
STAIRS 2006
Pavlos Peppas, Anna Perini and Loris Penserini
IOS Press, 2006

A Compact Argumentation System for
Agent System Specification

Insu Song and Guido Governatori
School of Information Technology & Electrical Engineering

The University of Queensland, Brisbane, QLD, 4072, Australia
e-mail: {insu,guido}@itee.uq.edu.au

Abstract. We present a non-monotonic logic tailored for specifying compact au-
tonomous agent systems. The language is a consistent instantiation of a logic based
argumentation system extended with Brooks’ subsumption concept and varying de-
gree of belief. Particulary, we present a practical implementation of the language
by developing a meta-encoding method that translates logical specifications into
compact general logic programs. The language allows n-ary predicate literals with
the usual first-order term definitions. We show that the space complexity of the
resulting general logic program is linear to the size of the original theory.

Keywords. Argumentation, Automated Reasoning, Agent

1. Introduction

Over the past years, we have witnessed massive production of small electronic consumer
devices such as cell phones, set-top boxes, home network devices, and MP3 players. The
size of the devices gets smaller and the behaviors of the devices get more and more com-
plex. In order to survive in the current competitive market, vendors now must scramble
to offer more variety of innovative products faster than ever before because most of mod-
ern consumer electronic devices have comparatively low run rates and/or short market
windows [7].

One solution for reducing the development cost and time is developing a more ex-
pressive and intuitive specification language for describing the behaviors of products.
But, we must make the resulting systems compact and efficient to meet the current mar-
ket demands: smaller systems and longer battery lifespan. One promising candidate lan-
guage is a nonmonotonic logic-based agent architecture because nonmonotonic logics
are close to our natural languages and many agent models are suitable for specifying
complex autonomous behaviors. In short, our aim is to develop a more expressive logic-
based language than existing industrial specification languages, such as Ladder Logic
in PLCs (Programmable Logic Controllers), while maintaining its simplicity, robustness
(when implemented), and implementability on low-profile devices.

However, existing logical approaches [1,21,10,4,19,8,6,3] are not suitable for this
purpose, because they suffer from the following major shortcomings to be embedded in
small low powered devices: (a) they have difficulties in expressing behaviors, (b) they

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14984398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

require high computing power, and (c) they are not suitable for mission critical appli-
cations as they require sophisticated theorem provers running on a high powered CPU.
We solve these problems (1) by devising a nonmonotonic logic that can be mapped into
a computationally compact structure that is suitable for hardware implementation; (2)
by allowing expressions of relative certainties in knowledge bases; (3) by allowing de-
composition of systems into parallel interacting behaviors similarly to the subsumption
architecture [5].

In particular, we develop a layered argumentation system called LAS that extends
a logic based proposal of argumentation with subsumption concept and varying degree
of confidence. The reasoning mechanism of each layer is the argumentation system and
more confident layers are subsumed by less confident layers. Moreover, we present a
practical implementation of LAS by developing a meta-encoding method that translates
LAS into general logic program. Unlike other existing implementations of argumenta-
tion systems, the language allows n-ary predicate literals with the usual first-order term
definitions including function expressions. Importantly, we show that the size of the re-
sulting general logic program is linear to the size of the original theory. Similar meta-
encoding schemas can be developed for other variants of logic based argumentation sys-
tems under our framework. Thus, we believe the framework will also provide a platform
for extending and developing practical implementations of logic based argumentation
systems.

In this paper we detail the logical language (LAS), the mapping of the language into
general logic program, and benefits it offers in comparison with other approaches. The
paper is structured as follows. In the next section we discuss a behavior based decompo-
sition and its relation with LAS. In Section 3, we define the Layered Argumentation Sys-
tem (LAS) and the formal semantics of the underlying language. After that, in Section
5, we present a meta-encoding schema which transforms first-order knowledge bases of
LAS into general logic programs. Then, in Section 6 we compare LAS with other logic
base approaches and conclude with some remarks in Section 7.

2. Behavior Based Decomposition

In [5], Rodney Brooks introduced a subsumption that decomposes a system into sev-
eral layers of (possibly prioritized) parallel behaviors of increasing levels of compe-
tence rather than the standard functional decomposition. The basic idea is that it is eas-
ier to model a complex behavior by gradually implementing from less competent sub-
behaviors to more competent sub-behaviors. In addition, the relation between layers is
that more competent layers subsume less competent layers. However, the original sub-
sumption architecture does not scale well for non-physical systems [1]. To overcome the
limitation, we need to develop a logic based subsumption architecture (e.g., [1]). To do
this, we need to introduce a varying degree of confidence and a subsumption architecture
into a logical system.

For instance, let us consider a cleaning robot. A typical functional decomposition of
this system might resemble the sequence:

sensors→perception→modelling→planning→task selection→motor control

The decomposition of the same system in terms of behaviors would yield the following
set of parallel behaviors:

avoid objects < avoid water < clean < wander < map area

where < denotes increasing levels of competence. However, less competent layers are
usually given higher priorities (i.e., given more confidence) than more competent layers.
That is, decisions made by less competent behaviors usually override decisions made
by more competent behaviors (more task specific behaviors). The reason is because less
competent behaviors are usually more reactive and urgent behaviors. However, this is not
always the case because a strong will can suppress a reactive behavior. Therefore, since
the layers of LAS represent the levels of confidence instead of competence, the layers
of the subsumption architecture [5] do not exactly correspond to the layers of LAS as
shown below.

LAS
Layers

Behavior Layers

5
4
3
2
1

54321

In this figure, the bottom layer is the most confident layer of LAS whereas the right most
layer is the most competent behavior layer. It shows that less competent behaviors tend to
be related with more confident layers whereas more competent behaviors tend to spread
over several layers of LAS. As we will see in the following sections, the subsumption
concept of [5] is used in decomposing concepts as well because a less confident knowl-
edge base subsumes more confident knowledge bases by rule subsumption in LAS.

Example 1 Let us consider an example specification for the part that controls a vacuum
cleaning unit of the cleaning robot. Suppose that the robot performs vacuuming action (v)
if it detects (on sensor sA) that the area is dirty (d), but it stops the action if it detects some
water (w) on sensor sB. That is, we have two parallel behaviors: avoiding water and
cleaning. However, avoiding water has higher priority than cleaning. This specification
can be represented as a set of defeasible rules decomposed into two levels of rules as
follows:

R1 = {r1 : sA→ d, r2 : sB→ w, r3 : w→¬c}

R2 = {r4 : d→ c, r5 : c→ v}

The arrows represent defeasible inferences. For instance, sA→ d is read as ‘if sA is true,
then it is usually dirty’. The levels represent relative confidences between levels such that
level-n conclusions are more confident than level-(n + 1) conclusions. Then, if an area
is both dirty and wet, the vacuuming unit will be turned off: v is not true. The reason is
that since w is a level-1 conclusion by r2, ¬c is a level-1 conclusion by r3. As level-1
conclusions are more confident than level-2 conclusions, ¬c is also a level-2 conclusion
overriding c in R2. Thus, we cannot conclude v.

3. Layered Argumentation System

As the underlying logical language, we start with essentially propositional inference
rules: r : L→ l where r is a unique label, L is a finite set of literals, and l is a literal. If l is
a literal, ∼ l is its complement. From now on, let level-n denote the degree of confidence
of layer-n.

An LAS theory is a structure T = (R,N) where R = {R1, ...,Rn, ...,RN} is a set of
finite sets of rules where Rn is a set of level-n rules and N is the number of layers. We
now define layers of an LAS theory and their conclusions.

Definition 1 Let T = (R,N) be an LAS theory. Let Cn be a finite set of literals denoting
the set of layer-n conclusions of T . Let n be a positive integer over the range of [1,N].
The layers of T are defined inductively as follows:

1. T0 = (/0, /0).
2. T1 = (/0,R1) is layer-1 theory where R1 = R1;
3. Tn = (Cn−1,Rn) is layer-n theory where Rn = R1∪ ...∪Rn;

We should note that by the definition layer-n subsumes (includes) layer-(n− 1) rules.
That is, unlike other layered or hierarchical approaches (e.g., [1,21,14]) lower layer rules
(more confident rules) are reused in higher layers. This feature is important because facts
and rules with different levels of belief can interact similarly to Possibilistic Logic ap-
proaches [8,6] and Fuzzy Logic approaches. For example, the confidence of the resulting
argument formed by a set A of rules is the same as the confidence of the rule having the
minimum confidence in A. We will see an example of this (Example 2) after we define
the semantics of LAS. We will also define and discuss a set of operators corresponding
to the Fuzzy Logic operators in Section 6.2.

As for the semantics of the language, we modify the argumentation framework given
in [11] to introduce layers into the argumentation system. Argumentation systems usually
contain the following basic elements: an underlying logical language, and the definitions
of: argument, conflict between arguments, and the status of arguments.

As usual, arguments are defined to be proof trees. An argument for a literal p based
on a set of rules R is a (possibly infinite) tree with nodes labelled by literals such that the
root is labelled by p and for every node with label h:

1. If b1,,bn label the children of h then there is a rule in R with body b1,...,bn and
head h.

2. The arcs in a proof tree are labelled by the rules used to obtain them.

Given a layer Tn of an LAS theory T , the set of layer-n arguments is denoted as
ArgsTn which also denotes the set of arguments that can be generated from Rn. The
degree of confidence of an argument in ArgsTn is level-n. Thus, a layer-n argument of T
is more confident than layer-(n + 1) arguments of T . We define ArgsT0 to be the empty
set. A literal labelling a node of an argument A is called a conclusion of A. However,
when we refer to the conclusion of an argument, we refer to the literal labelling the root
of the argument.

We now introduce a set of usual notions for argumentation system. An argument A
attacks an argument B if the conclusion of A is the complement of a conclusion of B and
the confidence of B is equal to or less than A. A set S of arguments attacks an argument

B if there is an argument A in S that attacks B. An argument A is supported by a set of
arguments S if every proper subargument of A is in S. An argument A is undercut by a
set of arguments S if S supports an argument B attacking a proper subargument of A.

Example 2 Consider Example 1 theory with the following assumptions (arguments)
added: R1 = {→ sB} and R2 = {→ sA}. Now we consider the arguments below:

A
sB

d

d
B

c

~c

vsA

Layer 2
sA

C

w
Layer 1

A is a layer-1 argument for ∼c, and thus it is also a layer-2 argument because layer-
1 arguments are more confident than layer-2 arguments. B is a layer-2 argument for
d and a sub-argument of C. We should note that we have B because level-1 rule r1 is
subsumed by layer-2. That is, level-2 evidence sA and level-1 rule r1 are combined to
produce a level-2 argument. In addition, since there is no level-1 evidence for sA, there
is no layer-1 argument for d. This cannot be represented in exiting layered approaches
such as [14]. Unlike Fuzzy Logic approaches [8,6], the inference process is very simple
and more intuitive, since LAS does not require number crunching nor require subjective
measures of confidence.

The heart of an argumentation semantics is the notion of an acceptable argument.
Based on this concept it is possible to define justified arguments and justified conclu-
sions, conclusions that may be drawn even taking conflicts into account. Given an argu-
ment A and a set S of arguments (to be thought of as arguments that have already been
demonstrated to be justified), we assume the existence of the concept: A is acceptable
w.r.t. S.

Based on this concept we proceed to define justified arguments and justified literals.

Definition 2 Let T = (R,N) be an LAS theory. We define JTn
i as follows:

• JArgsT0 = /0;
• JTn

0 = JArgsTn−1 ;
• JTn

i+1 = {a ∈ ArgsTn |a is acceptable w.r.t. JTn
i };

• JArgsTn = ∪∞
i=1JTn

i is the set of justified layer-n arguments.

We can now give the definition of Cn as the set of conclusions of the arguments in
JArgsTn . A literal p is level-n justified (denoted as Tn �l p) if it is the conclusion of an
argument in JArgsTn . In Example 2, literal ∼c is both level-1 and level-2 justified, but
literal v is not justified because argument C is undercut by A.

We now give two definitions of acceptable given in [11]. The following is an argu-
mentation semantics that corresponds to Dung’s skeptical semantics (called grounded se-
mantics) [9,10] which has been widely used to characterize several defeasible reasoning
systems [10,4,19].

Definition 3 An argument A for p is acceptable w.r.t a set of arguments S if A is finite,
and every argument attacking A is attacked by S.

The following definition is a modified notion of acceptable in order to capture defeasible
provability in Defeasible Logic (DL) [17] with ambiguity blocking [11].

Definition 4 An argument A for p is acceptable w.r.t a set of arguments S if A is finite,
and every argument attacking A is undercut by S.

In this paper, we use this ambiguity blocking argumentation semantics as the semantics
of LAS. But, the grounded semantics can also be easily adopted to LAS.

4. An Implementation of LAS

We obtain the meta-program representation of an LAS theory from the meta-program
formalization of Defeasible Logic (DL) given in [16] by removing defeaters, strict rules,
priority relations, and converting the relationship between strict rules and defeasible rules
in DL in to the relationship between layer-(n− 1) and layer-n in LAS. Thus, it is also
an ambiguity blocking Dung-like argumentation system [11]. The details of the meta-
program representation of an LAS theory T = (R,N) and its layers are now described.
First, we obtain the conclusion-meta-program ΠC(T) consisting of the following general
logic programs of each layer-n where 1≤ n≤ N:

C1. conclusionn(x):- conclusionn−1(x).
C2. conclusionn(x):- supportedn(x), not supported(∼x), not conclusionn−1(∼x).

where not denotes the negation as failure and ∼x maps a literal x to its complement.
Next, we obtain the rule-meta-program ΠR(T) consisting of the following general logic
programs for each rule (q1, ...,qm→ p) ∈ Rn of each layer-n:

R1. supportedn(p):- conclusionn(q1),...,conclusionn(qm).

Then, the corresponding general logic program of T is

Π(T) = ΠC(T)∪ΠR(T).

In [11], it is shown that the following theorem holds for the ambiguity blocking
argumentation system.

Theorem 1 Let D be a defeasible theory, p be a literal. Then, D `+∂ p iff p is justified,
where +∂ p means p is defeasibly provable.

From this theorem and the correctness of the meta-program of Defeasible Logic [16],
We obtain the following theorem. Let �κ denote logical consequence under Kunen’s
semantics of logic programs [15].

Theorem 2 Let Tn be layer-n of an LAS theory T . Let Dn be the meta-program counter
part of Tn.

1. Dn �κ conclusion(p) iff p is level-n justified (i.e., Tn �l p).
2. Dn �κ ¬conclusion(p) iff p is not level-n justified (i.e., Tn 6�l p).

The following theorem is a direct consequence of rule C1.

Theorem 3 (Conclusion subsumption) Let Tn be layer-n of LAS theory T and Tn+1 be
layer-(n+1) of T . Let Cn be the set of conclusions of Tn and Cn+1 be the set of conclusions
of Tn+1. Then Cn ⊆Cn+1.

The following layer-consistency is the result of [16] (correctness of the meta-
program of defeasible logic) and consistency of defeasible logic.

Theorem 4 (Layer consistency) Let Tn be layer-n of an LAS theory T . Then, for each
literal p, if Tn |=l p then Tn 2l ∼ p.

Then, from theorem 3 and theorem 4, we can show that T is consistent.

Theorem 5 (LAS consistency) Let T be an LAS theory. Let T � qn denote that Tn |=l q.
Then, for all 1≤ n≤ N, if T � qn then T 6� (∼q)m for all 1≤ m≤ N.

As Π(T) is simply the union of the meta-program counterpart Dn of each layers of T
and it is formed through a level mapping of each Dn to form a hierarchical program such
that no literals appearing layer-n program appear in layer-(n− 1) rules, the following
theorem holds.

Theorem 6 Let T = (R,N) be an LAS theory and Π(T) be the meta-program counter-
part. Then, the following holds:
T � qn iff Π(T) �κ conclusionn(q).
T 2 qn iff Π(T) �κ ¬conclusionn(q).

5. Meta-Encoding

We now formally define the meta-encoding schema that translates LAS theories into
propositional general logic programs. First, we define two literal encoding functions that
encode literals in an LAS theory to previously unused positive literals. Let q be a literal
and n a positive integer. Then, these functions are defined below:

Supp(q,n) =
{

p+s
n

p−s
n

if q is a positive literal p.

if q is a negative literal ¬p.

Con(q,n) =
{

p+
n

p−n

if q is a positive literal p.

if q is a negative literal ¬p.

Supp(q,n) denotes a support of q at layer-n and Con(q,n) denotes a conclusion q at
layer-n. Supp(q,n) corresponds to supportedn(q). Con(q,n) corresponds to conclu-
sionn(q). Let ConA(A,n) be a set of new positive literals obtained from a set A of literals
by replacing each literal q∈ A by Con(q,n): ConA(A,n) = {Con(q,n)|q∈ A}. With these
functions, we now define the meta-encoding schema.

Let T = (R,N) be an LAS theory, Π(T) the corresponding meta-program, and L
the set of all propositional letters in T . Then HT = L∪∼L is the Herbrand universe of
Π(T) where∼L = {∼ p|p∈ L}. The translated Herbrand base G(T) of Π(T) is obtained
according to the following guidelines for each layer-n (1≤ n≤ N):

G1: For each q ∈ HT , add

Con(q,n)←Con(q,n−1).

G2: For each q ∈ HT , add

Con(q,n)← Supp(q,n),not Supp(∼q,n),not Con(∼q,n−1).

G3: For each r ∈ Rn, add

Supp(C(r),n)←ConA(A(r),n).

For most of LAS theories, this direct translation of T results in a lot of redundant
rules that will be never used for generating conclusions. But, if we know the set of all the
literals that will ever be supported, we can reduce the number rules in G2 by replacing
‘For each q ∈ HT ’ by ‘For each q ∈ SLn’ where SLn is the set of all supportive literals in
layer-n of T . SLn can be obtained as follows:

SLn = {C(r)|r ∈ Rn}

Let G2(T) be the set of rules introduced by G2 in G(T). Then, we can also reduce the
number rules in G1 by replacing ‘For each q ∈ HT ’ by ‘For each q ∈CLn’ where CLn is
the set of all conclusion literals in layer-n of T . This can be obtained as follows:

CL0 = /0
CLn = CLn−1∪{p|Con(p,n−1) ∈ G2(T)}

For example, let’s consider an LAS theory T = ({R1},1) where R1 = {→ sA}. The
corresponding meta-program G(T) of T is (after removing literals with n = 0):

sA+s
1. .

sA+
1 :- sA+s

1 , not sA−s
1 .

Furthermore, even if we extend the language of LAS to allow for n-ary predicate
literals that can be formed by the usual inductive definitions for classical logic, this meta-
encoding can be used to convert first-order LAS theories. For example, if we replace sA
with sA(x) where x is a variable, then the corresponding logic program becomes:

sA+s
1 (x).

sA+
1 (x):- sA+s

1 (x), not sA−s
1 (x).

Let us consider an LAS theory T = (R,N) containing x unique rules in each layer.
Then, the total number of rules is X = xN. The number of rules and facts created by the
guidelines is bounded by the following equation:

|G(T)| ≤ (X)(0.5+1.5N)

That is, the size of G(T) is linear to the size of T . In fact, if N = 1, |G(T)| ≤ 2|T |. In
practice many subsumed rules can be removed because not all of the rules in a layer in-
teract with other layers. For instance, in Example 1, if we don’t need level-2 conclusions
of sB, w and ∼c, there is no need to subsume r2 and r3 in layer-2.

6. Comparisons With Other Approaches

6.1. Hierarchical Approaches

Our approach in decomposing systems differs from meta-hierarchical approaches [21]
and functional decompositions of knowledge-bases [13]. Unlike hierarchical approaches,
the layers in LAS represent varying degree of belief such as ‘Jane might be tall’, ‘Jane
is surely tall’. That is, there are no layers representing beliefs about own beliefs and so
on. Unlike functional decompositions, subsumption architecture decomposes a system
based on the confidence degree of knowledge: one layer is more or less confident than
the other layers rather than more or less complex (or dependant). It also differs from
preference based logics which use preferences only to resolve conflicts. A knowledge
base of a preference based logic (e.g., Defeasible Logic [16,2]) basically corresponds
to a layer in LAS. The reason for this is because priority relations between rules (and
defeaters in Defeasible Logic) can be represented as just defeasible rules.

The layered structure of LAS is similar to the hierarchic autoepistemic logic (HAEL)
[14] in which conclusions of lower layers are stronger than higher layers. However,
HAEL has no notion of support (evidence) used in LAS. Thus, it has some limitations
such as inconsistent extensions. In LAS, the notion of support is used to prevent cred-
ulous conclusions. In addition, HAEL does not allow higher layers to subsume rules of
lower layers. That is, in HAEL a level-2 observation (support) can not be used with level-
1 rules to produce level-2 conclusions. Most importantly, LAS has a computationally
realizable implementation, and the language of LAS is also much more intuitive than
autoepistemic logic as formulas are free of modal operators. Logic based subsumption
proposed by [1] is also similar to our work, but the language is based on Circumscription,
thus it requires second-order theorem provers, and rules are not subsumed.

6.2. Fuzzy Logic Approaches

Similarly to Possibilistic Logic approaches [8,6], facts and rules with different levels of
confidence can be combined as shown in Example 2. For instance, let q and p be justified
arguments and L(q) be the level of confidence of the conclusion of a justified argument
q, then it is easy to see that the following relations corresponding to the Fuzzy Logic
operators hold in LAS:

L(q) = max({the levels of the rules used in q})
L(q and p) = max(L(q),L(p))
L(q or p) = min(L(q),L(p))

For instance, in Example 2, L(B) = 2 because the levels of sA and r1 are 2 and 1, respec-
tively. However, unlike Fuzzy Logic the value of L(not q) is undefined or infinite mean-
ing almost impossible because the agent has already committed to believe the conclusion
of q until there is a contrary evidence. Thus, L(q and not q) is not possible.

However, unlike Fuzzy Logic approaches, LAS does not rely on measurements on
the degree of belief for each rules and facts. All the rules in LAS theories can be consid-
ered to represent near 100% conditional probability (or agents’ commitment despite of
possible risks) of the consequents when the corresponding premises are all provable. The
layers represent relative precedence of rules and relative risk/benefits on conclusions.

For example, in LAS if an association rule r1 occurs more frequently than r2, we simply
place r1 to level-1 and r2 to level-2 whereas a possibilistic logic requires exact figures for
both rules and facts, such as certainty degree, in order to draw conclusions. Thus, LAS
is more suitable when only relative preference over rules and evidence can be obtained.

6.3. Nonmonotonic Logics

Unlike many existing implementations of argumentation systems, LAS is a concrete im-
plementation with first-order knowledge-bases that considers arguments for and against
grounded n-ary predicate literals. [3] proposes an argumentation system that considers
arguments for first-order formulas with notion of argument strengths, but it is not clear
how a practical reasoning system could be built for it and what the complexity of such
systems might be.

LAS incorporates the idea of team defeat [2]. For example, let us consider the fol-
lowing abstract LAS theory:

S1 = {a1,a2,b1,b2}
R1 = {r1 : b1→∼q, r2 : b2→∼q}
R2 = {r3 : a1→ q, r4 : a2→ q}

The argumentation system (PS Logic) developed by Prakken and Sartor [18,19] cannot
conclude∼q when it is given a priority relation {r1 > r3,r2 > r4} [12] because an attack
on a rule with head q by a rule with head ∼q may be defeated by a different rule with
head q, but Defeasible Logic [16] can conclude ∼q. It is easy to see that both r1 and r2
are justified in LAS.

Another interesting problem for testing semantics of nonmonotonic logics is the re-
instatement problem that unjustified arguments are considered as reasons for their con-
clusions which are conclusions of other justified arguments [12]. As an example, let
us suppose that birds usually fly (r1). But, as we all know, penguins usually do not fly
(r2). Now, imagine that genetically modified penguins usually fly (r3). Then, argument
for ‘fly’ by r1 is reinstated in PS Logic [12]. This information can be modelled in the
following LAS theory:

R1 = {r3 : gp→ f , gp→ p, p→ b}
R2 = {r2 : p→∼ f} R3 = {r1 : b→ f}

We should note that r1 is not a justified argument in LAS unlike PS Logic and standard
Defeasible Logic.

7. Conclusion

This paper presented an argumentation system extended with concepts of subsumption
and varying degree of confidence along with its interesting properties. LAS can pro-
vide conceptual decomposition as well as behavioral decomposition of agent systems
through rule and conclusion subsumption. The conclusions of LAS theories contain the
confidence level information so that agents can better cope with dynamic situations by
adjusting the acceptance level of confidence depending on the risks involved for each
situation.

The meta-program G(T) contains only three types of simple rules that can be easily
represented as simple combinational logics. A mapping of a propositional LAS system to

module testModule(sAcp1, sBcp1, vcp2);
 input sAcp1, sBcp1;
 output vcp2;
 wor wsp2, dcp2, dcp1, wsp1, sAcp2, sBcp2;
 wor ccn2, ccn1, csp2, vcp2, wcp2, dsp2;
 wor dsp1, wcp1, csn1, csn2, ccp2, vsp2;
 wire sAcp1;
 wire sBcp1;
 assign ccn 1 = csn1;
 assign dcp1 = dsp1;
 assign wsp1 = sBcp1;
 assign wcp1 = wsp1;
 assign dsp1 = sAcp1;
 assign csn 1 = wcp1;

 assign dcp2 = dcp1;
 assign dcp2 = dsp2;
 assign sAcp 2 = sAcp1;
 assign sBcp 2 = sBcp1;
 assign ccn 2 = ccn1 | csn2 & ~csp2;
 assign vcp 2 = vsp2;
 assign wsp2 = sBcp2;
 assign wcp2 = wcp1 | wsp2;
 assign csp 2 = dcp2;
 assign dsp2 = sAcp2;
 assign csn 2 = wcp2;
 assign ccp 2 = csp2 & ~csn2 & ~ccn1;
 assign vsp 2 = ccp2;
endmodule

Figure 1. This figure shows a compilation result of the vacuum controller unit into Verilog HDL code. This
controller has two inputs and one output. All the symbols represent Boolean variables ranging over the set
{0,1}. For example, sAcp1 represents the state of the level-1 positive conclusion of sA. Value 1 of the state
represents that “it is known that sA is true” and value 0 represents “it is unknown that sA is true.”

sBcp1
in

sAcp1
in

vcp2
out

INV NOR

AND
AND

OR

Figure 2. An implementation of the Verilog description of the vacuum control unit in a Xilinx Spartan-3
FPGA. This figure shows an RTL (Register Transistor Logic) level description of the Verilog code for Config-
urable Logic Blocks (CLBs) of a Spartan-3 FPGA. (Note: the logic circuit does not necessarily represent an
optimal logic circuit since it must fit into the CLBs.)

Verilog HDL (Hardware Description Language) has been developed for designing agent
silicon chips [20] without a CPU using purely combinational logics and registers. Figure
1 shows an example of the compilation of Example 1 into Verilog HDL. Figure 2 shows
an implementation of the Verilog code on a XilinxT M SpartanT M-3 FPGA. Limited forms
of first-order LAS theories can also be directly translated into Verilog descriptions using
registers, adders, and counters without a CPU making the resulting systems robust and
reactive.

To our best knowledge, this is the first practical implementation of a first-order logic
based argumentation system with subsumption concept and varying degree of belief.

References

[1] Eyal Amir and Pedrito Maynard-Zhang. Logic-based subsumption architecture. Artif. Intell.,
153(1-2):167–237, 2004.

[2] Grigoris Antoniou, David Billington, Guido Governatori, Michael J. Maher, and Andrew
Rock. A family of defeasible reasoning logics and its implementation. In Proceedings of the
14th European Conference on Artificial Intelligence, pages 459–463, 2000.

[3] Ph Besnard and A Hunter. Practical first-order argumentation. In AAAI’2005, pages 590–595.
MIT Press, 2005.

[4] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93:63–101,
1997.

[5] Rodney A Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14–23, 1986.

[6] Carlos I. Chesnevar, Guillermo R. Simari, Teresa Alsinet, and L Godo. A logic programming
framework for possibilistic argumentation with vague knowledge. In Proc. AUAI ’04: the
20th conference on Uncertainty in artificial intelligence, pages 76–84, 2004.

[7] Suhel Dhanani. FPGAs enabling consumer electronics — a growing trend. FPGA and Pro-
grammable Logic Journal, June 2005.

[8] Didier Dubois, Jérôme Lang, and Henri Prade. Possibilistic logic. In Dov Gabbay, Christo-
pher J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages
439–513. Oxford University Press, Oxford, 1994.

[9] Phan Minh Dung. An argumentation semantics for logic programming with explicit negation.
In ICLP, pages 616–630, 1993.

[10] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–
358, 1995.

[11] Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David Billington. Argumen-
tation semantics for defeasible logics. Journal of Logic and Computation, 14(5):675–702,
2004.

[12] John F. Horty. Argument construction and reinstatement in logics for defeasible reasoning.
Artificial Intelligence and Law, 9(1):1–28, 2001.

[13] J. Huang, N. R. Jennings, and J. Fox. An agent architecture for distributed medical care. In
Intelligent Agents: Theories, Architectures, and Languages, pages 219–232. Springer-Verlag:
Heidelberg, Germany, 1995.

[14] Kurt Konolige. Hierarchic autoepistemic theories for nonmonotonic reasoning. In Non-
Monotonic Reasoning: 2nd International Workshop, volume 346, pages 42–59. 1989.

[15] Kenneth Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308, 1987.
[16] M. J. Maher and G. Governatori. A semantic decomposition of defeasible logics. In AAAI

’99, pages 299–305, 1999.
[17] Donald Nute. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic

Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages 353–
395. Oxford University Press, Oxford, 1994.

[18] Henry Prakken and Giovanni Sartor. A system for defeasible argumentation, with defeasible
priorities. In Proc. FAPR ’96: the International Conference on Formal and Applied Practical
Reasoning, pages 510–524, London, UK, 1996. Springer-Verlag.

[19] Henry Prakken and Giovanni Sartor. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-Classical Logics, 7(1), 1997.

[20] Insu Song and Guido Goverantori. Designing agent chips. In Fifth International Joint
Conference on Autonomous Agents & Multi Agent Systems AAMAS06, in print, available at
http://eprint.uq.edu.au/archive/00003576/. ACM Press, 2006.

[21] Michael Wooldridge, Peter McBurney, and Simon Parsons. On the meta-logic of arguments.
In Proc. AAMAS ’05, pages 560–567, 2005.

http://eprint.uq.edu.au/archive/00002112/01/ecai2000f.pdf
http://eprint.uq.edu.au/archive/00002228/01/preamble.pdf
http://eprint.uq.edu.au/archive/00002228/01/preamble.pdf
http://eprint.uq.edu.au/archive/00002124/01/aaai99.pdf
http://eprint.uq.edu.au/archive/00003576/01/aamas-chip.pdf
http://eprint.uq.edu.au/archive/00003576/01/aamas-chip.pdf

