
 Eindhoven University of Technology

MASTER

Linguistic summarization for process analysis
the development of a prototype

Munneke, J.F.C.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/af8f6e72-f13c-4966-a424-ac400c232b57

EINDHOVEN UNIVERSITY OF TECHNOLOGY & KPMG

Linguistic Summarization
for process analysis

The development of a prototype
Master Thesis

Student: J.F.C. Munneke (0817562)

Supervisors TU/e: A.M. Wilbik

 D. Fahland

 R.M. Dijkman

Supervisor KPMG: E. Ramezani

24-07-2017

ii

Abstract
This master thesis investigates a new approach that can be used in analyzing general business
processes. Current process discovery techniques mainly focus on the so-called control-flow
perspective. Nevertheless, it might be interesting to also look at the other perspectives of the
dataset, such as time and resources. The approach used in this master thesis is based on linguistic
summarization, a technique used to generate statements in natural language, that describe
characteristics of the dataset. Linguistic summarization has already been applied successfully on
several datasets that consist of attribute-value pairs. However, the technique is only investigated
sparsely on process data, which contains a time-line and causal relationships between activities. In
addition, this thesis focuses on the generation of sentences that focus on a particular sequence within
a process, instead of the complete case, which can provide more detailed insights into specific parts
of the process. Event logs can contain a lot of data and, therefore, the created algorithm must deal
with the data in an efficient manner. The technique is evaluated using two case studies. The first case
study is performed on thirteen participants, where first a demonstration is given, after which the
participant had to fill in a questionnaire. The other case study is performed for audit purposes, where
the algorithm was evaluated with a process expert. The evaluation of the algorithm shows that most
participants see the usefulness of linguistic summarization, and they intend to use it.

iii

Preface
This master thesis is performed as final requirement for the master ‘Business Information Systems’,
that I have been studying for the last two years at the Eindhoven University of Technology (TU/e).
This master thesis has been conducted for the past six months, and is performed in collaboration
with KPMG, which gave me a wonderful time. My colleagues within KPMG really accepted me as an
co-worker, instead of just an intern, and were really eager to help me with any kind of problems.
Besides the many games of table football, I joined many delightful events, such as the yearly ski-trip.
Because of this, I also had time to relax, which ensured a reduced stress level. Therefore, I was highly
motivated to continue with the thesis. In this section, I would like to take the opportunity to thank
everyone that helped me in finalizing the master thesis; for all the valuable insights, feedback, and
motivation.

First of all, I want to thank Anna Wilbik, who acted as my first supervisor within the TU/e. She was
already familiar with the topic and was, therefore, able to help me understand the topic and provide
a lot of valuable insights during the bi-weekly meetings. In addition, I want to thank Dirk Fahland,
who acted as my second supervisor within the TU/e, for both the feedback for the final draft, and the
help during the project, if I had any problems. Thanks to Remco Dijkman, my third supervisor within
the TU/e, for the introduction to the master thesis, the feedback for the final draft, and the help with
the academic paper. Next, I would like to thank Elham Ramezani, who acted as my daily supervisor
within KPMG. She helped me making this thesis available within KPMG, and had a lot of valuable
insights during the process. Next to the supervisors, I want to thank Bert Scherrenburg and Manish
Batra. Bert acted as a process expert for this thesis and introduced me to the case study, and Manish
helped me developing the event log that was needed for the case study. Thanks to Erwin Raetsen for
the valuable feedback and discussions during the process. I would also like to thank all participants
that helped me with the evaluation of this master thesis.

Next, I want to thank my family for all the support, and for keeping me motivated. Especially thanks
to my dad, for the feedback on the thesis. I want to thank my friends for the fun besides the projects,
such that I was not only focused on my study, but made my time as student much more fun. Last, but
definitely not least, I want to thank my girlfriend, Leanne, for all the moral support during my
complete study, and for all activities we did, such that I was able to relax after a long week of work.

24-07-2017

Johan Munneke

iv

Contents
ABSTRACT ... II

PREFACE ...III

1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 2
1.1.1 Different type of protoforms ... 2
1.1.2 Data preprocessing ... 3
1.1.3 Modelling .. 4
1.1.4 Case study ... 4

1.2 SCOPE ... 4
1.3 METHODOLOGY .. 5
1.4 APPEAL DATASET ... 6
1.5 REPORT STRUCTURE ... 7

2 BACKGROUND .. 8

2.1 LINGUISTIC SUMMARIZATION ... 8
2.2 FUZZY SETS .. 9
2.3 PROTOFORMS .. 9

3 POSSIBLE PROTOFORMS... 11

3.1 CASE FOCUSED PROTOFORMS .. 11
3.1.1 Case focused protoforms for features related to the complete case .. 11
3.1.2 Case focused protoforms related to sequences .. 11

3.2 SEQUENCE FOCUSED PROTOFORMS ... 12
3.3 OTHER RELEVANT PROTOFORMS ... 13

3.3.1 Temporal aspects .. 13
3.3.2 Gradual rules .. 14
3.3.3 Compare (similar) processes ... 14
3.3.4 Patterns .. 14
3.3.5 Fuzzy matching between attributes.. 15
3.3.6 Usuality ... 16
3.3.7 Trends ... 16

3.4 COMBINATIONS OF PROTOFORMS ... 16
3.5 PROTOFORMS IN SCOPE .. 16

4 PROCESS FLOW .. 18

5 ANALYSIS OF POSSIBLE FEATURES .. 21

5.1 BARE MINIMUM OF FEATURES AVAILABLE ... 21
5.2 LIFECYCLE OF ACTIVITIES ... 21

5.2.1 Transactional life-cycle model .. 21
5.2.2 Timestamps in an event log .. 22

5.3 ATTRIBUTES IN AN EVENT LOG .. 23
5.4 COMBINATIONS OF FEATURES .. 24
5.5 RELEVANT FEATURES INCLUDED IN THE ANALYSIS ... 25

6 IMPLEMENTATION ISSUES CONCERNING FEATURES RELATED TO THE COMPLETE CASE 27

6.1 CREATE INITIAL ARRAY .. 27

v

6.2 LINGUISTIC LABEL DEFINITIONS ... 28
6.3 CREATE MEMBERSHIP ARRAY USING LINGUISTIC LABELS ... 31
6.4 RELEVANT PARAMETERS FOR LINGUISTIC SUMMARIZATION .. 33
6.5 USABILITY OF FEATURES RELATED TO THE COMPLETE CASE ... 35

7 IMPLEMENTATION ISSUES CONCERNING SEQUENCES .. 36

7.1 PARAMETERS FOR SEQUENCES ... 36
7.2 CLUSTER SEQUENCES.. 38
7.3 CONTAIN SEQUENCE LIKE ABC ... 42
7.4 SEQUENCE LIKE ABC WAS PS ... 43
7.5 USABILITY OF FEATURES RELATED TO SEQUENCES ... 44

8 GENERATING LINGUISTIC SUMMARIES ... 45

8.1 SENTENCES GENERATED BY THE ALGORITHM ... 45
8.2 PRUNING OF SUPERFLUOUS SENTENCES ... 50

9 EVALUATION .. 52

9.1 SET-UP .. 52
9.2 RESULTS OF CASE STUDY ON APPEAL DATASET ... 53

9.2.1 Insights obtained .. 53
9.2.2 Results of questionnaire ... 55

9.3 RESULTS OF CASE STUDY FOR AUDIT PURPOSES .. 58

10 CONCLUSION .. 59

10.1 CONCLUDING REMARKS ... 59
10.2 LIMITATIONS ... 60
10.3 FUTURE RESEARCH .. 61
10.4 RECOMMENDATIONS .. 63

BIBLIOGRAPHY .. 64

APPENDIX A: USER MANUAL ... 70

APPENDIX B: PROTOFORMS AND RELATED ARTICLES .. 88

APPENDIX C: PROTOFORMS IN SCOPE AND THEIR STATISTICS... 89

APPENDIX D: PARAMETER RELEVANCE .. 91

APPENDIX E: QUESTIONNAIRE ... 93

APPENDIX F: DISCO MODELS OF APPEALS PROCESS .. 96

vi

List of figures
Figure 1: Project methodology ... 5
Figure 2 Appeal process ... 7
Figure 3: Thesis outline .. 7
Figure 4: Process flow .. 18
Figure 5: Standard transactional life-cycle model [1] .. 22
Figure 6: Scenario two activities same label .. 22
Figure 7: Trapezoidal function ... 29
Figure 8: Trapezoidal function cases .. 30
Figure 9: Example of membership functions for the throughput time ... 30
Figure 10: Example membership functions Throughput time case and Operating time “Send on” ... 32
Figure 11: Example quantifier setting .. 33
Figure 12: Quantifiers in combination with a truth value ... 34
Figure 13: Aggregated results of questionnaire... 57
Figure 14: Visualization example ... 62
Figure 15: Average and maximal duration of appeal process ... 96

List of tables
Table 1: The value of the activity ‘Amount’ varies within a case .. 24
Table 2: Features in scope of this research.. 25
Table 3: Example initial array ... 27
Table 4: How to handle case focused features .. 28
Table 5: Example linguistic labels for conversion (TT = throughput time, OT = operating time) 31
Table 6: Example feature conversion (TT = throughput time, OT = operating time) 32
Table 7: Similarity between sequence "ABC" and case "ABDCE" .. 37
Table 8: features for sequence focused protoforms ... 43
Table 9: Input per protoform ... 45
Table 10: Skill level of population asked .. 52
Table 11: Statistics appeal dataset ... 54
Table 12: Results of the questionnaire .. 56
Table 13: Results how the different skill levels would use linguistic summarization 57
Table 14: Results how the different skill levels see the results produced by linguistic summarization
 .. 57
Table 15: Protoforms and their related articles... 88
Table 16: Protoforms in scope and their related statistics .. 89
Table 17: Relevant parameters per protoform .. 91
Table 18: questionaire evaluation based on TAM model [61] [59] [60] [62] 93

1

1 Introduction
The amount of data that can be used to analyze business processes is increasing [1]. Therefore,
getting and interpreting the results of common process mining techniques can be quite hard and
time consuming. In practice, many processes have a high number of distinct activities, many data
attributes, or a complex structure. Consequently, the automated discovery of such processes will
possibly lead to so called ‘spaghetti’ models that are hard to comprehend in the first glance and
require extensive post processing [1]. Another challenge in process discovery is dealing with different
process perspectives. Currently, the dominant perspective in most process discovery techniques is
the so-called control-flow perspective [2]. Nevertheless, it may be interesting to link this perspective
to other perspectives of a process, such as time and resources. It may, for example, be interesting to
find a correlation between the throughput time and the resources that are associated to a process.
There exist already some process mining techniques that take the different perspectives into
account, e.g. related with conformance checking [3], decision mining [4] [5], event correlation [6],
and risk management [7]. However, none of these research papers focus on process discovery, where
the output is obtained in natural language, while this research focuses mainly on this aspect.

This research proposes another way of gaining insight into business processes without the extensive
post-processing that some process mining techniques require. It allows an easier interpretation of
the results that process mining techniques provide, i.e. even for practitioners that are not familiar
with process mining techniques. This research is based on linguistic summarization, a technique used
to gain insight into a collection of data, by automatically generating statements in natural language,
that describe characteristics of the dataset. Example sentences that can be generated using linguistic
summarization on process data are “In almost all cases, where Person A performed task X, the costs
were high” or "In almost all cases, that contain a sequence like <ABC>, the costs were high". Such
sentences can be used as an indication of root causes of high costs.

In recent years, linguistic summarization has been applied successfully in different areas, e.g.
databases [8] [9], sensor data [10] [11] [12], texts [13], time series [14] [15] [16] [17], video fall
detection [18] [19] [20] and web logs [21]. However, the datasets used in these research papers
consist only of attribute-value pairs, which is different than process data, because process data has
a time-line and causal relationships between activities [22]. The topic of linguistic summarization on
process data is already introduced in [22], [23] and [24]. [22] introduces a research agenda of tasks
that have to be taken into account when applying linguistic summarization on process data, [23]
introduces several types of sentences that could be created for process data, and [24] focuses on
sequences of actions and applies the technique on one single event log. However, the subject is only
investigated sparsely and no generic algorithms exist yet that apply linguistic summarization on
processes. As introduced in [22], there are many challenges that need to be addressed, such as: the
structure of event logs is inconsistent; a clear and complete overview has to be generated about the
process; and an event log can consists of a lot of sequences of events, which can increase the running
time of an algorithm. This research is performed to address these challenges. In addition, the
generation of sentences that focus on sequences, instead of the complete case, is only investigated

2

sparsely in previous literature. This thesis focuses how sequence can be handled, such that sentences
like “In most cases, there was a large throughput time for a sequence like <ABC>” can be investigated.

A technique is developed that uses linguistic summarization to generate statements about process
data, that the user can use to gain insight into the process. These statements can be used by anyone
that wants to analyze a business process, and might give interesting insights into the business
process, that are hard, if not undoable, to find using other tools. The technique has been
implemented in Python [25] and is applied on various datasets.

As part of the evaluation of this master thesis, two case studies are performed: one case study is
related to auditing and the other case study is related to an appeal process of a Dutch municipality.
The focus of these evaluations is on user acceptance, to determine whether the technique, and the
resulting sentences, might be useful in the analysis of a business process.

1.1 Problem statement
This research focuses on getting insight into business processes by using linguistic summarization
techniques. Since the research focused on business processes in general and is not context specific,
the main research question is stated as follows:

How can linguistic summarization ease the analysis of (complex) processes?

Imagine a process with many distinct activities, cases or attributes. The automated discovery of such
processes can lead to so called ‘spaghetti’ models that are hard to comprehend in the first glance
and require extensive post processing [1]. The main research question focuses mainly on providing
insights in an easy and intuitive way that would be difficult to obtain by merely using process
discovery instead. Although the main contribution of the proposed technique will be for complex
business processes, the simpler processes can also be analyzed using this technique.

To answer this research question, it is divided into additional sub-questions that all focus on different
parts of the project. These sub-questions are described below.

1.1.1 Different type of protoforms
Linguistic summarization returns template based sentences. These template based sentences are
also called protoforms [23]. The sentence “In most cases, there was a large throughput time” and “In
most cases, where there was a large throughput time, the costs are high” have got a different
structure and, therefore, belong to different protoforms. The first sentence creates a statement
about all cases, where the second one is only focused on cases that have got a large throughput time.
By creating protoforms, the sentences are written in a consistent manner, which is clearer for the
user, and, in addition, statistics can be calculated in the same way for every protoform. Already many
different protoforms have been investigated in prior literature. However, new protoforms may be
required for the summarization of process data. The first sub-question focused on the investigation
of different protoforms that one can have in process data. The sub-question is stated as follows:

1. What protoforms can be useful to summarize process data?

3

1.1.2 Data preprocessing
The technique proposed in this research is not context specific and, therefore, several preprocessing
steps need to be performed on an event log. This section focuses on the preprocessing of the data
and the sub-questions related to this part.

An event log contains information about events that occurred for a specific process. Every event is
linked to a process instance, which is referred to as a case [1]. Cases can be distinguished using a case
identifier. As discussed in the introduction, the structure of event logs is inconsistent. In one event
log, the identifier of a case might be marked as ‘Identifier’, in another event log as ‘Case ID’, and in
yet another event log as ‘Column X’. When evaluating the event log, one has to make sure that the
right columns are evaluated. Next to the different naming of columns, cells may be left blank, or the
event logs may contain NULL values. Some preprocessing has to be done before certain features,
such as the throughput time, can be calculated.

There are many features that can be relevant for business processes. Examples are throughput time,
resources involved in the process, and paths taken. Some research must be performed to determine
which features are relevant for process data. The sub-question related to this part of the process is
stated as follows:

2. a. What features are relevant to analyze cases and sequences?

Features that may be relevant for one process can be irrelevant for other processes. Since this
research is not meant for one single process, the selected features must be important for processes
in general. The set of features have a direct influence on the results, and must therefore be as
complete as possible. However, different features can be selected for different processes, for
example, when events do not have an end time, the waiting time cannot be calculated.

To be able to create sentences like “In most cases, there was a large throughput time” or “In almost
all cases, when there was a short waiting time, there was Person A involved”, a dictionary has to be
created in which the meaning of the possible quantifiers (e.g. most and almost all) and features (e.g.
large throughput time and short waiting time) is defined. The meaning of such quantifiers and
features is stored in so-called linguistic labels, e.g. a throughput time of two days is considered as
large for that process. Note that no linguistic labels have to be created for the involvement of Person
A, since this is either true or false. To determine how to create linguistic labels, another sub-question
is defined:

2. b. How to create linguistic labels for the selected features?

The labeling of features can be done manually, automatically or a combination of both. In the first
case, the user has to define all labels, which can take quite some time and effort. In the second case,
the labels are generated by use of an algorithm. In the last case labels are proposed by use of an
algorithm, yet the user can change them. For both, the second and last case, an algorithm is needed.
However, the algorithm can be less complex in the last case, since the user can still modify the
linguistic labels.

4

1.1.3 Modelling
Next to the preparation of data, an algorithm is needed to generate sentences about an event log.
These sentences are also called linguistic summaries. Event logs can be quite large and can contain
many different cases and sequences. In addition, many features can be analyzed for every event log.
The algorithm has to deal with this in an effective and efficient way. The sub-question related to this
is formulated as follows:

3. How to efficiently generate linguistic summaries of processes?

The created summary has to be as complete and clear as possible. However, several challenges are
involved in this part, for instance, an event log can contain many different sequences. One can look
at a particular sequence, instead of looking at the complete case to get different insights into the
process and find a correlation between attributes of a sequence and attributes of a case, e.g. “In most
cases, where the sequence <ABC> was performed by Person A, there was a large throughput time”.
Since there are probably many different sequences, both the running time and the results will be
gigantic when looking at all possible sequences. Therefore, an intelligent choice has to be made on
which sequences to focus.

Next to the selection of sequences, one has to deal with the data in an efficient way. A possible way
to calculate features is to loop over the event log over and over, which is not very efficient. The
algorithm has to deal with the data in an intelligent way, for example, by storing frequently used
variables, using packages in a clever way, structuring the data, and pruning results.

1.1.4 Case study
As a final part of the project, the linguistic summaries have to be evaluated to determine their
relevance. To be able to evaluate the results, two case studies are performed. The first case study is
related to auditing. However due to privacy considerations, another case study is performed on the
appeal process of a Dutch municipality, which is analyzed in detail in this thesis. More information
about this event log is given in Section 1.4. The auditing related case study is performed to determine
the usefulness of the linguistic summaries in a real business scenario, where the focus of this thesis
is on user acceptance. The sub-question related to the evaluation is:

4. How can the auditor make use of the linguistic summaries?

The focus of the case study is to give insight into the use of linguistic summarization in analyzing a
business process. The case study does not focus on the actual results provided by the algorithm, but
on the manner the results are generated and whether these results could be useful for an auditor.

1.2 Scope
This thesis investigates the possibility of linguistic summarization and focuses on the creation of a
first prototype of the algorithm. Sometimes choices had to be made, where multiple options were
considered as valid. However, due to timing reasons, not all options could be investigated. Therefore,
not all choices that have been made in this thesis are definitely the only correct option. Choices that
had to be made were the kind of sentences that one could investigate, explained in more detail in

5

Chapter 3; features that are seen as important for an event log, explained in more detail in Chapter
5; and choices related to the implementation, e.g. how to define the membership functions, how to
group sequences, and how to use the resulting groups of clusters, explained in more detail in Chapter
6 and 8.

1.3 Methodology
In this section, the project methodology, that is used to answer the research question and sub-
questions, is explained.

The methodology is based on the Design Science Methodology [26], and is used for the creation of
new and innovative artifacts, by iteratively add functionalities and test it against the requirements
set. For every iteration, the tool can be extended for either rigor (using literature) or relevance (using
practitioners). Using both literature and practitioners, the gap between rigor and relevance can be
minimized, and a tool is developed that can be used by both parties [27]. Six phases are defined for
this research, visualized in Figure 1. In addition, the deliverables of each phase can be found
underneath the corresponding phase.

Figure 1: Project methodology

First, a literature review is performed to determine which protoforms, features, and metrics are
found in prior research on linguistic summarization. The results are used as a starting point for the
first three sub-questions, since it is determined what techniques show to be effective.

After the literature review is conducted, the protoforms and features, used in prior research, are
evaluated on their applicability and usability for the current research. New protoforms and features
are constructed, that are (partly) based on the constructed lists. the first sub-question (What
protoforms can be useful to summarize process data?) and the first part of the second sub-question
(What features are relevant to analyze cases and sequences?) are answered in this phase.

Next, the metrics are selected that are used for linguistic summarization on process data. The second
part of the second sub-question (How to create linguistic labels for the selected features?) and the
third sub-question (How to efficiently generate linguistic summaries of processes?) are answered
during this phase.

After the metrics are selected, algorithms are developed, to be used in the prototype to be created.
Algorithms focus on how to group sequences, how to prune the results, and how to generate
sentences for the protoforms chosen.

6

During the ‘Create prototype’ phase, a prototype of a tool is constructed, that is able to generate
linguistic summaries, focusing on an event log. An agile way of working is chosen for this phase of the
project. First the least viable product is built, that can already be evaluated on different datasets.
Depending on the evaluation, the algorithm is updated. For this project, the deployment is limited to
the creation of a user interface in combination with a brief user manual. The user manual is provided
in Appendix A.

After the prototype is built, it is evaluated and checked against all requirements. Two case studies
are performed during this phase, and the final sub-question (How can the auditor make use of the
linguistic summaries?) is answered. For the case study related to auditing, the technique is validated
by a process expert, to determine the usefulness of the linguistic summaries for an auditor. For the
case study related to the appeal dataset, it is investigated whether participants see the benefits of
using linguistic summarization and whether the technique is usable.

1.4 Appeal dataset
As part of this thesis, a case study is performed on the appeal dataset of a Dutch municipality, which
is based on [24]. When a citizen appeal for a decision that was made by the government, the appeal
process is executed. Examples of such decisions are an application for a certain permit (like a building
permit, demolition permit or tree cutting permit) or about compensation for traveling by school bus.
Figure 2 shows the corresponding process model. This model is filtered for simplicity and only shows
the most common flows that are taken. There are several variations on the flow, where for example
only a part of the flow is executed. This model is created according to the Business Process Model
and Notation (BPMN) semantics [28].

It can be seen, in Figure 2, that the process starts by registering the appeal. After the registration, a
decision is made to either sent on the appeal when it cannot be handled or to continue with the main
flow. If one chooses to continue with the main flow (confirms the reception), another decision has to
be taken: The appeal is rejected, the citizen is asked to revise the appeal, or the documents are
registered. When the citizen is asked to revise the appeal, this is archived and the process terminates.
When the appeal is rejected, a draft advise can be written or the documents can be registered and it
is processed the same as an approved appeal. In the last case, when the documents are registered,
the appeal is discussed in a hearing, which can result in a withdrawal of the appeal or that advise is
sent to the mayor and the alderman. When advice is sent, the mayor and the alderman make the
actual decision which is documented in a dossier. In both cases the decision is archived and the
process terminates.

7

Figure 2 Appeal process

1.5 Report structure
This master thesis is structured using seven phases, as is shown in Figure 3. The thesis is structured
such that most phases are handled within one chapter. However, since the implementation part is
discussed more extensively, this phase is spread over three chapters.

Figure 3: Thesis outline

In Chapter 2, the background phase, information is provided that is needed to understand the
remaining part of the thesis. Next, in Chapter 3, it is investigated what kind of protoforms might be
interesting for business processes. Chapter 4 provides an overview of the process, that has to be
executed to generate linguistic summaries, and serves as an outline for Chapter 5 till 8. The different
types of features, that might be relevant to look at, are discussed in Chapter 5. The implementation
phase consists of three parts: the implementation issues for the different protoforms are discussed
in Chapter 6 and 7, and Chapter 8 discusses how the linguistic summaries are created. The evaluation
of the technique is described in Chapter 9. Finally, concluding remarks about the master thesis are
given in Chapter 10.

8

2 Background
This chapter focuses on background information that is needed to understand the remaining part of
this thesis. Section 2.1 provides general information about linguistic summarization. Next, Section
2.2 shows the benefits of using fuzzy sets, and Section 2.3 introduces the meaning of protoforms,
that can be used to create sentences.

2.1 Linguistic summarization
A linguistic summary is a sentence that is based on a template. These templates are referred to as
protoforms [23]. As discussed in, for instance [22], [23], and [24], the principle of linguistic
summarization has already been researched by many researchers. In this research, the method
proposed by Yager [29] is used, that seems to be mostly explored in the literature.

Yager [29] defines that a protoform consist of three main aspects, namely: a summarizer, a quantifier
and a measure of validity of truth.

• A summarizer is used to indicate the object of interest and can be about any feature that is
available in the data, e.g. the size of a ball, the gender of a person, or the throughput time of
a case. In this thesis P is used as an indicator of the summarizer;

• The quantifier is used to express the proportion of data which fulfil the summarizer. In this
research, only relative monotonically non-decreasing quantifiers [30], such as many, most, or
almost all are used. In this thesis Q is used as an indicator of the quantifier;

• The measure of validity of truth is used to express the validity of a sentence. In this thesis, this
concept is called the truth value. Section 2.3 explains the truth value in more detail.

By combining these aspects, sentences like “Most cases are long” can be created. In this sentence
“Most” is the quantifier (Q) and “long” is the summarizer (P). Note that the summarizer can be used
to denote multiple features to generate sentences like “Most cases are long and expensive”.

Sentences like the ones shown above can be used to get a high level overview of the data. However,
one can gain more detailed information by extending the sentences with a qualifier. [23] shows that
a qualifier can be useful in the summarization of data.

• The qualifier can be used to define the scope of the sentence. The qualifier can focus on any
feature available in the dataset, similar to the summarizer. When setting a feature as a
qualifier, more detailed information about this feature can be gained. In this thesis, R is used
as an indicator of the qualifier.

By adding the qualifier, sentences like “Most expensive cases are long” can be created, where
“expensive” is the qualifier. Again, the qualifier can be about multiple features, to set a more specific
scope, e.g. “Most expensive and long cases are performed by Person A”. In this sentence “Most” is
the quantifier, “expensive and long” is the qualifier and “performed by Person A” is the summarizer.

9

2.2 Fuzzy sets
The example sentences shown in Section 2.1 are not very specific. For example, for the sentence
“Most cases are long”, one might understand what is meant by this sentence, but not the exact
meaning. The sentence “80% of the cases took 20 days” gives more detailed information. However,
when one does not know any statistics about the duration of a case, the second sentence might be
useless, i.e. it is not known whether 20 days is long or short. Next to this, when continuous values
are used, like the duration of a case, all durations might slightly differ. Therefore, it might be more
useful to set some ranges when the duration is for example short, average or long.

Suppose a user wants to see whether the duration of a case is short, average or long. For some
durations, it might be unclear to which set the value belongs. If one uses crisp sets, the value must
be either a member of the set or not, i.e. the duration is either short or not. However, by using fuzzy
sets, a value has got a certain degree of membership to every set. The value might, for example, have
a membership of 0.7 to the short set and a membership of 0.3 to the average set, which implies that
the value belongs for 70% to the short set and for 30% to the average set. These membership values
can be used in calculations, such as truth value. The definition of a fuzzy set is given below.

Definition Fuzzy set: “A fuzzy set is a class of objects with a continuum of grades of membership.
Such a set is characterized by a membership (characteristic) function which assigns to each object a
grade of membership ranging between zero and one.” [31]

2.3 Protoforms
In Section 2.1, two different kind of sentences are discussed. These sentences comply to the simple
and extended protoform introduced in [23]:

• The simple protoform can be used for sentences like “Most cases are long” and is expressed
as:

 𝑄𝑄 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 (1)

where Q is the quantifier(e.g. most), y is the object the sentence is about (e.g. cases), and P
is the summarizer (e.g. long).

• The extended protoform can be used for sentences like “Most expensive cases are long” and
is expressed as:

 𝑄𝑄 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 (2)

where Q is the quantifier (e.g. most), R the qualifier (e.g. expensive), y is the object the
sentence is about (e.g. cases), and P is the summarizer (e.g. long).

Sentences are protoform-equivalent if they have identical protoforms [32], e.g. the sentences “Most
cases are long” and “Most cases are expensive” are built of the same protoform and are therefore
protoform-equivalent. Protoforms are not only used to keep the created sentences consistent, but
also to be able to make calculations more general. For example the measurement of truth, which

10

expresses the validity of a sentence, can be measured in the same way for all sentences that are
constructed of the same protoform.

There are many different methods to calculate the truth value, that all have advantages and
disadvantages. For a comparison of different methods, see for example [33], [34], [35] or [36]. For
this research, the initial method is chosen, which is based on Zadeh’s calculus of quantified
propositions [37], a method used to calculate the truth value of statements with quantifiers. Hence,
the truth value of the simple protoform (1) is calculated as:

𝑇𝑇(𝑄𝑄 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃) = 𝜇𝜇𝑄𝑄 �

1
𝑛𝑛
�𝜇𝜇𝑃𝑃(𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� (3)

The truth value of the extended protoform (2) can be calculated as:

𝑇𝑇(𝑄𝑄 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃) = 𝜇𝜇𝑄𝑄 �

∑ 𝜇𝜇𝑃𝑃(𝑦𝑦𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝜇𝜇𝑅𝑅(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

� (4)

Where 𝜇𝜇𝑄𝑄 is the membership of the quantifier, 𝜇𝜇𝑅𝑅 the membership of the qualifier, 𝜇𝜇𝑃𝑃 the
membership of the summarizer, n the number of objects (i.e. cases) in the data and ^ is the minimum
operator. The definition of the membership functions are described in more detail in Section 6.2.

The truth values of both the simple protoform (3) and the extended one (4) can be used in the
creation of linguistic summaries. One can for example indicate for what truth value the sentence is
considered to be valid. In protoform (2) a qualifier is used to specify a specific part of the process.
Not all cases satisfy the condition set in the qualifier, e.g. the sentence “Most expensive cases are
long” only focuses on cases that are expensive. The proportion of objects satisfying qualifier R, called
the degree of focus [14], can be calculated as:

𝑑𝑑𝑓𝑓(𝑄𝑄 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃) =

1
𝑛𝑛
�𝜇𝜇𝑅𝑅(𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (5)

By setting a minimal threshold for the degree of focus, sentences should at least concern a certain
part of the data, i.e. when the degree of focus is set to 0.3, the proportion of objects satisfying the
qualifier must be at least 30%. Sentences that are only about a few cases may not be very relevant
and can give a wrong impression about the data. For example, the sentence “Almost all expensive
cases are long”, where only one case is expensive. This sentence can be considered as a unique case
and may not be wanted in the resulting summaries.

11

3 Possible protoforms
In Section 2.3, the simple (1) and extended (2) protoforms are introduced, together with formulas
about their truth values, (3) and (4) respectively, and the degree of focus (5). In this chapter, these
protoforms are linked to processes and additional protoforms are explained, that are based on prior
research on linguistic summarization. First, it is determined what kind of statements can be relevant
for process data, after which these statements are converted into protoforms. Appendix B provides
an overview of which protoform is based on which article or other protoform. The statistics about all
protoforms, in the scope of this thesis, can be found in Appendix C. All statistics are based on metric
(3), (4) and (5). In Section 3.1 - 3.4, the different protoforms that may be relevant for processes are
discussed. In Section 3.5 the protoforms that are used in this thesis are summarized.

3.1 Case focused protoforms
This thesis distinguishes two different forms of case focused protoforms: case focused protoforms
for features related to the complete case and case focused protoforms related to sequences.

3.1.1 Case focused protoforms for features related to the complete case
The simple, case focused protoform [23] is a direct transformation of protoform (1) and is written as:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (6)

For this protoform, sentences like “In almost all cases, there was a short throughput time” can be
created. In this sentence, P is a specific attribute. However, P can also be a set of attributes, i.e. “In
most cases, there was a short throughput time, and Person A performed the activity Register appeal”.

One may be interested in focusing on one (or multiple) specific feature(s). To be able to set certain
conditions in a sentence, protoform (2) is transformed to the extended, case focused protoform [23]
and is expressed as:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (7)

By using this protoform, sentences like “In most cases, when Person A was involved, there was a large
throughput time” can be created, where more information is provided under which conditions there
was a large throughput time. In this protoform, both R and P represent a set of attributes.

3.1.2 Case focused protoforms related to sequences
Since the process can be executed slightly different every time, the event log can contain many
different sequences, i.e. different decisions are taken or events are executed in a different order. One
may be interested in sequences that are performed by creating sentences like “Most cases contain
the sequence <Create dossier, Process decision>”. When focusing on all sequences of the event log,
both the running time of the algorithm and the amount of sentences can be gigantic [24]. To be able
to deal with this, similar sequences are grouped together, which is explained in more detail in Chapter
7. When sequences are taken together, one can create sentences about the complete group instead
of on specific sequences. The simple, case focused protoform, related to the containment of
sequences [24], is written as:

12

 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 (8)

Note that the word “like” indicates that the sentence refers to all sequences of that particular group.
This protoform can be used to get a high level overview of the sequences that are performed in the
process. An example sentence of this protoform can be “Most cases contain a sequence like <Send
advice, Create dossier, Process decision>”. In this case, the group <Send advice, Create dossier,
Process decision> is created that consists for example of the sequences <Send advice, Create dossier,
Process decision>, <Send advice, Create dossier>, <Create dossier, Process decision> and <Send
advice, Create dossier, Process decision, Archive>.

Also for this protoform, one may be interested in setting certain conditions, like in protoform (7). The
extended, case focused protoform, related to the containment of sequences [24], is written as:

 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 (9)

When protoform (9) is used, one can see what the influence of other features was on the sequences
that were performed, e.g. when Person A was involved. However, the containment of a sequence
can also be set as a condition. By doing so, two more protoforms are created:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (10)
 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝑋𝑋𝑋𝑋𝑋𝑋 (11)

When protoform (10) is used, the influence of certain sequences can be seen on other features, e.g.
“In most cases, that contain a sequence like <Send advice, Create dossier, Process decision>, there is
a long throughput time”, indicates that the throughput time of the complete case is long, if this
sequence is contained. To see whether there is some correlation between certain sequences that
were performed, protoform (11) can be used.

Note that protoforms (8), (9), (10) and (11) are all based on protoforms (6) and (7), where P and/or
R is replaced by “a sequence like ABC/XYZ”.

3.2 Sequence focused protoforms
Instead of looking at the complete case, one can also focus on a specific part of the case. This
distinction is made in [23]. The most simple form of the sequence focused protoforms is expressed
as:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 (12)

Note that in this protoform 𝑃𝑃𝑆𝑆 is used instead of P. This is to make clear that the summarizer focuses
on a sequence instead of the complete case. This protoform can be used to get a high level overview
of attributes within a feature, e.g. “In most cases, there was a large throughput time for a sequence
like <Send advice, Create dossier, Process decision>” or “In most cases, there were many different
resources for a sequence like <Send advice, Create dossier, Process decision>”.

13

Since there is no qualifier used in this sentence, the degree of focus is equal to one. However, the
sentence is only about cases that contain a sequence like ABC, and, therefore, the sequence
frequency [24] is used, instead of the degree of focus, to specify the amount of times a sequence was
present in the event log. The calculation of the sequence frequencies of all protoforms (where
available) can be found in Appendix C.

Also for the sequence focused protoforms a qualifier can be used to get an indication of the number
of cases a sequence was PS, when the condition is fulfilled [23]. The extended, sequence focused
protoform is written as:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 (13)

An example sentence related to protoform (13) is “In most cases, when there was a large throughput
time, a sequence like <Send advice, Create dossier, Process decision> was performed by Person A”.

However, similar to protoform (9) it might be interesting to set the sequence as the condition. By
doing so, two more protoforms are relevant:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑅𝑅𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (14)
 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑅𝑅𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴,

𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝑋𝑋𝑋𝑋𝑋𝑋 (15)

Protoform (14) provides information about the complete case, but has a sequence focused aspect as
the condition. This protoform creates sentences like “In most cases, when there was Person A for a
sequence like <Send advice, Create dossier, Process decision>, there was a large throughput time”.
Note that both the sentence and the information represented is different than “In most cases, when
there was a large throughput time, there was Person A for a sequence like <Send advice, Create
dossier, Process decision>”. Protoform (15) can be used to get indications which sequence is
correlated other sequences.

Note: This thesis focuses on clusters of sequences instead of matching one particular sequence.
When one is interested in matching specific sequences, clusters can be created of maximal size one.
All protoforms and statistics remain the same, but the word “like” can be removed. For that reason,
the exact sequence is not elaborated further in this section.

3.3 Other relevant protoforms
In Section 3.1 and 3.2 the case focused and sequence focused protoforms are discussed. However,
more protoforms may be relevant for the summarization of process data. In this section some other
protoforms are described. These protoforms focus, for instance, on temporal aspects (Section 3.3.1),
the use of gradual rules (Section 3.3.2), and what patterns might be relevant (Section 3.3.4).
Nevertheless, these protoforms are not discussed further in this master thesis.

3.3.1 Temporal aspects
The protoforms mentioned before refer to the complete process. However, since event logs contain
timestamps, one can use this data to see whether the process changed over time. In [38] research is

14

performed about linguistic summarization of time series, where the temporal aspect is expressed
with 𝐸𝐸𝑇𝑇. Two protoforms are discussed in [38]:

 𝐸𝐸𝑇𝑇 𝑎𝑎𝑎𝑎𝑐𝑐𝑛𝑛𝑎𝑎 𝑎𝑎𝑓𝑓𝑓𝑓 𝑦𝑦′𝑠𝑠,𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 (16)
 𝐸𝐸𝑇𝑇 𝑎𝑎𝑎𝑎𝑐𝑐𝑛𝑛𝑎𝑎 𝑎𝑎𝑓𝑓𝑓𝑓 𝑅𝑅 𝑦𝑦′𝑠𝑠,𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 (17)

Using these type of protoforms, sentences like “recently among all cases, most are long” or “recently
among all cases where Person A was involved, almost all are sent on” can be created. By using the
temporal expression, one can investigate a certain time period of the event log, to determine
whether there were changes over time. The second example sentence might indicate that Person A
simply sends on all cases recently. This might need further investigation.

3.3.2 Gradual rules
Gradual rules (described in [39] and [40]) can also help in analyzing processes, to detect what
attributes have got influence on other attributes. Gradual rules are of the form:

 𝑇𝑇ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐹𝐹, 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐺𝐺 (18)

Where “the more” can be replaced by “the less”. By use of gradual rules, sentences like “The larger
the throughput time, the shorter the waiting time” or “The shorter the waiting time, the more
resources are used” can be created.

3.3.3 Compare (similar) processes
Section 3.3.1 shows how temporal expressions help analyzing processes. However, one might not be
interested in how the process evolved over time, but wants to compare it with another (maybe older)
process. Examples of protoforms that are related to the comparison of processes are:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 𝑐𝑐𝑛𝑛 𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 𝑋𝑋 (19)
 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 𝑐𝑐𝑛𝑛 𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 𝑋𝑋 (20)

Note that these protoforms are highly related to protoforms (6) and (7), where the protoforms are
extended with “in process X”. This can also be applied for other protoforms discussed in this chapter.
Protoform (19) can create sentences like “In most cases, there were more resources involved for the
new appeal process”. When protoform (20) is used, sentences like “In almost all cases, where
sequence ABC was present, there was a larger throughput time for the new appeal process” can be
created. However, one has to be careful with selecting the features that are evaluated for these
protoforms. A sentence like “In most cases, where the throughput time was large, Person A was
involved in the old appeal process” would probably not make sense, since other resources may be
involved in the other (newer) process.

3.3.4 Patterns
As discussed in Section 3.2, focusing on sequences instead of on the complete case can give insight
about certain parts of a process. A sequence is a set of events that occurs in a certain order. However,
as discussed in [22], a distinction can be made between directly succeeding actions or allowing other
in-between actions. New protoforms can be created when allowing in between actions. All

15

protoforms discussed before, related to sequences, can be transformed such that they allow for
other, in-between actions. Examples are:

 Q cases contain a sequence A ∗ B ∗ C (21)
 In Q cases, there was PS for sequence A ∗ B ∗ C (22)
 In Q cases, when condition R was fulfilled, there was PS for sequence A ∗ B ∗ C (23)

In these protoform * is used to indicate any number of activities.

Other patterns that might add value to the summarization is parallelism vs sequentialism. One may
be interested in the influence of parallel or sequential performed activities. activities performed
parallel might improve the process. An example sentence is “The more activities ABC are done in
parallel, the shorter the throughput time”. For this kind of sentences, the gradual protoform (18) can
be translated to:

 𝑇𝑇ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑐𝑐𝑛𝑛𝑎𝑎 𝐹𝐹, 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐺𝐺 (24)

In this case “F” is either parallel or sequential and “the more” can be changed with “the less”.

The last pattern discussed in this section is the iterative pattern. One might be interested why certain
sequences of actions are performed multiple times, or what the influence of cycles is on the process.
Examples of protoforms are:

 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 (25)
 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 (26)
 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (27)

The simple protoform (25) can be used to get a basic understanding of the process. The extended
protoform (26) can be more useful when one wants to investigate why a cycle occurred. When a
sentences like “In most cases, when Person A was involved in the process, sequence ABC was cyclic”
is generated, one can choose to investigate whether Person A is making mistakes. To see the
influence of cycles on the rest of the process, the other extended protoform (27) can be useful. This
protoform is used to create sentences like “In most cases, when sequence ABC was cyclic, Withdraw
appeal is performed”.

3.3.5 Fuzzy matching between attributes
[41] introduces fuzzy matching between attributes. Sentences like “In most cases, there was a large
throughput time” and “In some cases, there was a short throughput time” can be combined by using
fuzzy matching. The resulting sentence then looks like “In most cases, there was a large throughput
time, but for some there was a short throughput time”. A protoform related to this can be written as:

 𝐼𝐼𝑛𝑛 𝑄𝑄1 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃1, 𝑏𝑏𝑓𝑓𝑡𝑡 𝑓𝑓𝑐𝑐𝑎𝑎 𝑄𝑄2 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃2 (28)

In this protoform Q1 <> Q2 and P1 is related to P2.

16

3.3.6 Usuality
[42] investigates the pessimistic and optimistic probabilities that can help in the summarization of
data. Sentences that are related to this are “Usually, the throughput time of cases is large” for the
optimistic probability and “Rarely, the throughput time of cases is large” for the pessimistic one.

As discussed in [22], this topic needs additional research. All protoforms discussed above can be
transformed to this type, where Q is either usually or rarely, e.g. protoforms (6) and (7) can be
converted to:

 𝑈𝑈𝑠𝑠𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑦𝑦/𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑦𝑦, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠 𝑃𝑃 (29)
 𝑈𝑈𝑠𝑠𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑦𝑦/𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑦𝑦, when condition R was fulfilled, contain a sequence like ABC (30)

3.3.7 Trends
The last protoform discussed in this research is based on [43] and [44]. Event logs can contain much
data, distributed over a long period of time. One might be interested in finding some trends in the
data that occur frequently. The protoform introduced is written as:

 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 𝑝𝑝 𝑓𝑓𝑛𝑛𝑐𝑐𝑡𝑡, 𝑡𝑡ℎ𝑎𝑎 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎 ℎ𝑐𝑐𝑎𝑎ℎ 𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑠𝑠 (31)

Where M is an adverb, such as exactly or approximately. This protoform is used to create sentences
like “Exactly every 2 months, Sent on occurs more often”.

3.4 Combinations of protoforms
Many protoforms are introduced in this chapter. However, the summarizer P and qualifier R of these
protoforms focus on one single aspect, e.g. on the throughput time or on the occurence of a
sequence. Sentences can also be combined to include several aspects, e.g. “Most cases contain a
sequence like ABC and have got a large throughput time” can be created when combining protoform
(6) and (8). When doing this, more information can be included in the same sentence. In this thesis,
summarizers and qualifiers are not combined, because of the running time and because this topic
needs further investigation.

3.5 Protoforms in scope
This research focuses on the case focused protoforms described in Section 3.1 and the sequence
focused protoforms explained in Section 3.2. This choice is made because they are the most general
cases for event logs and are assumed to be relevant for most processes. The protoforms that are
investigated further are:

𝑄𝑄 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃

• Protoform (6): In Q cases, there was P;
• Protoform (8): Q cases contain a sequence like ABC;
• Protoform (12): In Q cases, there was PS for a sequence like ABC;

17

𝑄𝑄 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃

• Protoform (7): In Q cases, when condition R was fulfilled, there was P;
• Protoform (9): Q cases, when condition R was fulfilled, contain a sequence like ABC;
• Protoform (10): In Q cases, that contain a sequence like ABC, there was P;
• Protoform (11): Q cases, that contain a sequence like ABC, contain sequence like XYZ;
• Protoform (13): In Q cases, when condition R was fulfilled, there was PS for a sequence like

ABC;
• Protoform (14): In Q cases, when there was RS for a sequence like ABC, there was P;
• Protoform (15): In Q cases, when there was RS for sequence like ABC, there was PS for a

sequence like XYZ.

Concluding, three protoforms are constructed, based on the simple protoform (1), namely by: 1)
relating it with cases, 2) looking at the containment of sequences, and 3) analyzing sequences in more
depth. Combining these topics in the summarizer and qualifier results in seven new protoforms based
on the extended protoform (2).

18

4 Process flow
In this chapter, all steps that need to be performed to create sentences about an event log are
discussed in a high level overview. Figure 4 visualizes the process of deriving sentences from an event
log, where blue steps are mostly based on user interaction, green steps can be performed fully
automatic, and yellow steps only need some user interaction, but are mainly automatic. The figure
also includes information which chapter or section discusses the steps further. Since every event log
is unique, the execution of these process steps can be slightly different, e.g. different features are
analyzed and different parameters need to be set.

Figure 4: Process flow

19

1) Select event log
First, the event log should be selected. For some event logs, no timestamps are logged, or
activities are performed simultaneously, e.g. when a form is filled and all information is stored
by use of a button, both Create fine and Set amount are logged at the same time. When the
start timestamp of multiple activities is the same, or if no timestamp is logged, it cannot be
determined automatically what activity should be performed as first action. In the example
shown above, it is expected that Create fine occurs before Set amount. To make sure that the
correct process flow is analyzed, the ordering is not done automatically, but is left as the
responsibility of the user.

2) Handling missing data
Data can be missing in the event logs. [45] discusses various techniques how to handle missing
data. Since the algorithm is for event logs in general, it is hard to identify missing data. Missing
data can for example be indicated with NULL, by use of an empty cell, or by 0. However, for
other processes, these values can actually be valid values. Also missing data should be treated
differently for different processes: for some processes it can be deleted and for other
processes the values have to be interpolated. For the reasons mentioned above, this data is
not changed, and empty cells are converted to NULL. In this way, also sentences can be
created like “In most cases, when Person A was present, the outcome was NULL”. In this thesis
it is assumed that the case identifier and the timestamps, when available, do not contain
missing data, i.e. they are always filled.

3) Map aspects
An event log can contain a couple of different aspects, namely: A case identifier, an activity
that is performed, a start timestamp, an end timestamp, the transactional life cycle, one or
multiple case attributes and one or multiple activity attributes. The different aspects are
further explained in Chapter 5. Since every aspect needs to be treated differently and it is
difficult to identify what is represented by every column automatically, the user has to define
this.

4) Select features
Based on the available data, different features can be calculated, e.g. when there is only one
timestamp, no operating time can be calculated. This topic is further described in Chapter 5.

5) Create initial array for features related to the complete case
After the features are selected, all relevant information is stored that is needed to analyze
every feature that is related to the complete case. More information about the generation of
this initial array is given in Section 6.1.

6) Label features
Some features do not need any user input to be analyzed, e.g. Sent on was performed or
Person A was present can be based on data only. However, to be able to create sentences
such as “In most cases, there was a large throughput time”, the meaning of a large throughput
time must be known. To deal with such features, labels need to be defined by the user, which
is further explained in Section 6.2.

20

7) Create membership array for features related to the complete case

Once all labels are defined, the array created in Step 5) can be converted into a membership
array, e.g. when the user created a membership function for a large throughput time, the
values of the throughput time are replaced by the membership values of that feature. There
are many features that all need a different conversion, which is explained in Section 6.3.

8) Select parameters
Before sentences can be created, some parameters have to be defined, e.g. the protoforms
that the user wants to analyze or the degree of focus. The parameters that are relevant for
all protoforms are explained in detail in Section 6.4. Additional parameters, that are relevant
when sequences are analyzed, are discussed in Section 7.1.

9) Get relevant sequences
If the user wants to create sentences focusing on sequences, all sequences that are present
in the dataset need to be identified. Since there may be many unique sequences, sequences
are filtered on multiple aspects. This is further described in Section 7.2.

10) Cluster sequences
Even when sequences are filtered, the remaining ones can be numerous. One can choose to
group similar sequences and create sentences focusing on the complete group. Such a group
of sequences is also called a cluster. The techniques that are used to cluster sequences are
highlighted in Section 7.2.

11) Create membership array for the containment of sequences
Once clusters of sequences are created, new features can be analyzed. One possible type of
feature is the containment of a cluster, to create sentences like “Most cases contain a
sequence like <Send advice, Create dossier>”. To create such sentences, a new membership
array is created that stores what cluster of sequences is contained in what case. The
construction of this array is explained in Section 7.3.

12) Create membership array for sequence focused protoforms
Next to the containment of sequences, one can choose to analyze sequence focused
protoforms, to create sentences like “In most cases, where there was Person A for a sequence
like <Send advice, Create dossier>, there was a large throughput time”. In this case, another
membership array is needed where the features related to the sequence focused protoforms
are stored. The creation of this membership array is explained in Section 7.4.

13) Generate sentences
When all steps are executed, sentences can be created, based on the event log. As input for
the analysis, this step needs the protoforms and the corresponding membership array(s). As
output, sentences are created that are based on the available data. The generation of the
sentences is discussed in Chapter 8.

21

5 Analysis of possible features
There are many features that may be relevant for the analysis of process data. In this chapter, it is
determined what features can be relevant, such that most aspects can be analyzed for most event
logs. The set of features is not complete, and, therefore, the algorithm is created such that features
can be extended easily. Feature are included based on the structure of an event log. In [1], it is
assumed that an event log contains data related to a single process and each event refers to a single
process instance, which is referred to as the case. For this research, the same assumptions are used.
Every event in the event log is related to an activity. The case identifier and activities performed are
considered as the bare minimum that should be present in an event log. This chapter first introduces
the features that are associated with the bare minimum in Section 5.1. Section 5.2 describes what
other features may be relevant when some form of a lifecycle of activities is added to the event log.
Section 5.3 explains the influences of other attributes, e.g. resources and costs. Besides looking at all
aspects of an event log (columns) in isolation, columns can be combined, which is described in Section
5.4. Finally, the features selected in scope of this research are summarized in Section 5.5.

5.1 Bare minimum of features available
As described above, the bare minimum of an event log consists of two columns, namely: 1) a case
identifier and 2) an activity. All features depend on the case identifier. For example, to determine the
throughput time of a case, the case identifier is needed to recognize which times should be summed.
Since the activities are ordered within every case, sequences can be investigated. The features that
can be relevant focusing on activities are:

• Whether a certain activity is performed in a case;
• Number of times an activity is performed in a case;
• Number of (distinct) activities performed in a case;
• Whether an activity is performed as first or last event;
• Whether a certain sequence is present in a case (as discussed in Section 3.1, this feature is

investigated in a separate protoform).

5.2 Lifecycle of activities
Every case of an event log is already ordered on time. However, more information can be extracted
by adding the lifecycle of activities to the event log. This lifecycle can be logged by use of a
transactional life-cycle [1], by adding start and/or end timestamps, or by a combination of both. In
this section, the features, that might be relevant to analyze when the lifecycle of activities is logged,
are described.

5.2.1 Transactional life-cycle model
Figure 5 shows a graphical representation of the transactional life-cycle model [1]. One may be
interested in investigating when an activity has been reassigned, suspended, skipped, unsuccessfully
aborted, or successfully aborted. Therefore, this data can be added to the set of features. The
transactional life-cycle can also be present partially, i.e. only the start and end timestamp of the

22

activities are measured. Since the transactional life-cycle contains information about the lifecycle of
activities, also certain patterns in the event log, like parallelism vs sequentialism, can be investigated.

Figure 5: Standard transactional life-cycle model [1]

For the scope of this research, no further research is done in the transactional life-cycle model, since
it can cause many problems. Figure 6 shows an example of a potential problem. In this scenario, first
Send advice is started. Before the activity is finished, another instance of Send advice is started for
the same case. Since two instances of the activity are started, there also exist two end instances. In
this case, it is not clear what time is linked to what instance [1]. In Figure 6, two possible scenarios
are shown how the end stages can be linked to the start stages (represented with the dotted line).
However, the operating times of the activities differ (the first scenario has operating times of 3 and
1 days, for the other scenario, both operating times are equal to 2 days), which can impact the
analysis. The scenario can be much more difficult when considering multiple stages of the
transactional life-cycle model, or if more instances of the same activity are started. Since the
transactional life-cycle is not investigated in this thesis, one can either set it as an attribute, or filter
all rows except for the end indication of the activity. In this way, the process can still be analyzed
partially.

Figure 6: Scenario two activities same label

5.2.2 Timestamps in an event log
The second way of adding a lifecycle of activities is by adding start and/or end timestamps for every
activity, in separate columns. Also if the lifecycle of activities is added in this manner, a scenario
similar to Figure 6 can occur. For the same reasons as mentioned before, this scenario is not
investigated in this thesis, and can, therefore, not be analyzed with the current status of the
algorithm. This kind If both the start and the end timestamp are logged, the following features can
be added:

23

• Throughput time of a case / sequence;
• Waiting time of a case / sequence;
• Operating time of a case / sequence / activity.

If only one timestamp is logged, only the throughput time of the case and sequences can be
measured. The operating time is equal to zero, and, therefore, the waiting time is equal to the
throughput time. Definitely, the operating time is not zero in real-life, therefore, the throughput time
can be seen as waiting time + operating time.

5.3 Attributes in an event log
In this research, a distinction is made between two types of attributes, namely: 1) case attributes and
2) activity attributes (also called event attributes). Case attributes are attributes that remain the same
during the complete case, e.g. the outcome of the case. activity attributes are attributes that are local
to the events and they can get different values at different events (even within a single case), e.g. the
costs associated to an activity or the resource that performed an activity. The different types of
attributes are handled differently.

Case attributes
A case attribute is an attribute that remains the same during the complete case. Different features
can be relevant, depending on the (number of) values that are associated with the attribute. If there
is a limited number of options, e.g. whether the case is about a certain permit or whether
compensation for the school bus is given, one can keep track of the value that is set (e.g.
compensation for school bus). In the remainder of this thesis, these kind of attributes are referred to
as limited attributes. However, it may be the case that there is an unlimited number of different
options available for the attribute, e.g. the costs associated with the complete case can be any
number (i.e. it is a continuous value). It may be relevant to define certain groups of values, for
example, whether the costs are high, medium or low. These kind of attributes are referred to as
unlimited attributes in the remaining of this thesis. This can be done by introducing membership
functions for the attribute for the different groups, and is explained in Section 6.2.

Activity attributes
An activity attribute is an attribute of which the value can change during the lifecycle of a case. The
same features are relevant as the features described for the case attributes. However, if there are a
limited number of distinct values, other relevant features may be:

• Number of distinct values set in a case / sequence;
• Number of times a certain value is set in a case / sequence.

The features above can be used to create sentences like “In most cases, there were many resources
present” or “In most cases, Person A was present many times for the sequence <Send advice, Create
dossier>”, where both features are based on membership functions. However, the membership
functions can be based on either frequencies or percentages of their occurrence, e.g. “there were
many resources if there were more than 2 distinct resources present” for the frequency based version,
or “there were many resources if at least 70% of the activities is performed by different resources” for

24

the percentage based version. When the frequency based version of the features have to be
evaluated for sequences, the user must define a membership function for every sequence. This is
since the length of sequences may differ.

Different types of activity attributes
Not all activity attributes are handled in a similar way. If one wants to analyze, for example, the
column related to the resources, the features explained above can be calculated, e.g. Person A was
present, Person A was present many times or there were many distinct resources. However, imagine
a column that specifies a certain amount of a fine. The amount can be initialized at the generation of
the fine. If the fine is not paid, an amount can be added in an activity Add penalty. This is visualized
in Table 1. The amount related to Add penalty can either be the amount that the fine is raised, as in
Table 1, or the new amount (€130 in the example case).

If the amount has a different meaning, the user may want to specify different membership functions
for the different activities and analyze them separately, e.g. the amount is high if it is higher than
€100 for Create fine, but it is high if it is above €30 for Add penalty. However, it can be the case that
the user wants to evaluate all activities in isolation, but the membership function is the same for all
activities. By looking at all activities in isolation, sentences can be created like “In most cases the
amount was high for add penalty”.

The user does not necessarily want to evaluate all activities in isolation, e.g. if the amount is identified
with the same membership function, the user might only want to see that the amount is high, but is
not interested in a specific activity.

Table 1: The value of the activity ‘Amount’ varies within a case

Case ID Activity Amount (€)
 1 Create fine 100
1 Send fine
1 Add penalty 30

Membership functions are based on numbers, e.g. the costs are high when they are above €100.
However, a value of an attribute can be a string, date, integer, float or boolean [1]. Therefore, when
there is an unlimited number of options for an attribute that is based on strings or dates, no
membership function can be created. For this reason, unlimited attributes that are not based on
numbers, are not in scope for this thesis.

5.4 Combinations of features
There are three kind of perspectives related to event logs, namely: 1) process perspective, 2) case
perspective, and 3) organizational perspective [46]. The process perspective focuses on the control
flow, i.e. certain sequences in the process, the case perspective is related to the case attributes, and
the organization perspective is related to the activity attributes. As described in [46], the different
perspectives are often highly related and cannot be seen in isolation. Therefore, it may be relevant
to analyze a combination of columns, i.e. link the resources to the activities to analyze who performed

25

what activity. Note that a combination can contain more than two columns, i.e. not only link the
resources to the activities but also include the manager that was present.

Limitations
Both columns with an unlimited or limited number of values can be linked. An example of a sentence
that may be relevant for a limited number of values is “In most cases, where Sent on was associated
with Person A, there was a large throughput time”. An example of a sentence that might be relevant
for an unlimited number of options is “In most cases, where Person A was associated with high costs,
there was a large throughput time”. For the scope of this project, it is chosen to only focus on limited
values, since the other case is less likely to be useful. However, the program is designed in such a way
that unlimited attributes can be included easily, by implementing a method that calculates the fuzzy
membership of the combinations.

It is difficult to select the combination of columns automatically, since different combinations are
relevant for different purposes. There can be many columns, so looking at all combinations can result
in both a gigantic set of results that is not useful for the user and a gigantic running time. Therefore,
it may be more efficient if the user selects the combinations that are relevant. By doing so, only
relevant combinations are analyzed and the user is not overloaded with results.

5.5 Relevant features included in the analysis
All features that are selected for this research are summarized in Table 2. In the first column, the
name of the feature is stated. In the second column, the minimal requirements of columns that
should be present in the event log, is stated. In the third column, the method used to measure the
feature is filled. There are two options for this column:

• Membership function: A membership function needs to be defined to specify to what fuzzy
set the value belongs, e.g. “a large throughput time” or “high costs”;

• Boolean: No membership function has to be defined. The feature can be expressed by a
boolean, e.g. the features “Activity = Register appeal” or “Resource = Person A” are either true
or false.

Note that the combination of columns is defined with a boolean. It may, however, be the case that
one or more columns that are used to create the combination are defined by a membership function,
but this case is not covered in this research. In the last column of Table 2, an example feature is
shown. All features that do not focus on sequences are considered as features related to the
complete case.

Table 2: Features in scope of this research

Feature Requirements1 Estimated with Example
Activity performed Boolean The activity ‘Send on’ is

performed
Number of times an
activity is performed

 Membership function The activity ‘Send on’ is
performed many times

Number of activities Membership function Large number of activities

1 The bare minimum, as described in Section 5.1, should always be present and is, therefore, not shown as requirement.

26

Feature Requirements1 Estimated with Example
Number of distinct
activities

 Membership function Large number of distinct
activities

First activity Boolean The activity ‘Register appeal’
is performed as first activity

Last activity Boolean The activity ‘Archive’ is
performed as last activity

Throughput time case One timestamp Membership function Large throughput time
Throughput time sequence One timestamp + sequence Membership function Large throughput time for a

sequence like <Process
decision, Create dossier>

Waiting time case One timestamp Membership function Short waiting time
Waiting time sequence One timestamp + sequence Membership function Short waiting time for a

sequence like <Process
decision, Create dossier>

Operating time case One timestamp + end time Membership function Average operating time
Operating time sequence One timestamp + end time

+ sequence
Membership function Average operating time for a

sequence like <Process
decision, Create dossier>

Operating time activity One timestamp + end time Membership function Average operating time for
the activity ‘Send on’

Value selected –
unlimited case attribute

Unlimited case attribute

Membership function Low risk (where risk is
between 0 and 1)

Value selected –
limited case attribute

Limited case attribute

Boolean Risk = low (where risk is low,
medium or high)

Value selected –
unlimited activity attribute

Unlimited activity attribute Membership function Large costs

Value selected –
limited activity attribute

Limited activity attribute Boolean ‘Person A’ was involved

Number of distinct values
selected, frequency based

Limited activity attribute Membership function Large number of distinct
resources

Number of distinct values
selected, percentage based

Limited activity attribute Membership function Large number of distinct
resources

Number of distinct values
selected for sequences

Limited activity attribute Membership function Large number of distinct
resources for a sequence like
<Process decision, Create
dossier>

Number of times a value is
selected, frequency based

Limited activity attribute Membership function ‘Person A’ is selected many
times

Number of times a value is
selected, percentage based

Limited activity attribute Membership function ‘Person A’ is selected many
times

Number of times a value is
selected for sequences

Limited activity attribute Membership function ‘Person A’ is selected many
times for a sequence like
<Process decision, Create
dossier >

Combination of columns Limited attribute

Boolean Person A performed the
activity ‘Archive’

27

6 Implementation issues concerning features related to the complete case
Chapter 5 discusses what features can be relevant for process data. If someone wants to analyze, for
example, the throughput time, it has to be calculated for all cases. This data is needed every time a
sentence is created about the throughput time, and, therefore, it may be efficient to store all
throughput times in a separate variable. In this chapter, it is discussed in what manner the data can
be stored in an efficient way such that the algorithm does not have to go through the complete
dataset over and over again. This chapter focuses on features related to the complete case. Section
6.1 discusses how all relevant data is stored. However, the generation of sentences is based on a
membership array. To convert the initial array to this membership array, linguistic labels need to be
defined for certain features, explained in Section 6.2. The generation of the membership array is
discussed in Section 6.3. Last, in Section 6.4, some parameters are discussed that can be used to
scope the analysis, such that only relevant aspects are analyzed. Finally, Section 6.5 concludes wat
can be achieved with the logic described in this chapter.

6.1 Create initial array
In the first step, a 𝑛𝑛 𝑥𝑥 𝑎𝑎 array is created, where n is the number of cases and m is the amount of
features that may be relevant. In celli,j, all information about case i is stored that is needed to analyze
feature j. In Table 3, an example of an initial array is shown. In this array, the throughput time of a
case, whether the activity Sent on is performed, and the operating time of Sent on are logged. The
features shown in Table 3 are all handled differently. A distinction is made between three kinds of
values:

• Boolean: In this case the feature can be stored as either True or False for every case. An
example is shown in the second column of Table 3, where Send on is either performed or not;

• Value: In this case a membership function is needed to convert the data to the membership
values. See for example column three of Table 3. For this feature, membership functions need
to be defined to create several sets for the throughput time, e.g. short, average, and large;

• List: These features can have different values for the same case, or may have no values at all.
An example is shown in the fourth column of Table 3. In this column, the operating time of
Send on is logged. This activity may not be present, which results in an empty list (e.g. case 2
or 3). It can also be the case that the activity is present once (e.g. case 4) or more than once
(e.g. case 1). In these cases, the list contains the values of every occurrence.

Table 3: Example initial array

Case ID/feature “Send on” performed Throughput time case Operating time “Send on”
1 True 100 [30, 40]
2 False 30 []
3 False 1 []
4 True 50 [40]
… … … …

28

Table 4 states how all case focused features should be handled (column one and two), where in the
third column an explanation is given, e.g. a formula or why a certain value is chosen. This table
consists of a subset of the features introduced in Table 2.

Table 4: How to handle case focused features

Feature How to
store

Explanation

Activity performed Boolean Activity was present or not.
Number of times an activity is
performed

Value Number of times an activity is performed is logged per activity.

Number of activities Value Number of activities performed in a case.
Number of distinct activities Value Number of distinct activities performed in a case.
First activity Boolean Activity was executed as first event or not.
Last activity Boolean Activity was executed as last event or not.
Throughput time case Value 𝑇𝑇ℎ𝑎𝑎𝑐𝑐𝑓𝑓𝑎𝑎ℎ𝑝𝑝𝑓𝑓𝑡𝑡 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 – 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎.
Waiting time case Value 𝑊𝑊𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑛𝑛𝑎𝑎 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 = 𝑇𝑇ℎ𝑎𝑎𝑐𝑐𝑓𝑓𝑎𝑎ℎ𝑝𝑝𝑓𝑓𝑡𝑡 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 − 𝑂𝑂𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑐𝑐𝑛𝑛𝑎𝑎 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎.
Operating time case Value 𝑂𝑂𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑐𝑐𝑛𝑛𝑎𝑎 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 =

 ∑ 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑦𝑦𝑖𝑖 – 𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑡𝑡𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where n is the

number of activities in the case.
Operating time activity List Activity can be performed multiple times.
Value selected –
unlimited case attribute

Value Case attribute is the same for the complete case.

Value selected –
limited case attribute

Boolean A certain value was logged or not.

Value selected –
unlimited activity attribute

List Multiple values for the activity attribute can be logged for the
same case.

Value selected –
limited activity attribute

Boolean A certain value was logged or not.

Number of distinct values
selected, frequency based

Value Number of distinct values that are logged for the corresponding
attribute for that case.

Number of distinct values
selected, percentage based

Value Number of distinct values that are logged for the corresponding
attribute for that case / number of events within the case.

Number of times a value is
selected, frequency based

Value Number of times a value is logged for the corresponding
attribute for that case.

Number of times a value is
selected, percentage based

Value Number of times a value is logged for the corresponding
attribute for that case / number of events within the case.

Combination of columns - Is done in a later stage to include the possibility to add unlimited
attributes.

6.2 Linguistic label definitions
To be able to create sentences like “In most cases there was a large throughput time”, linguistic labels
need to be defined, e.g. a large throughput time. In this thesis, trapezoidal functions are used to
define the fuzzy sets, which are commonly used to model fuzzy sets [47] and are easy to understand.
A trapezoidal function is defined with five parameters: a label, point a, point b, point c and point d.
These points indicate the boundaries of the trapezoidal function.

29

An example of a trapezoidal function is shown in Figure 7. It can be seen that values smaller than
point a or values greater than point d lead to 0 membership. Values between point b and point c lead
to a membership of 1 and other values lead to a membership between 0 and 1, summarized in the
following formula [48]:

𝑓𝑓(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑥𝑥 ≤ 𝑎𝑎
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

, 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1, 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐

, 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑

0, 𝑑𝑑 ≤ 𝑥𝑥

 (32)

This formula can also be written as:

 𝑓𝑓(𝑥𝑥;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑) = max �min �
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

, 1,
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐

� , 0� (33)

Figure 7: Trapezoidal function

In the scenario shown above, all points have unique values. However it can be the case that one or
more points overlap. Some possible cases are shown in Figure 8. If point b = point c (upper left case),
a so-called triangular function is obtained, where only one specific point returns a membership of 1.
This could be used for labels like ‘Around 3’. If point c = point d (upper right case), a specific upper
bound is set and if point a = point b (left bottom case), a specific lower bound is set. The last case is
if point a = point b and point c = point d (right bottom case), where both an upper and lower bound
are crisp.

30

Figure 8: Trapezoidal function cases

Many times, multiple membership functions are used for a single feature, e.g. short, average and
large for the throughput time. An example setting of membership functions for the throughput time
is shown in Figure 9. It can be seen that the throughput time is, for example, short with a membership
of 1 if the throughput time is in between 0 and 2 and average with membership of 1 when it is in
between 4 and 7. If the throughput time is for example 3, it is short with a membership of 0.5, average
with a membership of 0.5 and large with a membership of 0.

Figure 9: Example of membership functions for the throughput time

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10

Example membership functions for
the throughput time

Short Average Large

31

6.3 Create membership array using linguistic labels
After all linguistic labels are defined, the membership array is created. The membership array is
a 𝑛𝑛 𝑥𝑥 ∑ (𝑎𝑎𝑖𝑖 ∗ #𝑎𝑎𝑓𝑓𝑖𝑖)𝑚𝑚

𝑖𝑖=1 array, in which n is the number of cases and #𝑎𝑎𝑓𝑓𝑖𝑖 the number of membership
functions defined for feature 𝑎𝑎𝑖𝑖. For example, if the membership functions short, average and large
are defined for the throughput time, these are all stored as separate, new, features. The membership
array must only contain the membership, of every feature, to each case. To achieve this, the initial
membership is converted by use of the membership functions. The three kind of values defined in
Section 6.1 are all handled differently:

• Boolean: These values already contain the membership and can, therefore, be copied into the
membership array without any transformation;

• Value: These values can be transformed using the membership functions defined by the user, e.g.
when the throughput time is analyzed and the three membership functions short, average and
large are defined, the membership values to all functions are stored in the membership array;

• List: These values can also be transformed using the membership functions defined by the user.
The only change is that this list can contain any number of values. For every value, the
membership against all functions is calculated and the maximum value for every feature is stored.
For example, if the operating time of the activity Send on is analyzed, where Send on can occur
multiple times within one case, the membership to all fuzzy sets, of that feature, is calculated for
every operating time of that activity. For every case, the maximum value for every feature is
stored.

The three scenarios, explained above, are visualized next. Table 5 defines the membership functions
for the features introduced in Table 3 (throughput time and operating time of “Send on”), e.g. a
throughput time between 0 and 20 days is considered as short, and a throughput time between 20
and 40 days is partly short and partly average. These membership functions are visualized in Figure
10, and can be used to create the membership array, shown in Table 6. The feature “Send on”
performed is either True or False, and is, therefore, depicted as 0 (False) or 1 (True). The other
membership values are calculated using the membership functions, e.g. a throughput time of 30
results in a membership of 0.5 for a “Short TT”, using equation (33):

𝑓𝑓(30; 0,0,20,40) = max �𝑎𝑎𝑐𝑐𝑛𝑛 �
30 − 0
0 − 0

, 1,
40 − 30
40 − 20

� , 0� = 0.5

Table 5: Example linguistic labels for conversion (TT = throughput time, OT = operating time)

Feature Label Point a Point b Point c Point d
Throughput

time case
(in days)

Short TT 0 0 20 40
Average TT 20 40 60 70

Large TT 60 70 100 100
Operating time

“Send on”
(in days)

Short OT 0 0 20 40
Average OT 20 40 60 70

Large OT 60 70 100 100

32

Figure 10: Example membership functions Throughput time case and Operating time “Send on”

Table 6: Example feature conversion (TT = throughput time, OT = operating time)

Case ID/
Feature

“Send on”
performed

Short TT Average TT Large TT Short OT Average
OT

Large OT

1 1 0 0 1 0.5 1 0
2 0 0.5 0.5 0 0 0 0
3 0 1 0 0 0 0 0
4 1 0 1 0 0 1 0
… … … … … … … …

In addition, the combinations of features can be taken into account in this phase. To store the
combinations, the algorithm loops over the data and stores the membership of every combination.
Consider, for example, the combination between activities and resources, to find out which resource
performed what activity. Every unique combination can be seen as a separate feature, e.g. when
there are three activities (Activity A, Activity B and Activity C) and two resources (Person A, Person
B), the resulting set of features is: <|Activity A||Person A|>, <|Activity A||Person B|>, <|Activity
B||Person A|>, <|Activity B||Person B|>, <|Activity C||Person A|>, and <|Activity C||Person B|>,
where <|Activity A||Person A|> means that Person A performed Activity A. For every case it can be
stored whether these combinations occurred. As discussed in Section 5.4, no unlimited attributes are
considered. If unlimited attributes are taken into account, the fuzzy sets can be considered as values
for one feature (e.g. low costs, average costs or high costs). The minimal membership value of the
features can be set as membership of the combination, e.g. if the costs are low with a membership
of 0.7 and Person A performed that activity, the membership to the combination <low costs|| Person
A|> is 0.7.

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Throughput time case / Operating time "Send
on"

Short Average Large

33

6.4 Relevant parameters for linguistic summarization
Depending on what the user wants to evaluate, different aspects need to be analyzed. In Chapter 3
and 5 various protoforms and features are discussed that can be used for different purposes,
respectively. If everything is analyzed, both the running time and the amount of results will be
gigantic. Therefore, a smart selection has to be made in what analysis to perform. Since the selection
of the protoforms and features highly depends on both the process and what the user wants to
evaluate, these have to be selected manually. Next to the selection of protoforms and features, more
parameters exist that have an influence on the analysis. This section focuses on relevant parameters
that can be useful for the analysis, namely:

• Quantifiers of linguistic summaries;
• Minimal truth value;
• Maximum number of summarizers;
• Maximum number of qualifiers;
• Degree of focus.

These parameters are described below. Additional parameters, that may be relevant for the analysis
of sequences, are discussed in Section 7.1.

Quantifiers of linguistic summaries
All linguistic summaries contain a quantifier, e.g. “In most cases there was a large throughput time”
or “In almost all cases there was Person A involved”. As discussed in Section 2.1, only relative
monotonically non-decreasing quantifiers [30] such as many, most or almost all are used. The
quantifiers can be seen as fuzzy sets and are defined by use of trapezoidal membership functions, as
explained in Section 6.2. An example setting of the quantifiers is visualized in Figure 11.

Figure 11: Example quantifier setting

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Example quantifier setting

Many Most Almost all

34

Minimal truth value
Since fuzzy sets are used to define the quantifiers, one can calculate the membership of a value to
one or multiple sets of the same feature. Consider the case that the quantifiers introduced in Figure
11 are used and the sentence “In Q cases there was Sent advice” is validated, where Sent advice is
performed in 60 % (0.60) of the cases. This scenario is visualized in Figure 12. If Q is Many, the truth
value of the sentence is 1; if Q is Most, the truth value is 0.6; and if Q is Almost all, the truth value is
0. A minimal truth value is introduced to determine if a sentence is valid. If this minimal truth value
is set to 0.7, only the sentence with quantifier Many is true. However, if the minimal truth value is
set to 0.5, both the sentence with quantifier Many and the sentence with quantifier Most are true.
The first scenario is shown in Figure 12, where the minimal truth value is shown as the yellow dotted
line and the blue dotted line represents a fuzzy proportion of P elements (0.60 in the case explained
above). A certain quantifier is marked as valid for a certain feature if the membership function crosses
the value (the black dotted line) above the minimal truth value (the yellow dotted line).

Figure 12: Quantifiers in combination with a truth value

Maximum number of summarizers
The summarizer of a sentence can focus on multiple features of a dataset, e.g. the sentence “In most
cases, there is a large throughput time and Person A is involved” is about both the throughput time
and the involvement of Person A. If too many features are added to the summarizer, the sentence
might still have a large truth value, but is not understandable for the human mind. By setting a
maximum number of features, sentences that contain too many features for the summarizer can be
filtered.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Quantifiers with truth value

Many Most

Almost all Minimal truth value

Example value

35

Maximum number of qualifiers
A qualifier of a sentence can also be about multiple features of a dataset. The condition of the
sentence can be made more specific by adding more features to the qualifier. This might be very
interesting if one is, for example, looking why there is a large throughput time, e.g. “In almost all
cases, when there were many resources present and Person A performed task X, there was a large
throughput time” can give indications why the throughput time is large. However, similar to the
summarizers, when too many features are added to the qualifier, the sentence might have a large
truth value, but is not understandable for the human mind. Therefore, one can choose to set a
maximal number of features that are contained in the qualifiers.

Degree of focus
This parameter is also related to the qualifiers. Some sentences might be valid, but are still not
preferred by the user. Imagine the case that Person A performed Create dossier once, because Person
B was ill that day. Since Person A was not trained for the task Create dossier, the operating time was
larger than normal. A sentence “In almost all cases, where Person A performed Create dossier, the
operating time was large” is true for this case, but might be unwanted, since it can be considered as
an exception. The degree of focus can be set to filter out such cases, by setting a minimal threshold
of the part of the cases that must satisfy the condition.

6.5 Usability of features related to the complete case
Using the logic described in this chapter, a membership array can be created that focuses on features
related to the complete case. This membership array is needed as input for the generation of
sentences, described in Chapter 8, and is used to generate sentences like “In most cases, there is a
large throughput time”, “In almost all cases, when Person A performed Send on, there was a large
throughput time”, or “In almost all cases, when there was a short throughput time, there was an
average throughput time for Send on”. In addition, some parameters are introduced, that can be used
to scope the analysis, such that only relevant aspects are analyzed, e.g. discard a sentence if the
condition is to specific or if it contains to many features for the summarizer. Since only relevant
aspects are analyzed, the running time is decreased. However, the control-flow perspective of an
event log can also be considered, by looking at sequences that occur, or at certain aspects of such a
sequence. This is investigated in next chapter.

36

7 Implementation issues concerning sequences
In the previous chapter, it is discussed how features related to the complete case are handled. One
may also be interested in the analysis of sequences. However, other features are relevant if
sequences are analyzed. In addition, event logs can contain many sequences. If all sequences are
analyzed, both the running time and the resulting set of sentences can be gigantic. In this chapter, it
is discussed how sequences are handled in this thesis. Section 7.1 discusses some parameters that
can be used to select only relevant sequences. After the relevant sequences are selected, there may
still be many sequences left. Section 7.2 discusses how these sequences can be grouped together,
such that sentences can be made focusing on a group of sequences. Section 7.3 discusses how the
case focused protoforms related to the containment of sequences are handled, to get a high level
overview of paths that are taken, or to determine the influence of certain sequences to other
features. In addition, one can investigate in certain aspects of a sequence, e.g. the throughput time
of a sequence, which is discussed in Section 7.4. Finally, Section 7.5 concludes what can be achieved
with the logic described in the chapter.

7.1 Parameters for sequences
This section discusses the parameters that can be relevant when sequences are analyzed, namely:

• Maximum length of a sequence;
• Threshold sequence occurrences;
• Comparison method.

Next, the parameters are described in more detail.

Maximum length of a sequence
The sentence “Most cases contain a sequence like <Send advice, Create dossier, Process decision>” is
very easy to understand and can therefore be useful for the user, to get a high level overview of the
process flow. However, when analyzing longer sequences, the length of the sentences increases and
they may be harder to understand, and are, therefore, less useful for the user. There may be cycles
in the process, which can result in sentences like “Most cases contain a sequence like <Send advice,
Create dossier, Send advice, Create dossier,…>”. By use of a maximum length of a sequence, the user
is able to select what may be worth to analyze.

Threshold sequence occurrences
Not all paths are taken frequently. Some cases may go wrong and result in exceptional paths that are
taken. Since one probably does not want to analyze every exceptional case, a threshold can be set
for the frequency of a sequence. In this way, sequences that only occurred a few times can be
discarded. This parameter is not equal to the degree of focus, since sequences are clustered, and
sentences are created about the complete cluster. This is further explained in the next section.

Comparison method
Since there may be many relevant sequences that are worth analyzing, one may be interested in the
clustering of sequences. In this thesis, sequences are clustered based on similarity. The similarity

37

between sequences is measured using the Levenshtein distance [49], also known as the string-edit
distance. This distance is equal to the minimal number of character edits needed to go from one
string to the other one, e.g. the Levenshtein distance between “ABC” and “ABD” is 1, Since they are
equal when “D” is replaced by “C”. The similarity between two strings is equal to:

 𝑠𝑠𝑐𝑐𝑎𝑎𝑥𝑥,𝑦𝑦 = 1 −
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠ℎ𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛(𝑥𝑥,𝑦𝑦)

(max (𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑥𝑥), 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑦𝑦))
 (34)

Where Levenshtein(x, y) is the Levenshtein distance between x and y and length(x) is the number of
characters of x.

The relevance of a sequence can be measured by calculating the average membership to all cases. A
sequence can be added to the set of relevant sequences, if enough cases contain similar sequences.
Consider, for example, the sequence “ABC” and the case “ABDCE”. The membership of this sequence
to the case “ABDCE” can be determined by calculating the maximal similarity to all subsequences of
that case, illustrated in Table 7. To get the membership of sequence “ABC” to the case “ABDCE”, the
similarity of “ABC” already needs to be checked against ten sub-sequences. When cases get longer,
the amount of comparisons that need to be made grows exponentially and, therefore, also the
running time.

Table 7: Similarity between sequence "ABC" and case "ABDCE"

Subsequence of
“ABDCE”

Similarity to “ABC”
(using (34))

AB 2/3
BD 1/3
DC 1/3
CE 0

ABD 2/3
BDC 1/3
DCE 0

ABDC 3/4
BDCE 1/4

ABDCE 2/5

To deal with the problem mentioned above, one can choose to trade quality for running time. Four
methods are introduced that can be chosen for measuring the membership to all cases:

• Full search;
• Double length;
• Maximal own length;
• Own length.

These methods are discussed next in more detail.

38

When the full search method is used, the corresponding sequence is compared with all other
sequences that can return a higher similarity. Consider two sequences: sequence1 and sequence2.
When calculating the membership of sequence1, sequence2 only has to be considered when:

 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎2) ≤ 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎1)2 − 1 (35)

When the double length method is used, sequence1 is only compared to sequence2 if:

𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎2) ≤ 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎1) ∗ 2
(36)

Using this method, most relevant sequences are validated. Note that only exceptional cases can give
a higher membership value, if their length is longer. If this is the case, the membership value does
not change that much and, therefore, will probably not have a big influence on the result. For
example, when checking the similarity of the sequence “ABC” to the case “ADDBDDC”, the Double
length method results in a membership of 1/3 (e.g. “ABC” vs “ADD”), and the Full search method
results in a membership of 3/7 (compare “ABC” with complete case). Note that this is an exceptional
case, and still the membership does not change that much.

One can also choose to use the method maximal own length. For this method, sequence1 is only
compared to sequence2 if:

 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎2) ≤ 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎1) (37)

This method can result in different sequences that are deemed relevant, since no sequences are
validated that are longer than the sequence in consideration. However, when one wants to get a high
level overview of the relevant sequences, this method can be sufficient.

The last method, own length, is to compare sequences only to sequences of their own length. For
this method, sequence1 is only compared to sequence2 if:

 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎2) = 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎1) (38)

This method is useful if one does only want to consider sequences of the same length. However, if
the sequence is longer than a certain case, it is not possible to check the sequence against its own
length. In this case, the case is extended with some ‘slack’ activities that did not occur in the log, such
that the similarity can be calculated.

7.2 Cluster sequences
This section focuses on the clustering of sequences, such that sentences can be created about the
complete cluster. Clusters can be generated using several methods. The clustering of similar
sequences is based on the Levenshtein distance, similar as in [24]. First, the relevant sequences are
obtained, which are used to build the clustering on. As a final step, a representation is chosen for
every cluster. These steps are elaborated next.

39

1) Get relevant sequences
In Section 7.1, three parameters are introduced that can be used for selecting relevant sequences.
The first parameter (the length of a sequence) and second parameter (the occurrence of a sequence),
can easily be calculated per sequence, and are used to filter sequences that exceed the length or
have a too low occurrence, respectively. The third parameter (the comparison method) is used as a
scope, to get the average membership of a sequence to a case. The occurrence of a sequence is crisp
(i.e. it is either present or not), and the membership of a sequence is fuzzy, e.g. sequence “ABC” has
got a membership of 0.75 to the case “ABDCE”, as shown in Table 7.

To make the calculation of the average membership of every sequence to all cases as efficient as
possible, variables are stored and used in an efficient manner. Three lists are created for this purpose:

• The first list contains a subset of all sequences of the event log. This list is filtered on the
length of a sequence, where the maximal length is set to the maximal length which can be
relevant for the comparison, e.g. 𝑎𝑎𝑎𝑎𝑥𝑥𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ 𝑐𝑐𝑓𝑓 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎2 − 1 for the method ‘full
search’ or 𝑎𝑎𝑎𝑎𝑥𝑥𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ 𝑐𝑐𝑓𝑓 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 ∗ 2 for the method ‘double length’;

• Another list is stored that contains all unique traces of complete cases, together with the
information of the number of cases that are built of this trace;

• The last list is used to store what sequence is contained in which trace.

After the lists are created, membership values can be calculated using Algorithm 1. First the
membership of all sequences to all other sequences, to which they need to be compared to, is
calculated. Whether a sequence needs to be compared, depends on the length of the sequence, and
the comparison method chosen, described in previous section. The maximal membership is stored
per trace, since all cases with the same trace can be treated similar. If one chooses to only compare
against the own length of the sequence, the similarity to traces that are shorter than the sequence is
not calculated, since the trace contains no relevant subsequences. As output of this algorithm, the
average membership to all cases is returned. A sequence is kept if a quantifier returns a membership
greater than the minimal truth value for the average membership.

Consider the sequence “ABCDE” and the case “FBGHI”. The similarity between the sequence and case
is equal to 0.2. However, B is the only activity in common. For this reason, membership values lower
or equal to 0.2 are considered as noise and are removed from the analysis. The remaining values are
normalized again (line 23). The chosen value is selected by performing experiments, and can be
adjusted. Nevertheless, experiments show that more relevant sequence are obtained using this
method.

40

2) Create a clustering
After all relevant sequences are extracted, the sequences can be clustered, using different methods.
In this thesis, the distance matrix is used, where the distance between every sequence is stored. The
distance matrix is referred to as D and is calculated as:

𝐷𝐷𝑥𝑥,𝑦𝑦 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠ℎ𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛�𝑠𝑠𝑎𝑎𝑠𝑠𝑥𝑥, 𝑠𝑠𝑎𝑎𝑠𝑠𝑦𝑦�
(max (𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑥𝑥), 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡ℎ(𝑠𝑠𝑎𝑎𝑠𝑠𝑦𝑦))

 (39)

Where Levenshtein(x,y) is the Levenshtein distance between sequence x and y. This distance matrix
can be used to create a hierarchal clustering, using the linkage method of the scipy package [50],
where different methods can be used to create a different clustering, that are all based on different
algorithms. This hierarchal clustering can be used to form flat clusters, using the fcluster method
from the scipy package [51].

To validate the created clusters, the Correlation Cluster Validity (CCV) indices based on Pearson and
Spearman correlations are used [52]. This method is chosen since it is able to validate the clustering
results fully automatic. Also it is shown to produce similar results to other methods [24]. Other
methods that can be considered are, for example, a visual based method based on VAT or iVAT [53],
[54], or other methods, e.g. Davies-Bouldin [55] or Xie-Beni [56].

Algorithm 1 Calculating membership of sequence to all cases
1: parameters:
2: seq is sequence that is validated
3: sequences is the list of relevant sequences
4: uniqueTraces is list of unique traces and their occurrence
5: seqTrace is a list to store what sequence is contained in what trace
6: nrOfCases is the number of cases in the event log
7: comparisonMethod is the method used to determine whether a sequence needs to be compared
8:
9: traceMembership = {}

10: for sequence in sequences do
11: if needToBeCompared(sequence, seq, comparisonMethod) then
12: similarity = Levenstein(sequence, seq)
13: for trace in seqTrace[sequence] do
14: traceMembership[trace] = max(traceMembership[trace], similarity)
15: end for
16: end if
17: end for
18:
19: sumMem = 0
20: for trace in uniqueTraces do
21: if traceMembership[trace] is not calculated then
22: similarity = Levenstein(trace, seq)
23: end if
24: sumMem += trapezoidal(traceMembership[trace], 0.2, 1, 1, 1) * uniqueTraces[trace]
25: return sumMem / nrOfCases

41

As part of the CCV indices, the dissimilarity matrix is calculated from the partition matrix. The formula
for the dissimilarity matrix is stated as follows:

𝐷𝐷(𝑈𝑈) = [1]𝑛𝑛 − �

𝑈𝑈𝑇𝑇𝑈𝑈
𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖,𝑗𝑗(𝑈𝑈𝑇𝑇𝑈𝑈)𝑖𝑖,𝑗𝑗

� (40)

In this formula is [1]𝑛𝑛 a 𝑛𝑛 𝑥𝑥 𝑛𝑛 matrix that contains only 1’s, where n is the number of sequences
present in the event log, and U the partition matrix. In this thesis, the Pearson Correlation Cluster
Validity (CCVP) Index is used. Another approach is to use Spearman’s (rho) Correlation Cluster Validity
(CCVS) Index. The program is built such that additional methods can be implemented easily.

Both methods compare the dissimilarity matrix (D(U)) to the distance matrix (D). The CCVP method
is based on the linear relationship between these matrices, where the CCVS method uses the
monotonic relation between the relative ranks. The CCVS method is less sensitive to outliers and is,
therefore, more robust than CCVP. Both methods return a value between -1 and 1, where the results
is -1 if the dissimilarity matrix and distance matrix are not correlated, and 1 if the dissimilarity matrix
and distance matrix are correlated. The methods can be calculated as follows:

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐷𝐷,𝐷𝐷(𝑈𝑈)� =

∑ ∑ 𝐴𝐴𝑖𝑖,𝑗𝑗𝐴𝐴𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

�∑ ∑ 𝐴𝐴𝑖𝑖,𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 �∑ ∑ 𝐴𝐴𝑖𝑖,𝑗𝑗2𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

 (41)

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐷𝐷,𝐷𝐷(𝑈𝑈)� = �1 −

6
𝑛𝑛3 − 𝑛𝑛

���𝐷𝐷𝑖𝑖,𝑗𝑗 − 𝐷𝐷(𝑈𝑈)𝑖𝑖,𝑗𝑗�
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

� (42)

Where 𝐴𝐴𝑖𝑖,𝑗𝑗 = �𝐷𝐷𝑖𝑖,𝑗𝑗 − 𝐷𝐷𝑖𝑖,𝑗𝑗�, 𝐴𝐴𝑖𝑖,𝑗𝑗 = �𝐷𝐷(𝑈𝑈)𝑖𝑖,𝑗𝑗 − 𝐷𝐷(𝑈𝑈)𝑖𝑖,𝑗𝑗� , 𝐷𝐷 is a matrix in which every entry is the
average value of 𝐷𝐷 and 𝐷𝐷(𝑈𝑈) is a matrix in which every entry is the average value of 𝐷𝐷(𝑈𝑈).

Both the needed amount of clusters and the best clustering method highly depend on the process
and are, therefore, not known by the algorithm. Therefore, the clustering is made for any relevant
number of clusters and for any method. The minimal number of clusters is 1 (where all sequences
are within one cluster) and the maximal number of clusters is equal to the number of sequences
(where every cluster contains only one sequence). Since the CCV method is able to validate the
created clusters automatically, the best combination of the number of clusters and the clustering
method can be selected.

3) Select representation for the chosen clusters
After the correct clustering is created, a representation has to be selected for every cluster. The
medoid sequence is chosen as the representation, since this sequence is, on average, closest to all
other sequences [24]. The distance to all other sequences within the same cluster can be calculated
using the distance matrix D, calculated in Step 2). For some clusters, multiple sequence can serve as
medoid. In such case the shortest sequence is chosen for readability of the linguistic summaries.

42

7.3 Contain sequence like ABC
Protoform (8) - (11) are about the containment of sequences. A new membership array is created to
be able to create sentences, related to this topic. This membership array is a 𝑛𝑛 𝑥𝑥 𝑎𝑎 array, where n is
the number of cases and m is the number of clusters. In cell i,j, the membership of cluster j, to case
i, is stored. The membership of a cluster within a case can be calculated using different methods.
Since the medoid is closest to all relevant sequences within one cluster, it can be used to perform
calculations. In this way the clustering is taken into account indirectly, since the medoid uses the
sequences within that cluster. Another approach would be to use the clustering results directly and
perform the calculations on all sequences within one cluster. In this case, the medoid only serves as
the representation.

For both approaches, one can choose to define the membership either fuzzy or crisp. The methods
are illustrated in the following example:

Consider cluster “ABC” that consists of the sequences “AC”, “ABC” and “ACBD” and a case that consist
of the trace “ACBD”.

• When calculations are made using the medoid and a crisp approach is used, the membership
to the case is 0, since “ABC” is not contained;

• When calculations are made using all sequences and a crisp approach is used, the
membership to the case is 1, since “AC” is contained;

• When calculations are made using the medoid and a fuzzy approach is used, the membership
to the case is 2/3, since this is the similarity between sequence “ABC” and “AC”;

• When calculations are made using all sequences and a fuzzy approach is used, the
membership to the case is again 1, since “AC” is contained.

Note that, if the crisp method returns a membership of 1, the fuzzy method will also return 1.
However, if the crisp method returns a membership of 0, the fuzzy method returns a value in-
between 0 and 1.

When calculations are made using the medoid, sentences may be easier to understand, since one
does not need to know all sequences that are contained within a cluster. However, if the medoid is
chosen, the clustering results are taken into account indirectly. When using all sequences in
combination with the fuzzy method, the sentences can become (almost) untraceable (i.e. it is not
known where the sentence is based on). In this thesis, it is chosen to perform the calculations for all
sequences in combination with a crisp approach. This method is chosen, since the clustering is shown
to the user, and the user is able to choose other clustering methods. Since the user has to decide on
the clustering, it may be expected that those results are taken into account directly. In addition, it is
easier to trace the sentences, features can be calculated more easily, since the fuzzy aspect does not
need to be taken into account for every feature, which has got a great influence on the running time.

43

7.4 Sequence like ABC was Ps
The last protoforms that are in the scope of this thesis are the sequence focused protoforms ((12) -
(15)). For these protoforms a different set of features is relevant. Sentences like “In most cases, the
activity Process decision was performed for a sequence like <Process decision, Create dossier>”
provide non-trivial information and, therefore, they do not have to be analyzed. A new set of features
is introduced, that are relevant for sequence focused protoforms. This set is a subset of the features
introduced in Table 2 and is shown in Table 8. Column 2 is based on the same values, discussed in
Section 6.1. The last column shows an explanation for the given feature.

The throughput time, waiting time and operating time must be normalized based on the length of a
sequence, since sentences are based on the complete cluster. Consider, for example, the cluster
<Process decision, Create dossier>. If the sequence <Process decision, Create dossier, Archive> is also
contained in this cluster, the throughput time, waiting time and operating time are possibly larger
for this sequence, since more activities are executed. To mitigate this effect, the times are normalized
based on the length of the sequence.

For sequence focused protoforms no case attributes are analyzed, since they are equal for the
complete case. A sentence like “In most cases, that contain a sequence like <Process decision, Create
dossier>, there was Request building permit for ‘Reason’” gives the same information as “In most
cases, there was Request building permit for ‘Reason’ for a sequence like <Process decision, Create
dossier>”.

In this thesis, it is chosen to base the feature ‘number of distinct values selected for sequences’ and
the feature ‘number of times a value is selected for sequences’ on their percentage based versions,
introduced in Table 4. As discussed in Section 5.3, membership functions need to be constructed for
every sequence if the frequency based version is used, since this version is length specific. The
percentage based version adapts to the length and needs, therefore, less user interaction, while
providing similar results.

Table 8: features for sequence focused protoforms

Feature How to
store

Explanation

Throughput time sequence List Throughput time of every sequence of the cluster, that is present
in the case, is stored and normalized on length.

Waiting time sequence List Waiting time of every sequence of the cluster, that is present in
the case, is stored and normalized on length.

Operating time sequence List Operating time of every sequence of the cluster, that is present
in the case, is stored and normalized on length.

Value selected –
unlimited activity attribute

List Multiple values for the activity attribute can be logged for the
same case.

Value selected –
limited activity attribute

Boolean A certain value was logged or not.

Number of distinct values
selected for sequences

List Different number of distinct values can be logged for the
different sequences in the cluster.

Number of times a value is
selected for sequences

List Different values can be logged for the different sequences in the
cluster.

44

7.5 Usability of features related to sequences
This chapter describes how sequences are analyzed in this thesis. Using the logic described in this
chapter, the membership of features related to sequences can be calculated, and the membership
arrays for the containment of sequences and the membership array for sequence focused protoforms
can be created. These membership arrays can be used in the generation of sentences, described in
the following chapter, and are used to generate sentences like “Most cases contain a sequence like
<Create dossier, Process decision>” or “Most cases contain, that contain a sequence like <Register
appeal, Confirm reception>, contain a sequence like <Create dossier, Process decision>” for the
membership array related to the containment of sequences, and “In most cases, there was a large
throughput time for a sequence like <Create dossier, Process decision>” or “In most cases, when there
was a large throughput time for a sequence like <Create dossier, Process decision>, there was Person
A involved for a sequence like <Register appeal, Confirm reception>” for the membership array
related to the sequence focused protoforms. In addition, the membership arrays created in this
chapter can be used in combination with the membership array that focuses on features related to
the complete case, discussed in Chapter 6, to generate sentences like “Most cases, where Person A
performed Register appeal, contain a sequence like <Create dossier, Process decision>” or “In almost
all cases, when there was a large throughput time for a sequence like <Create dossier, Process
decision>, there was a large waiting time”.

45

8 Generating linguistic summaries
In previous chapters, it is discussed what features may be relevant for the analysis of processes, what
parameters can be set, and how the data can be converted into a format that can be used in the
algorithm created. As a final part of the program, linguistic summaries are created focusing on the
process. The input for this part of the algorithm, is one membership array for the summarizers, one
membership array for the qualifiers, and parameters (e.g. the degree of focus) that need to be taken
into account. In this chapter, it is discussed how all protoforms, that are in the scope of this thesis,
are handled. Section 8.1 describes how sentences are created and Section 8.2 elaborates on the
pruning of these sentences, to discard sentences that are not relevant for the user.

8.1 Sentences generated by the algorithm
Table 9 shows what input is needed for what protoform. The membership arrays are either based on
the membership array for the features related to the complete case (Section 6.3), the membership
array for the containment of sequences (Section 7.3), or the membership array for sequence focused
protoforms (Section 7.4). In column two of Table 9, the section numbers are used to indicate which
membership array is used for the summarizers and which membership function is used for the
qualifiers. Note that the membership array for the summarizers can be equal to the membership
array for the qualifiers. However, the features of the summarizer cannot be used in the qualifier and,
vice versa, the features of the qualifiers cannot be used in the summarizer. This is done to avoid
sentences like “In most cases, where there was a large throughput time, there was a large throughput
time”.

In Section 6.4 and 7.1, parameters are introduced that can be relevant for the analysis of processes.
Different parameters are needed for every protoform, e.g. the degree of focus is not needed when
no qualifier is used. An overview of the parameters needed for every protoform is shown in Appendix
D. For the protoforms related to sequences, the maximum number of summarizers and/or the
maximum number of qualifiers is set to one. This is done for the simplicity of the sentences.

Table 9: Input per protoform

Protoform Input Comment
Protoform (6): In Q cases, there was P P: 6.3

R: -

Protoform (7): In Q cases, when condition
R was fulfilled, there was P

P: 6.3
R: 6.3

Features in the summarizer are not
contained in the qualifier for the same
sentence

Protoform (8): Q cases contain a
sequence like ABC

P: 7.3
R: -

No more than one summarizer

Protoform (9): Q cases, when condition R
was fulfilled, contain a sequence like ABC

P: 7.3
R: 6.3

No more than one summarizer

Protoform (10): In Q cases, that contain a
sequence like ABC, there was P

P: 6.3
R: 7.3

No more than one qualifier

46

Protoform Input Comment
Protoform (11): Q cases, that contain a
sequence like ABC, contain sequence like
XYZ

P: 7.3
R: 7.3

Features in the summarizer are not
contained in the qualifier for the same
sentence
No more than one summarizer/ qualifier

Protoform (12): In Q cases a sequence
like ABC was PS

P: 7.4
R: -

No more than one summarizer

Protoform (13): In Q cases, when
condition R was fulfilled, a sequence like
ABC was PS

P: 7.4
R: 6.3

No more than one summarizer

Protoform (14): In Q cases, when a
sequence like ABC was RS, there was P

P: 6.3
R: 7.4

No more than one qualifier

Protoform (15): In Q cases, when a
sequence like ABC was RS, a sequence like
XYZ was PS

P: 7.4
R: 7.4

Features in the summarizer are not
contained in the qualifier for the same
sentence
No more than one summarizer/ qualifier

The generation of the sentences is based on [57] and is explained in three algorithms, explained next:
Algorithm 2, Algorithm 3 and Algorithm 4,. Algorithm 2 is the main method. If a qualifier is needed
(depending on the protoform), all possible qualifiers are calculated using Algorithm 3. For every
possible qualifier, the membership array, used to find the summarizers, is converted such that it
conforms to the qualifiers set. Valid summaries are detected, using Algorithm 4. After creating all
sentences, the resulting set can be pruned, e.g. the sentence “In most cases, there is a large
throughput time” is a subset of the sentence “In most cases, there is a large throughput time and
Person A is involved” and can, therefore, be pruned.

Example: One wants to analyze the appeal dataset, and focuses on analyzing protoform (7). Chapter
6 describes how the membership array is constructed for this protoform (the membership array for
the summarizer and qualifier are equal for this protoform). For this protoform, a qualifier is needed,
and, therefore, first all qualifiers are determined using Algorithm 3. In this algorithm, it is determined
which features can be used as a qualifier, based on the degree of focus. If the degree of focus of, for
instance, the feature ‘a short throughput time’ is not high enough, the feature ‘a short throughput
time and Person A was involved’, does not have to be validated, since the degree of focus can only
decrease if new features are added. After all qualifiers are determined, the summarizers can be
determined. First, the membership array is converted such that it conforms to the qualifier set, e.g.
if the qualifier is ‘high throughput time’, and the membership of a certain case to this feature is 0.5,
the membership all features is set to a maximum of 0.5 for that case. After the array is converted, it
can be used to find the summarizers, using Algorithm 4. In this algorithm, every relevant (set of)
feature(s) is validated, that can return a valid statement, e.g. if no quantifier is true for the feature
‘low waiting time’, the feature ‘low waiting time and Person A was involved’ does not have to be
validated, since the truth value can never increase by adding features. Finally, if all summarizers are
found, they can be pruned, e.g. if both the summarizer ‘large throughput time’ and ‘large throughput

47

time and Person A is involved’ are valid for the same quantifier (e.g. ‘most’) and qualifier (e.g. ‘large
waiting time’), the first summarizer can be discarded, since it does not provide any additional
information. The summarizers left can be used in the generation of the sentences, by filling the
protoform, e.g. if the summarizer ‘large throughput time’ is valid for the quantifier ‘most’ and
qualifier ‘large waiting time’, the sentence “In most cases, when there was a large waiting time, there
was a large throughput time” is generated.

Algorithm 2 Generate sentences
1: parameters:
2: memP is the membership array for the summarizers
3: memR is the membership array for the qualifiers
4: quantifiers is an ordered list of relevant quantifiers
5: minTruth is the minimal truth value
6: maxLenP is the maximum number of summarizers
7: maxLenR is the maximum number of qualifiers
8: degreeFoc is the degree of focus
9: nrOfCases is the number of cases in the event log

10: needQualifier is a Boolean shows whether a qualifier is needed
11: protoform is the protoform to be analyzed
11:
12: sumAndQual = {} //Used to store summarizers for given qualifier
13: if needQualifier do
14: possR = findPossibleQualifiers(memR, maxLenR, degreeFoc)
15: for qualifier in possR do
16: newMemP = setR(qualifier, memP)
17: sumAndQual[qualifier] = findCorrespondingP(newMemP, quantifiers, minTruth, maxLenP, nrOfCases)
18: end for
19: else do
20: sumAndQual [] = findCorrespondingP(newMemP, quantifiers, minTruth, maxLenP, nrOfCases)
21: end if
22: pruneSummarizers(sumAndQual)
23: sentences = createSentences(sumAndQua, protoforml)

The methods used in Algorithm 2 are explained below:

• findPossibleQualifiers: Calculate all qualifiers that might return a valid sentence. This method
is further explained in Algorithm 3: Find possible qualifiers;

• setR: Convert the membership array for the summarizers such that it conforms to the
qualifiers set. For example, if the condition is ‘low costs and large throughput time’, and a
case has got ‘low costs’ with a membership of 0.5 and a ‘large throughput time’ with a
membership of 1, the maximal membership of a feature cannot exceed 0.5 for that case;

• findCorrespondingP: Find all summarizers which return valid sentences. This method is
further explained in Algorithm 4: Find valid summarizers for one or no qualifiers;

• pruneSentences: Delete superfluous sentences, which is further explained in Section 8.2;
• createSentences: Create sentences, by filling in the summarizer and qualifier in the

corresponding protoforms.

48

Algorithm 3 is used to find all possible qualifiers. A qualifier is valid, if the average value of all cases
to the qualifier, is higher than the degree of focus. To reduce the running time, qualifiers are pruned
if they give no extra information. In addition, a qualifier should only be validated if all of its subsets
return valid qualifiers. For example, if the average membership value of the qualifier large
throughput time is only in 0.1, the qualifier large throughput time and Person A is involved can never
be higher than 0.1.

Algorithm 3 Find possible qualifiers
1: parameters:
2: memR is the membership array for the qualifiers
3: maxLenR is the maximum number of qualifiers
4: degreeFoc is the degree of focus
5:
6: possR = []
7: for feature in memR do
8: if averageMembership(feature) > degreeFoc then
9: possR.add(feature)

10: end if
11: end for
12:
13: curLength = 1
14: while new items are added to possR and curLength < maxLenR do
15: curLength += 1
16: for item in findPossibleItems(possR) do
17: if averageMembership(minPerRow (item)) > degreeFoc then
18: possR.add(item)
19: end if
20: end for
21: possR = pruneR(possR)
22: end while
23: return possR

The methods used in Algorithm 3 are explained below:

• averageMembership: Calculate the average membership value of the feature to all cases;
• findPossibleItems: Find all qualifiers/summarizers that might have a high enough truth value,

as explained in Section 6.4. For example, the combinations of the features A, B and C is only
considered if A and B, A and C, and B and C have got a high enough degree of focus for the
given qualifier, and truth value for the summarizer;

• minPerRow: To check the membership of a set of features to a case, the minimal membership
of all features is taken. For example, if there is a large throughput time with a membership of
0.8 and Person A is involved in the case (membership of 1), the membership of the feature
large throughput time and Person A is min(0.8, 1), which is equal to 0.8;

• pruneR: Delete unnecessary qualifiers. Consider that the degree of focus of the condition
Person A was involved and Person B was involved is high enough. This condition does only
have to be validated if there is an information gain. This implies that the degree of focus of
the new condition can never exceed the degree of focus of its sub conditions. e.g. if Person B

49

was always involved if Person A was involved, all sentences that are valid for Person A, are
valid for Person B. This type of pruning is performed to reduce the running time of the
algorithm. The resulting set of sentences does not change using this type of pruning, since the
sentences pruned are also pruned using the pruning steps discussed in Section 8.2.

Algorithm 4 is used to find all valid summarizers for a given qualifier, given a membership array of all
features. Similar to the qualifiers, a set of summarizers is only validated if all of its subsets return true
sentences. For example, if the sentence “In most cases, there is a large throughput time” is not valid,
the sentence “In most cases, there is a large throughput time and Person A is involved” can never be
valid. To be able to create simple and compact sentences, only related summarizers are considered.
By doing so, the number of created sentences decreases, the sentences are shorter, and the
sentences are easier to comprehend, without any information loss [57].

Algorithm 4 Find valid summarizers for one or no qualifiers
1: parameters:
2: memP is the membership array for the summarizers
3: quantifiers is an ordered list of relevant quantifiers
4: minTruth is the minimal truth value
5: maxLenP is the maximum number of summarizers
6: nrOfCases is the number of cases in the event log
7: qualifier is the qualifier to be checked
8:
9: validP = {} // Used to store valid summarizers

10: for feature in memP do
11: if feature not in qualifier then
12: for quantifier in quantifiers do
13: if truth(feature, quantifier) > minTruth do
14: validP[feature] = quantifier
15: end if
16: end for
17: end if
18: end for
19:
20: curLength = 1
21: while new items are added to validP and curLength < maxLenP do
22: curLength += 1
23: for item in findPossibleItems(validP) do
24: for quantifier in quantifiers do
25: if checkRelated(item) and truth(minPerRow(item, qualifier), quantifier) > minTruth then
26: validP[feature] = quantifier
27: end if
28: end for
29: end for
31: end while
32: return validP

The methods used in Algorithm 4, that are not used in Algorithm 3, are explained next:

• truth: Calculate the truth value of the value to all quantifiers, return the most specific
quantifier that is valid. The truth value is calculated, using the statistics shown in Appendix C;

50

• checkRelated: Check whether the summarizers are correlated. The set of features A, B and C
is correlated if A and B, A and C, and B and C are related, and if the truth values are high
enough for all:

𝑄𝑄 𝐴𝐴 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑛𝑛𝑑𝑑 𝐴𝐴
𝑄𝑄 𝐴𝐴 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑛𝑛𝑑𝑑 𝐴𝐴
𝑄𝑄 𝐴𝐴 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑛𝑛𝑑𝑑 𝐴𝐴

In this thesis, Q is set to almost all, which is equal to the trapezoidal function trapezoidal
(almost all, 0.7, 0.9, 1, 1) and the truth value must be at least 0.7. These parameters are
chosen since they are proven to give good results in experiments [57].

8.2 Pruning of superfluous sentences
There are several pruning techniques that can be applied to filter the created sentences. Consider for
example the sentences “In most cases, there is a large throughput time” and “In most cases, there is
a large throughput time and Person A was involved”. The first sentence is contained in the second
sentence and can, therefore, be pruned. In this section, three types of pruning are discussed:

• Pruning based on quantifiers;
• Pruning based on features;
• Pruning based on implication.

The first two types of pruning are based on [24] and [57], and can reduce the resulting summaries by
80%-100%. The last pruning type is not implemented due to timing reasons and is left for future
research.

Pruning based on quantifiers
The first type of pruning is based on the quantifiers. If multiple quantifiers are validated as true, only
the most specific one is taken. Consider, for example, the sentence “In almost all cases, there was
Register appeal”. If this sentence is true, similar sentences with a less specific qualifier, such as “In
most cases, there was Register appeal” and “In many cases, there was Register appeal” are true.
However, if the sentence “In many cases, there was Sent on” is true, this does not imply that more
specific quantifiers result in valid sentences. Note that this type of pruning can be applied only if
relative monotonically non-decreasing quantifiers [30], such as most or almost all, are used. This type
of pruning can be expressed as: discard 𝑄𝑄1 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃, if there exists a summary 𝑄𝑄2 𝑅𝑅 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃,
such that 𝑄𝑄2 ⊆ 𝑄𝑄1(𝑄𝑄1 𝑐𝑐𝑠𝑠 𝑓𝑓𝑎𝑎𝑠𝑠𝑠𝑠 𝑠𝑠𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑎𝑎𝑛𝑛 𝑄𝑄2).

Pruning based on features
This type of pruning can be applied to remove a sequence with an equal or more specific condition,
and an equal or less specific summarizer, e.g. the sentence “In most cases, when Person A was
involved, there was a large throughput time” can be discarded if there exists a sentence “In most
cases, there was a large throughput time and a large waiting time”. This type of pruning can be

51

expressed as: discard 𝑄𝑄 𝑅𝑅1 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃1, if there exists a summary 𝑄𝑄 𝑅𝑅2 𝑦𝑦′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃2, such that 𝑅𝑅2 ⊆ 𝑅𝑅1
and 𝑃𝑃1 ⊆ 𝑃𝑃2 [57]. The condition (R) can be an empty set.

Pruning based on implication
The last type of pruning is based on what is represented by the sentence which can be useful for both
the combinations of features and the protoforms related to sequences. The second statement
logically implies the first, so it's enough to state the second. Consider, for example, the sentences “In
most cases, when Create dossier was performed by Person A, there was a large throughput time” and
the sentence “In almost all cases, when there was Create dossier, there was a large throughput time”.
From the first sentence, it seems that Person A has something to do with the large throughput time,
but the second sentence proves that this is not the case. Since Person A performed Create dossier is
seen as one single feature, this sentence is not pruned in the pruning step based on the features.

Protoforms related to sequences can also be pruned, based on the information they represent.
Consider, for example, the sentences “Most cases contain a sequence like <Create dossier, Process
decision>” and “Most cases contain a sequence like <Send advice, Create dossier, Process decision>”.
In this case, the first sentence does not seem to give any trivial information. However, since sentences
are created focusing on a group of sequences instead of on a specific sequence, this topic needs some
more investigation. It occurs that the cluster name is a subset of the other cluster name, as in the
sentence shown above, where not all sequences of that cluster are a subset of the other cluster, e.g.
<Create dossier, Process decision> might contain the sequence <Write draft advice, Create dossier,
Process decision>

It occurs that the information represented within the same sentence is irrelevant, e.g. “In almost all
cases, that contain a sequence like <Create dossier, Process decision>, there was Create dossier”, “In
most cases where there was Person A for <Send advice, Create dossier, Process decision, Archive>,
there was Person A ”, or “In most cases where there was Person A for <Send advice, Create dossier,
Process decision, Archive>, there was Person A for <Create dossier, Process decision>” are all trivial
and can, therefore, be left out.

52

9 Evaluation
This chapter describes the evaluation of the master thesis. Two case studies are performed for the
scope of this thesis; one case study focuses on the appeal dataset and one case study focuses on
audit purposes. The set-up of the evaluation is described in Section 9.1. Next, in Section 9.2, the
results of the case study that focuses on the appeal dataset are given. Finally, in Section 9.3, the
results of the case study, that focuses on audit purposes, is given, where the focus of this thesis is on
user acceptance.

9.1 Set-up
Since the tool constructed is only a prototype, it would not be fair to compare this with a completely
developed product, like Disco [58]. The goal of the evaluation is to get an understanding whether
people believe that the use of linguistic summarization will improve the way that processes are
analyzed. For this reason, it is chosen to evaluate the prototype by means of a demonstration in
combination with a questionnaire. Both practitioners and researchers have been asked, to get an
understanding of both groups of users. In total, thirteen people have been asked to fill in the
questionnaire, from which six are researchers and seven are practitioners. Before the questionnaire
was filled in, a short demonstration was given, to ensure one knows what to expect of such a tool;
which parameters have to be set and what kind of results can be obtained. Table 10 shows an
overview of the skill levels of all participants.

Table 10: Skill level of population asked

Skill / Amount of tools One tool Multiple tools
Beginner 0 2

Intermediate 0 4
Expert 3 4

The questionnaire is designed using the Technology Acceptance Model (TAM) [59], [60], and is
constructed by combining several questionnaires [59], [60], [61], and [62]. The resulting
questionnaire can be found in Appendix E. The questionnaire consists of a total of 26 questions,
where the first 22 questions are based on the TAM; six questions focus on the perceived usefulness,
another six questions on the perceived ease of use, four questions on the intention to use, two
questions on the output quality, and four questions on the ability to demonstrate the results. The
last four questions are asked to get both an understanding of the population that filled in the
questionnaire and how linguistic summarization is seen in comparison with other tools.

Before the questionnaire was filled, a demonstration was given, based on the appeal dataset. The
second case study, related to audit purposes, is evaluated using a semi structured interview with a
process expert and focuses on the usability of such a tool for an auditor.

53

9.2 Results of case study on appeal dataset
In this section, the results of the case study on the appeal dataset are discussed. First, some insights
are discussed obtained during the case study, including some statistics about the performance of the
algorithm and a comparison to a classical process model. Section 9.2.2 discusses the results of the
questionnaire.

9.2.1 Insights obtained
The event log consists of 7,604 event, and a total of 1,268 cases. The average throughput time of a
case is approximately 42 weeks, while the process can even take up to two years. Therefore, it might
be interesting in analyzing the throughput time, and get indications about root causes. For this
dataset, the following aspects are logged:

• Activities that are executed for every case;
• Start timestamps;
• End timestamps;
• Person that performed the activity;
• Origin (e.g. a building permit) of the case are logged.

In this case study, it is shown that the algorithm, proposed in this research, produces some interesting
insights, even for this rather small event log.

Appendix F shows the process model, created using Disco [58]. In this model, it can be seen that the
waiting time before the activity ‘Archive’ is between 20 and 29 weeks. In addition, the operating time
of the activities ‘Register receipt of documents’ (25 days), ‘Result hearing / Write advice’ (36 days)
and ‘Process decision’ (24 days) is also quite large. However, root causes are hard to determine using
this process model.

The algorithm, created in this research, is used to obtain new insights about the event log. Since the
throughput time depends on both the waiting time and operating time, all three features are
analyzed. In addition, it is analyzed which activities are performed, the number of resources that are
active within one case, whether a certain resource performed many activities, the origin of the case,
and the combination between resources and activities (to see what resource performed what
activity). This results of 371 features that are analyzed, t related to the complete case. First, the focus
is on three protoforms that consider features related to the complete case, to get some global
insights on the times, namely: 1) ‘In Q cases, there was P’, 2) ‘In Q cases, when condition R was
fulfilled, there was P’, and 3) ‘In Q cases, that contain sequence like ABC, there was P’.

Some statistics about the running time of the algorithm, and the number of created sentences are
shown in Table 11. In this table, the influence of the number of summarizers, number of qualifiers
and degree of focus is shown. For the last four columns, two numbers are stated. For example, for
the first row represents the analysis where only one summarizer and one qualifier are chosen, and
the degree of focus is set to 0.1. This analysis results in 12 sentences for protoform 1), where only
one sentence focuses on the throughput, waiting, or operating time. In addition, 371 sentences are
generated for protoform 2), and 51 sentences for protoform 3), where 44 and 11 sentences focus on

54

these times, respectively. Last the running time of the complete analysis was 0.82 seconds. However,
when one focuses on only the times, the running time is 0.22 seconds. It can be seen that the
technique is able to generate the sentences quite fast. However, the parameters chosen have got a
large impact on both the running time and the number of sentences that are created.

Table 11: Statistics appeal dataset

Number of
summarizers

Number
of

qualifiers

Degree
of

focus

Number of
sentences

protoform 1)

Number of
sentences

protoform 2)

Number of
sentences

protoform 3)

Running
time (sec)

1 1 0.1 12/1 371/44 51/11 0.82/0.22
2 1 0.1 12/1 1412/44 180/11 1.08/0.25
1 2 0.1 12/1 812/94 51/11 5.85/2.00
2 3 0.1 12/1 5651/129 180/11 19.52/4.08
2 3 0.05 12/1 18489/371 180/11 66.59/14.09
2 3 0.2 12/1 908/54 180/11 5.99/1.26

There are many sentences that might be relevant to analyze, e.g. “In most cases, when Person A
performed the activity Confirm reception, there was a large waiting time” or “In almost all cases,
when Person A performed the activity Confirm reception, there was a large throughput time” indicate
that the throughput and waiting time are large, if Person A performed the activity Confirm reception,
which is an activity at the start of the process. It can, for example, be the case that Person A is not
trained for this task. It could also indicate that this task could have a large impact on the times when
performed incorrect. On the other hand, it could be the case that Person A handles different kind of
tasks than other persons, which take longer to complete. Therefore, these sentences can be used as
indications of root causes, that have to be investigated further.

Such insights are more difficult to obtain in the process model. Another sentence that can be relevant
is “In almost all cases, when there was Person F performed many activities, there was large
throughput time”, which can again have different reasons, e.g. because there is not much handing
over of work, or because the tasks that Person F performs take longer to complete. In addition,
sentences like “In many cases, when the origin was Granted building permit, there was a large waiting
time” and “In almost all cases, when the origin was Granted building permit, and the activity Register
receipt of documents is performed, there was a large throughput time” can indicate that cases
considering a building permit take longer to complete, especially if the documents are registered.

The sentence “In almost all cases, that contain a sequence like <Send advice, Create dossier, Process
decision, Archive>, there was a large throughput time” indicates that the throughput time is large, if
the sequence <Send advice, Create dossier, Process decision, Archive> occurred. One could
investigate under which conditions there is a large throughput time for this sequence, by analyzing
the sequence in more depth. When this analysis is performed, sentences like “In nearly all cases,
when Person A performed the activity Confirm reception, there was a long throughput time of a
sequence like <Send advice, Create dossier, Process decision, Archive>” and “In nearly all cases, when
Person A performed the activity Register appeal, there was a long throughput time of a sequence like

55

<Send advice, Create dossier, Process decision, Archive>” are created. These sentences indicate, that
if Person A performed a task in the beginning of the process, the throughput time of a sequence, at
the end of the process, takes a long time.

Concluding, the technique proposed already produces insights that are hard, if not undoable, to find
using other techniques. Even for the rather small event log used in the case study, there are many
interesting sentences, that need further investigation. However, the technique returns indications of
root causes, which need to be validated with a process expert for a full understanding.

9.2.2 Results of questionnaire
In this section, the results of the questionnaire are discussed. In Table 12, the results of all questions,
that are based on the TAM, are shown, which are visualized in Figure 13. The score of each question
is based on Table 12, where ‘Strongly Disagree’ has got a score of 1, ‘Disagree’ of 2, etc. In addition,
colors are used to indicate the height of the score, where red indicates the answer ‘Strongly disagree’,
orange ‘Disagree’, yellow ‘Neutral’, light green ‘Agree’, and dark green ‘Strongly agree’, e.g. if the bar
stops in the orange part, the average score lies within ‘Disagree’. Almost all participants see the
usefulness of using linguistic summarization and have intentions to use it. However, since the tool
needs much user input, some people doubt about the ease of use. Most participants believe that the
quality of the output generated using linguistic summarization is high, but it might be hard to fully
understand the system’s output, i.e. a process model is easier to understand at first sight. For
example, when the sentence “In almost all cases, where Person A performed task X, there was a large
throughput time” is generated, this could raise questions, like: “Was the throughput time also large
when other persons executed this task?” or “Was the throughput time significantly larger than when
other persons executed this task?”. To answer these questions, one can look at the other sentences
that are created for the process, e.g. whether an equal sentence also exists for other resources.
However, this could increase the running time of the algorithm drastically, especially when a lot of
sentences are created. This topic is left for future research.

In addition, most participants believe that they could explain the benefits of using linguistic
summarization. Note that RD4 (see Appendix E) is the only question that is asked in a negative way.
Therefore the outcome ‘Disagree’, is a good result for this question. It should be noted that RD2 is
only filled by twelve participants (see Table 12), because the thirteenth participant was not able to
answer the question with the given context.

56

Table 12: Results of the questionnaire

Construct Variable Strongly
disagree

Disagree Neutral Agree Strongly
agree

Perceived Usefulness
(PU)

PU1 0 0 1 11 1
PU2 0 1 3 9 0
PU3 0 1 0 12 0
PU4 0 0 0 11 2
PU5 0 0 4 6 3
PU6 0 0 0 8 5

Perceived Ease of
Use

(PEOU)

PEOU1 0 2 2 6 3
PEOU2 0 2 6 4 1
PEOU3 0 1 5 5 2
PEOU4 0 1 2 8 2
PEOU5 1 0 4 8 0
PEOU6 0 1 5 6 1

Intention To Use
(ITU)

ITU1 0 0 1 8 4
ITU2 0 0 2 8 3
ITU3 0 1 4 5 3
ITU4 0 0 3 8 2

Output Quality

 (OQ)
OQ1 0 0 4 8 1
OQ2 1 4 1 5 2

Result
Demonstrability

(RD)

RD1 0 0 0 8 5
RD2 0 1 1 8 2
RD3 0 0 2 9 2
RD4 2 10 0 1* 0

* One participant filled in ‘Agree’ for RD4, which is possibly due to the fact that the question is not read extensively, since
other questions about the result demonstrability were answered positively.

57

Figure 13: Aggregated results of questionnaire

As can be seen in Table 13 and Table 14, all participants believe in the use of linguistic summarization
to analyze processes. One participant was really doubting the question whether linguistic
summarization could be seen as an extension, or as a standalone approach, and selected both
options.

Table 13: Results how the different skill levels would use linguistic summarization

Skill / Usage Not use Linguistic
summarization

Use in combination
with tools I currently

use

Only use Linguistic
summarization

Beginner 0 2 0
Intermediate 0 4 0

Expert 0 7 0

Table 14: Results how the different skill levels see the results produced by linguistic summarization

Skill / See results as Noise A subset An extension A standalone
approach

Beginner 0 0 2 0
Intermediate 0 0 3,5 0,5

Expert 0 0 7 0

0

10

20

30

40

50

60

PU
1

PU
2

PU
3

PU
4

PU
5

PU
6

PE
O

U
1

PE
O

U
2

PE
O

U
3

PE
O

U
4

PE
O

U
5

PE
O

U
6

IT
U

1
IT

U
2

IT
U

3
IT

U
4

O
Q

1
O

Q
2

RD
1

RD
2

RD
3

RD
4

Results of questionnaire

58

9.3 Results of case study for audit purposes
As part of the evaluation of this thesis, a case study is performed for audit purposes. A possible check
during an audit can be the evaluation of duplicate purchase invoices. It can occur that multiple
payments are performed for the same invoice, for example, if someone accidentally recorded the
same invoice twice with different supplier names. One can create an overview of possible duplicates,
by comparing all purchase invoices on overlapping fields, such as the price. However, to determine
whether the possible duplicate purchase invoice is a real duplicate, the invoices have to be compared
manually, which can be a hard and time-consuming task, and it has to be performed over and over
every year. Therefore, one could benefit in gaining some insight into the process, to understand the
patterns that can lead to duplicate invoices.

The case study focuses on this example. It gives insight in the procurement process and tries to give
indications why a duplicate purchase invoice was made. However, the case study does not investigate
the results that are produced by the technique in depth, since a lot of client input is needed for this
part, e.g. what can be seen as root causes and whether the membership functions are defined
correctly. Therefore, the focus of this case study is to determine whether the technique, and the
results produced by the technique, might be useful for audit purposes. The technique is evaluated
using a semi structured interview with a process expert.

The process expert believes that the technique is, undoubtedly, useful for audit purposes. The results
produced by the technique are seen as an extension to the current analysis. The technique can be
used after the duplicate invoices are detected, to find any patterns in the data. Finding such patterns
can be very hard and time-consuming when this has to be done manually and, therefore, the process
expert believes that this technique might be very useful in the automation of this task. In addition,
the results produced by the technique are more complete, since it focuses on every available
combination of attributes, what can never be achieved when performed manually. The technique
already produces interesting results, that might need some further investigation. However, since this
highly depends on the client, this is not investigated further.

However, the technique needs a lot of user input and, therefore, the process expert discusses that
the technique is best useable if it is applied on a client that is already known (such that the
parameters can be set more easily) and where duplicate invoices are already analyzed before. Still,
the parameters that have to be set, have to be tweaked a lot. In addition, the process expert believes
that there are many improvements possible, which can make the technique even more valuable, e.g.
ordering of sentences on importance, or parameters that are proposed (or set) automatically.

Concluding, the process expert believes that the results are already useable for detecting patterns in
the data, that can help to find root causes of, for instance, duplicate invoices. However, the technique
can still be improved, to higher the usability.

59

10 Conclusion
This chapter summarizes and concludes this master thesis. Section 10.1 provides the concluding
remarks and answers the initial research question. Limitations of the current technique are described
in Section 10.2. Next, suggestions made for future research are discussed in Section 10.3, and some
recommendations can be found in the last section, Section 10.4.

10.1 Concluding remarks
In this master thesis, a new approach is investigated that helps analyzing business processes. This
approach uses linguistic summarization techniques to automatically generate statements in natural
language, that describe characteristics about an event log. This research contributes to the state of
art, since during the literature review, several challenges are defined, which are solved in this
research, e.g. event logs are investigated in general and sentences are pruned and parameters can
be set for the simplicity of the generated sentences. In addition, this research investigates the
generation of sentences that focus on a particular sequence, instead of the complete case, to get
more detailed feedback on specific parts of the process. A prototype of an algorithm is developed,
that is used to generate these statements. As input, this algorithm needs an event log, and
parameters need to be set. As output, sentences are provided. Parameters that can be set include,
for example, what features to analyze (e.g. throughput time) and the linguistic labels for all features
(e.g. when costs are considered as high).

This master thesis is not context specific, but focuses on business processes in general. Therefore, a
general approach is chosen to determine what might be relevant to analyze for process data.
Different protoforms and features are discussed that can be relevant in analyzing processes.
However, for the scope of this thesis, not everything is investigated. The algorithm is designed in such
a way that the framework can be extended easily.

The amount of data that is stored in an event log can be enormous and, therefore, the algorithm
must be able to deal with this data efficiently. Even a minor choice can have a large influence on the
running time. To achieve this, many implementation choices had to be made, such as: storing the
data in an efficient way, an effective use of packages, and using pruning techniques if possible. In
addition, the user can choose what, and what level of depth to analyze. These choices have a direct
influence on the running time and, therefore, the user has to think about this thoroughly.

The evaluation shows that most people see the potential of linguistic summarization; how linguistic
summarization can be used for the analysis of a business process and the benefits of using such a
tool. All participants agree that the results that linguistic summarization provide, can be seen as an
extension to the results of tools they currently use, and, therefore, they intend to use it in
combination with the tools they currently use, e.g. use another tool for the visualization of the model.
However, there are many improvements for the algorithm possible, such as: additional protoforms
could be investigated, new features can be added, the user can be helped by setting all parameters,
and the resulting set of summaries could be pruned even further.

60

Concluding, it seems that linguistic summarization can ease the analysis of (complex) processes, by
providing new and interesting insights in natural language. However, the current technique can be
extended and improved to provide more valuable insights, that are easier to understand.

10.2 Limitations
Although the algorithm that is created, can already be used in the analysis of process data, it is
subjected to some limitations, discussed in this section.

Amount of results
The prototype that is created in this master thesis can result in many sentences to be validated,
where not all sentences might be relevant for the user. As discussed in Section 8.2, the results are
already pruned using several pruning techniques. However, some pruning steps are missing, that are
based on the combinations of features or sequences of events. Some sentences that are currently
shown, might give a wrong impression of the data and might, therefore, be seen as noise. For
example, looking at the sentence “In almost all cases, where Person A performed task Y, there was a
large throughput time” could give the impression that there is a large throughput time due to Person
A. However, if the sentence “In almost all cases, there was a large throughput time” is also generated
for the same process, the first sentence can be pruned, because the second sentence shows that
there is a large throughput time, regardless of Person A.

Transactional life cycle
The transactional life-cycle model, as discussed in Section 5.2.1, is not investigated in this thesis.
Event logs that contain the transactional life-cycle model can be investigated, but only the
completions of the activities is taken into account.

Evaluation
Another limitation is that the evaluation is performed on only thirteen participants. Since this number
is not sufficient enough to draw any conclusions, the evaluation only gives indications about the
techniques’ usefulness. It seems that linguistic summarization can be very useful in analyzing
business processes, but this cannot be proven statistically.

Definition of linguistic labels
The last limitation discussed in this section is the creation of the linguistic labels, described in Section
6.2. For the scope of this thesis, it is chosen to let the user do this manually. Some statistics, e.g. the
standard deviation and the average, are provided to the user, to give the user an indication about
the distribution of the data. The linguistic labels can be based on these statistics. However, the
creation of the linguistic labels can be hard and time consuming. This approach can be improved, for
example, by visualizing the distribution of the data or by automatically proposing some linguistic
labels, based on the data.

61

10.3 Future research
Next to the limitations discussed in previous section, there are some suggestions made for future
research, which are discussed in this section.

Selected protoforms
Chapter 3 investigates the protoforms that might be relevant when analyzing process data. However,
not all protoforms could be included for the scope of this thesis. This master thesis focuses on the
protoforms that are most likely relevant for most processes, and, therefore, future research needs
to determine in what manner the protoforms, not included in the scope, should be implemented.

Next to the additional protoforms that might be relevant, some protoforms can be combined, e.g.
“In most cases, where Person A was involved and a sequence like <ABC> was contained, there was a
large throughput time”, combines the case focused protoform for features related to the complete
case and the case focused protoform for features related to the containment of sequences in the
qualifier of the sentence.

Selected features
Next to the protoforms selected in the scope of this thesis, a choice had to be made regarding what
features to analyze, which is discussed in Chapter 5. The list of features is based on event logs in
general and is constructed to be as complete as possible. However, additional features might be
relevant when processes are analyzed, such as the waiting time of a specific activity. In addition, as
discussed in Section 5.4, the combinations of features are not implemented for unlimited attributes.
Therefore, sentences like “In most cases, where Person A was associated with high costs, there was
a large throughput time” cannot be created.

Selected parameters
In Section 6.4 and 7.1, some parameters are discussed, that can help in analyzing a business process.
However, there might be additional parameters that are interesting to include, e.g. an upper limit for
the degree of focus or a lower limit for the length of a sequence.

Selected validation measure
The truth value is used in this thesis as a validation measure for the linguistic summaries. However,
there are more validation criteria, that might be relevant to include, e.g. criteria related to
interestingness or usefulness for the user.

Resulting sentences
This research focuses on many different types of sentences that can be created. However, the
structure of the sentences can be improved. For example, a combination between the resource
‘Person A’ and activity ‘Register appeal’ is shown as <|Resource = Person A||Activity = Register
appeal|>, and can result in sentences like “In most cases, there was <|Resource = Person A||Activity
= Register appeal|>”. However, this might not be very clear at first sight, and the sentence “In most
cases, the resource Person A performed the activity Register appeal” might be clearer.

62

Combining sentences
Sentences like “In most cases, where Person A performs task X, the throughput time is large” and “In
most cases, where Person B performs task X, the throughput time is large” might be relevant when
the throughput time is analyzed. However, a sentence like “In most cases, where Person A or Person
B performed task X, the throughput time is significantly larger than when other resources perform
that task” returns a clear overview of the situation within one sentence. This sentence does not
necessary imply that there is a large throughput time when Person A or Person B performs task X,
but at least there is a difference with other resources. The investigation and creation of such
sentences is left for future research.

Visualization of results
The last topic discussed in this section focuses on the visualization of the sentences. Currently, the
sentences are shown in natural language. However, there may be other possibilities that could return
a clear, or clearer, overview, especially if many sentences are generated. A possible way to deal with
the problem is by visualizing all features and their corresponding correlations, e.g. if the features
Person A performs task X and Person B performs task X are positively correlated with the feature
large throughput time, and the feature Person C performs task X is negatively correlated with the
feature large throughput time, this can be visualized as shown in Figure 14, where green indicates a
positive correlation and red means a negative correlation. The weight of the line can be used to
represent the quantifier, e.g. a thick line represents Almost all and a thin line Most. However, there
might be many features, and, therefore, many correlations, which can result in a so-called spaghetti
model. To deal with this, there must be possibilities to filter the graph, based on, for example, the
thickness of the arrows, the amount of connections of a feature, or a specific (set of) feature(s).

Figure 14: Visualization example

One could also choose to use the process model for the visualization, where the sentences are shown
at the related activities, e.g. Person A performs task X is related to task X. By doing so, one can select
a feature to be analyzed, which results in a process model where all activities are highlighted that
contain sentences related to that feature, e.g. when the feature large throughput time is analyzed,
and the sentence “In most cases, where Person A performs task X, there is a large throughput time”
is contained in the linguistic summaries, task X is highlighted. By hovering over the activities, the
corresponding sentences are shown. However, not all features can be linked to an activity, e.g. the
feature high costs is related to the complete case. Therefore, this may be hard to visualize in this way.

63

10.4 Recommendations
The algorithm, developed in this master thesis, can already be used to get insights into a business
process. Since this master thesis is not context specific, the technique can be used for all kind of
processes and for different types of analysis, e.g. to get a high level overview of the business process
or to analyze a specific (set of) feature(s). The algorithm is flexible to interact with, i.e. the user is
able to select what has to be analyzed and what information can be discarded. In addition, the
algorithm uses all information that is available in the event log and tries all combinations of features
that may be worth analyzing, and is, therefore, highly suitable for event logs with many cases and/or
many attributes. The results can already give surprising insights into the process, e.g. “In almost all
cases, when task X is performed by Person A, the throughput time of a sequence like <ABC> is large”.
It is hard, if not undoable, to get these kind of insights manually.

Results of the evaluation show that the technique has already a high potential to be useful for audit
purposes. The technique is valuable in the automation of finding patterns in the data, that can be
used to detect, for example, root causes of duplicate invoices. Based on the results, the client is
possibly able to improve the process and prevent various duplicate purchase invoices in the future,
which can reduce the work that the auditor has to do the year after. This can reduce the total costs
of the audit process. In addition, the auditor could use the results of the research to get an indication
where to focus on in finding such invoices. Therefore, KPMG is recommended to continue developing
and using the proposed technique.

64

Bibliography

[1] W. M. P. van der Aalst, Process mining: discovery, conformance and enhancement of business
processes, Heidelberg: Springer, 2011.

[2] W. M. P. van der Aalst and A. J. M. M. Weijters, "Process mining: a research agenda,"
Computers in Industry, pp. 231-244, 2004.

[3] F. Mannhardt, M. de Leoni, H. A. Reijers and W. M. P. van der Aalst, "Balanced multi-
perspective checking of process conformance," Computing, vol. 4, no. 98, pp. 407-437, 2015.

[4] F. Mannhardt, M. de Leoni, H. A. Reijers and W. M. P. van der Aalst, "Decision Mining
Revisited - Discovering Overlapping Rules," BPM Center Report, vol. 16, no. 1, pp. 1-17, 2016.

[5] M. de Leoni and W. M. P. van der Aalst, "Data-Aware Process Mining: Discovering Decisions in
Processes Using Alignments," Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC 13, 2013.

[6] F. Mannhardt, M. de Leoni and H. A. Reijers, "Extending Process Logs with Events from
Supplementary Sources," Business Process Management Workshops Lecture Notes in Business
Information Processing, pp. 235-247, 2015.

[7] R. Conforti, M. de Leoni, M. La Rosa, W. M. P. van der Aalst, t. Hofstede and A. H. M, "A
recommendation system for predicting risks across multiple business process instances,"
Decision Support Systems, vol. 69, pp. 1-19, 2015.

[8] J. Kacprzyk, R. R. Yager and S. Zadrożny, "Fuzzy Linguistic Summaries of Databases for an
Efficient Business Data Analysis and Decision Support," Knowledge Discovery for Business
Information Systems The International Series in Engineering and Computer Science, pp. 129-
152, 2001.

[9] J. Kacprzyk and S. Zadrożny, "Linguistic database summaries and their protoforms: towards
natural language based knowledge discovery tools," Information Sciences, vol. 173, no. 4, pp.
281-304, 2005.

[10] M. Ros, M. Pegalajar, M. Delgado, M. A. Vila, D. T. Anderson, J. M. Keller and M. Popescu,
"Linguistic summarization of long-term trends for understanding change in human behavior,"
2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 2080-2087, 2011.

[11] A. M. Wilbik, J. M. Keller and J. C. Bezdek, "Linguistic Prototypes for Data From Eldercare
Residents," IEEE Transactions on Fuzzy Systems, vol. 22, no. 1, pp. 110 - 123, 2014.

65

[12] A. M. Wilbik, J. M. Keller and G. L. Alexander, "Linguistic summarization of sensor data for
eldercare," 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2595-
2599, 2011.

[13] P. S. Szczepaniak and J. Ochelska, "Linguistic Summaries of Standardized Documents," Studies
in Computational Intelligence Advances in Web Intelligence and Data Mining, pp. 221-232,
2006.

[14] J. Kacprzyk and A. M. Wilbik, "Towards an efficient generation of linguistic summaries of time
series using a degree of focus," NAFIPS 2009 - 2009 Annual Meeting of the North American
Fuzzy Information Processing Society, 2009.

[15] J. Kacprzyk, A. M. Wilbik and S. Zadrożny, "Linguistic summarization of time series using a
fuzzy quantifier driven aggregation," Fuzzy Sets and Systems, vol. 159, no. 12, pp. 1485 - 1499,
2008.

[16] R. M. Castillo-Ortega, N. Marin and D. Sánchez, "A Fuzzy Approach to the Linguistic
Summarization of Time Series," Journal of Multiple-Valued Logic & Soft Computing, vol. 17,
pp. 157-182, 2011.

[17] R. M. Castillo-Ortega, N. Mann and D. Sánchez, "Linguistic local change comparison of time
series," 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 2909-
2915, 2011.

[18] D. T. Anderson, R. H. Luke, J. M. Keller, M. Skubic, M. J. Rantz and M. A. Aud, "Modeling
Human Activity From Voxel Person Using Fuzzy Logic," IEEE Transactions on Fuzzy Systems,
vol. 17, no. 1, pp. 39-49, 2009.

[19] D. T. Anderson, R. H. Luke, J. M. Keller, M. Skubic, M. Rantz and M. A. Aud, "Linguistic
summarization of video for fall detection using voxel person and fuzzy logic," Computer Vision
and Image Understanding, vol. 113, no. 1, pp. 80-89, 2009.

[20] D. T. Anderson, R. H. Luke and J. M. Keller, "Segmentation and linguistic summarization of
voxel environments using stereo vision and genetic algorithms," International Conference on
Fuzzy Systems, 2010.

[21] S. Zadrożny and J. Kacprzyk, "Summarizing the Contents of Web Server Logs: A Fuzzy Linguistic
Approach," 2007 IEEE International Fuzzy Systems Conference, 2007.

[22] A. M. Wilbik and U. Kaymak, "Linguistic Summarization of Processes – a research agenda,"
Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology, 2015.

66

[23] A. M. Wilbik and R. M. Dijkman, "Linguistic summaries of process data," 2015 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 2015.

[24] A. M. Wilbik and R. M. Dijkman, "On the generation of useful linguistic summaries of
sequences," 2016 IEEE World Congress on Computational Intelligence (WCCI), 2016.

[25] Python Software Foundation, "https://www.python.org/," Python Software Foundation, 2017.
[Online]. Available: https://www.python.org/. [Accessed 10 02 2017].

[26] A. R. Hevner, S. T. March, P. J and R. S, "Design Science in Information Systems Research," MIS
Quarterly, vol. 24, no. 1, pp. 75-105, 2004.

[27] G. P. Hodgkinson and D. M. Rousseau, "Bridging the Rigour-Relevance Gap in Management
Research: Its Already Happening!," Journal of Management Studies, vol. 46, no. 3, pp. 534-
546, 2009.

[28] R. M. Dijkman, M. Dumas and C. Ouyang, "Semantics and analysis of business process models
in BPMN," Information and Software Technology, vol. 50, no. 12, pp. 1281-1294, 2008.

[29] R. R. Yager, "A New Approach to the Summarization of Data," Information Sciences, vol. 28,
no. 2, pp. 69-86, 1982.

[30] C. Carlsson and R. Fullér, "Possibility for decision: a possibilistic approach to real life
decisions," in Concepts and Issues, Berlin, Springer, 2013, p. 20.

[31] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, no. 3, pp. 338-253, 1965.

[32] L. A. Zadeh, "A prototype-centered approach to adding deduction capability to search
engines-the concept of protoform," Proceedings First International IEEE Symposium Intelligent
Systems, 2002.

[33] M. Delgado, M. D. Ruiz, D. Sánchez and M. A. Vila, "Fuzzy quantification: a state of the art,"
Fuzzy Sets and Systems, vol. 242, pp. 1-30, 2014.

[34] A. Jain and J. M. Keller, "On the computation of semantically ordered truth values of linguistic
protoform summaries," 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2015.

[35] A. M. Wilbik, U. Kaymak, J. M. Keller and M. Popescu, "Evaluation of the Truth Value of
Linguistic Summaries – Case with Non-monotonic Quantifiers," Advances in Intelligent
Systems and Computing Intelligent Systems'2014, pp. 69-79, 2015.

[36] F. E. Boran, D. Akay and R. R. Yager, "An overview of methods for linguistic summarization
with fuzzy sets," Expert Systems with Applications, vol. 61, pp. 356-377, 2016.

67

[37] L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human
reasoning and fuzzy logic," Fuzzy Sets and Systems, vol. 90, no. 2, pp. 111-127, 1997.

[38] A. M. Wilbik and J. Kacprzyk, "On the evaluation of the linguistic summarization of temporally
focused time series using a measure of informativeness," Proceedings of the International
Multiconference on Computer Science and Information Technology, pp. 155-162, 2010.

[39] D. Dubois and H. Prade, "Gradual inference rules in approximate reasoning," Information
Sciences, vol. 61, no. 1-2, pp. 103-122, 1992.

[40] D. Dubois, H. Prade and E. Rannou, "User-driven summarization of data based on gradual
rules," Proceedings of 6th International Fuzzy Systems Conference, vol. 2, pp. 839-844, 1997.

[41] G. Raschia and N. Mouaddib, "SAINTETIQ: a fuzzy set-based approach to database
summarization," Fuzzy Sets and Systems, vol. 129, no. 2, pp. 137-162, 2002.

[42] M. R. Rajati and J. M. Mendel, "Advanced computing with words using syllogistic reasoning
and arithmetic operations on linguistic belief structures," 2013 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2013.

[43] G. Moyse, M.-J. Lesot and B. Bouchon-Meunier, "Linguistic summaries for periodicity
detection based on mathematical morphology," IEEE Symposium Series on Computational
Intelligence, pp. 106-113, 2013.

[44] G. Moyse, M.-J. Lesot and B. Bouchon-Meunier, "Mathematical Morphology Tools to Evaluate
Periodic Linguistic Summaries," Flexible Query Answering Systems Lecture Notes in Computer
Science, pp. 257-268, 2013.

[45] H. M. Cooper, L. V. Hedges and J. C. Valentine, The handbook of research synthesis and meta-
analysis, New York: Russell Sage Foundation, 2009.

[46] B. F. v. Dongen, "Process mining and verification," PhD thesis, Technische Universiteit
Eindhoven, 2007.

[47] A. L. Medaglia, S.-C. Fang, H. L. W. Nuttle and J. R. Wilson, "An efficient and flexible
mechanism for constructing membership functions," European Journal of Operational
Research, vol. 139, no. 1, pp. 84-95, 2002.

[48] MathWorks, "nl.mathworks.com," MathWorks, 2017. [Online]. Available:
https://nl.mathworks.com/help/fuzzy/trapmf.html. [Accessed 15 05 2017].

[49] R. M. Dijkman, M. Dumas, B. F. v. Dongen, R. Käärik and J. Mendling, "Similarity of business
process models: Metrics and evaluation," Information Systems, vol. 36, no. 2, pp. 498-516,
2011.

68

[50] The Scipy community, "https://docs.scipy.org," 11 05 2014. [Online]. Available:
https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.cluster.hierarchy.linkage.html. [Accessed 02 03 2017].

[51] The Scipy community., "The Scipy community," https://docs.scipy.org, 18 01 2015. [Online].
Available: https://docs.scipy.org/doc/scipy-
0.15.1/reference/generated/scipy.cluster.hierarchy.fcluster.html. [Accessed 02 03 2017].

[52] M. Popescu, J. C. Bezdek, T. C. Havens and J. M. Keller, "A Cluster Validity Framework Based
on Induced Partition Dissimilarity," IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 308-
320, 2013.

[53] J. C. Bezdek and R. J. Hathaway, "VAT: a tool for visual assessment of (cluster) tendency,"
Proceedings of the 2002 International Joint Conference on Neural Networks, pp. 2225-22230,
2002.

[54] T. C. Havens and J. C. Bezdek, "An Efficient Formulation of the Improved Visual Assessment of
Cluster Tendency (iVAT) Algorithm," IEEE Transactions on Knowledge and Data Engineering,
vol. 24, no. 5, pp. 813-822, 2012.

[55] D. L. Davies and D. W. Bouldin, "A Cluster Separation Measure," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vols. PAMI-1, no. 2, pp. 224-227, 1979.

[56] X. L. Xie and G. Beni, "A validity measure for fuzzy clustering," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-847, 1991.

[57] A. M. Wilbik, U. Kaymak and R. M. Dijkman, "Towards improved generation of linguistic
summaries," 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (in press),
2017.

[58] Fluxicon Process Laboratories, "https://fluxicon.com," Fluxicon Process Laboratories, 2012.
[Online]. Available: https://fluxicon.com/disco/. [Accessed 10 05 2017].

[59] D. A. Adams, R. R. Nelson and P. A. Todd, "Perceived Usefulness, Ease of Use, and Usage of
Information Technology: A Replication," MIS Quarterly, vol. 16, no. 2, pp. 227-247, 1992.

[60] F. D. Davis, "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology," MIS Quarterly, vol. 13, no. 3, pp. 319-340, 1989.

[61] V. Venkatesh and F. D. Davis, "A Theoretical Extension of the Technology Acceptance Model:
Four Longitudinal Field Studies," Management Science, vol. 46, no. 2, pp. 186-204, 2000.

[62] R. M. Dijkman and A. M. Wilbik, "Linguistic Summarization of Event Logs - A Practical
Approach," Preprint submitted to Information Systems, pp. 1-42, 2017.

69

70

Appendix A: User manual
As part of this thesis, a tool is implemented, in Python, that can be used to create linguistic summaries
about an event log. To ease the interaction with the tool, this user manual is created, that guides the
user through the process. The user manual is structured similar to the process flow, and includes the
following steps:

1) Select event log;
2) Select delimiter;
3) Select or create dictionary;
4) Specify column definitions;
5) Select features to analyze;
6) Specify linguistic labels;
7) Select parameters;
8) Select clustering;
9) Specify linguistic labels for times related to sequences;
10) Scope the analysis;
11) Get results.

These steps are elaborated next.

1) Select event log
When the program is started, the user is asked to select the event log to be analyzed, visualized in
Screen 1. The event log has to be in csv format. When the user selects a file that is not in csv format,
the user is asked whether another file has to be selected, or whether the program has to be
terminated, shown in Screen 2.

Assumption 1: The event log is first ordered on case identifier and then on timestamp. This is done
to make sure that the ordering of the activities is done as the user wants.

Assumption 2: The case attributes (attributes that remain the same for the complete case), as
described in Section 5.3, are set at the first activity of every case.

Assumption 3: The case identifier and timestamps, if applicable, are always filled, i.e. these columns
do not contain any missing data.

71

Screen 1: Select event log

Screen 2: error when no csv format is selected

2) Select delimiter
Next, the delimiter has to be specified, which is used to separate the columns, see Screen 3. The
delimiter is a single character. A comma cannot be used as a delimiter, since the delimiter is used in
later steps, to store the results. When a wrong delimiter is chosen, the user is asked whether the user
wants to try another delimiter, or whether the program can be terminated, see Screen 4. A wrong
delimiter is identified when:

• It contains more than 1 character;
• The delimiter is empty;
• The number of columns of the first row, that is used to specify the names of the columns, is

unequal to the number of columns of the second row, that contains the first row of data.

72

Screen 3: Specify delimiter

Screen 4: Error when wrong delimiter is chosen

3) Select or create dictionary
The first time the process is executed, the user has to enter many details about the event log, e.g.
what has to be analyzed. Since the user probably wants to run the program more than once, the
option to store all details in a so-called dictionary is given. After the event log is selected and the
delimiter is set, the user is asked whether this dictionary is already created, see Screen 5. If ‘Yes’ is
selected, i.e. there exists a dictionary, the user is asked to select the dictionary, see Screen 6. If not,
the user is asked where the ‘new’ dictionary has to be stored, see Screen 7.

Note: When a dictionary is selected, the user can follow the same steps, where the settings are
already filled in. Changes in the configuration will result in changes in the dictionary. A backup of the
dictionary can be created to make sure a correct version is kept.

Screen 5: Question whether dictionary is already created

73

Screen 6: Choose dictionary

Screen 7: Select location to store dictionary

74

4) Specify column definitions
To make sure the analysis is based on the correct data, the user is asked to specify the column
definitions. When this step has not been taken previously, i.e. when no dictionary is selected, all
columns must be specified from scratch, see Screen 8. The algorithm identifies the different column
names and shows the amount of unique values for that column, e.g. there are 1268 different values
for the column ‘Case ID’, which indicates that the log consists of 1268 cases.

In the second column, the column types can be filled. For the column type, the following options are
available:

• Activity;
• Activity Attribute;
• Case Attribute;
• Case identifier;
• End timestamp;
• Start timestamp;
• State in lifecycle.

These options are further explained in Chapter 5.

When an attribute is selected (either an activity attribute or a case attribute), the user must specify,
in the fourth column, whether it is a limited or unlimited attribute. In addition, when an activity
attribute is selected, the user must specify how to handle the attribute:

• Separately (different membership function per activity): e.g. a fine is created with the activity
Create Fine. When the user does not pay the fine within one month, a penalty is added with
the activity Add penalty. It can be the case that a fine of €100 is considered as low, but a
penalty of €100 is considered as high. When this is the case, different membership functions
need to be created for every activity that is related to this amount. By treating the activities
related to the attribute separately, sentences can be created about when the attribute
belongs to a certain set for a certain activity, e.g. the Amount is high for Create fine;

• Separately (Same membership function per activity): It is not necessary the case that different
membership functions are needed for every activity. Considering the example shown above,
it could be the case that both a fine and penalty are high for the same amount;

• Together (Same membership function): If the user does not want to distinguish between the
activities that are related to that attribute, sentences can be about the attribute in general,
e.g. the Amount was high, instead of the Amount is high for Create fine.

For more details about these types of attributes, see Section 5.3.

75

Screen 8: Specify column definitions

Screen 9 shows an example of a screen where the column definitions are filled in. Finally, the user
can choose how to proceed:

- Go through every step: This option can be selected when the process is done for the first time
or when (new) membership functions need to be created and/or changed;

- Only select features, protoforms and parameters: By choosing this option, the definitions of
the membership functions is skipped. However the user is still able to select what to analyze;

- Skip all steps: Using this step, no settings can be changed, and the user is directed to Step 10).

Note that the second and third option can only be selected when the membership functions are
already defined before.

Screen 9: Specify column definitions filled

76

Note: When an attribute is selected to be ‘unlimited’, it is checked whether the column can be
converted to numbers. When this is not the case, no membership function can be created, and the
error shown in Screen 10 is shown. The user will be redirected to Screen 9.

Screen 10: Error message unlimited attributes

5) Select features to analyze
After the definitions of all columns are specified, the features can be selected that the user wants to
analyze, which is shown in Screen 11. The algorithm proposes a set of features that can be analyzed,
based on the column definitions specified in the previous step, e.g. if there is no end timestamp of
an activity, the operating time of an activity cannot be analyzed. More information on this topic can
be found in Chapter 5. The screen to select the combinations of features, as discussed in Section 5.4
is shown in Screen 12. One can create up to five combinations of at most five features to use in the
analysis.

Note: There are several features related to the timestamps. The unit of these features is chosen to
be in days, but can easily be converted to other formats. The timestamp can be logged in many
different ways, e.g. 2016-07-01 or 01-07-2016 00:00:00. To be able to automatically identify the
timestamp format, the parse method is used (with default parameters) from the parser module from
the dateutil library, see http://dateutil.readthedocs.io/en/stable/parser.html for more details.

http://dateutil.readthedocs.io/en/stable/parser.html

77

Screen 11: Feature selection

Screen 12: Specify combinations

78

For some features, user input is needed, that can be used as a scope for the analysis:

• Activity xxx is performed: Screen 13 shows how the user can scope the analysis when this
feature is selected. Some statistics are given about the occurrence of all activities, which can
be used to scope the analysis, e.g. the activity ‘Register’ appeal occurred, on average, once
per case, with a standard deviation of zero, it occurred at least once and at most once per
case, and (logically), the median is also one. It can be the case that the user does not want to
analyze all features, e.g. because it occurred in every case exactly once. Filtering this feature
does not have any influence on other features selected;

• # of times activity xxx is performed: Also for this feature, some statistics are shown that can
be used to build the scope, e.g. when the activity only occurred once, this feature probably
does not make any sense, since it is contained in the feature Activity xxx is performed;

• Operating time of an activity: The last feature that needs user input is the feature Operating
time of an activity. Some statistics are shown about the operating time of every activity, that
can be used to set the scope, e.g. only analyze the activities with the highest average
operating time, or only analyze the activities where the operating time differs a lot, i.e. where
the standard deviation is high.

Screen 13: Select which activities to analyze for Activity xxx is performed

79

6) Specify linguistic labels
For some features, linguistic labels have to be defined, e.g. the definition of a large throughput time.
More information on this topic can be found in 6.2. Some features can, for certain processes, be
represented by the same membership functions, e.g. the different activities selected for the feature
of times activity xxx is performed. When features are selected that could be represented by the
same membership function, the user is asked whether this is needed, as shown in Screen 14.

Screen 14: Question whether same membership functions are needed for a feature

The definitions of the linguistic labels is done as shown in Screen 15 and Screen 16. For some features,
a template is created and the user only has to fill in the gap, marked with %s. This is shown in Screen
15. For other features, the label has to be fully defined by the user, which is shown in Screen 16.

Screen 15: Create linguistic labels with %s

Screen 16: Create linguistic labels without %s

80

7) Select parameters
After all linguistic labels are filled in, the parameters are set. First, the protoforms are selected that
the user wants to analyze, shown in Screen 17. More information about all protoform can be found
in Chapter 3.

Screen 17: Select protoforms to analyze

Next to the protoforms that are selected, different parameters can be set. This screen only shows
the relevant parameters, e.g. when no qualifier is needed, the degree of focus does not have to be
set. Screen 18 shows the basic parameters, and Screen 19 shows all, basic and advanced, parameters.
One can choose to hide the advanced parameters, for simplicity. All parameters are explained in
more detail in Section 6.4 for the generic parameters, and in Section 7.1 for the parameters related
to sequences.

For every parameter, some default settings are chosen. However, since different aspects need to be
analyzed for every event log, these parameters need to be changed possibly.

Screen 18: Select parameters

81

Screen 19: Select parameters (advanced)

8) Select clustering
When sequences are analyzed, one can choose to cluster similar sequences. When sequences are
clustered, one can create sentences about the complete group, instead of on specific sequences. The
clustering of sequences is explained in more detail in Section 7.2. The screen related to the clusters
is shown in Screen 20. In the first column, the representation of the clusters are shown. Every cluster
contains one or multiple sequences, shown in the second column. When the user does not agree
with the created clusters, another clustering method can be selected in the top right. The
recommended clustering technique is expected to give the best results. If the user wants to focus on
exact sequences, instead of on groups of sequences, the method ‘None’ can be selected, which
creates separate clusters for all sequences.

82

Screen 20: Select clustering

9) Specify linguistic labels for times related to sequences
Depending on the features that have been selected in Step 5), features can be analyzed that focus
on the chosen clusters. For some features, the membership functions have already been defined, e.g.
whether a resource was present many times is based on the membership function defined for the
feature: # of times value xxx is selected for ‘Resource’, percentage based. However, for some features,
new membership functions have to be defined, e.g. the throughput time of a sequence. More
information on this topic can be found in Section 7.4. Since the user probably does not want to
analyze all sequences, a selection can be made, as shown in Screen 21. The selection can be based
on these statistics. These statistics are shown in days.

After the sequences are chosen that the user wants to analyze, membership functions have to be
created. The user is asked whether the same membership functions are needed for all sequences,
similar to Screen 14. Hereafter, membership functions are defined as is shown in Screen 22.

83

Screen 21: Features related to times for sequence focused protoforms

Screen 22: Specify linguistic labels for features related to times for sequence focused protoforms

10) Scope the analysis
After all parameters are set, and all labels are defined, the user is presented Screen 23. If the user
wants to focus on a specific feature, that is related to the complete case, for either the condition (R)
or the summary (P), ‘Yes’ must be selected. If the user wants to look at all different summarizers and
conditions, ‘No’ must be selected.

If ‘No’ is selected, the user proceeds to Step 11). However, if ‘Yes’ is selected, the screen shown in
Screen 24 is presented. In the top row, a combobox is shown. When expanding the combobox, all
features that can be analyzed are shown in alphabetical order, as shown in Screen 25. The user can
either select a feature from the list, or enter a keyword, which is used to filter the values of the
combobox, as shown in Screen 26.

Screen 23: Question whether user wants to specify summarizer or condition

84

Screen 24: Screen to specify summarizer or condition

Screen 25: Combobox to help select features

85

Screen 26: Combobox updates while entering text

By adding more filters, more features can be analyzed. In Screen 27, the filters ‘throughput’,
‘operating’ and ‘waiting’ have been set. This means that all features, that contain at least one of those
filters, are analyzed. The button ‘Print features considered’ prints all features that are analyzed, using
the filters set. An example is shown in Screen 28, which is based on the filters set in Screen 27. The
button ‘Refresh’ can be used to clear the filters.

Note: Setting a scope can improve the performance of the tool significantly, since only a subset of
the features has to be analyzed. Next to this, a lot of sentences, that are not in scope, are not shown,
which makes the resulting set of sentences better readable.

Screen 27: Filters selected for summarizer

86

Screen 28: Resulting features that will be analyzed

11) Get results
Finally, Screen 29 is shown, where the output can be stored and/or printed. In the top of the screen,
filters can be set in the same way as shown in Step 10). The difference between this filter and the
previously shown filter is, that this filter is based on conjunctions instead of on disjunctions, i.e. all
filters have to be present in the resulting sentences.

One can choose to print the sentences in the command prompt, by use of the button ‘Print filtered
sentences’, as shown in Screen 30. Another option would be to store the sentences in csv format, by
use of the button ‘Store filtered sentences’. If this button is selected, the location is asked, where the
file needs to be stored, similar to Screen 7. In both cases, the filters that are set are presented at the
top of the result, as shown in, for example, Screen 30.

If the degree of focus needs to be shown, the option ‘Print degree of focus’ must be enabled. When
the sentences are printed, using this option, the sentences are extended with an extra column, where
the degree of focus is stored. For example, the sentence “In most cases, there was a large throughput
time” contains no qualifier, and, therefore, the sentence is about all cases. However, the sentence
“In most cases, when there was medium # of activities, there was short waiting time” is only about
cases that have got medium # of activities. More information about the degree of focus can be found
in Section 6.4.

Screen 29: Screen for filtering, printing, and storing resulting set of sentences

87

Screen 30: Resulting sentences with no filters on sentences

Screen 31: Resulting sentences with no filters on sentences where degree of focus is turned on

An example of a filtering is shown in Screen 32, which specifies that all sentences must contain Person
F. Example results, when this filtering is used, are shown in Screen 33. More filters can be added, to
scope the set of sentences even more.

Screen 32: Filter set for resulting sentences

Screen 33: Resulting sentences with filter 'Person F'

88

Appendix B: protoforms and related articles
Table 15: Protoforms and their related articles

Protoform
Identifier

Protoform Based on

(6) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 [22], [23] and
[24]

(7) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 [22], [23] and
[24]

(8) 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 [24]
(9) 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎

 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴
[24]

(10) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (7) and (9)
(11) 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎

𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝑋𝑋𝑋𝑋𝑋𝑋
(7) and (9)

(12) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 [24]
(13) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎

𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴
[24]

(14) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑅𝑅𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴,
𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃

(13)

(15) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑅𝑅𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴,
𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝑋𝑋𝑋𝑋𝑋𝑋

(13)

(16) 𝐸𝐸𝑇𝑇 𝑎𝑎𝑎𝑎𝑐𝑐𝑛𝑛𝑎𝑎 𝑎𝑎𝑓𝑓𝑓𝑓 𝑦𝑦′𝑠𝑠,𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 [38]
(17) 𝐸𝐸𝑇𝑇 𝑎𝑎𝑎𝑎𝑐𝑐𝑛𝑛𝑎𝑎 𝑎𝑎𝑓𝑓𝑓𝑓 𝑅𝑅 𝑦𝑦′𝑠𝑠,𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 [38]
(18) 𝑇𝑇ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐹𝐹, 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐺𝐺 [39] and [40]
(19) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 𝑐𝑐𝑛𝑛 𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 𝑋𝑋 (6)
(20) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 𝑐𝑐𝑛𝑛

𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 𝑋𝑋
(7)

(21) 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴 ∗ 𝐴𝐴 ∗ 𝐴𝐴 [22] and (8)
(22) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴 ∗ 𝐴𝐴 ∗ 𝐴𝐴 [22] and (12)
(23) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑆𝑆 𝑓𝑓𝑐𝑐𝑎𝑎

𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴 ∗ 𝐴𝐴 ∗ 𝐴𝐴
[22] and (13)

(24) 𝑇𝑇ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑐𝑐𝑛𝑛𝑎𝑎 𝐹𝐹, 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 𝑋𝑋 𝑐𝑐𝑠𝑠 𝐺𝐺 [39] and [40]
(25) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 (8)
(26) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴

𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
(9)

(27) 𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑎𝑎𝑠𝑠 𝑐𝑐𝑦𝑦𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃 (10)
(28) 𝐼𝐼𝑛𝑛 𝑄𝑄1 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃1, 𝑏𝑏𝑓𝑓𝑡𝑡 𝑓𝑓𝑐𝑐𝑎𝑎 𝑄𝑄2 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃2 [41]
(29) 𝑈𝑈𝑠𝑠𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑦𝑦/𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑦𝑦, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠 𝑃𝑃 [42]
(30) 𝑈𝑈𝑠𝑠𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑦𝑦/𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑦𝑦,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑎𝑎

𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴
[42]

(31) 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 𝑝𝑝 𝑓𝑓𝑛𝑛𝑐𝑐𝑡𝑡, 𝑡𝑡ℎ𝑎𝑎 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎 ℎ𝑐𝑐𝑎𝑎ℎ 𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑠𝑠 [43] and [44]

89

Appendix C: Protoforms in scope and their statistics
Table 16: Protoforms in scope and their related statistics

Protoform
Identifier

Statistics

(6)
𝑇𝑇(𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃) = 𝜇𝜇𝑄𝑄 �

1
𝑛𝑛
�𝜇𝜇𝑃𝑃(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

�

(7) 𝑇𝑇(𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑓𝑓(𝐼𝐼𝑛𝑛 𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠,𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛 𝑅𝑅 𝑤𝑤𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃)

=
1
𝑛𝑛
�𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

(8)
𝑇𝑇(𝑄𝑄 𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑛𝑛 𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴) = 𝜇𝜇𝑄𝑄 �

1
𝑛𝑛
�𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

�

(9) 𝑇𝑇(In Q cases, when condition R was fulfilled, contain a sequence like ABC)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑓𝑓(In Q cases, when condition R was fulfilled, contain a sequence like ABC)

=
1
𝑛𝑛
�𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

(10) 𝑇𝑇(In Q cases, that contain a sequence like ABC, there was P)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑓𝑓(In Q cases, that contain a sequence like ABC, there was P)

=
1
𝑛𝑛
�𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

(11) 𝑇𝑇(In Q cases, that contain a sequence like ABC, contain sequence like XYZ)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑋𝑋𝑋𝑋𝑋𝑋(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑓𝑓(In Q cases, that contain a sequence like ABC, contain sequence like XYZ)

=
1
𝑛𝑛
�𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

(12) 𝑇𝑇(𝐼𝐼𝑛𝑛 𝑄𝑄 cases, there was 𝑃𝑃𝑆𝑆 for a sequence like ABC)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑐𝑐𝑓𝑓(𝐼𝐼𝑛𝑛 𝑄𝑄 cases, there was 𝑃𝑃𝑆𝑆 for a sequence like ABC) =
1
𝑛𝑛
�𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

90

Protoform
Identifier

Statistics

(13) 𝑇𝑇 �𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when condition R was fulfilled, there was 𝑃𝑃𝑆𝑆 for
a sequence like ABC �

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ^𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)

�

𝑑𝑑𝑐𝑐𝑓𝑓 �
𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when condition R was fulfilled, there was 𝑃𝑃𝑆𝑆 for

 a sequence like ABC �

=
∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑑𝑑𝑓𝑓 �
𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when condition R was fulfilled, there was 𝑃𝑃𝑆𝑆 for

a sequence like ABC �

=
1
𝑛𝑛
�𝜇𝜇𝑅𝑅(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

(14) 𝑇𝑇(𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC, there was P)

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)

�

𝑑𝑑𝑐𝑐𝑓𝑓(𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC, there was P)

=
1
𝑛𝑛
�𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑓𝑓(𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC, there was P)

=
∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

(15) 𝑇𝑇 �𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC,
 there was 𝑃𝑃𝑆𝑆 for a sequence like ABC �

= 𝜇𝜇𝑄𝑄 �
∑ 𝜇𝜇𝑃𝑃(𝑠𝑠𝑎𝑎𝑠𝑠(𝑋𝑋𝑋𝑋𝑋𝑋)𝑖𝑖)^𝜇𝜇𝑋𝑋𝑋𝑋𝑋𝑋(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑋𝑋𝑋𝑋(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�

𝑑𝑑𝑐𝑐𝑓𝑓 �
𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC,

 there was 𝑃𝑃𝑆𝑆 for a sequence like ABC �

=
∑ 𝜇𝜇𝑋𝑋𝑋𝑋𝑋𝑋(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

∑ ^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)^𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑑𝑑𝑓𝑓 �
𝐼𝐼𝑛𝑛 𝑄𝑄 cases, when there was 𝑅𝑅𝑆𝑆 for a sequence like ABC,

 there was 𝑃𝑃𝑆𝑆 for a sequence like ABC �

=
∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)^𝜇𝜇𝑅𝑅(𝑠𝑠𝑎𝑎𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝝁𝝁𝑸𝑸 = membership of the quantifier
𝝁𝝁𝑹𝑹 = the membership of the qualifier
𝝁𝝁𝑷𝑷 = the membership of the summarizer
𝝁𝝁𝑨𝑨𝑨𝑨𝑨𝑨 = the membership of sequence like ABC
n the number of objects in the data
^ is the minimum
seqi(xxx) = the sequence under consideration(xxx) for the ith case

91

Appendix D: Parameter relevance
Table 17: Relevant parameters per protoform

Protoform Quantifiers Minimal
truth value

Maximum
number of
summarizers

Maximum
number of
qualifiers

Degree of
focus

Maximum
length of
sequence

Threshold
sequence
occurrences

Comparison
method

Protoform (6): In
Q cases, there was
P

       

Protoform (7): In
Q cases, when
condition R was
fulfilled, there
was P

       

Protoform (8): Q
cases contain a
sequence like ABC

  Set to 1* Set to 1*    

Protoform (9): Q
cases, when
condition R was
fulfilled, contain a
sequence like ABC

  Set to 1*     

Protoform (10): In
Q cases, that
contain a
sequence like
ABC, there was P

   Set to 1*    

Protoform (11): Q
cases, that contain
a sequence like
ABC, contain
sequence like XYZ

  Set to 1* Set to 1*    

92

Protoform Quantifiers Minimal
truth value

Maximum
number of
summarizers

Maximum
number of
qualifiers

Degree of
focus

Maximum
length of
sequence

Threshold
sequence
occurrences

Comparison
method

Protoform (12): In
Q cases, there was
PS for a sequence
like ABC

  Set to 1* Set to 1*    

Protoform (13): In
Q cases, when
condition R was
fulfilled, there
was PS for a
sequence like ABC

  Set to 1*     

Protoform (14): In
Q cases, when
there was RS for a
sequence like
ABC, there was P

   Set to 1*    

Protoform (15): In
Q cases, when
there was RS for a
sequence like
ABC, there was PS
for a sequence
like XYZ

  Set to 1* Set to 1*    

*For the protoforms related to sequences the maximum number of summarizers and/or the maximum number of qualifiers is set to one
for the simplicity of the sentences.

93

Appendix E: Questionnaire
Table 18: questionaire evaluation based on TAM model [61] [59] [60] [62]

Variable Question Strongly
disagree

Disagree Neutral Agree Strongly
agree

Perceived Usefulness (PU)

PU1 Using linguistic summarization in my
job would enable me to accomplish

tasks more quickly.

PU2 Using linguistic summarization
would improve my job performance.

PU3 Using linguistic summarization in my
job would increase my productivity.

PU4 Using linguistic summarization
would enhance my effectiveness on

my job.

PU5 Using linguistic summarization
would make it easier to do my job.

PU6 I would find linguistic summarization
useful in my job.

Perceived Ease of Use (PEOU)

PEOU1 Learning to use linguistic
summarization would be easy for

me.

PEOU2 I would find it easy to get linguistic
summarization to do what I want it

to do.

PEOU3 My interaction with linguistic
summary would be clear and

understandable.

PEOU4 I would find linguistic summarization
to be flexible to interact with.

PEOU5 It would be easy to become skillful
at using linguistic summarization.

94

Variable Question Strongly
disagree

Disagree Neutral Agree Strongly
agree

PEOU6 I would find linguistic summarization
easy to use.

Intention To Use (ITU)

ITU1 Assuming I have access to linguistic
summarization, I intend to use it.

ITU2 Given that I have access to linguistic
summarization, I predict that I

would use it.

ITU3 I intend to find out more about
linguistic summarization.

ITU4 If I had material on linguistic
summarization, I would study it.

Output Quality (OQ)

OQ1 The quality of the output I get from
linguistic summarization is high.

OQ2 I have no problem with the quality
of the system’s output.

Result Demonstrability (RD)

RD1 I have no difficulty telling others
about the results of using linguistic

summarization.

RD2 I believe I could communicate to
others the consequences of using
the results generated by linguistic

summarization.

RD3 The results of using linguistic
summarization are apparent to me.

RD4 I would have difficulty explaining
why using linguistic summarization

may or may not be beneficial.

95

Which tools (e.g. PROM or Disco) are you currently using to analyze processes?

What is your skill level using these tools?

� Beginner
� Intermediate
� Expert

Assuming I have access to linguistic summarization, and I have to analyze a business process, I will:

� not use linguistic summarization.
� use linguistic summarization in combination with tools I currently use.
� only use linguistic summarization.

I see the results of linguistic summarization as:

� noise.
� a subset of the results that tools I currently use provide.
� an extension to the results that tools I currently use provide.
� a standalone approach to analyze processes.

96

Appendix F: Disco models of appeals process

Figure 15: Average and maximal duration of appeal process

	Abstract
	Preface
	1 Introduction
	1.1 Problem statement
	1.1.1 Different type of protoforms
	1.1.2 Data preprocessing
	1.1.3 Modelling
	1.1.4 Case study

	1.2 Scope
	1.3 Methodology
	1.4 Appeal dataset
	1.5 Report structure

	2 Background
	2.1 Linguistic summarization
	2.2 Fuzzy sets
	2.3 Protoforms

	3 Possible protoforms
	3.1 Case focused protoforms
	3.1.1 Case focused protoforms for features related to the complete case
	3.1.2 Case focused protoforms related to sequences

	3.2 Sequence focused protoforms
	3.3 Other relevant protoforms
	3.3.1 Temporal aspects
	3.3.2 Gradual rules
	3.3.3 Compare (similar) processes
	3.3.4 Patterns
	3.3.5 Fuzzy matching between attributes
	3.3.6 Usuality
	3.3.7 Trends

	3.4 Combinations of protoforms
	3.5 Protoforms in scope

	4 Process flow
	5 Analysis of possible features
	5.1 Bare minimum of features available
	5.2 Lifecycle of activities
	5.2.1 Transactional life-cycle model
	5.2.2 Timestamps in an event log

	5.3 Attributes in an event log
	5.4 Combinations of features
	5.5 Relevant features included in the analysis

	6 Implementation issues concerning features related to the complete case
	6.1 Create initial array
	6.2 Linguistic label definitions
	6.3 Create membership array using linguistic labels
	6.4 Relevant parameters for linguistic summarization
	6.5 Usability of features related to the complete case

	7 Implementation issues concerning sequences
	7.1 Parameters for sequences
	7.2 Cluster sequences
	7.3 Contain sequence like ABC
	7.4 Sequence like ABC was Ps
	7.5 Usability of features related to sequences

	8 Generating linguistic summaries
	8.1 Sentences generated by the algorithm
	8.2 Pruning of superfluous sentences

	9 Evaluation
	9.1 Set-up
	9.2 Results of case study on appeal dataset
	9.2.1 Insights obtained
	9.2.2 Results of questionnaire

	9.3 Results of case study for audit purposes

	10 Conclusion
	10.1 Concluding remarks
	10.2 Limitations
	10.3 Future research
	10.4 Recommendations

	Bibliography
	Appendix A: User manual
	Appendix B: protoforms and related articles
	Appendix C: Protoforms in scope and their statistics
	Appendix D: Parameter relevance
	Appendix E: Questionnaire
	Appendix F: Disco models of appeals process

