11 research outputs found

    Embedding defeasible argumentation in the semantic web: an ontology-based approach

    Get PDF
    The SemanticWeb is a project intended to create a universal medium for information exchange by giving semantics to the content of documents on the Web by means of ontology definitions. Ontologies intended for knowledge representation in intelligent agents rely on common-sense reasoning formalizations. Defeasible argumentation has emerged as a successful approach to model common-sense reasoning. Recent research has linked argumentation with belief revision in order to model the dynamics of knowledge. This paper outlines an approach which combines ontologies, argumentation and belief revision by defining an ontology algebra. We suggest how different aspects of ontology integration can be defined in terms of defeasible argumentation and belief revision.Eje: Inteligencia artificialRed de Universidades con Carreras en Inform谩tica (RedUNCI

    Embedding defeasible argumentation in the semantic web: an ontology-based approach

    Get PDF
    The SemanticWeb is a project intended to create a universal medium for information exchange by giving semantics to the content of documents on the Web by means of ontology definitions. Ontologies intended for knowledge representation in intelligent agents rely on common-sense reasoning formalizations. Defeasible argumentation has emerged as a successful approach to model common-sense reasoning. Recent research has linked argumentation with belief revision in order to model the dynamics of knowledge. This paper outlines an approach which combines ontologies, argumentation and belief revision by defining an ontology algebra. We suggest how different aspects of ontology integration can be defined in terms of defeasible argumentation and belief revision.Eje: Inteligencia artificialRed de Universidades con Carreras en Inform谩tica (RedUNCI

    Extensi贸n de la argumentaci贸n rebatible para considerar etiquetas

    Get PDF
    Esta l铆nea de investigaci贸n explora la incorporaci贸n del manejo de meta-informaci贸n a la Programaci贸n en L贸gica Rebatible (DeLP) a trav茅s de etiquetas. El prop贸sito principal de esta incorporaci贸n es brindar la posibilidad de definir un criterio de comparaci贸n apropiado para el dominio de aplicaci贸n espec铆fico. Mediante este art铆culo se introduce l-DeLP, una extensi贸n a DeLP que incorpora el manejo de meta-informaci贸n a trav茅s de etiquetas y permite basar en ella el criterio de comparaci贸n por mejor. Adem谩s se presenta un ejemplo de aplicaci贸n mediante el cual se ilustran sus ventajas sobre DeLP.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Inform谩tica (RedUNCI

    A Compact Argumentation System for Agent System Specification

    Get PDF
    We present a non-monotonic logic tailored for specifying compact autonomous agent systems. The language is a consistent instantiation of a logic based argumentation system extended with Brooks' subsumption concept and varying degree of belief. Particularly, we present a practical implementation of the language by developing a meta-encoding method that translates logical specifications into compact general logic programs. The language allows n-ary predicate literals with the usual first-order term definitions. We show that the space complexity of the resulting general logic program is linear to the size of the original theory

    Semantics for possibilistic answer set programs: uncertain rules versus rules with uncertain conclusions

    Get PDF
    Although Answer Set Programming (ASP) is a powerful framework for declarative problem solving, it cannot in an intuitive way handle situations in which some rules are uncertain, or in which it is more important to satisfy some constraints than others. Possibilistic ASP (PASP) is a natural extension of ASP in which certainty weights are associated with each rule. In this paper we contrast two different views on interpreting the weights attached to rules. Under the first view, weights reflect the certainty with which we can conclude the head of a rule when its body is satisfied. Under the second view, weights reflect the certainty that a given rule restricts the considered epistemic states of an agent in a valid way, i.e. it is the certainty that the rule itself is correct. The first view gives rise to a set of weighted answer sets, whereas the second view gives rise to a weighted set of classical answer sets

    A logic programming framework for possibilistic argumentation with vague knowledge

    No full text
    Defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning from incomplete and potentially inconsistent knowledge. Defeasible Logic Programming (DeLP) is a defeasible argumentation formalism based on an extension of logic programming. Although DeLP has been successfully integrated in a number of different real-world applications, DeLP cannot deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper introduces P-DeLP, a new logic programming language that extends original DeLP capabilities for qualitative reasoning by incorporating the treatment of possibilistic uncertainty and fuzzy knowledge. Such features will be formalized on the basis of PGL, a possibilistic logic based on G枚del fuzzy logic. 1 Introduction an
    corecore