatively assess the models, Mean Absolute Percentage Errors (MAPEs) were 

computed between the models’ outputs and the given experimental references (Saremi 

et al., 2016).  

Error! Reference source not found. shows the MAPEs as a measure of how closely 

the prediction of each model reproduces experimental data. A MAPE of 20% or less 

was deemed to be “closely fitting.” The checkmarks in Table 3.1 denote that the MAPE 

is less than 20% for a particular experiment, and the numbers report their values. The 

left five columns of Table 3.1 reports MAPEs for normalised Input/Output (I/O) 

functions for the five different input frequencies. The sixth and seventh columns report 

MAPEs for the generation of cochlear excitation patterns. The eighth through twelfth 

columns report cochlear tuning MAPEs corresponding to the Characteristic Frequency 

(CF) of the BM. The rightmost column shows MAPEs for level-dependent tuning at 4 

kHz. Since the Gammatone filter model (Hohmann, 2002) is a linear model, it does not 

include any level-dependent nonlinearities (see NA, top row, right column). 

Error! Reference source not found. shows that the CAR-FAC model can reproduce 

all referential experimental data except one category (amp. column). That one category 

would have also received a tick mark if one parameter (Voffset) was set to zero in their 

implementation of the CAR-FAC model (Saremi & Lyon, 2018). The study also showed 
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that the CAR-FAC model requires less computational time compared to other models 

listed in Error! Reference source not found. to simulate a specific number of channels 

with a competitive number of parameters (Saremi et al., 2016). Despite this robust 

performance, the CAR-FAC model has never been applied in speech processing tasks. 

This thesis is the first investigation of the CAR-FAC model’s performance when 

applied to SID tasks.  

The Gammatone model shown in Error! Reference source not found. is a linear model 

that is not suitable for the investigation of cochlear nonlinearities, hence the NAs 

reported in the top row. The Gammachirp model is an extension of the Gammatone 

model that incorporates a level-dependent cochlear nonlinearity (Irino & Patterson, 

2006a). Both models reproduce psychoacoustic data but do not reproduce cochlear 

mechanics. The Dual Resonance Nonlinear (DRNL), Zilany (AN), Verhulst, and 

Saremi models (third, fourth, and sixth rows of Table 3.1) reproduce cochlear 

physiological data with relatively similar accuracy, as indicated by their respective tick 

marks. In principle, I could apply any or all of those four models to an SID task. 

However, I exclude the DRNL model because its performance in SID tasks is highly 

dependent on the proper selection of parameters, the sound pressure level of input 

Table 3.1: Performance comparison for each model for a set of stimuli and 

audiometry frequencies in terms of MAPEs. A MAPE within a 20% error threshold 

of corresponding experimental data gets a tick mark. The CAR-FAC model more 

closely fits physiological data from a human cochlea than the other models (red text 

and ticks). The Zilany and Verhulst models achieve similar performances for I/O 

functions and excitation pattern matching. This table has been adapted from (Saremi 

et al., 2016). 
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speech, and the output stage of the model (Martínez–Rams & Garcerán–Hernández, 

2011). I also exclude the Verhulst and Saremi models from my investigation because 

there is no SID system using them that can be compared or used as a reference in this 

thesis. Moreover, they do not produce the best or a similar result to the CAR-FAC to 

motivate me to investigate their performance in an SID system in replace of the CAR-

FAC model. 

This thesis investigates the performance of the CAR-FAC model in an SID task. I 

compare its performance to the AN model (Alam & Zilany, 2019), which has a history 

of applications in speech processing, e.g. SID (Alam & Zilany, 2019; M. A. Islam et 

al., 2016; Zilany, 2018), phoneme classification (Alam et al., 2017), speech 

intelligibility (Mamun et al., 2015) and gender detection (Mamun et al., 2014). These 

prior applications of the AN model justify its use as a benchmark to compare its 

performance with CAR-FAC in an SID task. I also compare these two biologically 

inspired front-ends with more conventional FFT-based algorithms that incorporate 

some types of nonlinear operations, e.g. a logarithm or cube root. The successes of 

biologically inspired cochlear models in speech processing tasks promote their use as 

alternative front-ends to more conventional FFT-based approaches. 

3.3 CAR-FAC Cochlear Model 

Figure 3.2 shows a connection diagram of the CAR-FAC model. The CAR-FAC model 

has two main parts: a Cascade of Asymmetric Resonators (CAR) and a Fast-Acting 

Compression (FAC). This model uses a time-varying audio signal as an input and 

produces two types of output: BM responses and Neural Activity Pattern (NAP) rates. 

Figure 3.2 shows that CAR-FAC has several connected elements that collectively 

emulate the auditory peripheral system. These elements include the Outer Hair Cell 

(OHC), Inner Hair Cell (IHC), and AGC with Smoothing Filters (AGC-SF). 

Collectively, these elements emulate cochlear nonlinearities and produce realistic BM 

and neural responses for a given input. We describe each CAR-FAC section in more 

detail in the following subsections, but for a more thorough description of the 

CAR-FAC model, see (Lyon, 2017).  

3.3.1 Cascaded Asymmetric Resonator (CAR) 

In the CAR-FAC cochlear model, the cascaded resonators without any feedback from 

the FAC section is known as the CAR section or a linear CAR model, as shown in 

Figure 3.2. This section models the BM using resonators with the quasi-linear transfer 

functions H1 to HN, as shown in Figure 3.2, where N is the number of channels. The 

CAR filter is passive and linear for low frequencies with a unity gain at DC, and it 

attenuates high frequencies. It captures the gain variation of a travelling wave through 

Q-factor variation (Lyon, 1998). The cascaded architecture emulates travelling wave 
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propagation in the cochlea. The motivation behind this cascade-filter approach is the 

small segments of the cochlea that act as local filters (Lyon, 2017). This cascaded 

structure can also adopt nonlinear and time-varying wave mechanics by changing each 

local filter based on local behaviour. 

Figure 3.2 shows that the CAR receives a time-varying audio signal (X) as an input. 

Each block of the CAR responds to particular CFs in X. The outputs of each block or 

channel are denoted Y1, Y2…, YN. The addition of the FAC section to the CAR section 

emulates cochlear nonlinearities through the IHC and AGC feedback. The AGC-SF 

blocks in Figure 3.2 capture spatial and temporal information in the CAR-FAC model. 

The NAP rates are represented in Figure 3.2 as r1, r2, . . ., rN for the N channels. 

Figure 3.3 shows the effect of changing the number of channels for a fixed frequency 

range from 125 Hz to 4 kHz. A chirp stimulus was used as an input to generate the 

transfer function of the CAR. A damping factor of 0.25 was used to simulate the BM 

responses shown in the bottom row of Figure 3.3. Figure 3.3 shows that adding more 

channels to the model increases the gain of the CAR response (top row). More channels 

 

Figure 3.2: Schematic of the CAR-FAC model showing the CAR and the FAC 

sections in separate blocks (red and blue). The CAR section is a linear cochlear 

model that uses cascaded asymmetric second-order resonators. The feedback loop 

presents the FAC section including IHC and OHC responses to control the 

level-dependent gain and bandwidth of each stage of the CAR section. The FAC 

section with the CAR provides an output as a NAP rate. This figure has been modified 

from (Xu et al., 2018).  
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also offer more precise estimates of signal information, as shown in the bottom row. 

However, 70 channels (third column) provide a spectrum with less noise compared to 

other channel numbers for the input signal. In contrast, the CAR section with 100 

channels (rightmost column) not only emphasises the voiced portion of the input signal, 

but also amplifies unvoiced portions, as shown in Figure 3.3 (bottom, right). Thus, there 

is higher energy in the unvoiced segments. 

Figure 3.4 illustrates that the linear CAR filter model is unidirectional. This 

unidirectional property prohibits a signal, e.g. the distortion tone, from backpropagation 

toward the auditory canal (Lande, 1998), so the CAR model does not represent 

distortion tones. The CAR model was implemented using a two-pole, two-zero 

resonator architecture in the z-domain, as shown in Figure 3.4. The pole/cut-off 

frequencies (𝑓𝑐) of the resonators mimic the cochlear CF of each section. The CAR 

model’s pole frequency was computed using the Greenwood function (Greenwood, 

1990): 

 𝑓𝑐 = 165.4(102.1𝑥 − 1),     0 < 𝑥 < 1. equation 3.1 

Where x is the normalised cochlear place values with apex 0 and base 1 for the 

CAR-FAC model, corresponding to 20 Hz to 20 kHz CFs. Figure 3.4 illustrates the 

schematic structure of a two-pole, two-zero resonator including its parameters. Figure 

 

 

Figure 3.3: The effect of the number of channels on the BM frequency response gain 

for a fixed range of frequency information (top row). The corresponding BM 

responses for a given input signal is also shown (bottom row). Arrow indicate the 

unvoiced portions that are affected by noise. The damping factor was 0.25 in this 

simulation. More channels highlight the voiced portions and help to suppress 

unvoiced portion that helps a classifier to build a noise-robust model.  
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3.4 also shows the flow of an input signal through the resonator. The parameters of a 

two-pole, two-zero resonator are: 

 
𝑎0 = cos (

2𝜋𝑓𝑐

𝑓𝑠

) ; 𝑐0 = sin (
2𝜋𝑓𝑐

𝑓𝑠

) ; 
equation 3.2 

 
𝑔 =

1 − 2𝑎0𝑟 + 𝑟2

1 − (2𝑎0 − ℎ𝑐0)𝑟 + 𝑟2
;        ℎ <

2(1 + 𝑎𝑜)

𝑐𝑜

 . 
equation 3.3 

The transfer function of the CAR system shown in Figure 3.4 is given in the z-plane as: 

 
𝐻 =

𝑌

𝑋
= 𝑔

𝑧2 − (2𝑎0 − ℎ𝑐0)𝑟𝑧 + 𝑟2

𝑧2 − 2𝑎0𝑟𝑧 + 𝑟2
. 

equation 3.4 

In equations 3.2, 𝑓𝑠 is the sampling frequency. The parameter 𝑟 is determined by the 

FAC section through the OHC section. Without the FAC section, the value of 𝑟 is set 

to one. The values of ℎ control the pole-zero distance. Consequently, ℎ also controls the 

gain and bandwidth of the CAR filter. 

Error! Reference source not found. shows the CAR response for various values of ℎ. 

The CAR response was generated for a CF of 1990 Hz in response to an input stimulus 

with a sampling frequency of 32 kHz. Setting ℎ=1 fixes the distance between the pole 

and zero a half-octave apart. As the value of ℎ decreases, the pole-zero distance is 

reduced, and the gain of the BM response reduces as shown in Error! Reference source 

not found.. This means a higher compression is realised in the CAR section. The high-

 

Figure 3.4: Schematic of a resonator in the CAR model with an input X, output Y, 

and state variables W1 and W2 to emulate the BM response. Here, a0 and c0 are the 

cosine and sine of the pole angle in the z-plane; g adjusts the overall gain, ℎ adjusts 

the pole-zero distance, and 𝑟 controls pole-zero radius. This connection diagram is 

a digital implementation of the CAR section. This figure has been adapted from 

(Lyon, 2017). 
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frequency tail of the CAR section becomes flattened with lower values of ℎ, as shown 

in Error! Reference source not found.. 

Another important parameter in the CAR implementation is the damping factor 𝜁. 

Generally, a second-order resonator is parameterised by a damping factor and a signal 

frequency. The damping factor can be expressed in terms of 𝑓𝑠, 𝑓𝑐, and the minimum 

pole-zero radius 𝑟1 (initial value of r) as: 

 
𝜁 =

(1 − 𝑟1)𝑓𝑠

2𝜋𝑓𝑐

. 
equation 3.5 

A resonator produces maximum damping at 𝑟1, and bounds the damping to this limit. 

Moreover, 𝑟1 keeps the damping away from becoming zero, thereby reducing the chance 

of Hopf-bifurcation (Andronov et al., 1971) arising in the resonators. The damping 

factor is also responsible for tuning the bandwidth and gain of a resonator in the CAR 

model. Then the Quality factor (𝑄) is calculated from the damping factor as 𝑄 =
1

2𝜁
.  

Error! Reference source not found. shows the damping factor effect on the CAR 

frequency response of BM output without the FAC section. Generally, human hearing 

studies use damping factor values between 0.1 and 0.4 (Lyon, 2017). A lower damping 

factor causes a higher gain in the BM response and vice versa, as shown in Error! 

Reference source not found.. To produce the figure, I used a chirp stimulus as an input 

with minimum and maximum frequencies of 10 Hz and half of the sampling frequency 

and an amplitude of 1. The sampling frequency was 32 kHz. The CAR output has a high 

gain over all frequencies without feedback from the FAC section, as shown in Error! 

 

Figure 3.5: The effect of the pole-zero distance (ℎ) on the BM filter response in the 

CAR model. The parameter ℎ controls the gain and bandwidth of the response of a 

resonator. This control is necessary to limit the noise in the signal under adverse 

conditions. 
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Reference source not found.. Next, I will show how the FAC section nonlinearly 

compresses that gain for a high-level signal by emulating cochlear nonlinearities.  

3.3.2 Fast-Acting Compression (FAC) 

In practice, two types of compression amplifiers are used in hearing applications, 

depending on the acting time constant. They are Fast-Acting Compression (FAC) and 

Slow-Acting Compression (SAC), which have release times smaller or greater than 200 

ms, respectively (Dreschler, 1992; Walker & Dillon, 1981). Release time is defined as 

the time taken by a hearing aid to recover its linear gain after an instant change of sound 

level. A compression system acts as an output limiter with a high compression threshold 

(release time > 200 ms). It simultaneously acts as a syllabic compressor with a low 

compression threshold (release time ~ 150 ms) (Hickson, 1994). The advantage of 

FACs is that they can quickly recover their gain in response to a swift change of input 

sound level. They also perform well in speech intelligibility and speech recognition 

tasks under noisy conditions (Souza, 2002).  

The FAC section in the CAR-FAC cochlear model includes the IHC, OHC, and 

AGC-SF, as shown in Figure 3.2. All these elements jointly emulate several cochlear 

nonlinearities in the CAR-FAC model. The FAC section incorporates both 

instantaneous (suppression) and faster and slower (adaptation) effects in the CAR-FAC 

model via a uniform variable-damping mechanism (Lyon, 2017). We next review the 

IHC, OHC, and AGC-SF elements in turn. 

 

Figure 3.6: The CAR response to an input chirp stimulus demonstrates the effect of 

changing the damping factor and number of channels. 70 (left panel) and 100 (right 

panel) channels were used to simulate the CAR response. We see that the lower 

damping factor causes less compression and allows the CAR to generate a response 

with a high gain, and vice versa. The effect of the damping factor is similar whether 

we use 70 or 100 channels.  
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3.3.3 Inner Hair Cell (IHC) 

The IHC transduces mechanical vibrations of the BM into the electrical signal that is 

carried by auditory nerves through the MET process. The adaptive IHC model 

implementation in the CAR-FAC cochlear model is shown in Error! Reference source 

not found.. The digital implementation of the IHC model uses an adaptation of the 

Allen model (JB Allen, 1983) due to its simplicity and ability to mimic IHC responses. 

The IHC model uses four linear filters. At the input stage, a high pass filter is 

implemented by subtracting a low pass filter response from the input signal. This 

implementation suppresses frequencies below 20 Hz and generates an AC-coupled 

output 𝑥2. A sigmoid function is used as a rectifying nonlinear function that converts 

the AC-coupled BM displacement (𝑥2) to a Half-Wave Rectifier (HWR) output 𝑢. Then 

given 𝑢, we define the membrane conductance p: 

 𝑢 = 𝐻𝑊𝑅(𝑥2 + 0.175);      𝑝 =
𝑢3

𝑢3+𝑢2+0.1
. equation 3.6 

Here, constants 0.175 and 0.1 were chosen to fit the IHC model to physiological data. 

The membrane conductance is then used to calculate the capacitor current 𝑦: 

 𝑦 = 𝑝𝑣;     𝑣+ = 𝑣 − 𝑐out𝑦 + 𝑐in(1 − 𝑣), equation 3.7 

where 𝑣+ is the new state voltage of the capacitor to be used for the next sample. The 

parameter 𝑐out is the discharge rate for the output signal and 𝑐in is the time constant of 

the filter. In the CAR-FAC model, these parameter default values are 𝑐out = 0.09 and 

𝑐in = 0.0045, so their ratio is 20. The output of the AGC is then smoothed by the last 

two LPFs in Figure 3.7 with a smaller time constant (~80 µs).  

 

Figure 3.7: IHC block diagram in the CAR-FAC model. The first LPF (left) output 

is substracted to implement a high pass filter, which is followed by a nonlinear 

operation. The second LPF and summing operation control the gain of an incoming 

signal. The last two LPFs act as smoothing filters. Here, 𝑐 is the second Low Pass 

Filter (LPF) gain and a is related to the second LPF time constant. q is the feedback 

LFP output, and 𝑦 is the output current that is determined by the membrane 

conductance (𝑝) and capacitor voltage (𝑣). Figure adapted from (Lyon, 2017).  
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3.3.4 Outer Hair Cell (OHC) 

The OHC section of the CAR-FAC model implements cochlear effects such as 

instantaneous and level-dependent nonlinear operations. The OHC stage nonlinearly 

combines the input signal level with the BM resonators via the AGC feedback, as shown 

in Figure 3.2.  

Figure 3.8 is a schematic of the OHC element in the CAR-FAC model. The loudness 

optimisation is implemented by controlling the radius (r) of the pole-zero distance. The 

output of the OHC adjusts the pole-zero radius depending on BM displacement from 

the CAR section. Thus, the CAR section produces the BM response by integrating the 

local nonlinearities and efferent feedback from the AGC filter. Like the IHC, the OHC 

also has a nonlinear function 𝑓𝑁𝐿𝐹(𝑉) defined as: 

 𝑓𝑁𝐿𝐹(𝑉) =
1

1+(𝑘𝑉+𝑉offset)
2
, equation 3.8 

where BM velocity 𝑉 is the internal state of the CAR section, as shown in Figure 3.10. 

The parameters 𝑘= 0.1 and 𝑉offset= 0.04 are default values in the CAR-FAC 

implementation (Lyon, 2017). The parameter 𝑉offset  is responsible for the generation of 

the quadratic distortion tone. I use the default value of 𝑉offset for this thesis. In the earlier 

comparison of seven cochlear models (Saremi et al., 2016), the CAR-FAC model did 

not get one tick mark out of thirteen, as reported in Error! Reference source not 

found.. Later investigation (Saremi & Lyon, 2018) showed that the setting of 𝑉offset = 

0.04 causes that missed tick shown in Error! Reference source not found.. Setting the 

value of 𝑉offset to zero in the code mitigates that anamoly while other features remained 

 

Figure 3.9: Digital implementation of the Outer Hair Cell (DOHC). The feedback 

from the OHC is connected to the linear CAR section to incorporate instantaneous 

and level-dependent nonlinearities. Figure adapted from (Lyon, 2017). 
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intact. Empirically, I observe that there is a negligible effect of the changing value of 

𝑉offset on the SID performance. At high velocity, the NLF approaches zero, and the gain 

is suppressed, facilitating the two-tone suppression effect in the CAR-FAC model. In 

contrast, the NLF becomes largest when the BM velocity is minimal, and the gain of 

the CAR output becomes almost linear. 

The NLF and the AGC feedback b (see Figure 3.8) affect the pole radius via the formula: 

 𝑟 = 𝑟1 + 𝑑𝑟𝑧(1 − 𝑏)𝑓𝑁𝐿𝐹(𝑉), equation 3.9 

where the parameter 𝑑𝑟𝑧 controls the rate of NLF variation. The subtraction of b reduces 

the gain through the undamping feedback. A high input level causes a high b, which 

 

Figure 3.11: Block diagram of AGC-SF implementation in the CAR-FAC model. 

Here, y1, y2,…, yN are IHC output known as a NAP. This connection diagram 

emulates multi-scale behaviours of the cochlea in the CAR-FAC model. This 

connection provides compressive nonlinearity and spatial smoothing across SFs. 

The dashed lines show the lateral interconnection of filters. Adapted from (Lyon, 

2017).  
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then lowers undamping. Low undamping causes a low gain and produces a compressed 

output. In this way, the OHC amplifies weak signals at low levels through an active 

undamping mechanism and offers a passive linear system at high sound levels. The 

value of b is constrained to not exceed 1 by a saturating level detector in the IHC. The 

parameter 𝑟1 in equation 3.9 determines the maximum damping as discussed in the CAR 

section (section 3.3.1).  

3.3.5 Automatic Gain Control (AGC) 

The AGC loop filter integrates IHC, OHC, local, and medial olivocochlear efferent 

feedback (Lyon, 2017). The implementation of cochlear nonlinearities in the CAR-FAC 

model relies on AGC feedback. The AGC loop filter also acts as a smoothing filter that 

eliminates fluctuations from the model’s output. 

Figure 3.9 presents a schematic of AGC-SF implementation in the CAR-FAC model. 

Each AGC unit consists of four first-order low pass smoothing filters (SF1 to SF4) with 

different gains and time constants. Each filter’s transfer function is defined as: 

 𝐻(𝑧) =
𝑧

𝜏1(𝑧−𝑒−𝑇/𝜏1)
, equation 3.10 

where T is a time period related to sampling frequency as, 𝑇 =
1

𝑓𝑠
 and 𝜏1 is time constant 

of the first filter. Each filter’s time constant 𝜏 is increased from 2ms to 128ms, and the 

gain is increased by a factor of 2. Filters are connected in parallel, as shown in Error! 

Reference source not found. for an efficient scheme of decimation. This filter 

connection makes a loop filter with a response that falls off progressively but not as 

steep as -6 dB/octave. Figure 3.9 also illustrates how each AGC unit is coupled with 

adjacent channels. This coupling makes the gain control loop fast, stable, and non-

ringing over a wide range of conditions. Each SF state is updated at a lower sampling 

frequency than the CAR filter to expedite computation. Moreover, each SF is connected 

with the left and right SFs to create a 3-tap spatial filter.  

Since each AGC unit employs filters with different time constants, they can model 

behaviours over many timescales simultaneously. In hearing research, the notions of 

rapid, short-term, and long-term adaptation often describe the behaviours of a filter 

system over different timescales. In the AGC filter implementation, both the rapid and 

short-term temporal responses are captured using short (2 ms and 8 ms) and long (32 

ms and 128 ms) time constants of filters, as shown in Figure 3.9. The temporal response 

range can be increased by adding more AGC filter stages with higher filter time 

constants. For example, the AGC filter would require time constants of 0.5 seconds and 

2 seconds to capture very long-term temporal information. 
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The spatial coupling in CAR-FAC is implemented through the AGC with a linear spatial 

filtering technique operating across all smoothing filters. This coupling spatially 

smoothes each filter state. Error! Reference source not found. presents how the AGC 

loop filter performs the spatial smoothing operation. The input samples at the original 

sampling rate (higher than the next stage) are accumulated and decimated to a lower 

sample rate to operate the AGC with a lower sampling rate. The output of the 

accumulator is used for the smoothing filter and resets the accumulator. The high-rate 

inputs are averaged over the stage’s sampling period to make an input for the next stage, 

as shown in Error! Reference source not found.. The outputs from slower stages are 

again combined with stages at a higher rate sample so the samples can be smoothed. 

The output is generated through an interpolation process and fed back to the OHC. In 

Error! Reference source not found., c is the smoothing time constant, and g controls 

the gain. The 3-point FIR filter [a, 1-a-b, b] effectively operates on both sides (base and 

apex). Error! Reference source not found. shows that weight a is applied from the 

left and b is applied from the right neighbour in a 3-point FIR filter. The filter’s 

parameter values used are a = 0.286, b=0.404, and c=0.166. To extend the amount of 

spatial spread and shift, either a 5-point FIR filter can be used, or the 3-point FIR filter 

can be run several times per AGC sample time. The output from the AGC adjusts the 

gain in the CAR filter bank by changing the transfer function. The AGC also 

 

Figure 3.12: An operational block diagram of a single-stage, single-channel, 

coupled AGC filter showing a bottom-to-top flow arrangement of an input. The AGC 

filter performs smoothing and decimation operations in the FAC section of the 

CAR-FAC model. Reproduced from (Lyon, 2017).  
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synchronises the two ears through a smoothing operation that reduces the difference 

between ears.  

The BM frequency response of the full CAR-FAC model is shown in Figure 3.11 for 

damping factors of 0.15 and 0.35, with 70 (left panel) and 100 (right panel) channels. 

We see that applying a low damping factor adds more compression compared to a 

higher damping factor, as it did with the CAR section alone (see Figure 3.6). So setting 

the damping factor to a small value (e.g. 0.15) makes the BM response effectively 

linear, irrespective of whether or not we add the FAC section to the CAR section. 

Comparing Error! Reference source not found. and Error! Reference source not 

found., we see that the gain of the CAR-FAC model is less than the CAR section alone. 

This observation suggests that the FAC section compresses the BM response 

dynamically, so the FAC section adds cochlear compressive nonlinearity to the model. 

3.4 Auditory Nerve (AN) Model 

The AN model (Bruce et al., 2018; Zilany & Bruce, 2006) is a derivative of the Carney 

model (Carney, 1993). It can generate much of the physiological and psychoacoustic 

data observed in the human auditory system. A detailed description of this model is 

available in (Zilany & Bruce, 2006). Several versions of this model are also available 

(Bruce et al., 2018; Zilany & Bruce, 2007; Zilany et al., 2014; Zilany et al., 2009).  

 

Figure 3.13: The BM response of the CAR-FAC model, showing the effect of the 

damping factor when we include the FAC section. Again, the damping factor controls 

the gain and bandwidth of the BM response in the CAR-FAC model (c.f. Figure 3.6). 

A low damping factor (0.15) produces a low compression (high gain), and a high 

damping factor causes a high compression in the BM response. The CAR-FAC 

response has a lower gain than only the CAR response (c.f. Figure 3.6). This 

observation indicates that the FAC section adds a level-dependent (compression) 

nonlinearity in the CAR-FAC model. 
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The schematic block diagram of the AN model that I used in this thesis is shown in 

Error! Reference source not found.. Briefly, the used AN model has a linear C2 filter 

in parallel with a C1 filter, the OHC feedback, and the IHC section is followed by a low 

pass filter (LP, Figure 3.12). The input of the AN model is an audio signal, and the 

output is either the IHC response or the BM response. There are two reasons to consider 

the BM response as the output of the AN model. First, we can compare the performances 

of the AN and CAR-FAC models via the BM responses in an SID task. Second, the 

simulation of neural responses from the AN model (M. A. Islam et al., 2016) is 

computationally much slower than the BM response simulation. Generating the BM 

response requires a middle ear filter, a signal path filter, and the control path feedback, 

as shown in Error! Reference source not found.. A short description of each of them 

is given below.  

3.4.1 Middle Ear Filter 

The middle ear filter changes the relative levels of an input signal and affects the 

low-frequency thresholds, as observed in (Liberman, 1978). Thus, the inclusion of this 

filter is very important to model wideband sounds such as vowels. The middle ear filter 

in the AN model was implemented following (Bruce et al., 2003). They incorporated 

the middle ear model of Matthews (Matthews, 1983) and Peake et al. (Peake et al., 

1992) in their digital implementation. They used an eleventh-order continuous-time 

transfer filter. However, the AN model uses a fifth-order continuous-time transfer filter 

to ensure the stability of the model response (Zilany & Bruce, 2006). The middle ear 

 

Figure 3.14: Block diagram of the AN model that generates the inner hair cell 

response from an input signal. The signal path filter (C1 filter) is the cochlea filter 

and the control path emulates cochlea nonlinearities. Adapted from (Bruce et al., 

2018). 
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filter was implemented model with the bilinear transformation (Clapperton et al., 1994) 

for a sampling frequency of 500 kHz. However, the frequency axis was pre-warped to 

match the middle ear frequency response at 1 kHz. I implemented the fifth-order digital 

filter using a second-order system in the z-domain as described in equation 3.11 to 3.13: 

 𝑓𝑀𝐸1(𝑧) = 0.127 (
1 +𝑧−1

1−0.9986𝑧−1); equation 3.11 

 𝑓𝑀𝐸2(𝑧) =
1−1.9998𝑧−1 + 0.9998𝑧−2

1−1.9777𝑧−1+0.9781𝑧−2 ; equation 3.12 

 𝑓𝑀𝐸3(𝑧) =
1−1.9943𝑧−1+0.9973𝑧−2

1−1.9856𝑧−1+0.9892𝑧−2. equation 3.13 

The input to the middle ear model is an audio signal with a sampling frequency of 100 

kHz. The output of the middle ear goes into the signal path filter (C1 and C2) and control 

path. 

3.4.2 Signal Path (C1) Filter 

The signal path filter (C1) is a narrow band tenth-order chirp filter. The C1 filter has 

been implemented following the model of (Tan & Carney, 2003), but the order was 

reduced to ten from twenty. A reduced filter order facilitates the implementation of 

hearing impairment and broader tuning of the BM filter in the AN model (Zilany & 

Bruce, 2006). A lower-order filter also reduces the sharpness of the BM tuning at high 

sound pressure levels. This filter was implemented with fifth-order zeros on the real 

axis, two second-order poles, and one first-order pole with their complex conjugates on 

the imaginary axis. The pole and zero locations for the C1 filter design are shown in 

FIG. 2 in (Zilany & Bruce, 2006). These locations replicate the tuning of the auditory 

BM filter. This implementation of the C1 filter in the AN model extends the AN 

responses from the previous model (Tan & Carney, 2003), as it simulates the AN 

response with CFs ten times higher than the previous model could. This high range of 

CFs makes the AN model suitable to study the peripheral auditory system of a cat and 

a human. 

The C1 filter has shallow and symmetric tuning properties for a low-CF fibre. For a 

high-CF fibre, we observe more sharp and asymmetrical tuning with an extended 

low-frequency tail. Thus, each filter behaves as a band-pass filter whose symmetry 

depends on the CF. Another important property of the C1 filter is the implementation 

of different glide directions observed for different CFs. This filter has a downward 

frequency gliding for CFs below 750 Hz, constant gliding for CFs ranging from 750 Hz 

to 1500 Hz, and upward gliding for CFs above 1500 Hz. The frequency dependence of 

these glides is qualitatively consistent with physiological AN data (Carney et al., 1999). 



49 

 

3.4.3 Feedforward Control Path 

The feedforward control path in the AN model emulates cochlear nonlinearities through 

an active process. The feedback path changes the gain and bandwidth of the signal path 

(C1) filter depending on the loudness of sounds. So, the control path is responsible for 

replicating several level-dependent cochlear nonlinearities such as two-tone 

suppression and compression in the C1 filter. There are four stages in the feedforward 

control path as shown in Error! Reference source not found.: (i) A third-order time-

varying Gammatone filter whose bandwidth is broader than the signal-path C1 filter (X. 

Zhang et al., 2001), (ii) the nonlinear rectification of an input signal by the OHC using 

the Boltzmann function, (iii) a second-order low-pass filter, and (iv) a nonlinear 

function to get a time-varying time constant for the signal path (C1) filter.  

The benefit of having a broader bandwidth of the Gammatone filter over the C1 filter is 

that it can replicate the two-tone suppression rate nonlinearity of the cochlea in the 

model output. Error! Reference source not found. shows that the tuning of the 

Gammatone filter is determined following the tuning of the signal-path filter. This 

selection of tuning produces two tones at adjacent BM locations and eventually 

emulates the two-tone suppression effect in the model. The maximum and minimum 

time constants of the control path Gammatone filter are defined as: 

𝜏cpmax = 𝜏wide + 0.2(𝜏narrow − 𝜏wide);     𝜏cpmin = 𝑅𝜏cpmax equation 3.14 

𝜏narrow and 𝜏wide are maximum and minimum time constants for the signal path filter 

from the previous model (Bruce et al., 2003): 

𝜏narrow =
2𝑄10

2𝜋𝑓𝑐

;     𝜏wide = 𝑅𝜏narrow, 
equation 3.15 

where: 

𝑄10 =  0.11324𝑓𝑐
0.4708;     𝑅 =  10−𝐺(𝑓𝑐)/60. equation 3.16 

Here, 𝑓𝑐 is the CF (in Hz), and G is the gain of the Gammatone filter in the control path, 

which is a function of 𝑓𝑐: 

 𝐺(𝑓𝑐) =  max[15, 26 × 𝑡𝑎𝑛ℎ(2.2 𝑙𝑜𝑔10 𝑓𝑐 − 6.45) + 0.5]. equation 3.17 

Implementation of the saturated nonlinearity of the OHC in the AN model was done 

using the second-order Boltzmann function. The Boltzmann function establishes a 

relationship between the stereocilia displacement and the MET current in the hair cells. 

It also mimics the input-output characteristics of the OHC function. The output 𝐵𝑁 of 

the Boltzmann function depends on the output 𝐶 of the Gammatone filter of the control 

path: 
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𝑓
𝐵𝑁

(𝐶) =
1

1 − 𝐷𝑐𝑝
((1 + 𝑒

𝑥0−𝐶
𝑆0 (1 + 𝑒

𝑥1−𝐶
𝑆1 ))

−1

− 𝐷𝑐𝑝) ;  
equation 3.18 

 

𝐷𝑐𝑝 =  𝑒
−

𝑥0
𝑠0 (1 + 𝑒

𝑥1
𝑠1 )

−1

, 
equation 3.19 

where 𝑥0, 𝑠0, 𝑥1,and 𝑠1 are chosen parameters for those two nonlinear functions to 

ensure the Boltzmann function with an asymmetry of 7:1, as suggested by the OHC 

responses (Mountain & Hubbard, 1996). The output of the Boltzmann function is 

forwarded to a second-order low pass filter with a cut-off frequency of 600 Hz. This 

low pass filter transforms the nearly half-wave rectified input into an approximately 

sinusoidal waveform. This low pass filtering by hair cells is also responsible for the AN 

phase-locking property (Peterson & Heil, 2020). The output of this filter generates a 

time-varying time constant for the signal-path filter through a nonlinear function (Bruce 

et al., 2003; X. Zhang et al., 2001). The time-varying time-constant of the control path 

filter 𝜏cp is: 

𝜏cp = 𝑐𝜏c1 + 𝑑;   𝑐 =
𝜏cpmax − 𝜏cpmin

𝜏c1max − 𝜏c1min

;    𝑑 = 𝜏cpmax − 𝑐𝜏c1max, equation 3.20 

where 𝜏c1max and 𝜏c1min are estimated time constants for the C1 filter at low and high 

levels of sound, respectively. The 𝜏c1 is the output time constant of the control path. 

 

Figure 3.15: BM frequency responses using the AN model for 50 channels. Left panel 

shows the linear BM response and the right panel shows the nonlinear BM response 

from the AN model in response to a chirp stimulus. This illustration shows how the 

nonlinearities in the AN model affect the BM response. The right panel illustrates 

that the AN model nonlinearly controls the gain and bandwidth of the BM filters. 

Notice that nonlinearities suppress high frequencies more strongly than low 

frequencies. This observation is due to the compression effect from the OHC model. 

 



51 

 

At a low sound pressure level, the control path output is similar to the estimated time 

constant (𝜏c1max) of the C1 filter. Thus, the gain is high, the filter has sharp tuning, and 

the response is linear. The control path output deviated largely from the signal path (C1) 

filter’s estimated time constant at moderate sound pressure levels. Thus, the tuning of 

C1 filter becomes broader and the gain is reduced. This is due to the compressive and 

suppressive nonlinearity of the cochlear. The C1 filter again becomes effectively linear 

with reduced gain at a high sound pressure level when the control signal saturates at 

𝜏c1min.  

The frequency responses of the linear (left) and nonlinear (right) BM from the AN 

model are shown in Error! Reference source not found.. Notice that the linear BM 

response dips at around 2.5 kHz. This effect is due to the middle ear filter 

implementation of the AN model, as shown in (X. Zhang et al., 2001). I used a chirp 

stimulus with a minimum and maximum frequency of 10 Hz and 22.5 kHz, respectively, 

using a sampling frequency of 44.1 kHz to generate the BM frequency response. Error! 

Reference source not found. shows that there are significant differences between the 

linear and nonlinear BM responses of the AN model. First, the gain of the two different 

responses is noticeably different. A nonlinear compression is observed in the nonlinear 

BM response, as shown in the right panel of Error! Reference source not found.. 

Second, the bandwidths of filters become broader toward low frequencies but remain 

largely unchanged at high frequencies. The skirt of filter responses at high frequencies 

become sharper than those at low frequencies, as shown in Error! Reference source 

not found.. 

3.5 Conclusion 

This chapter briefly described a short history of cochlear modelling and particularly 

focused on the CAR-FAC and AN models. This thesis will use these two cochlear 

models as front-ends in several SID tasks and compare their performances with more 

conventional FFT-based algorithms. This comparison will also allow us to find a 

cochlear model between the CAR-FAC and AN models that produces improved SID 

result for text-dependent and text-independent tasks. This comparison will highlight the 

conditions under which biologically inspired front-ends might enjoy advantages over 

conventional approaches in SID tasks.  

To assess the performance of biologically-inspired front-ends in an SID task, it is 

necessary to couple them with a back-end classifier. Given a complete SID algorithm, 

we can quantify its performance with a sensible metric, e.g. the percentage of correct 

SID on some datasets. Next, we discuss which back-end classifiers we chose to couple 

with front-ends and justify those choices. 
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4 Speaker Classifiers 

4.1 Introduction 

Back-end models (classifiers) learn characteristic features of speakers from input data. 

They construct a behavioural class model for a given dataset. Trained classifiers can 

evaluate the performance of an algorithm by reporting classification accuracy on some 

datasets. For example, say we have a dataset comprising speech samples from 100 

speakers. A classifier will learn the distinguishing characteristics of each speaker from 

that dataset. Then we can present a novel speech sample to the classifier and validate 

whether the classifier correctly identified the target speaker. We can quantify the 

classifier’s performance by evaluating its successful classification rate on a dataset, e.g. 

the percentage of speakers that the back-end successfully identifies. 

Many classifiers are now available. Some of them are statistical, and some of them are 

inspired by brain operations. The Gaussian Mixture Model with the Universal 

Background Model (GMM-UBM) (Reynolds et al., 2000; Reynolds & Rose, 1995), 

i-vector with Probabilistic Linear Discriminant Array (i-vector PLDA) 

(Bahmaninezhad & Hansen, 2017), and Support Vector Machine (SVM) (Cortes & 

Vapnik, 1995; Cristianini & Shawe-Taylor, 2000) are statistical classifiers. They 

estimate statistical parameters from input utterances to make a speaker. Neural networks 

(Gurney, 2014; Jeong, 2018; Schmidhuber, 2015) are biologically inspired and process 

input data nonlinearly. Neural networks are popular classifiers due to their high 

classification accuracy (Baspinar et al., 2013; Jahangir et al., 2020), accessible 

software, and hardware implementations (Gupta & Koppad, 2019; Han et al., 2020). 

Statistical classifiers are fast, simple, and achieve high classification accuracies with a 

small amount of training data (M. T. Al-Kaltakchi et al., 2017). Their simplicity allows 

us to evaluate the contribution of the front-end feature extractor to the classifier’s 

performance (X. Zhao & Wang, 2013). In contrast, a neural network classifier obscures 

some of the front-end contribution in a Speaker Identification (SID) task due to the 

neural network’s nonlinear operations. Each layer of a neural network learns thousands 

or millions of parameters of an input dataset in a nonlinear manner. Thus, if a neural 

network achieves a high classification accuracy on some datasets, it is not clear whether 

that high performance is due to the front-end or the back-end or both. This thesis 

investigates the contribution of nonlinearities of the CAR-FAC cochlear model in SID 

tasks. Thus, a statistical classifier is a more suitable back-end to focus on the 

contributions of front-ends, which is why I use statistical classifiers, such as the GMM-

UBM, SVM, or i-vector PLDA. My goal is not to achieve the highest SID accuracy 

possible. Rather, my goal is to investigate why biologically inspired front-end feature 
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extractors might offer advantages over conventional machine learning approaches in 

speaker identification tasks and the conditions under which those advantages are 

particularly valuable. 

In the following sections, I briefly describe my choice of back-ends in this thesis: the 

GMM-UBM, SVM, and i-vector PLDA classifiers. 

4.2 GMM-UBM 

The GMM is the weighted sum of Gaussian densities for a given dataset, as shown in 

Figure 4.1. The GMM extracts the mean and variance for each mixture component from 

speaker data. Then the extracted parameters are weighted and summed to make a GMM 

speaker model (see Figure 4.1). The GMM is a popular classifier in text-independent 

SID tasks since it does not require prior knowledge of speech in a dataset (Musab TS 

Al-Kaltakchi et al., 2017; Hansen & Hasan, 2015). When we combine the GMM with 

a UBM, we can significantly improve the robustness of the back-end (Reynolds et al., 

2000). The GMM super-vectors derived using the GMM-UBM can serve as an input 

template for individual classes to an SVM classifier (W. M. Campbell et al., 2006). 

Those super-vectors can also serve as an embedding for a convolutional neural network 

(Nassif et al., 2021), like the x-vector embedding in neural networks for SID tasks 

(Nassif et al., 2021; Snyder et al., 2018).  

There are two main steps in GMM-UBM speaker modelling - the development of the 

UBM and the adaptation of speaker data with the UBM to create GMM speaker models. 

I briefly describe both steps in the following sections.  

 

Figure 4.1: An illustration of a Gaussian mixture density with M components. A 

Gaussian mixture density for a given data point (x) is a weighted (Wk) sum of 

Gaussian densities (Pk). Here, k=1, 2, 3, …M. 
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4.2.1 UBM Development 

The UBM is a single GMM speaker model trained with pooled data from a training or 

development dataset using the Expectation-Maximisation (EM) algorithm (Dempster et 

al., 1977). The EM algorithm iteratively increases the likelihood of GMM parameters 

(weights, means, and variances) to statistically describe a dataset. The estimation of the 

GMM parameters using the EM algorithm is detailed in (Reynolds & Rose, 1995). In 

the GMM, each Gaussian mixture density 𝑝𝑘(𝑥) of data 𝑥 is expressed as a function of 

a mean vector (µ𝑘) and a D × D covariance matrix (∑𝑘), where k is the mixture 

component (see Figure 4.1) and D is the dimension of the input feature. The Gaussian 

component density for each mixture component 𝑝𝑘(𝑥) is: 

𝑝𝑘(𝑥) =
1

(2𝜋)
𝐷
2 |∑𝑘|

1
2

exp {−
1

2
(𝑥 − 𝜇𝑘)𝑇∑𝑘

−1(𝑥 − 𝜇𝑘)} 
equation 4.1 

The covariance matrix determines the correlation between adjacent feature dimensions. 

For computational simplicity, a diagonal covariance matrix can be used in the GMM 

instead of a full covariance matrix. The nonzero elements of the diagonal covariance 

matrix are simply the variances (𝜎2) of the input data components. The diagonal 

covariance may lose some features of the signal, by not including the off-diagonal 

covariances. Despite this, in this work, I use the diagonal covariance matrix instead of 

the full covariance matrix for two reasons. First, the diagonal covariance matrix can 

help the GMM to estimate better parameters compared to a full covariance matrix. The 

diagonal covariance matrix restricts the Gaussian elliptical axis in the direction of the 

coordinate axis (Kinnunen & Li, 2010). Second, a diagonal covariance-based GMM is 

more computationally efficient than a full covariance-based GMM, which makes the 

modelling faster. The UBM parameters (𝜆UBM) comprise weights 𝑊𝑘, means 𝜇𝑘, and 

variances 𝜎𝑘
2 for all mixture components 𝑀:  

𝜆𝑈𝐵𝑀 = {𝑊𝑘, 𝜇𝑘, 𝜎𝑘
2} for 𝑘 = 1,2,3, … … 𝑀. 

These learned parameters tune the data of each speaker and create an individual GMM 

speaker model.  

4.2.2 GMM Speaker Model Creation 

Figure 4.2 is a schematic that illustrates the GMM adaptation process with a developed 

UBM. Both the UBM and the GMM have the same number of mixture components M. 

The developed UBM is adapted with input speaker data (R) using the 

Maximum-a-Posteriori (MAP) adaptation factor (Gauvain & Lee, 1994), as shown in 

Figure 4.2. Initially, the UBM uses all speakers’ training data to estimate a single GMM 

model applying the EM algorithm, as shown in Figure 4.2. This single GMM is the 

UBM model for all speakers. In the next stage, the UBM tunes its parameters given 
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speaker data to learn GMM model (𝜆) parameters for a given speaker through the MAP 

adaptation technique. The number of GMM speaker models is equal to the number of 

total speakers (Z). The adaptation of the GMM with the UBM starts with the probability 

measurement 𝑝(𝑘|𝑥𝑡) for the training vectors (𝑥𝑡 , 𝑡 ∈ [1, 𝑇]) from each speaker for each 

mixture component k in the UBM as follows: 

𝑝(𝑘|𝑥𝑡) =  
𝑊𝑘𝑝𝑘(𝑥𝑡)

∑ 𝑊𝑘𝑝𝑘(𝑥𝑡)𝑀
𝑘=1

. 
equation 4.2 

 

The 𝑝(𝑘|𝑥𝑡) and 𝑥𝑡 are used to compute the mixture probability counts (C), first 

moments E(x), and second moments E(x2) for each mixture component. Note that the 

first and second moments are mean and variance, respectively. This computation step 

is similar to UBM development. The computation of those parameters is:  

𝐶𝑘 = ∑ 𝑝(𝑘|𝑥𝑡)𝑇
𝑡=1 ; equation 4.3 

𝐸𝑘(𝑥) =
1

𝑛𝑘
∑ 𝑝(𝑘|𝑥𝑡)𝑇

𝑡=1 𝑥𝑡; equation 4.4 

𝐸𝑘(𝑥2) =
1

𝑛𝑘
∑ 𝑝(𝑘|𝑥𝑡)𝑇

𝑡=1 𝑥𝑡
2. equation 4.5 

The size of 𝐶𝑘 is the mixture component number. The size of the mean and variance of 

each GMM speaker model is 𝐷 × 𝑀. These new estimations of each speaker’s training 

 

Figure 4.2 The pictorial representation of the GMM-UBM development. It presents 

the training and testing stages for the UBM and GMM. 
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data are used to update the old statistics of the 𝜆UBM to create the adapted parameters 

for the GMM model for each mixture k: 

𝑊𝑘
𝑁 = [

𝛼𝑛𝑘

𝑇
+ (1 − 𝛼)𝑊𝑘] 𝛾; equation 4.6 

𝜇𝑘
𝑁 = 𝛼𝐸𝑘(𝑥) + (1 − 𝛼)𝜇𝑘; equation 4.7 

∑𝑘
𝑁 = 𝛼𝐸𝑘(𝑥2) + (1 − 𝛼)(∑𝑘 + 𝜇𝑘

2) − 𝜇𝑘
𝑛2

. equation 4.8 

where 𝛼 is the adaptation parameter for the weights, means, and variances. The 

adaptation parameter is defined as a function of counts and a relevance factor (𝑟) by 

𝛼 =
𝑛𝑘

𝑛𝑘+𝑟
. I use the value 𝑟 = 16 commonly used in the literature (Reynolds et al., 

2000). 𝛾 is a scaling factor that ensures ∑ 𝑊𝑘 = 1𝑀
𝑘=1 . 

In the testing stage, as shown in Figure 4.2, the log-likelihood of a testing sample (𝑋) is 

computed against each speaker model, and the mean of testing scores is computed as: 

𝛬(𝑋1) =
∑ 𝑙𝑜𝑔 𝑝(𝑋|𝜆𝐺𝑀𝑀)

𝐹
. 

equation 4.9 

Here, 𝑋1 is a testing score for a target sample against a speaker model, and F is the total 

number of frames for each testing sample. Each testing sample has a score against each 

speaker model. The maximum score for a testing sample against speaker models 

indicates the identity of the target speaker.  

4.3 SVM 

The SVM (Cortes & Vapnik, 1995) is a supervised machine learning algorithm that is 

used for classification and regression tasks. The SVM often yields high classification 

accuracy and reduces the amount of redundant information in a dataset (Cristianini & 

Shawe-Taylor, 2000), even with limited training data (M. Islam et al., 2015). The SVM 

has been applied to many tasks, including in pattern recognition, regression, ecology, 

brain disorder research, and psychiatry (Mechelli & Vieira, 2019). It is a popular 

classifier as it can separate linearly inseparable data linearly using a kernel trick, i.e., by 

applying a nonlinear polynomial, radial basis, or sigmoidal kernel to the dataset (Chang 

& Lin, 2011; Cristianini & Shawe-Taylor, 2000). The successes of the SVM classifier 

in previous studies (M. Islam et al., 2015; M. A. Islam et al., 2016) justify its inclusion 

in this thesis. 
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I briefly describe how to obtain a hyperplane (or ‘decision boundary’) from a set of 

labelled training data (𝑦1, 𝑥1), (𝑦2, 𝑥2), (𝑦3, 𝑥3), … , (𝑦𝑛 , 𝑥𝑛), 𝑦𝑖 ∈ (−1,1), and 𝑖 ∈

(1, n). Here, x is an input vector, and 𝑦 is the ‘ideal output’ corresponding to two classes 

(-1 or 1). These two classes can be separated linearly (as shown in Error! Reference 

source not found.) if there is a weight vector W and a constant b such that: 

𝑔(𝑥) = 𝑊𝑥𝑖 + 𝑏, where {
𝑔(𝑥) ≥ 1,      if 𝑦𝑖 = 1

𝑔(𝑥) ≤ −1,  if 𝑦𝑖 = −1
 

equation 4.10 

𝑔(𝑥) is the hyperplane (H) that separates the training data with a maximal margin. A 

margin determines the maximum distance 
2

|𝑊|
 between the support vectors of two 

different classes. Thus, the minimisation of W maximises the separability between the 

two classes. Minimising W can be solved by the Karush-Kuhn-Tucker (KKT) 

conditions (Gordon & Tibshirani, 2012) using a Lagrange multiplier 𝜆𝑖: 

𝑊 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=0 , equation 4.11 

where ∑ 𝜆𝑖𝑦𝑖
𝑛
𝑖=0 = 0 and xi is the training vectors for which 𝑦𝑖(𝑊𝑥𝑖 + 𝑏) = 1. The 

solved points for 𝑊 then can be used to find the value of b. The values of 𝑊 and b 

define a hyperplane between two classes. 

Figure 4.4 depicts an example dataset comprising two classes (red and blue). Data from 

the red class are clustered about the origin, and data from the blue class surrounds that 

cluster. It is not possible to separate the classes by a straight line. We can circumvent 

this problem by applying a kernel trick. The kernel trick transforms the data from two 

dimensions into three dimensions to find a valid hyperplane that separates the data 

classes. In this example, a circular hyperplane can separate them, as shown in Error! 

Reference source not found.. There could be infinitely many hyperplanes that separate 

data classes. However, we define the optimal hyperplane solution to be the one that 

maximises the distance between support vectors, as shown in Figure 4.4. Once we 

 

Figure 4.3: An illustration of a two-dimensional feature classification technique 

using an SVM classifier, adapted from (Hansen & Hasan, 2015).  
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obtain this optimal hyperplane, the data is reverted from three dimensions to two, and 

we can classify the data with the SVM.  

 I use the Radial Basis Function (RBF) kernel for the SVM classifier in this thesis. The 

advantage of using the RBF is that it requires fewer hyper-parameters and less 

numerical computation to make a speaker model (Chang & Lin, 2011). It can yield a 

high classification performance with a small amount of input data. The RBF kernel 

𝐾(𝑥, 𝑥𝑖) for two feature vectors can be expressed as: 

𝐾(𝑥, 𝑥𝑖) = 𝑒−(‖𝑥−𝑥𝑖‖2)/2𝛿2
, equation 4.12 

where ‖𝑥 − 𝑥𝑖‖2 is a measurement of squared Euclidean distance between two feature 

vectors. The value of 𝐾(x, xi) decreases with decreasing distance between the feature 

vectors, or range δ. The value of 𝐾(x, xi) varies between 0 to 1. 𝛿 re-estimates the 

distance between the training data and the hyperplane. Following (Cristianini & 

Shawe-Taylor, 2000), we constrain δ in the interval of 0.1 to 1 in our SID task. 

The cost function (𝐶) in the SVM maximises the margin between support vectors and 

the hyperplane and is defined as: 

𝐶(𝑥, 𝑦, 𝑔(𝑥)) = {
                0,                   𝑖𝑓 𝑦 ∙ 𝑔(𝑥) ≥ 1  

1 − 𝑦 ∙ 𝑔(𝑥),      otherwise 
 

equation 4.13 

𝐶 is a metric that quantifies the misclassification of training data in the SVM. If 𝐶 is 

large then the SVM’s hyperplane margin is small, and vice versa. We can apply a 

 

Figure 4.4: A presentation of data distribution from two classes showing the 

hyperplane. This illustration shows the significance of the kernel function in the 

SVM.  
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cross-validation algorithm to train the SVM on subsets of training data and potentially 

improve SVM classification accuracy (An et al., 2007).  

To classify a dataset comprising only two classes (e.g. Figure 4.4), we often use a one 

versus one SVM (Yu & Kim, 2012). When a dataset has more than two classes, we 

often use a One Versus Rest (OVR) SVM (Chang & Lin, 2011). The OVR considers 

one class as a target sample and merges all remaining samples to define the second 

class. Since our speaker datasets comprise more than two speakers, I use the OVR SVM 

in this thesis.  

In the testing stage, the SVM produces two-class support vector distances (either 

positive and negative values) and labels corresponding to each frame of a testing sample 

against developed SVM speaker models. The predicted labels contain the labels 

corresponding to matched speaker models. I use predicted labels to get the ID of a target 

sample. The identity of a target sample is the speaker model with the largest number of 

matching labels of frames. A confusion matrix is generated to observe accuracy and 

misclassification. Classification accuracy is calculated by summing diagonal elements 

of the confusion matrix and dividing it by the number of total testing samples from all 

speakers.  

4.4 i-vector-PLDA 

The i-vector is a dimensionality reduction algorithm that reduces the dimensionality of 

the GMM super-vector. The i-vector can be used as an input feature to the SVM (Dehak 

et al., 2010) and as an embedding for deep neural networks (Ghahabi, 2018). Combining 

the i-vector with Probabilistic Linear Discriminant Arrays (PLDA) (Garcia-Romero & 

Espy-Wilson, 2011), we can construct a back-end classifier that is well-suited for 

speaker classification (Bahmaninezhad & Hansen, 2017).  

The i-vector is related to the speaker and the channel-dependent UBM super-vector 

(𝑆 = ∑ 𝑆𝑖
𝑀
𝑖=1 ). A speech sample can be represented by a super-vector (S) that consists 

of information related to a speaker (s) and a channel (c):  

𝑆 = 𝑠 + 𝑐, equation 4.14 

where s= 𝜇+vy+dz and c=ux, where 𝜇 is the speaker- and session-independent mean 

vector of a UBM (𝜆UBM). The computation of 𝜇 is the same as for UBM estimation. u 

and v are speaker and session subspaces, respectively. d is a 𝑀𝐷 × 𝑀𝐷 diagonal 

residual, where M is the number of mixture components in the UBM and D is the 

dimensionality of the feature vectors. The vectors x, y, and z are the speaker- and 

session-dependent factors in their respective subspaces. Equation 4.14 can be rewritten 

as:  
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𝑆 = 𝑚 + 𝐻𝑤,  

where H is a rectangular matrix of low rank and w is a random vector having a standard 

normal distribution N (0,1). The components of the vector w are called identity vectors 

or i-vectors for short. H can be obtained using a covariance matrix (∑𝑖 , 𝑖 ∈ [1, 𝑀]) from 

the 𝜆UBM parameters via the identity ∑ = 𝐻𝐻′. Therefore, we only need to calculate w 

for a given speech sample. This can be defined by a Gaussian distribution considering 

a sequence of L frames (y1, y2, y3, …, yL) and a developed λUBM comprising M mixture 

components. The Baum-Welch algorithm (Lawrence, 2013) estimates the i-vector for a 

given speech utterance:  

𝑃𝑖 = ∑ 𝑝(𝑖|𝑦𝑡 , 𝜆𝑈𝐵𝑀)𝐿
𝑡=1 , equation 4.15 

𝐹𝑖 = ∑ 𝑝(𝑖|𝑦𝑡 , 𝜆𝑈𝐵𝑀)𝑦𝑡
𝐿
𝑡=1 . equation 4.16 

𝑝(𝑖|𝑦𝑡 , 𝜆𝑈𝐵𝑀) is the posterior probability of mixture component i generating the vector 

yt. Pi is the probability of converging in state i at time t, given the observed sequence yt 

and the 𝜆
UBM

 parameters. We need another parameter called the centralised first-order 

Baum-Welch statistics (�̃�) based on the UBM mean mixture components to estimate 

i-vectors: 

�̃�𝑖 = ∑ 𝑝(𝑦𝑡 , 𝜆𝑈𝐵𝑀)(𝑦𝑡 − 𝑚𝑖)𝐿
𝑡=1 . equation 4.17 

Now the i-vector w can be found: 

𝑤 = (𝐼 + 𝐻𝑡∑−1𝑁(𝑢)𝐻) −1 ∙ 𝐻𝑡∑−1�̃�(𝑢), equation 4.18 

where N(u) is the zero-order Baum-Welch statistics with dimensions MD × MD whose 

diagonal elements are NiI, 𝑖 ∈ [1, 𝑀]. This matrix is calculated for a given utterance 

considering the M components of the UBM and input features’ dimension. I is the MD 

× MD identity matrix. ∑ is a diagonal covariance matrix of dimension MD × MD. 

In i-vector PLDA modelling, we first compute the UBM parameters from a training 

dataset. Then we compute the posterior probability of the training data for each frame. 

The posterior probability generates the latent statistic with a dimension of 𝐷 × 𝑀 for 

each training sample per class (speaker, gender, or accent). The UBM estimation 

process is similar to UBM estimation in the GMM-UBM. The estimated UBM 

parameters are used to learn H. H is computed using the EM algorithm. An efficient 

technique of the estimation of H is given in (Dehak et al., 2010). The estimated H is 

used to extract i-vectors for each sample using the statistics matrix and UBM parameters 

following Error! Reference source not found.. Then, we generate an LDA 

transformation matrix from the i-vectors that maximises discrimination among different 

classes. This discrimination maximisation is done following the Fisher criterion 

(Malina, 2001). Finally, a Gaussian PLDA model is built using the EM algorithm. The 

created model is saved for the testing stage. 
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In the testing stage, i-vectors for testing samples are computed for each test sample. 

This i-vector matrix is tested against the PLDA model. The batch Log-likelihood Ratio 

(LLR) of the same speaker (𝜆0) versus other speaker models (𝜆1) for given i-vectors 

𝑤target and 𝑤test are computed as follows: 

𝐿𝐿𝑅 =
𝑝(𝑤target,𝑤test|𝜆1)

𝑝(𝑤test|𝜆0)𝑝(𝑤target|𝜆0)
. equation 4.19 

Next, a confusion matrix is created to compute SID accuracy. The number of columns 

and rows of the confusion matrix is equal to the number of speakers. The speaker model 

that produces maximum matching probability for a target sample is the identity of that 

sample and indicates the position of the target sample in the confusion matrix. The 

diagonal elements of the confusion matrix present the SID accuracy. The performance 

of this classifier is similar to the GMM-UBM given clean (i.e. noiseless) speech as input 

but demonstrates noise-robustness properties (M. T. Al-Kaltakchi et al., 2017). 

Presumably, that noise-robustness arises because the i-vectors use compensation 

methods to summarise utterances that are unavailable in high dimensional super-

vectors-based algorithms like the GMM (Hansen & Hasan, 2015). 

4.5 Conclusion 

A speaker classifier is the back-end of an SID system. Many classifiers are now 

available which are divided into statistical and brain-inspired classifiers. A 

brain-inspired classifier, such as neural networks, can enhance the performance of an 

SID system by applying sophisticated nonlinear computations and learning thousands 

or millions of parameters. In contrast, a statistical classifier, such as the GMM-UBM, 

may not achieve SID accuracies similar to neural networks. However, a statistical 

classifier does not obfuscate the performance benefits of nonlinearities in the front-end 

feature extractor. Thus, the application of a statistical classifier to investigate the impact 

of nonlinearities in cochlear models is easier to understand. The goal of this thesis is 

not to achieve the highest possible level of SID performance. Rather, the goal is to 

explore whether and how biologically inspired front-ends (i.e. cochlear models) are 

suitable feature extractors for SID tasks. This is why I chose statistical classifiers, 

including the GMM-UBM, SVM, and i-vector PLDA as back-end classifiers for these 

tasks.  
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5 Text-dependent Speaker Identification  

5.1 Introduction 

This chapter compares the CAR-FAC with three other methods in an SID task under a 

wide range of noise conditions and types. The first is the MFCC. The MFCC is selected 

as a baseline for the comparison of SID performance (Alam & Zilany, 2019; Ashar et 

al., 2020; Li & Huang, 2011; Zilany, 2018). The second is FDLP, which emphasises 

acoustic cues related to the human voice production mechanism to discriminate sound 

sources. The FDLP has shown a better SID accuracy than the MFCC, particularly under 

noisy conditions (Ganapathy et al., 2012). The third method is based on the AN cochlear 

model. It has been shown to outperform MFCCs, GFCCs, and FDLP in SID tasks under 

noisy conditions (M. A. Islam et al., 2016). 

In this work, the Support Vector Machine (SVM) (Chang & Lin, 2011; Cortes & 

Vapnik, 1995), the Gaussian Mixture Model (GMM) with a Universal Background 

Model (UBM) (Reynolds et al., 2000), and i-vector-PLDA (Dehak et al., 2011) will be 

used as the speaker classifiers. Two text-dependent datasets containing Bangla and 

Malay speakers will be used in the investigation. The latter chapter describes the 

text-independent SID system. 

5.2 Feature Extraction 

This section describes the front-end feature extraction process for all presented 

CAR-FAC, AN, MFCC, FDLP, and GFCC algorithms. 

5.2.1 The CAR-FAC Method 

As described in chapter 3, the characteristics of the CAR-FAC can be tuned through a 

range of parameters. This chapter investigates the effect of the following parameters in 

an SID system. Note that these parameters mainly control the gain and bandwidth of 

the CAR-FAC filters: 

1. The CAR-FAC channel number, 

2. The pole and zero distance of the CAR, and 

3. The Damping factor of the CAR. 

Each investigation will be described in the result section of 5.4.1. In this work, the 

sampling frequency (fs) is 16 kHz. The cut-off frequency (fc) for the filters are 

determined by the Greenwood function (Greenwood, 1961), ranging from 125 Hz to 3 

kHz. The upper-frequency is limited at 3 kHz since most SID cues, such as the speaker’s 

fundamental frequency, pitch, and formants (f1 and f2), are below this frequency 
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(Stemple, Roy, & Klaben, 2018). The BM and IHC responses of the CAR-FAC are used 

in the investigation. The BM and IHC outputs are framed with a 50% overlap between 

adjacent frames to compute energy 𝐸 as follows: 

 𝐸(𝑖) = ∑𝑗=1
𝐿 𝐵𝑀(𝑖, 1 + 𝑗: 𝑗 + 𝐿)2. equation 5.1 

Here 𝑖 is the channel number, 𝑗 is the starting index for each time window, 𝐿 is the 

window duration. Empirically, I use a 50 ms window for the text-dependent SID system 

for clean and noisy conditions. I observed that the two lowest frequency channels 

contained the lowest frequency components energy, and eliminating them revealed 

 

 

Figure 5.1: The BM energy responses from the CAR-FAC model. (A) Responses are 

shown for clean and noisy signals (0 dB Signal-to-Noise Ratio (SNR)) (B) BM energy 

responses for three speakers from the Bangla dataset without noise. 

 

 



70 

 

richer speaker-defining features and enhanced SID performance. Therefore, the size of 

the output BM energy excludes the two lowest frequency channels. Figure 5.1 (A) 

shows examples of BM energy responses to different SNR inputs. Figure 5.1 (B) shows 

BM energy responses of three different speakers without noise interference. I call the 

BM energy response the CAR-FAC and the IHC energy response the CAR-FAC-IHC 

to make descriptions simple. 

5.2.2 The AN Model Method  

The details of the AN model (Zilany & Bruce, 2006) have been described in chapter 3. 

The neurogram (M. A. Islam et al., 2016) and the synapse response (Zilany, 2018) of 

the AN model has been used in previous SID systems. The running time of the AN 

model is very long in software simulations. They require a very high sampling rate (100 

kHz) to simulate the neurogram and synapse response faithfully. The neurogram-based 

SID result is similar to those obtained with MFCCs and GFCCs, as presented in (M. A. 

Islam et al., 2016). 

In this work, the linear BM (AN model BM without OHC and IHC), the BM (AN model 

BM with the OHC feedback) and the IHC (AN model with the OHC and IHC) responses 

of the AN model are used. This simplification significantly reduces the computation 

 

Figure 5.2: The block diagram showing the sequential stages of the MFCC feature 

extraction process. 
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time (less than half of the running time of the neurogram). The energy of those 

responses is then calculated applying the same techniques as used in the CAR-FAC 

approach. I define the BM with the OHC feedback as the AN model for the simplicity 

of descriptions. The feature using the linear BM followed by the cube root and DCT is 

called Chirp Filter Energy Coefficient (CFEC), and the IHC feature is called the AN-

IHC. The performance of these two feature-based algorithms will be described at the 

end of the result section and in the next chapter.  

5.2.3 Mel-frequency Cepstral Coefficient (MFCC) 

Figure 5.2 shows the MFCC process. Initially, an input is pre-emphasised to boost up 

the high-frequency information. The pre-emphasised signal is then framed and passed 

through a Hanning window. Generally, a window with 50% overlap between adjacent 

frames is applied to generate spectral features so that the temporal information remains 

intact.  

Next, an FFT is applied to each frame to generate a time-frequency spectrogram. A 

Mel-filter bank is then applied to the spectrogram to generate a Mel-scale magnitude 

spectrum. The conversion between the signal frequency (𝑓) and the Mel (𝑓𝑚) frequency 

is computed as: 

 𝑓𝑚 = 2595 × 𝑙𝑜𝑔10(1 +
𝑓

700
). equation 5.2 

A log is then applied to the filter-bank output to produce the log energy spectrum. 

Finally, a DCT is applied to convert the spectral feature to cepstral coefficients. The 

RASTAMAT toolbox (Ellis, 2005) in Matlab has been used to extract the MFCC. The 

derivative (del) and derivative of derivative (ddel) have not been included in this study. 

The inclusion of the del and ddel coefficient in the MFCC provides a poor performance 

in noisy conditions, as found in (X. Zhao et al., 2012). Moreover, I empirically found a 

similar conclusion in this work. 

5.2.4 Frequency Domain Linear Prediction (FDLP)  

Error! Reference source not found.Figure 5.3 presents the block diagram of the FDLP 

process. A detailed description of the FDLP can be found in the study of (Ganapathy et 

al., 2012). Initially, a DCT is applied to a pre-emphasised signal to convert it into the 

frequency domain. The generated signal is windowed into 96 sub-bands following 

(Thomas et al., 2008). A linear prediction with an order of 30 is applied to each sub-

band to generate a temporal linear prediction envelope. The generated envelopes of the 

full-band signal are then framed, and an Inverse FFT (IFFT) is applied to convert them 

to the time domain. Next, this output is used to generate an autocorrelation sequence. 

This output is then used as an input to the Auto-Regressive (AR) model to produce its 
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coefficients. The Levinson Durbin algorithm (Franke, 1985) is used in the AR model. 

Here, the AR model order is 160. 

The generated AR model coefficients are transformed into a power spectrum by 

applying an FFT. The resultant power spectrum matrix is then inverted. This inverted 

power spectrum for a full band signal is called an FDLP envelope. Each band of the 

envelope is framed using a 50ms window with 50% overlap with adjacent frames. A 

Hamming window then estimates the short-term energy in each band followed by a log 

operation to generate a log-energy spectrum. Finally, another DCT is applied to convert 

the log-energy spectrum into 13 cepstral coefficients. I calculate the del (bottom row, 

Error! Reference source not found.) and the ddel (bottom row, Error! Reference 

source not found.) coefficients. Together with the cepstral coefficients, the FDLP 

feature dimension is 39 × F, where F is the number of frames. The inclusion of del and 

ddel in the FDLP feature provides a better SID performance, as I found in this study.  

5.2.5 Gammatone Frequency Cepstral Coefficient (GFCC) 

The GFCC feature extraction procedure is similar to the study in (Shao et al., 2007). 

The block diagram of the GFCC extraction is shown in Error! Reference source not 

found.. A Gammatone filter bank is used for spectrum analysis. The Gammatone filter 

response, 𝑔(𝑡) is: 

 

Figure 5.3: The block diagram shows the FDLP feature extraction from an input 

speech.  
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 𝑔(𝑡) = 𝐴 × 𝑡𝑛−1 × 𝑒−2𝜋𝑏𝑡 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + ∅). equation 5.3 

Here, 𝐴 is the level-dependent gain, 𝑛=4 is the filter order, b is the filter bandwidth 

determined by the study of Glasberg and Moore (Glasberg & Moore, 1990), and ∅ is 

the phase. In this study, ∅ is ignored following the study of (Shao et al., 2007). Here, A 

and b are computed as follows: 

 𝐴 =
10(𝑆−60)/20

3(2𝜋𝑏/𝑓𝑠)4
 , and 𝑆 = 4.2 +

𝑎(60−𝑐)

1+𝑙(60−𝑐)
 . equation 5.4 

 b=1.019×24.7(4.37𝑓𝑐/100+1). equation 5.5 

Here, 60 (in dB) is the sound intensity threshold. Here, 𝑎 and 𝑙 are frequency-dependent 

coefficients, c is the sound pressure level coefficient for a pure tone under free-field 

listening conditions (Suzuki & Takeshima, 2004), and 𝑓𝑠 is the sampling frequency. 

Initially, an FFT is applied to an input signal and forwarded to the Gammatone filter 

bank to generate the Gammatone spectrum. The cut-off frequency of the Gammatone 

filter bank is ranging from 50 Hz to half of a sampling frequency following (Shao et al., 

2007). This Gammatone spectral feature is then reverted to the time-domain by applying 

the IFFT. Next, the absolute value of the generated feature is taken and down sampled 

to 100 Hz to reduce the feature size and speed up the speaker modelling technique. 

A cube root is then applied to the down sampled feature (𝐺) to implement a nonlinear 

amplification (unvoiced speech) and compression (voiced speech) effect of the outer 

hair cells in the cochlea, according to Stevens’s psychophysical law (S. S. Stevens, 

1957): 

 

Figure 5.4: The block diagram of the GFCC feature extraction process from an input 

speech signal showing the spectral and cepstral features. 

 

 

 



74 

 

 𝑦 = |𝐺1/3|. equation 5.6 

Here, 𝑦 is the generated feature. Next, a DCT is applied to 𝑦. The DCT converts the 

spectral feature (𝑦) into a cepstral feature (C) as follows: 

 C=y ×  |𝐷| . equation 5.7 

Here, 𝐷 is the DCT matrix that is is a DFT matrix with real values defined for the feature 

dimension of N as: 

 
𝐷(𝑖, 𝑗) = √

2

𝑁
𝑐𝑜𝑠 (

𝜋

2𝑁
. 𝑖. (2𝑗 − 1)) ;   𝑖, 𝑗 = 1,2, … 𝑁. 

equation 5.8 

This feature C is the GFCC. The first frequency channels contain the highest energy in 

the GFCC. The inclusion of this channel increases similarities among speakers and 

significantly affect the performance in noisy conditions. The top 39 channels have little 

energy and are more affected by noise with increasing noise levels. Thus, I have omitted 

the lowest frequency channels as well as the highest 39 channels. Therefore, the size of 

the GFCC used in this study is 24×d, where d is the number of samples.  

In this work, I also use Gammatone filter energy feature instead of down sampled 

feature to make a fair comparison with other cochlear algorithms. This case, the 

frequency range was 125 Hz to 3 kHz. 

5.3 Experimental Setup 

The Bangla (M. A. Islam & Sakib, 2019) and the UM dataset (M. Islam et al., 2015) 

are used in the investigation. The Bangla dataset contains 40 Bangladeshi speakers. The 

UM dataset contains 39 Malaysian speakers. Both datasets are publicly available at the 

following link, 

https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_m

aterials/text_dependent_sid 

In both datasets, each speaker produces 10 samples of a short phrase. The spoken phrase 

in the Bangla dataset is ‘Ami vat khai (I eat rice)’ and ‘University Malaya’ in the UM 

dataset. Their average durations are 3 seconds and 2.5 seconds, respectively. Phrases 

from the Bangla dataset were recorded with a mobile phone in a quiet environment in 

Noakhali, Bangladesh. Phrases from the UM dataset were recorded in a soundproof 

booth in Kuala Lumpur, Malaysia.  

Additionally, the Bangla dataset has slow, normal, and fast speaking modes of 

utterances from each speaker. This speaking speed variation allows us to investigate 

their effects on SID performance. Each speaking mode contains 10 samples from 40 

https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/text_dependent_sid
https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/text_dependent_sid
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speakers. Our results typically refer to the normal mode of utterance. In one subsection, 

I will investigate the effect of the speaking speed on the SID performance. 

In this work, the SID systems were trained on clean speech, i.e. speech uncorrupted by 

noise. Each channel of input feature is normalised to achieve a noise-robust SID 

accuracy. In the channel-wise normalisation, each channel feature (𝑥) with mean (𝜇𝑥) 

and standard deviation 𝜎𝑥 is normalised to make the mean (𝜇𝑦) of the normalized 

feature (𝑌) equal to 0 and the standard deviation (𝜎𝑦) equal to 1 using the following 

equation:  

 𝑦 = (𝑥 − 𝜇𝑥) (
𝜎𝑦

𝜎𝑥
) + 𝜇𝑦. equation 5.9 

The effect of normalisation on the text-dependent SID system is shown in Figure 5.5 

for the CAR-FAC algorithm. Seven of the ten samples from each speaker were 

randomly chosen for training, and the remaining three were for testing. Different types 

of background noise at various SNRs ranging from -5 dB to 15 dB with a step of 5 dB 

were added to that testing data.  

The GMM-UBM, SVM with Radial Basis Function (RBF) kernel, and i-vector with 

PLDA were used as the speaker classifiers. Each of them has been described in chapter 

4. All of these classifiers help to investigate nonlinearities of the front-end features with 

shorter computation time comparing with nonlinear classifiers such as convolutional 

neural networks (Han et al., 2020).  

For the GMM-UBM, 128 GMM components were used to make speaker models. The 

UBM was trained with the same training samples that were used in the GMM training. 

Next, it was adapted with the GMM using an adaptation factor of 10. For the SVM, the 

One versus Rest (OVR) with RBF kernel was used. The cost and gamma parameters 

were set to 0.4 and 1, respectively. For the i-vector PLDA, 128 GMM components and 

50 subspaces were used to train the speaker model. Noisy and clean testing samples 

were used to measure the matching probabilities against each speaker model. The 

maximum matching score with a speaker model indicates the target speaker identity. 

Table Error! No text of specified style in document..1: The experimental setup 

including parameters for each classifier for the text-dependent SID system. 

Types (for each speaker) GMM-UBM SVM i-vector PLDA 

Training data.  70% 70% 70% 

Testing data. 30% 30% 30% 

Parameters. M=128, r=16, and 

adaptation factor= 10. 

C=0.4 and 𝛿=1. M=128, r=16, adaptation 

factor= 10, and N=50. 
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Training length. 21 seconds. 21 seconds. 21 seconds. 

Testing length. 9 seconds. 9 seconds. 9 seconds. 

 

Error! Reference source not found.  shows the summarised form of the experimental 

setup for the text-dependent SID system. Error! Reference source not found. also 

includes the values of parameters used in the speaker modelling for an individual 

classifier. 

5.4 Result and Discussion 

This section presents results for the investigation of the CAR-FAC model on the SID 

task. A comparison with some existing algorithms has also been given in this section. 

5.4.1 CARFAC Parameters 

The effect of normalisation has been investigated using the CAR-FAC algorithm 

applying the UM dataset. The result of this investigation is shown in Figure 5.5. The 

CAR-FAC with normalisation produces substantially improved performance over the 

CAR-FAC without normalisation, as shown in Figure 5.5. This result is particularly true 

under noisy conditions. In the clean condition, both algorithms have a similar SID 

accuracy. Thus, I do normalisation for all front-ends algorithms for all experiments for 

a text-dependent SID system. 

The channel normalisation causes a redistribution of energies in each channel to make 

the mean is 0, and the standard deviation is 1. Thus, an increase in channel variability 

and by extension, an increase in sample variation is observed. The redistribution of 

energies increases similarity among speakers. Thus, the normalised features produce a 

 

Figure 5.5: The result shows the effect of normalisation on the performance of a text-

dependent SID system. The CAR-FAC algorithm has been used to show the effect of 

normalisation for the UM dataset.  
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lower SID accuracy than the algorithm without normalisation in a clean condition. The 

algorithm with the normalisation reduces dissimilarity between clean and noisy 

spectrum as it normalises each channel features corresponding to its mean value.  

5.4.1.1 CAR-FAC channel number 

Figure 5.6 compares the SID accuracies for different numbers of channels using the 

Bangla dataset. The noise in the testing dataset was pink noise. Figure 5.6 shows that 

with the increasing number of channels, the SID performance is firstly improved and 

then saturates. For example, the CAR-FAC requires at least 25 channels to produce a 

noise-robust SID performance under low SNRs. The use of more channels in the 

CAR-FAC provides either a similar or an improved performance. In contrast, the 

performance of the AN model significantly decreases with an increasing number of 

channels, as shown in Figure 5.6. The MFCC and FDLP are not significantly affected 

by the changing number of channels in the tested frequency range. 

 

Figure 5.6: SID performance showing the effect of the number of channels for clean 

and noisy testing speeches. The results of each method are shown for added pink 

noise (SNR: -5 dB, 5 dB, and 15 dB) and clean conditions. 
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5.4.1.2 The pole-zero distance of the CAR-FAC resonator 

The pole-zero distance of the CAR-FAC is adjusted by the parameter h, as described in 

chapter 3. Generally, the pole and zero are set as half an octave away from each other.  

In this investigation, h was set between 0.3 and 1. The damping factor was set to 0.15, 

and the number of channels was set to 25 for this investigation. The result of this 

investigation using the Bangla dataset is shown in Error! Reference source not 

found.. This investigation shows that the distance between the pole and zero is a crucial 

parameter. The CAR-FAC produces a better result while the pole-zero is about a quarter 

octave away (h=0.45, 0.35, and 0.3 in the legend), and h=0.35 gives the best SID 

accuracy for this investigation. Thus, I used the value of h=0.35 for all other 

investigations using the CAR-FAC algorithm. 

5.4.1.3 Damping factor 

Another parameter in the CAR-FAC, the damping factor, controls the compression of 

BM responses. In human hearing research, typical values of the damping factor from 

0.1 to 0.4 are used (Lyon, 2017). Thus, a range of damping factors from 0.1 to 0.3 was 

used in the investigation. Figure 5.8 shows the effect of the damping factor on SID 

accuracy using the Bangla dataset. A higher damping factor produces a poorer 

performance under noisy and clean conditions. The damping factor with a value of 0.15 

 

Figure 5.7: The result shows the effect of pole-zero distance on the speaker 

identification performance for the CAR-FAC method using the Bangla dataset. 
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produces the best result at all SNRs. Thus, the rest of the experiments use a damping 

factor of 0.15. 

5.4.2 Comparing SID Performance on Noisy Speech 

In this work, I apply cross-validation in all experiments with six independent trials. In 

the following figures, the solid bars display the average SID accuracy over those trials.  

 

Figure 5.8: The result showing the effect of the damping factor on the SID 

performance of the CAR‑FAC method. The results are shown using the Bangla 

dataset. 
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The error bars display their maximum and minimum values instead of standard 

deviation to eliminate the chance of SID accuracy crossing the 100% limit. Figure 

5.9Error! Reference source not found.. compares the SID performances of the CAR-

FAC, AN, FDLP, and MFCC on the UM dataset. The columns of Figure 5.9 specify the 

type of background noise added to the testing dataset. Figure 5.9 shows that all four 

approaches have similar performance when the testing dataset had no added background 

noise (clean, far-right bars in Figure 5.9). However, their performances on noisy data 

vary. For example, the SID accuracy of the MFCC noticeably drops, even for relatively 

high SNRs. The drop is consistent across noise types. The FDLP maintains a high SID 

accuracy if the SNR is high. For pink and traffic noise types, the FDLP has the highest 

SID accuracy when the SNR is 15 dB, as previously reported in (M. A. Islam et al., 

2016). However, their performances dramatically decrease as the SNR decreases. In 

 

 

Figure 5.9: Results are showing SID accuracies for the CAR-FAC and alternative 

methods using the UM dataset as an input. The layout is analogous to Figure 5.8. 

The results were generated using the (A) GMM-UBM, (B) SVM (RBF kernel), and 

(C) i-vector PLDA classifiers, respectively. Each bar presents an average result, and 

the error bar displays the minimum and maximum SID accuracies of six trials. 
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particular, the SID accuracy at -5 dB SNR is on average below 36% for all noise types 

and both back-end classifiers, and often much lower than that. 

The AN algorithm yields higher SID accuracies than the MFCC and FDLP algorithms 

at low SNRs (except for traffic noise), but only if I use the SVM as the classifier. The 

CAR-FAC algorithm also yields high SID accuracies at low SNRs, but its performance 

is less sensitive to the choice of the classifier. However, with the GMM-UBM back-end, 

the CAR-FAC algorithm outperforms all algorithms when data is noisy (i.e. low SNR). 

All SID algorithm produce low performances with traffic noise at -5 dB SNR. Traffic 

noise is a non-stationary noise and affects the whole speech spectrum. It is thus difficult 

to identify speakers accurately under traffic noise conditions. 

 

 

 

Figure 5.10: Results are showing SID accuracies for the CAR-FAC and alternative 

methods using the Bangla dataset as an input. The layout is analogous to Figure 5.8. 

The results were generated using the (A) GMM-UBM, (B) SVM (RBF kernel), and 

(C) i-vector PLDA classifiers, respectively. Each bar presents an average result, and 

the error bar displays the minimum and maximum SID accuracies of six trials. 
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The i-vector PLDA produces an improved result than the GMM-UBM classifier, as 

shown in Figure 5.9 (bottom row). The CAR-FAC shows better performance comparing 

to other algorithms in most cases. All algorithms show reduced performance under 

fluctuating noise conditions. Noticeable, all algorithms except for the FDLP have lower 

performance under fluctuating noise conditions when the i-vector PLDA is used as a 

classifier. The SVM provides the best performance among all classifiers for the UM 

dataset, as observed in Figure 5.9.  

Figure 5.10 presents the results for the Bangla dataset. The MFCC only shows accurate 

performance for clean testing data. The FDLP provides higher performance for pink 

and traffic noise at high SNRs. The AN outperforms the MFCC at lower SNRs 

irrespective of back-end classifiers, except for the pink noise at -5 dB SNR. The 

CAR-FAC significantly outperforms all other algorithms at low SNRs for stationary 

noise types (first and second columns, Error! Reference source not found.). All front-

ends struggle to classify speakers correctly for traffic noise at low SNRs. 

Collectively Figure 5.9 and Figure 5.10 show that CAR-FAC classifies noisy speech 

better than alternative front-ends, particularly for stationary noise. Figure 5.9 andFigure 

5.10 also show that CAR-FAC is robust to noise up to 5 dB SNR, which is the threshold 

for a good conservational SNR level (Rindel, 2019). 

5.4.3 Noisy Speech at Different Speeds 

SID algorithms usually use input speech at normal conversational speeds. I investigated 

the impact of speaking speed on the SID performance using the SVM (RBF kernel) as 

a classifier on the Bangla dataset. Note that the Bangla dataset contains samples spoken 

at three different speeds.  

 

Figure 5.11: Spectrogram showing three speaking speeds of the same speech to 

illustrate the energy distribution and formants patterns using the Bangla dataset. 

The red arrow indicates the formants of speech. 
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Figure 5.11 displays spectrograms of input speech from the Bangla dataset for a sample 

spoken quickly (left panel), normally (middle panel), and slowly (right panel). Figure 

5.11 illustrates reasons why our front-ends might classify speakers for slow and normal 

speech more accurately than for fast speech. The spectrogram of fast speech contains 

less spectral information of the utterance, such as the formant (shown with red arrow), 

than the spectrograms of normal. Moreover, the last word in a fast speaking utterance 

is less audible and causes a degradation of the perceptual judgement (S. Anderson et 

al., 2018). 

Figure 5.12 presents the performances of the four SID front-ends on fast (left panel), 

normal (middle panel), or slow (right panel) utterance speeds. Figure 5.12 shows that 

 

 

Figure 5.12: Results show the effect of speaking mode on the text-dependent SID 

system. Each method’s results are simulated for pink noise (SNRs: -5 dB, 5 dB, 15dB) 

and clean conditions. The results are shown using the (A) GMM-UBM, (B) SVM 

(RBF kernel), and (C) i-vector PLDA classifier. Each bar presents an average result, 

and the error bar displays the minimum and maximum SID accuracies of six trials. 
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speaking speed affects the SID performance for all front-ends. The SID accuracy of 

MFCCs decreases slightly as speaking speed increases for all noise levels (blue bars, 

right to left). Curiously, the FDLP classifies less accurately for slow speech than fast 

speech while the SVM (RBF kernel) is used as a classifier. However, the FDLP also 

produces better performance for slow utterance than the fast utterance using the 

GMM-UBM and i-vector PLDA classifier. As suggested by Figure 5.11, the 

cochlea-inspired front-ends (green and grey bars) yield higher classification accuracies 

for normal and slow utterance speeds than they do for fast speed. This result is 

particularly true at -5 dB SNR. However, speaking speed affects the performance of the 

CAR-FAC more than the AN model. Furthermore, the CAR-FAC significantly 

outperforms the other three front-ends given very noisy input data (i.e. -5 dB SNR), 

regardless of speaking speed. Figure 5.12 shows that all algorithms except the FDLP 

provide similar types of performance irrespective of classifiers. Figure 5.12 shows that   

speaking speed affects the performance of an SID system, and slow utterances enhance 

the performance of an SID system.  

5.4.4 CAR-FAC Nonlinearities and Their Effect on Performance. 

The CAR-FAC front-end implements nonlinear computations in two ways. First, it 

performs level-dependent multi-rate nonlinearities through the Automatic Gain Control 

(AGC) operation that models cochlear nonlinear functions (Lyon, 2017). Second, an 

instantaneous Nonlinear Function (NLF) interacts with the input waveforms and 

produces instantaneous compression. The NLF is also responsible for distortion tones 

such as the cubic distortion tone and quadratic distortion tone. 

To investigate the effect of these nonlinearities on the SID task, I compared the 

performances of four variants of the CAR-FAC model. The first is the linear CAR. The 

second and third are the linear CAR section combined with AGC and instantaneous 

 

Figure 5.13: Results show the effect of each stage on the performance of an SID 

system under clean and noisy conditions. Each bar presents an average result, and 

the error bar displays the minimum and maximum SID accuracies of six trials. 
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NLF components, respectively. The fourth is the full CAR-FAC which includes both 

nonlinearities functions. 

Figure 5.13 shows the result for the Bangla dataset with the SVM (RBF kernel) as a 

back-end classifier. I generated a separate SVM speaker model for each CAR-FAC 

variant. Figure 5.13 shows that the full CAR-FAC algorithm identifies speakers most 

accurately across all noise types and SNRs. The nonlinear CAR-FAC produces a 

significantly better result than the linear CAR under clean and noisy conditions. This 

result suggests that both the compressive and instantaneous nonlinearities are essential 

to identify a speaker more accurately under clean and noisy conditions. 

The variants of CAR-FAC produce similar performances above 5 dB SNR irrespective 

of types of noise, as shown in Figure 5.13. The CAR with AGC produces a similar or 

better result than the CAR with NLF at -5 dB SNR, particularly under pink and traffic 

noise. This result indicates that the compressive nonlinearity (AGC) might be more 

useful than the instantaneous NLF to classify speakers accurately under noisy 

conditions. This is particularly true under low SNRs with time-varying noise signals. 

The linear CAR outperforms the CAR with NLF at -5 dB SNR, particularly for pink 

and traffic noise. 

The NLF function produces distortion tones that decrease the similarity between clean 

and noisy speech features and cause a reduction of SID accuracy of the CAR with the 

NLF method. However, both the NLF and AGC nonlinearities are less effective at 

classifying noisy speech if they operate in isolation, as shown in Figure 5.13. The 

CAR-FAC algorithm adds a two-tone suppression effect via the AGC through the 

compression of unwanted signals. Particularly, this effect suppresses the instantaneous 

distortion (Lyon, 2017). As a result, the CAR-FAC algorithm improves SID 

performance. Figure 5.13 suggests that the two cochlear nonlinearities working in 

tandem can boost SID performance, particularly in the presence of noise. 

5.4.5 Additional Nonlinearities Applied to Cochlear Features  

In the GFCC, a cube root adds a compressive nonlinearity, and the DCT compresses 

energies to lower frequencies and converts the spectrum into a cepstrum. To investigate 

the effect of cube root and DCT on the SID accuracy, in this work, I apply them to the 

CAR-FAC and AN output. Figure 5.14 illustrates the result of this investigation. The 

left panels display a typical CAR-FAC energy feature. The middle panels separately 

apply a cube root exponent and DCT to CAR-FAC features. The cube root dynamically 

adapts signal intensity according to Stevens’s psychophysical law (S. Stevens, 1972). It 

amplifies unvoiced speech, which is mostly affected by noise and suppresses the 

intensity of loud parts in the input (left-middle panel). 
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Figure 5.14: Results show the effect of the cube root (middle left) and DCT (middle 

right) on CAR-FAC features (left). The cube root and DCT effect are shown for two 

speakers (right). 
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The cochlear energy features are not Gaussian distributed, as shown in Figure 5.15 

(left). Many frames among channels have a similar energy, as shown in Figure 5.15. 

The similar energy reduces variation among channels and hence a poor estimation of 

GMM parameters. The application of the cube root on the cochlear energy feature 

redistributes energies (Figure 5.15, middle left). Thus, there is a change of GMM 

parameters that cause an improvement of the speaker modelling. The application of the 

DCT makes the energy of data nearly symmetrical (Gaussian) distributed (Figure 5.15, 

middle left). The cube root and DCT in tandem reduces the range of energy variation, 

as shown in Figure 5.15 (rightest).  

Figure 5.16 compares the SID performances of the CAR-FAC variants (from Figure 

5.13), the AN, and the GFCC applying the cube root and DCT on them. It shows that 

the inclusion of the cube root and DCT nonlinearities significantly improves the SID 

 

Figure 5.15: Histograms of the energy output of CAR-FAC, and the effect of the 

cubic root and DCT on that output. The histogram has been shown for an utterance 

from the UM dataset. 

 

 

Figure 5.16: The nonlinearity effect on SID system performance is shown for the 

CAR‑FAC and alternative methods. The results are simulated for clean and noisy 

signals using the SVM (RBF kernel) classifier. The cube root and DCT are applied 

to all algorithms except for the GFCC, which has the cube root and DCT inherently. 

Each bar presents an average result, and the error bar displays the minimum and 

maximum SID accuracies of six trials. 
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performance of all CAR-FAC variants (compared to Figure 5.13). The CAR-FAC, 

CAR, and the CAR with AGC outperform the other algorithms at -5 dB. This is 

particularly true for white and pink noise types. For traffic noise, all cochlear models 

achieve significantly higher SID performance at -5 dB than the results shown in Figure 

5.9 and Figure 5.10. Figure 5.16 demonstrates that applying the cube root and DCT 

nonlinearities to the CAR-FAC features enhances SID performance. 

Figure 5.17 displays the results with the GMM-UBM back-end classifier. Both Figure 

5.16 and Figure 5.17 display similar results: additional and specific nonlinearities to the 

cochlear features can optimise performance in SID tasks. 

5.4.6 Performance on Other Types of Non-Stationary Noise 

Figure 5.9 and Figure 5.10 showed that all SID approaches struggle to classify speakers 

given non-stationary noise corrupted data (traffic noise at -5 dB). Figure 5.16 and Figure 

5.17 show an improved accuracy when the cube root and DCT are applied to the 

cochlear output. Here, I investigate the SID accuracy on other types of non-stationary 

noise. I apply the cube root and DCT to the CAR-FAC, AN model, and CAR output 

features to compare their performance under non-stationary noise. Car, babble, 

restaurant, train, train station, and exhibition noise are added to the Bangla dataset 

at -5dB, 5 dB, and 15 dB SNR. Figure 5.18 shows the results of this investigation. All 

front-ends classify non-stationary data rather poorly at -5 dB SNR compared to pink 

and white noise, which is consistent with previous Figure 5.9, Figure 5.10, Figure 5.16, 

and Figure 5.17. The non-stationary noise has a high and complex energy distribution 

that strongly distorts clean features. This investigation suggests that there is no universal 

 

Figure 5.17: The nonlinearity effect on SID system performance is shown for the 

CAR‑FAC and alternative methods. The results are simulated for clean and noisy 

signals using the GMM-UBM classifier. The cube root and DCT are applied to all 

algorithms except for the GFCC, which has the cube root and DCT inherently. Each 

bar presents an average result, and the error bar displays the minimum and 

maximum SID accuracies of six trials. 
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nonlinearity that classifies non-stationary speech well. Different nonlinearities favour 

different noise types. 

All results in Error! Reference source not found. shows that the CAR-FAC provides 

significantly improved performance above 5 dB compared to -5 dB SNR, which is 

consistent with Figure 5.16 and Figure 5.17. Below 5 dB, the performance of the CAR-

FAC reduces significantly but still outperforms the CAR and the AN algorithm. 

Additionally, different types of nonlinearities affect SID performance differently, as 

shown in Figure 5.18. 

Figure 5.19 shows results applying the cube root and the DCT on the CAR-FAC and 

AN front-ends. The cube root and the DCT applying to the linear BM output of the AN 

model is called the Chirp Filter Energy Coefficieint (CFEC). The UM dataset is used 

for this investigation. The IHC energy response from both models is used for this 

investigation. 

The CAR-FAC-IHC has significantly improved performance over the AN-IHC 

algorithm under low SNR conditions for factory and white noise. In contrast, the 

AN-IHC has an improved result than the CAR-FAC-IHC in street noise for all SNRs. 

Both algorithms provide improved performance while the cube root and DCT are 

applied to them. The CAR-FAC-IHC has less improvement with the application of 

conventional nonlinearity compared to the AN-IHC. The CFEC and the CAR method 

 

Figure 5.18: SID results show the effect of applying the cube root and DCT on the 

CARFAC, AN model, and CAR algorithms for the Bangla dataset. Results are shown 

using the SVM (RBF kernel) back-end. Each bar presents an average result, and the 

error bar displays the minimum and maximum SID accuracies of six trials. 
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produce similar performance under factory and street noise conditions. Both algorithms 

have significantly improved performance than the GFCC method for all types of noise 

under low SNRs (from 4 dB to -4 dB). The CAR method has a better result than the 

CFEC algorithm under the white noise condition, particularly at -4 dB. The CFEC and 

the CAR produce a significantly better result than the respective cochlear models, 

irrespective of noise types and levels. This performance indicates that the conventional 

nonlinearity is much better than the cochlear nonlinearity to produce a noise-robust SID 

result, as shown in Figure 5.19. 

Comparing with Figure 5.19 and Figure 5.9, the AN-IHC algorithm produces an 

improved result than the BM (AN model BM with the OHC) algorithm under white 

noise, 0 dB conditions. Thus, I will use the AN-IHC algorithm for the text-independent 

SID system in chapter 6. Comparing Figure 5.9 and Figure 5.19, the CAR-FAC-IHC 

has reduced SID accuracy than the CAR-FAC with BM responses under white noise 

conditions. Moreover, the improvement of the CAR-FAC-IHC algorithm with the cube 

root and DCT is not similar to the CAR-FAC-BM (compare Figure 5.17, Figure 5.18, 

 

Figure 5.19: The presentation of SID results showing the cochlear and conventional 

nonlinearities for the UM dataset. The CFEC and GFCC have the cube root and 

DCT inherently. The linear BM model (CAR) with the conventional nonlinearities 

and CFEC has better performance than the cochlear algorithm. However, the 

application of the conventional nonlinearity on top of the cochlear nonlinearities in 

the cochlear models causes a significant improvement of SID performance. Each 

bar presents an average result, and the error bar displays the minimum and 

maximum SID accuracies of six trials. 
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and Figure 5.19). Thus, I will not use the CAR-FAC-IHC algorithm for the 

text-independent SID system. 

5.5 Conclusion 

Humans are excellent at identifying speakers, even in noisy environments. This work 

investigated whether the cochlear models can provide noise-robust performance in SID 

tasks. All investigations were on two datasets using three back-end classifiers, with a 

range of different types and levels of noise. The CAR-FAC with the BM energy 

response can effectively produce noise-robust performance, whereas the AN model, and 

FFT-based MFCCs and FLDP struggle at this task. The performance of the CAR-FAC 

is consistent irrespective of classifiers and noise types up to as low a signal-to-noise 

ratio as 5 dB. 

This work also investigated the impact of cochlear nonlinearities in SID performance 

using the CAR-FAC model, particularly if the corrupting noise was non-stationary. A 

combination of compressive nonlinearity and instantaneous nonlinearity is more 

effective than either the AGC or the instantaneous nonlinearity in isolation. 

Instantaneous nonlinearities such as the cube root further compress the energy of a 

spectrum. When the cube root followed by the DCT was applied to the linear CAR 

section, it was found that the resultant SID performance rivalled or substantially 

exceeded that of CAR-FAC with BM on noisy non-stationary data. However, the CAR-

FAC with BM algorithm outperforms the CAR-FAC-IHC in standalone configuration 

and with the cube root and DCT. The DCT decorrelates the channels’ information and 

makes the speakers more distinguishable. Thus, a channel decorrelation technique such 

as the principal component analysis in the front-end features can further enhance the 

performance of back-end classifiers, particularly in noisy conditions.  

This work used simple classifiers to focus our experiments on the relationship between 

nonlinearities in cochlear front-ends and SID accuracy. The i-vector PLDA mostly 

provides improved performance over the GMM-UBM. The SID accuracies of the CAR-

FAC method are significantly improved under very noise conditions such as -5 dB SNR 

when the SVM with a nonlinear (RBF) kernel is used. Thus, a coupling of a nonlinear 

neural network with the cochlear algorithm may further enhance the SID accuracy. In 

the next chapter, text-independent SID will be investigated and discussed.  
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6 Text-independent Speaker Identification 

6.1 Introduction 

In the last chapter, I presented a text-dependent SID system using CAR-FAC and other 

algorithms. In this chapter, a text-independent SID system will be investigated using 

two text-independent datasets: the GRID dataset (Cooke et al., 2006) and the TIMIT 

dataset (Garofolo, 1993). The CAR-FAC, AN model, and GFCC are used as front-ends, 

and the GMM-UBM (Reynolds et al., 2000) and the i-vector PLDA (Hansen & Hasan, 

2015) are used as the back-ends. 

6.2 Dataset Description and Experimental Setup 

The GRID (Cooke et al., 2006) is a partial text-independent dataset since an identical 

phrase is contained in many utterances. For example, ‘Beam blue AB 8 now’ is an 

utterance from the GRID dataset. The phrase ‘beam blue’ is found in many utterances. 

It contains 34 speakers with 1000 utterances from each speaker. I use all speakers for 

this work, taking 110 samples from each speaker following a previous study (Chi et al., 

2012). I use 50 samples to train the developed SID system and 60 samples to test the 

system for each speaker following (Chi et al., 2012). The sampling frequency of this 

dataset is 25 kHz. For the TIMIT (Garofolo, 1993) dataset, 100 speakers with 1000 

utterances are used. For each speaker, I use 8 samples for training and 2 samples for 

testing. The sampling frequency of this dataset is 16 kHz. White, pink, street, and 

factory noise with a wide range of SNR are used in the investigation. 

Table 6.1 presents the summary of the experimental setup. The parameters of each 

classifier for the text-dependent and text-independent are the same, as shown in Table 

6.1. The amount of training and testing samples are also listed in Table 6.1. 

Table 6.1: The experimental setup including parameters for each classifier for the 

text-independent SID system. 

Types (for each classifier) GMM-UBM i-vector PLDA 

Training data (GRID and TIMIT).  45% and 80% respectively. 45% and 80% respectively. 

Testing data (GRID and TIMIT). 55% and 20% respectively. 55% and 20% respectively. 

Parameters. M=128, r=16, and 

adaptation factor= 10. 

M=128, r=16, adaptation 

factor= 10, and N=50. 

Training length (GRID and TIMIT). 100 seconds and 24 

seconds. 

100 seconds and 24 

seconds. 

Testing length (GRID and TIMIT). 120 seconds and 6 seconds. 120 seconds and 6 seconds. 



96 

 

6.3 Feature Extraction 

The detailed description of the feature extraction process of each front-end has been 

described in section 5.2. I apply the cube root and DCT on the cochlear output inspired 

by the results shown in chapter 5. The linear BM (CAR) responses from the CAR-FAC 

and AN model (CFEC), the nonlinear BM from the CAR-FAC, and the IHC response 

from the AN model were used as front-ends. I also use the energy of Gammatone filter 

response instead of down sampling to generate the GFCC feature. This new GFCC will 

allow us to make a fair comparison among all front-ends. Note that the CFEC and GFCC 

apply the cube root and DCT during their extraction. 

6.4 Results  

This section presents results for a text-independent SID system using two 

datasets - GRID and TIMIT. The investigation of the text-independent SID performance 

was performed using the CAR-FAC, the CAR, the IHC from the AN model (AN-IHC), 

the CFEC, and the GFCC algorithms. I also apply the conventional nonlinearity on the 

CAR-FAC and the AN-IHC front-ends considering, if they enhance SID performance. 

The average result of six trials is presented by each bar. The error bars present the 

minimum and maximum SID accuracies instead of the standard deviation to mitigate 

the problem with result crossing the 100% accuracy line. 

Figure 6.1 shows the result for the GRID dataset. The AN model produces an improved 

performance compared to the CAR-FAC model for all types of noise irrespective of 

SNRs. Furthermore, the CAR with the conventional nonlinearity and the CFEC produce 

significantly improved performance compared to the cochlear algorithms (without 

conventional nonlinearity). This improvement is observed for all types of noise under 

all SNR conditions. This result indicates that the conventional nonlinearity is more 

useful compared to the cochlear nonlinearities in the CAR-FAC in producing improved 

SID performance for text-independent speaker classification. The CFEC method 

averagely produces improved performance compared to the CAR method. However, 

the CAR with the conventional nonlinearities achieves a better result than the GFCC 

for all types of noise under most SNR conditions. 

The application of the conventional nonlinearity on the cochlear output produces 

significantly improved performance over the standalone cochlear methods, as shown in 

Figure 6.1. This result also supports the result shown in the previous chapter for the 

text-dependent SID task. The CAR-FAC method achieves higher performance than the 

AN method, while the conventional nonlinearity is applied to them. The CFEC method 

has a better result than the CAR method for street noise. In contrast, the CAR method  
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outperforms the CFEC method in factory noise conditions, and their performance is 

similar for white noise. These results suggest that the compression effect (by the pole-

zero distance) in the CAR implementation and the gliding effect in the chirp filter 

implementation are useful to produce a noise-robust performance. However, this noise-

robust performance for the CAR and CFEC algorithms is subjective to types of noise, 

as shown in Figure 6.1.The CAR-FAC outputs are highly correlated with adjacent 

channels due to the overlap of filters and loudness optimisation in the AGC stages. The 

correlated channels increase the similarity among speakers by extracting similar 

statistical estimates at the classifier level. The application of the cube root and the DCT 

solve this problem by decorrelating channels’ information. Hence, an improved SID 

accuracy can be achieved. This improvement is observed for both text-dependent and 

text-independent SID tasks. Thus, where the SID accuracy is the principal concern, a 

researcher should use the CAR or CAR-FAC output followed by the cube root and DCT 

as a front-end speaker feature extractor.  

 

 

Figure 6.1: The presentation of SID results showing the cochlear and conventional 

nonlinearities for the GRID dataset. The linear BM models with the conventional 

nonlinearities have a better performance than the cochlear algorithm. The 

application of the conventional nonlinearity on top of the cochlear nonlinearities in 

the cochlear models causes a significant improvement of SID performance. Each bar 

presents an average result, and the error bar displays the minimum and maximum 

SID accuracies of six trials. 
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Figure 6.2 shows results applying the CAR-FAC model for the TIMIT dataset. Here the 

CAR-FAC generates significantly poorer results compared to those in Figure 6.1. This 

poor performance indicates that the CAR-FAC method struggles to achieve an 

improved SID result under noisy conditions, when the utterances from speakers are 

unique. The normalisation of front-end features produces an improved performance 

under noisy conditions, as shown in chapter 5 and Figure 6.1. This improvement is also 

applicable for the TIMIT dataset, particularly under noisy conditions. In the clean 

condition, a poor SID accuracy was produced, as shown in Figure 6.2. The result using 

the channel-wise normalisation indicates that the normalisation of features may provide 

an improved result for the text-dependent (UM dataset shown in chapter 5) or a partial  

 

Figure 6.2: The presentation of SID results showing the cochlear and conventional 

nonlinearities for the TIMIT dataset. The CAR algorithm has a better performance 

than the cochlear algorithm. However, the application of the conventional 

nonlinearity on top of the cochlear nonlinearities in the cochlear models causes a 

significant improvement of SID performance. Each bar presents an average result, 

and the error bar displays the minimum and maximum SID accuracies of six trials. 
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text-dependent (GRID) dataset. However, in the dataset where all training utterances 

from each speaker are unique, such as the TIMIT, the channel-wise normalisation is not 

a way to produce an improved SID performance. Empirically, I also observed a similar 

result using the GFCC as a front-end for the same dataset. Thus, I use the CAR-FAC 

feature without normalisation for the TIMIT dataset. 

The CAR with the cube root and DCT provides improved performance over the 

CAR-FAC, as shown in Figure 6.2. This result emphasises the findings for the GRID 

dataset shown in Figure 6.1. The application of the conventional nonlinearities on the 

CAR‑FAC algorithm generates improved performance, as shown in Figure 6.2. The 

CAR method has an improved result over the CAR-FAC with the conventional 

nonlinearity, particularly for the non-stationary noise conditions. The CAR-FAC with 

the conventional nonlinearity has the best result for white and pink noise, as shown in 

Figure 6.2Error! Reference source not found.. Note that the CAR-FAC with the 

conventional nonlinearity is much more computationally expensive than the CAR 

method. 

 

Figure 6.3: The presentation of SID results showing the cochlear and conventional 

nonlinearities for the TIMIT dataset. The CAR algorithm has a better performance 

than the cochlear algorithm. However, the application of the conventional 

nonlinearity on top of the cochlear nonlinearities in the cochlear models causes a 

significant improvement of SID performance. The performance has been shown 

using the i-vector PLDA. 
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I also present the performance of the CAR and the CAR-FAC algorithms using the 

i-vector PLDA as a classifier. Motivated by the result of Figure 6.2, no normalisation 

technique was applied for this study. The result is shown in Error! Reference source 

not found.. The performance of the i-vector PLDA and GMM-UBM is similar under 

noisy conditions, as found comparing Error! Reference source not found. and Figure 

6.2. However, the GMM-UBM performs better at lower noise levels (15 dB and clean 

conditions) compared to the i-vector PLDA. This finding supports the finding in 

(Vasquez-Correa et al., 2020). Despite variance in the performance of the i-vector 

PLDA and the GMM-UBM, the patterns of results are similar. The full CAR-FAC 

algorithm achieves poorer results irrespective of types and levels of noise. The CAR 

algorithm performs better than the CAR-FAC algorithm, which is consistent with the 

previous results. However, the CAR-FAC with the conventional nonlinearity provides 

improved performance compared to the plain CAR-FAC algorithm. The CAR algorithm 

achieves a similar or an improved performance compared to the CAR-FAC algorithm 

when the conventional nonlinearity is applied to them, as shown in Error! Reference 

source not found.. 

6.5 Conclusion 

This chapter investigates the effect of cochlear nonlinearities, conventional 

nonlinearities, and a combination of both nonlinearities in a text-independent SID task. 

Two cochlear models have been used for this investigation.  

Compared with chapters 5 and 6, the cochlear models generate a significantly poorer 

performance for a text-independent SID, particularly under noisy conditions. In 

contrast, the linear BM outputs followed by the cube root and DCT provide improved 

performance over the cochlear algorithms, particularly under noisy conditions. The 

application of the cube root and DCT on the cochlear algorithms substantially improves 

their performance and hence produces a similar or better result than the linear BM with 

the cube root and DCT. 

The GFCC method has poor performance compared to the CAR and CFEC methods. 

The improved performance of the CAR and CFEC could be due to the filtering used in 

the CAR and AN model, which better approximates the signal and filters out noise than 

the Gammatone filter due to their careful tuning.  

This investigation of the effect of cochlear and conventional nonlinearities on the 

performance of a text-independent SID system can be extended to speech recognition, 

phoneme classification, speech intelligibility, and SID by cochlear implant patients. 

This extension is possible because the same front-end is used in many hearing 

applications in hearing research. 
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7 Discussion and Future Works 

This thesis employed the AN and CAR-FAC cochlear models as front-ends in an SID 

task. I used the BM output from both models to train a speaker classifier and then 

classify a testing set of those speakers. The AN and CAR-FAC models generate a BM 

response through different mechanisms. The AN model uses two parallel filters that 

simulate sounds of all pressure levels, while the CAR-FAC model uses cascaded 

resonators instead. Both models incorporate cochlear nonlinearities but with different 

feedback mechanisms. Both also fit a wide dynamic range of available auditory 

physiological; and psychoacoustic data (Bruce et al., 2018; Lyon, 2017; Saremi et al., 

2016). This thesis is the first to investigate the potential of the CAR-FAC in an SID 

task. Moreover, this work has compared performances of the CAR-FAC model with the 

AN model in an SID task. This thesis is the first to do so. 

This thesis investigates the effect of CAR-FAC parameters that produce a noise-robust 

SID performance. An optimised pole-zero distance, damping factor, and the number of 

channels enhance SID performance. The pole-zero locations ensure the asymmetry of 

the CAR filter in the vicinity of the peak. The CAR has a steeper response at the 

high-frequency side is observed compared to the low-frequency. This thesis sets the 

pole-zero distance less than semi-octave away that makes the BM response more 

symmetrical. This symmetrical shape of the CAR response may improve SID 

performance, and this is an area for further investigation. The damping factor also 

controls the BM responses’ asymmetry with a changing gain (Lyon, 2017) that 

substantially tunes the performance of an SID system. A lower value (0.15) of the 

damping factor causes a higher gain in the BM response. This low damping factor helps 

the CAR to produce the BM response with a varying gain and produces a stronger 

cochlear compressive behaviour. Thus, a smaller value of the damping factor in the 

CAR-FAC implementation can enhance SID performance. 

The number of BM channels, when properly tuned, also improves the noise robustness 

of the CAR-FAC model. The cascaded architecture of the CAR section emulates each 

small segment of the cochlea (Lyon, 1998). Additional channels simulate more 

segments of the cochlea, cover a wider range of frequencies, and provide improved 

frequency selectivity for a particular frequency range. Incorporating a large number of 

channels explains how humans can disambiguate two frequencies just 0.2% apart from 

each other (Micheyl et al., 2012). Thus, a proper selection of frequency channels is 

required for CAR-FAC to reproduce this observation. In my implementation of the 

model, I fixed the number of BM channels to 70 in all experiments. Fixing the number 

of channels limits the model’s frequency selectivity, and by extension, its ability to 

accurately classify speakers in certain conditions. For example, my results showed that 
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the CAR-FAC model classified text-dependent speech with stationary noise accurately 

but often struggled with non-stationary noise types. Perhaps using a different number 

of channels, or selecting only certain channels and neglecting others, would improve 

SID performance in more difficult noise conditions. Unfortunately, my results suggest 

that the CAR-FAC and AN models do not accurately classify speakers under all noise 

conditions with one universal set of parameter values.  

This thesis also uses each stage of the CAR-FAC to investigate their performance and 

the contribution of nonlinearities in an SID task. The CAR mostly achieves poorer 

performance than other models at a low noise level. This poor performance is an 

indication that a nonlinear component is needed. The CAR with instantaneous 

nonlinearity or compressive nonlinearity can provide improved performance, but still 

not equivalent to the full CAR-FAC. This improvement comes from both types of 

cochlear nonlinearities that help to produce a noise-robust SID performance. However, 

the requirement for cochlear nonlinearities may not be that strong in clean conditions 

as under noisy conditions. For example, the cochlear two-tone suppression (Delgutte, 

1990; Dong & Olson, 2016; Ruggero et al., 1992) effect is reduced with increasing noise 

levels (Duifhuis, 1980). 

In both cochlear models, the output BM energies are very similar across channels. This 

similarity hinders the back-end from learning differentiating features unique to 

speakers, and by extension hinders the accurate classification of those speakers. An 

application of channel-wise normalisation reduces similarity across channels and 

improves speaker modelling. This normalisation technique also reduces mismatch 

between clean and noisy spectrums. Thus, the channel normalisation of cochlear 

features is a way to produce a noise-robust SID performance. Interestingly, this 

normalisation technique enhances SID performance only for a dataset containing 

similar phrases across many utterances from each speaker. The application of 

normalisation on a dataset with different utterances for different speakers reduces SID 

accuracy significantly. This reduction of accuracy is particularly observed under clean 

conditions.  

In this thesis, many results have a reduced SID accuracy irrespective of classifier 

applications, particularly under noisy conditions. These poor results suggest that certain 

nonlinear operations (e.g., the cube root exponent) followed by DCT can also reduce 

similarities among channels and increases the variance of cochlear features when sound 

is corrupted by noise. In particular, I observed high SID accuracy by applying the cube 

root followed by DCT to the linear CAR section (excluding the FAC section in the 

CAR-FAC) and chirp BM models (excluding the OHC section in the AN model). So 

the nonlinear amplification of the linear BM (CAR or chirp) section’s output is the key 

to decorrelating channels (Li & Huang, 2011), and not necessarily the FAC or OHC 
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sections themselves. Therefore, the cochlear algorithm should include the cube root or 

a similar nonlinearity followed by DCT on top of inherent cochlear nonlinearities to 

achieve a noise-robust SID performance.  

In the human auditory system, the OHC implements that nonlinear amplification 

(compressive nonlinearity) (Brownell, 1985; Davis, 1983) and fine-tunes the BM 

(Goldstein et al., 1971; Ruggero, 1994). This nonlinear amplification and fine-tuning of 

the BM are essential to understanding speech (Hoben et al., 2017). The NLF 

implementation in the CAR-FAC model emulates the sigmoidal transduction 

nonlinearity of the OHC. This nonlinearity is responsible for the two-tone suppression 

effect (Geisler et al., 1990). The NLF becomes zero for both directions of BM travelling 

wave transduction and reduces the cochlear gain with nonlinear feedback through the 

AGC. The AGC emulates nonlinear amplification of the OHC (Allen, 2001) by 

controlling the pole-zero distance of the CAR implementation (Lyon, 2017). The AN 

model utilises a Gammatone filter in the control path, which has a broader bandwidth 

than the signal path filter. This wide bandwidth and the Boltzmann transduction 

function are responsible for the two-tone suppression for a wide range of frequencies 

(Irino & Patterson, 2006; Smith et al., 2005). The control path emulates the nonlinear 

amplification of the OHC by controlling the gain and bandwidth of the BM filter in the 

model (Zhang et al., 2001; Zilany & Bruce, 2006). 

This thesis found that a performance improvement of the CAR-FAC model over the 

linear BM (CAR) model is due to OHC feedback, particularly when speech is corrupted 

by noise. Presumably, the compressive nonlinearity of the OHC suppresses noise which 

subsequently facilitates noise-robust SID. This outcome is consistent with the findings 

of some recent investigations on human hearing (Bramhall et al., 2015; Hallc et al., 

2016; Liberman et al., 2016). Surprisingly, this thesis also found that an SID system can 

achieve high speaker classification accuracy given a noiseless speech without a 

compressive nonlinearity. This result contradicts prior work (Dubno et al., 1984; Hoben 

et al., 2017). Other reports have considered the impacts of increasing age or hearing 

impairment on the functions of OHCs (Anderson et al., 2018; Anderson et al., 2013). 

We have not considered such impacts. Future extensions of our work could incorporate 

these impacts to see if cochlear front-ends could reproduce these physiological 

observations on ageing and impairment. If they can, then perhaps we could study how 

hearing aids or treatments could counteract the effects of age or damage on OHC 

function (Hoben et al., 2017; Jeng et al., 2020; Zenner, 1997) without intrusive 

experimentation (Wagner & Shin, 2019; Zilany & Bruce, 2006). 

The human auditory system, in contrast, is remarkably robust to environments and tasks. 

For example, humans can identify speakers whether they are in a quiet room or a noisy 

restaurant. If the CAR-FAC and AN models are accurate descriptions of the cochlea, as 
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physiological data and model outputs suggest, then higher-order auditory processing 

must achieve robustness some other way. Perhaps higher-order auditory processing can 

somehow tune the cochlea’s “parameters” depending on the environment and task. For 

example, the peripheral auditory system with higher-order auditory stages controls 

attention to target signals in a noisy environment (Birren, 1996). Moreover, the 

higher-order auditory system influences possible relation to different speaking 

languages (Blanco-Elorrieta & Pylkkänen, 2017; Pickles, 2012). A more likely 

possibility is that higher-level auditory processing can somehow extract and utilise 

significantly more information from cochlear outputs than our classifiers do. For 

example, the cochlear nucleus remaps the cochlear response (Rhode et al., 2010) to 

increase perception in higher-order auditory stages. This remapping was not modelled 

in our thesis, but it could be a key to developing biologically inspired SID systems that 

are robust to a wider variety of environments and utterances. One possible way to 

develop a biologically inspired SID system could be to use a neural network at the 

back-end with the cochlear features. The structure and operation of a neural network 

are inspired by the human brain (Gurney, 2014; Richardson et al., 2015). Thus, a 

biologically inspired SID system may be an approach to achieve a human-level SID 

performance. 

While the CAR-FAC and AN front-ends are not as noise-robust in SID tasks as a human 

(at least not yet), my results suggest that they are more noise-robust than conventional 

FFT-based algorithms. FFT algorithms output energies over a spectrum of frequencies 

while the only magnitude is considered (Rahman et al., 2011). When we add noise to 

input sounds, the amplitudes of energies at some or all of those frequencies increase. 

The noise then masks the signal, and the performances of FFT algorithms suffer. In 

contrast, the pole-zero distance in the CAR section and the gliding effect of the chirp 

filter reduces noise without degrading the signal. The interaction between poles and 

zeros raises the glides in instantaneous frequency in the AN impulse response (Tan & 

Carney, 2003) and promotes the level-dependent shift towards the centre frequency 

(Carney et al., 1999). We can further decouple a signal from the noise with additional 

nonlinearities like the cube root and DCT. Through this decoupling, biologically 

inspired front-ends offer performance benefits over more conventional approaches such 

as the MFCC, FDLP, or GFCC given noisy input speech. 

Those performance benefits come with some costs. First, both cochlear models require 

more computational time and power than FFT-based front-ends. The CAR-FAC and 

AN models are three to five times slower than FFT-based front-ends (running on 

MATLAB with an i7 processor, 16 GB RAM, and 6 MB cache). This cost is 

exacerbated on text-independent data, where we need to incorporate additional 

operations (e.g., the cube root or DCT) to filter noise. Those additional operations 

require additional computational time and power. Second, we need to carefully tune 
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several model parameters, including the number of channels, the damping factor, and 

the pole-zero distance, to achieve high SID accuracy. Tuning model parameters can be 

time-consuming and computationally laborious. These costs might challenge the 

efficacy of biologically inspired front-ends in certain tasks. For example, running a 

software implementation of the CAR-FAC front-end on a mobile device might drain 

the battery.  

We can apply cochlear models to a wider array of hearing tasks beyond SID. The AN 

model has already been applied to the SID, phoneme classification, gender detection, 

and speech intelligibility assessment (Alam & Zilany, 2019; Alam et al., 2017; Islam et 

al., 2016; Mamun et al., 2014, 2015). The CAR-FAC model has been applied to sound 

localisation to provide a baseline for this task using a convolutional neural network 

back-end (Xu et al., 2021). They suggest that their work can be applied to speech source 

separation and speech recognition tasks. This thesis applies the CAR-FAC in the SID 

system. It can also be extended for phoneme classification and gender detection 

applications as the same features are used for most applications. As we continue to 

refine cochlear models, they may prove to be as adaptable and robust as their biological 

counterparts. Coupling them with a modern back-end classifier, e.g. a deep neural 

network, could open the door to countless new applications in machine hearing. The 

performance of the auditory system is not only influenced by acoustic cues but also by 

other attributes, such as the attention (Cohen, 1989; Conway et al., 2007; Nassiri et al., 

2013; Szalma & Hancock, 2011). The implementation of an attention mechanism in a 

neural network (Vaswani et al., 2017; Zhu et al., 2018) could be studied in the future to 

achieve an improved performance for the presented CAR-FAC algorithm. 

The CAR-FAC model has already been implemented in digital hardware (FPGA) (Xu 

et al., 2018). The CAR-FAC achieves a noise-robust SID performance for a text-

dependent SID task. The CAR-FAC algorithm needs to be further improved to achieve 

a noise-robust performance for a text-independent SID task. A noise-robust SID 

performance for both types of utterances would enable implementation of a complete 

CAR-FAC-based SID system in hardware. 
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