105 research outputs found

    Explainable pattern modelling and summarization in sensor equipped smart homes of elderly

    Get PDF
    In the next several decades, the proportion of the elderly population is expected to increase significantly. This has led to various efforts to help live them independently for longer periods of time. Smart homes equipped with sensors provide a potential solution by capturing various behavioral and physiological patterns of the residents. In this work, we develop techniques to model and detect changes in these patterns. The focus is on methods that are explainable in nature and allow for generating natural language descriptions. We propose a comprehensive change description framework that can detect unusual changes in the sensor parameters and describe the data leading to those changes in natural language. An approach that models and detects variations in physiological and behavioral routines of the elderly forms one part of the change description framework. The second part comes from a natural language generation system in which we identify important health-relevant features from the sensor parameters. Throughout this dissertation, we validate the developed techniques using both synthetic and real data obtained from the homes of the elderly living in sensor-equipped facilities. Using multiple real data retrospective case studies, we show that our methods are able to detect variations in the sensor data that are correlated with important health events in the elderly as recorded in their Electronic Health Records.Includes bibliographical reference

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    Machine Learning-Driven Decision Making based on Financial Time Series

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    IMPROVING UNDERSTANDABILITY AND UNCERTAINTY MODELING OF DATA USING FUZZY LOGIC SYSTEMS

    Get PDF
    The need for automation, optimality and efficiency has made modern day control and monitoring systems extremely complex and data abundant. However, the complexity of the systems and the abundance of raw data has reduced the understandability and interpretability of data which results in a reduced state awareness of the system. Furthermore, different levels of uncertainty introduced by sensors and actuators make interpreting and accurately manipulating systems difficult. Classical mathematical methods lack the capability to capture human knowledge and increase understandability while modeling such uncertainty. Fuzzy Logic has been shown to alleviate both these problems by introducing logic based on vague terms that rely on human understandable terms. The use of linguistic terms and simple consequential rules increase the understandability of system behavior as well as data. Use of vague terms and modeling data from non-discrete prototypes enables modeling of uncertainty. However, due to recent trends, the primary research of fuzzy logic have been diverged from the basic concept of understandability. Furthermore, high computational costs to achieve robust uncertainty modeling have led to restricted use of such fuzzy systems in real-world applications. Thus, the goal of this dissertation is to present algorithms and techniques that improve understandability and uncertainty modeling using Fuzzy Logic Systems. In order to achieve this goal, this dissertation presents the following major contributions: 1) a novel methodology for generating Fuzzy Membership Functions based on understandability, 2) Linguistic Summarization of data using if-then type consequential rules, and 3) novel Shadowed Type-2 Fuzzy Logic Systems for uncertainty modeling. Finally, these presented techniques are applied to real world systems and data to exemplify their relevance and usage

    An Information Security Threat Assessment Model based on Bayesian Network and OWA Operator

    Full text link

    Fuzzy Natural Logic in IFSA-EUSFLAT 2021

    Get PDF
    The present book contains five papers accepted and published in the Special Issue, “Fuzzy Natural Logic in IFSA-EUSFLAT 2021”, of the journal Mathematics (MDPI). These papers are extended versions of the contributions presented in the conference “The 19th World Congress of the International Fuzzy Systems Association and the 12th Conference of the European Society for Fuzzy Logic and Technology jointly with the AGOP, IJCRS, and FQAS conferences”, which took place in Bratislava (Slovakia) from September 19 to September 24, 2021. Fuzzy Natural Logic (FNL) is a system of mathematical fuzzy logic theories that enables us to model natural language terms and rules while accounting for their inherent vagueness and allows us to reason and argue using the tools developed in them. FNL includes, among others, the theory of evaluative linguistic expressions (e.g., small, very large, etc.), the theory of fuzzy and intermediate quantifiers (e.g., most, few, many, etc.), and the theory of fuzzy/linguistic IF–THEN rules and logical inference. The papers in this Special Issue use the various aspects and concepts of FNL mentioned above and apply them to a wide range of problems both theoretically and practically oriented. This book will be of interest for researchers working in the areas of fuzzy logic, applied linguistics, generalized quantifiers, and their applications

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    Querying RDBMS using Natural Language

    Full text link
    It is often challenging to specify queries against a relational database since SQL requires its users to know the exact schema of the database, the roles of various entities in a query, and the precise join paths to be followed. On the other hand, keyword search is unable to express many desired query semantics. In the real world, people ask questions in natural language, such as English. Theoretically, natural language interfaces for databases (NLIDBs) have many advantages over other widely accepted query interfaces (keyword-based search, form-based interface, and visual query builder). For example, a typical NLIDB would enable naive users to specify complex, ad-hoc query intent without training. Not surprisingly, an NLIDB is regarded by many as the ultimate goal. Despite these advantages, in real world applications, NLIDBs have not been widely adopted. In this dissertation, we investigate the construction of NLIDBs, specifically from the following three aspects: A natural language query is inherently ambiguous and some ambiguities may be too hard for computers to resolve. Can a system collaborate with users to achieve satisfactory reliability without burdening the user too much? The interpretation process can be considered as a mapping from a natural language query to the correct point in the semantic coverage of the NLIDB. Can the mapping process get easier by carefully defining the semantic coverage? Can an NLIDB work when no training examples are available, collect the user behavior data as the training examples and improve itself from real usage? In this dissertation, we provide affirmative answers to the above questions in the form of new query mechanism designed, techniques provided and systems constructed.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138709/1/lifei_1.pd
    • …
    corecore