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Abstract 

 In the next several decades, the proportion of the elderly population is expected to 

increase significantly. This has led to various efforts to help live them independently for 

longer periods of time. Smart homes equipped with sensors provide a potential solution by 

capturing various behavioral and physiological patterns of the residents. In this work, we 

develop techniques to model and detect changes in these patterns. The focus is on methods 

that are explainable in nature and allow for generating natural language descriptions. We 

propose a comprehensive change description framework that can detect unusual changes 

in the sensor parameters and describe the data leading to those changes in natural language. 

An approach that models and detects variations in physiological and behavioral routines of 

the elderly forms one part of the change description framework. The second part comes 

from a natural language generation system in which we identify important health-relevant 

features from the sensor parameters. Throughout this dissertation, we validate the 

developed techniques using both synthetic and real data obtained from the homes of the 

elderly living in sensor-equipped facilities. Using multiple real data retrospective case 

studies, we show that our methods are able to detect variations in the sensor data that are 

correlated with important health events in the elderly as recorded in their Electronic Health 

Records.  
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1. Introduction 

1.1. Problem Statement 

Smart homes equipped with sensors provide a great opportunity to help older adults live 

independently. Since sensors are capable of recording the activities of the residents round 

the clock, they are ideal to monitor their day-to-day routines. A routine is a collection of 

activities performed in a repetitive fashion, which enables us to conduct our tasks in a 

structured manner. From physical day-to-day activities, to biological circadian rhythms in 

the human body, to social events like going to work every day, routines are present 

everywhere. Routines are a manifestation of us attempting to perform our daily activities 

in an efficient manner. Therefore, a deviation from the routine is our natural response 

towards some change in the environment that resulted in the formation of the routine in the 

first place.  

Although there has been a significant amount of work in which sensor-based routines of 

the elderly have been correlated with changes in their health, most of it has been done with 

a focus on only the researchers being able to make the correlations. In their current form, 

the techniques are not designed with the caretakers in mind and require expertise to really 

make use of them. In order to enable these techniques to have a significant impact on the 

lives of the elderly, they need to be designed such that they are more suitable to be used by 

people who take care of the residents on a day-to-day basis. An Explainable AI approach 

along with Natural Language Generation (NLG) can offer a potential solution by 
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presenting the information about routine and other sensor parameters in intuitive natural 

language.  

The central theme of this research involves using in-home sensor data to extract 

information about routines and other important health relevant sensor parameters and 

expressing them in natural language. To this end, this research attempts to address the 

following threefold goal: 

• Model and explain routines of elderly using in-home sensor data 

• Build natural language explanation of changes in routines 

• Design an NLG system to supplement description of changes in routine with 

linguistic summaries of other important health relevant sensor parameters 

We propose methods to discover patterns in the data generated from sensors installed in 

apartments of the elderly living in smart homes. The data is multimodal in nature and 

encapsulates information about activity patterns, sleeping patterns and patterns of 

physiological measurements (such as patterns in heart rate and respiration rate) of the 

elderly. We introduce a routine modelling approach that captures the regular behavioral 

and physiological patterns in the in-home sensor data. We emphasize that the models 

produced by our approach are explainable and allow for natural language descriptions. We 

propose a technique to detect deviations in the modelled routines and express them in 

natural language. We also develop a method to supplement the explanations of deviation 
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in routine with summaries of other important health relevant sensor parameters. To this 

end, we introduce techniques to extract important health relevant features from the sensor 

parameters. While we validate various parts of our system separately, with the help of 

retrospective case studies, we envision that our routine modelling and deviation detection 

method would generate an alarm on detecting significant changes in the routines of elderly 

residents. The notifications of the alarms would include textual explanations of changes in 

routine along with natural language descriptions of other important health relevant 

parameters. We believe that the linguistic nature of the alarms would help their recipients 

to act on them in a more effective manner. 

1.2. Overview 

The block diagram in Figure 1.1 shows the connection between different building blocks 

that are developed in this work. The routine modeling and deviation detection system along 

Baseline 

Data 

Behavioral 

Routine 

Physiological 

Routine 

Patterns 

Routine 

Change 

Detection 

Change 

Explanation 

Comprehensive 

Change 

Description 

New Data 

Linguistic 

Feature 

Extraction 

Figure 1.1: Block Diagram of the envisioned Comprehensive Change Description Framework 
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with the linguistic summarization of various sensor parameters can form a comprehensive 

textual change description of the in-home sensor data. Although the full potential of our 

comprehensive change description system would be realized when all the building blocks 

work in concert as depicted in Figure 1.1, the validation of the individual components is 

the necessary first step. Accordingly, we separately validate the different components of 

the comprehensive change description framework with the help of multiple retrospective 

case studies taken from the sensor-equipped apartments of the elderly.  

We model and provide natural language explanations of the routines of the elderly over a 

baseline time period that may be identified as normal by the nursing staff at the facility 

where they are residing, or with the help of the Electronic Health Records (EHR). The 

behavioral routines capture the usual activity patterns of the residents while the 

physiological rhythm, which we interchangeably call their physiological routine, models 

their pulse rate and respiration rate patterns. We also develop an explainable change 

detection method that compares the behavioral and physiological routine models with the 

data outside the baseline period and quantifies the dissimilarity in numerical as well as 

linguistic terms. We employ this method to describe the changes in routines in natural 

language. This forms one part of the comprehensive change description of in-home sensor 

data mentioned in Figure 1.1.  Although identifying changes in routine can provide 

important insights towards changes in the health of the elderly, the in-home sensor data is 

believed to contain much richer information that can be of assistance in monitoring the 

residents’ wellbeing. To this end, we design a separate Natural Language Generation 
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(NLG) system, where we identify important health relevant features present in the sensor 

data and convert them into intuitive, concise and informative natural language statements.  

In Chapter 2, we review the literature related to various aspects of our routine modelling 

and natural language summarization system. In the first section, we provide the motivation 

for using in-home sensor technology to help the elderly live independently for longer 

periods of time. We then provide a detailed review of existing routine modelling techniques 

concerning in-home sensor data. We also visit some methods that model routines over data 

obtained from non-smart home settings. One of the most important and distinctive features 

of our routine modelling approach is that it allows natural language explanations. In the 

next section, we provide a detailed review of Explainable AI (XAI) and Natural Language 

Generation (NLG) systems. The central elements of our explainable routine modelling and 

sensor data summarization system is a fuzzy-logic based technique called Linguistic 

Protoform Summaries (LPSs). We trace the history of LPSs to their current form. We also 

list various methods to produce LPSs and use synthetic data to compare the most popular 

methods relevant to this work.  

In Chapter 3, we describe an LPS based explainable dissimilarity measure, which is part of 

a paper that was presented at the IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), 2019. There, we propose a distance/similarity measure to compare two sets of 

objects. We first describe the two object sets using LPSs and then use a Fuzzy Inference 

System (FIS) to compare the LPS sets. Along with the numerical distance, the proposed 

method also quantifies the differences in the two datasets in linguistic terms, which can be 
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used to explain why the two sets of objects are dissimilar. We study the properties of our 

method with the help of synthetic data examples and show that it produces high correlation 

with the well-known Euclidean distance measure. This explainable distance measure forms 

the heart of our routine modeling technique, which we describe in the next chapter. 

Chapter 4 introduces our LPS based routine modelling approach, which forms the basis of 

finding behavioral and physiological routines in in-home sensor data. We design various 

synthetic data experiments to study the various parameter settings of our algorithm. We 

adapt our explainable distance measure to detect deviations in both behavioral and 

physiological routines. For behavioral routines, we make use of synthetic data to 

demonstrate that our algorithm is able to differentiate between different behavioral 

patterns, while for physiological data, we illustrate our method using real pulse rate data 

obtained from a sensor equipped apartment of an elderly resident. For both behavioral and 

physiological data, we follow this with multiple retrospective case studies where we use 

our method to model routines of the elderly and develop techniques to express it in natural 

language. We also show that our method is able to detect and provide natural language 

explanations of changes in the routines that are correlated with the residents’ Electronic 

Health Records.   

The first step in determining the model of the routine of a person is to define what 

constitutes a routine. For the case of elderly, knowing their living pattern is important. By 

living patterns, we mean how and where they spend their time during the course of a day. 

To this end, we represent the behavioral routine of the residents by modelling their location 



7 

 

patterns at different times of days. For example, we would like to quantify how much of 

the morning is spent sleeping or being inside the apartment. Hence, in order to capture the 

activity patterns, we represent the residents’ whereabouts during morning, daytime and 

nighttime in four activities, namely: 

- Inside the bathroom: Time spent in the bathroom  

- On the bed: Time spent on bed 

- Out of the apartment (OOA): Time spent outside the apartment 

- Inside the apartment (INA): Time spent in the living room, kitchen, bedroom  

Physiological parameters such as the resting heart rate are also important aspects of a 

resident’s routine. To this end, we incorporate the daily pulse rate and respiration rate 

measurements of a resident, measured by a hydraulic bed sensor, as part of their 

physiological rhythm. We model these parameters such that we can assess variations in 

their measurements. For example, we would like to determine if there are more 

measurements with a higher pulse rate than usual. Hence, we define the physiological 

routine of a resident with the following two parameters: 

- Instances of pulse rate measurements taken during a day 

- Instances of respiration rate measurements taken during a day 

In Chapter 5, we present a Natural Language Generation system to supplement changes in 

routine with linguistic summaries of other important health relevant features from the in-

home sensor data generated in the apartments of the elderly. The system described here is 

part of a manuscript that was published at the Journal of Biomedical Informatics (JBI). In 
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this work, we start by identifying important attributes in the sensor data that are relevant to 

the health of the elderly. We then develop algorithms to extract these important health 

related features from the sensor parameters and summarize them in natural language. Such 

a system will help the clinicians to focus more on making higher-level health related 

inferences by saving their time and effort in interpreting the numerical data. For example, 

in our long collaboration with clinicians dealing with the sensor data, we have found that 

they often seek trends in the sensor streams to determine changes in the health of the 

elderly. A system that can reliably detect trends and present them in natural language will 

be beneficial as the time saved in looking for trends in the data would be put to better use 

in making higher-level inferences. Moreover, since clinical staff turnover in nursing home 

is high, a linguistic format of the data will help new personnel in interpreting the sensor 

data. The benefit of such a linguistic summarization system would further increase as in-

home technology becomes more pervasive.    

To the best of our knowledge, the only system that expressed data generated by in-home 

sensors in natural language was presented in (Jain and Keller 2015). There, we summarized 

the state of a resident as the sensor measurements obtained currently, as compared to 

measurements over the last two weeks. We also described if there was any increasing or 

decreasing trends leading to the current day. The linguistic alert summarization system 

described here is an extension of that previous work. While the clinicians in our team 

appreciated the previous system in that it described the sensor data in natural language, 

their main critique was that the summaries were too verbose, and they would like them to 
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be shorter and more informative. Mindful of this, we build the summarization system 

described in this work from the ground up, with three main objectives. First, we make the 

summaries more informative by including sensor parameters that cover multiple aspects 

of the health of the elderly. While the earlier work only summarized 3 sensor parameters, 

here, we process data from 17 sensor parameters. We also extract multiple data features 

from the sensor parameters to mine different types of information content. Second, we test 

the accuracy of each data feature by conducting multiple surveys with human subjects. 

Third, we make the summaries concise by controlling the amount of information included 

in the summaries, without removing useful content. To make the summaries easy to read, 

we carefully format the textual content. This summarization methodology is deployed as 

part a National Library of Medicine (NLM) funded project (Popescu, NIH-NLM 

#R01LM012221). 
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2. Background 

2.1. In-Home Sensor Monitoring in Eldercare 

In the next several decades, the number of people with age 65 and older is expected to rise 

significantly in the United States (Ortman, et al.). As the proportion of the elderly 

population grows, there is an increasing need to find ways to help them age independently 

(Gross 2007). In the recent past, in-home sensor technology has been shown to have a lot 

of potential to help the elderly live independently for longer lengths of time by monitoring 

their health in an effective manner. In (Rantz, et al. 2005), it was postulated that the 

technology can help older adults live a healthier life for longer durations of time, as 

illustrated in Figure 2.1. The figure depicts the usual decline of the functional ability of 

people as they age. It also shows the trend in decline in the presence of the sensor 

technology. In the traditional aging model, the functional ability of people drops uniformly 

as they age, with the flat plateaus followed by major health events which renders them less 

able than before. The use of technology, as suggested by the aging model in the figure, can 

Figure 2.1: Functional ability of older adults VS Time with 

and without technology enhancement 



11 

 

help to reduce the rate of decline in their functional ability, thus, helping them remain 

healthier for longer durations.  

In the in-home sensor technology for aging model, homes of the elderly residents are 

equipped with sensors to conduct longitudinal monitoring of different health related aspects 

of their lifestyle. A significant number of projects have employed this model by 

installing/developing various types of non-intrusive sensors and have successfully made 

correlations between change in the sensor data and the health of the elderly residents. For 

instance, increase in bed restlessness has been shown to be linked with pain (Rantz, et al. 

2008), change in daily living patterns may suggest changes in mental health (Galambos, et 

al. 2013), or decrease in the gait speed may be correlated to increase of fall risk in near 

future (Phillips, et al. 2017). In a Randomized Control Trial (Rantz, et al. 2017), residents 

with sensor monitoring system were found to have better gait right and other health related 

scores as compared to the participants with traditional care models. While most of the 

projects follow a similar general framework of monitoring sensor data longitudinally to 

look for changes, they differ in terms of the types of sensors being used as well as the 

information extracted from the obtained data (QuietCare , Abowd, et al. 2002, Intille, et al. 

2003, Alwan, et al. 2006, Helal and Chen 2009, Kaye, et al. 2011, Cook, et al. 2013, 

Popescu 2015).  
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2.1.1. TigerPlace 

TigerPlace is an independent living environment for the elderly, situated in Columbia, 

Missouri, USA. It was developed as a partnership between the Sinclair School of Nursing 

at the University of Missouri and Americare (Rantz, et al. 2005). It follows the aging in 

place model where clinicians are present on site to assist the elderly in living independently 

for as long as possible. Researchers at the School of Nursing and Electrical & Computer 

engineering have had a long history of collaboration in using technology to augment the 

TigerPlace model in supporting the elderly.  To this end, apartments at TigerPlace are 

equipped with sensors to monitor different health related aspects of the elderly. In the 

following, we provide a brief overview of the different types of sensors installed at 

TigerPlace. 

Although many types of sensor technologies have been employed at TigerPlace over the 

years, currently, most of the apartments are equipped with three sensor types: motion 

sensors, bed sensors and depth camera sensors. 

- The motion sensors record the activity of the residents around the apartment. They are 

strategically placed at various locations in order to cover the maximum area. The raw 

data generated by the motion sensors is processed to log the time stamps and the 

location of movements occurring in their field of view. The motion data is recorded at 

a resolution of 7 seconds. That is, for each sensor, the time between consecutive logged 

time stamps is at least 7 seconds. In most of the apartments, the motion sensors are 
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placed in the bathroom, bedroom, living room, den, front door etc. Along with the 

general activity patterns of the residents, data obtained from the motion sensors has 

been used to recognize activities like the times the resident goes outside the apartment 

or makes a visit to the bathroom (Wang 2011). 

- The bed sensor monitors the quality of sleep of the residents by measuring restlessness 

and other physiological parameters like the pulse rate and respiration rate, non-

intrusively. This is done with the help of a proprietary hydraulic bed sensor designed 

by researchers at the Center for Eldercare and Rehabilitation Technology (Heise, et al. 

2011). The hydraulic sensors are placed underneath the mattress and produces a 

Ballistic Cardiogram (BCG) of a person lying on the mattress. The BCG signal is a 

measure of the flow of the blood inside a person’s body. In addition to being able to 

detect the time spent in the bed, the quality of the BCG signal can be used to find the 

measure of restlessness of a person lying on the bed. Moreover, the BCG signal is 

processed with the help of various signal-processing algorithms to produce continuous 

measurements of important physiological parameters, such as the pulse rate and 

respiration rate (Rosales, et al. 2017).  

- The depth cameras at the apartments at TigerPlace assess different parameters 

associated with the gait of the residents. The depth sensors only record the silhouette 

of the resident and hence do not present issues concerning privacy of the residents. In 

most of the apartments, the depth sensors are placed in the living room, and only record 

videos when there is an activity inside its field of view. The recorded videos are 
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processed to measure gait parameters such as walking speed, stride time and stride 

length (Stone and Skubic 2013). The data from the depth camera is also used to generate 

alarms on detecting a fall in its field of view (Stone and Skubic 2014).    

In the last few years, researchers at the University of Missouri have implemented the 

in-home sensor model of TigerPlace to various sites around Columbia, Missouri. The 

data used in this research is obtained from these sites. We use the data generated by the 

three types of sensors mentioned above. We identify important changes in high-level 

parameters such as the pulse rate, respiration rate, time out of apartment, time in 

bathroom etc. and, also employ them to make inferences about the behavioral and 

physiological patterns/routines of the residents.  

2.2. Routine Modelling  

2.2.1. Routine Modelling in Eldercare 

A widely used approach to assess changes in the health of the elderly residents is by using 

the in-home sensor data to model and detect deviations in their day-to-day routines. 

Maintaining a stable daily routine has been positively correlated with the well-being of 

older adults. In a study in (Zisberg, et al. 2010), the sleep quality of older adults was found 

to improve with performing activities in a routinely manner. In another study, general daily 

routines were found to help in maintaining well-being in elderly women (Ludwig 1997). 

The results of these studies have led to the development of a significant number of 

techniques that use in-home sensors to understand behavioral patterns of the elderly, which 
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can be considered as their routines. In the majority of the routine modelling techniques, 

sensor data originating from various sources are fused to obtain a baseline representation 

of their living patterns. The change in the routine over a time period is then compared to 

gain insight into changes in the health of the elderly (Cardinaux, et al. 2008, Virone, et al. 

2008, Shin, et al. 2011, Wang, et al. 2012, Yin, et al. 2015, Dawadi, et al. 2016, Yefimova 

2016, van Kasteren, et al. 2017, White 2018). Next, we briefly describe some of these 

techniques. 

Visualization is a common strategy to study routines of the elderly living in homes 

equipped with sensors. Yin et al (Yin, et al. 2015), represented routines of residents by 

their transition patterns inside the apartment and visualized the transition matrices with 

acyclic graphs to compare routines over different periods of time. In (Yefimova 2016), the 

author went through the data generated by the bed sensors, motion sensors and the depth 

sensors, manually, to determine the activities performed by them. The living patterns for a 

period of time were then presented in patch plots, which are temporal representations of 

the residents’ activity patterns. They found different patterns on weekends as compared to 

weekdays. In (van Kasteren, et al. 2017), motion sensors and power sensors were used to 

model the routine of a person. The motion sensors were used to track the residents around 

the apartments while the power sensors were used to monitor the TV watching activity or 

use of electric appliances such as microwave or kettle. The activity patterns obtained by 

the sensors were visualized using what the authors call a radar plot, which is basically the 

distribution of the activities performed throughout a day, aggregated over multiple days. 
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The radar plots of a resident over two weeks showed that the plots for the week when the 

resident was ill depicted less movement inside the apartment as compared to a normal week 

for the resident. In another case study, the radar plots over two months showed the 

resident’s gradual return to normal routine after the death of their spouse.  

In (Virone, et al. 2008), the authors use motion sensor data to assess changes in the 

circadian rhythms of the elderly residents. They compute the circadian activity patterns 

using the number of hits that a motion sensor recorded along with the location the hits were 

produced. Using a visual presentation of their method to represent the behavioral activity, 

they show that the residents have differing patterns on weekdays and weekends. They also 

present a mechanism to compute deviation from the circadian activity patterns. A number 

of case studies were presented to validate the technique.  

In (Shin, et al. 2011), the behavioral patterns of the residents were represented by three 

features: activity level, mobility level and non-response interval. The three features were 

used to train a Support Vector Machine (SVM) for a time period over an expert labeled 

data consisting of normal and abnormal days. The behavioral patterns represented by the 

three features were then classified using the trained SVM model. In order to validate their 

method, they collected data from apartments of 9 elderly residents over a period of 694 

days. Patterns were labeled as normal or abnormal by experts, which formed the 

training/testing set for the SVM algorithm. Overall, the algorithm produced the sensitivity 

and specificity of 74.2% and 85.8%, respectively.   
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A different method was presented in (Wang, et al. 2012) where the motion activity of the 

residents along with the time away from apartment was represented pictorially, in what is 

called a motion density map. The authors also introduced a dissimilarity method based on 

the textural features of the motion density maps to quantitatively compare activities 

between two or more time periods. Using a case study, it was shown that the method could 

produce a relatively higher dissimilarity between the baseline and a month before surgery, 

as compared to a month after the surgery. Another case study was used to show a trend in 

the dissimilarity from the baseline as the lifestyle of the resident changed over-time. In 

another work, the motion density maps successfully differentiated patterns of activity of 

five residents suffering from depression from the time when they didn’t have depression 

(Galambos, et al. 2013).  

Recently, in (Ibrahim, et al. 2019), activities of the elderly residents as recorded by the 

motion and the bed sensors were converted into sequences of varying lengths. These 

sequences of sensor firings collected over a period of time were used to represent the 

normal activity pattern of the residents. The authors also defined a method to compute 

distance between sequences, which was then used to cluster the collection of sequences 

into multiple groups. The model of sequences built over the normal days was used to flag 

any abnormal days in the future using streaming clustering.  

Dawadi et al. represented the routine of residents in terms of activities of daily living, like: 

sleep, bed to toilet, cook, eat, personal hygiene, leaving home and so on (Dawadi, et al. 

2016). These previously determined activity labels were used to compute the probability 
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that an activity was performed at a given time of day. The probabilities across multiple 

days were combined to form what the authors call an aggregated activity curve, which is 

the representation of the routine of the residents observed over several days. They also 

define a dissimilarity measure between two activity curves to determine how the current 

set of activity patterns compare to the routine of the resident. They applied their method to 

data obtained from 18 residents living in smart homes and computed correlations between 

two standard clinical scores (TUG and RBANS) and the changes in their routines. A 

positive correlation was found between the change in routine as measured by their 

algorithm and the TUG score. However, no significant correlation was obtained with the 

RBANS score. With the help of two case studies, it was shown that the algorithm detected 

a change in routine when a resident’s health deteriorated over a 24 month period, while no 

change in routine was detected for a resident whose health did not change significantly 

over time. 

2.2.2. Routine Modelling in Other Domains 

The importance of monitoring life routines has been studied in many disciplines other than 

eldercare. In the seminal work of (Eagle and Pentland 2006), called the Reality Mining 

project, students and faculty at the MIT Media Lab were given cell phones to record their 

location patterns and social interactions. A technique called Eigenbehaviors was 

introduced in (Eagle and Pentland 2009), where this data was used to extract routines of 

the participants. There, the location activity for each day was represented as vectors and 

the principal components of the activity over several days was used to represent routines. 
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The authors were able to approximate the behavior of residents with 90% accuracy using 

the primary six Eigen vectors. It was postulated that the technique could also be used as a 

tool to generate synthetic data.  

An approach using topic models to represent daily routines was introduced in (Huynh, et 

al. 2008). There, routines of people were described in terms of fine and course level 

activities. Activities such as sitting at desk, going to toilet, having dinner, were termed as 

fine level activities, while activities comprised of multiple fine level activities such as lunch 

routine, commuting, were characterized as course activities. The fine level activities 

formed the words for the topic models and were labeled by a separate activity recognition 

algorithm. Thirty-minute moving windows over the fine activity labels were considered as 

the documents. In order to validate the technique, accelerometers were used to label fine 

level activities performed by a participant over six days. Using these activity labels, they 

recognized four topics in the data, representing the activities: dinner, commuting, lunch 

and office work. They obtained a mean precision and recall of 86.1% and 67.2% on 

comparing the results of the algorithm with the manually labeled activities. The topic 

modelling algorithm provided the probabilities of a topic (high level) given the fine level 

activities happening inside a 30-minute window. The learned model was applied to 

successive 30-minute windows over a day to assess the routine of a person. This approach 

was later used by White (White 2018) to find routines of elderly residents.  

Begole et al. (Begole, et al. 2003) describe modelling and visualization techniques to study 

work rhythms of employees in offices. (Jiang, et al. 2012) use an open source data where 
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32,366 residents in the Chicago metropolitan region answered questions about their 

locations on a weekday and a weekend. They used this data to study moving patterns of 

the residents around the city. They transformed the data into vectors by dividing each day 

into five-minute intervals and selecting one out of 9 locations for each interval (work, 

home, shop etc.). They used Principal Component Analysis (PCA) to find the eigen vectors 

as representative of the daily location activity of the residents. They also performed K-

means clustering on the data to group the activity patterns of the participants into a number 

of clusters. The data was found to contain eight types of routines, representing eight 

different ways in which the residents in the region spend their weekdays and weekends. 

The numerous routine modelling techniques presented in this section are a testament to the 

importance of studying routines in helping detect changes in health of the elderly. All of 

the techniques attempt to present routines obtained from sensor data in one visual form or 

another, while some of them also describe ways to quantify deviations in routine. However, 

the deviation is always quantified numerically where the explanation of the changes in data 

that led to the deviation in routine are not readily available. We attempt to address this 

problem by proposing a routine modelling technique that can model and detect the changes 

in the routines as well as provide explanations in natural language.  

2.3. Explainable AI 

As the Artificial Intelligent (AI) systems are becoming exceedingly smart, they are being 

deployed in our environment at an equally fast pace. If we look around, they are present 
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everywhere, crunching data generated by the sensors enabling the driving assistance 

systems to the numerous health tracking devices. While their assistance has been mostly 

appreciated, they have also drawn some criticisms, especially when these AI enabled 

systems are used for critical applications such as driverless cars or clinical decision making. 

This has led to an increased interest in developing systems that are not just black boxes, 

but methods that can provide an insight into their “thought process”. Explainable AI (XAI) 

is an emerging area of interest where the focus is on developing models that are 

interpretable and capable of explaining themselves, which in turn makes them 

understandable and trustworthy to their users. 

Black Box AI models which are solely driven by data without any regard to the 

implications for decision making can pose serious ethical problems due to the inherent 

biases that may be present in the data (Mittelstadt, et al. 2016). For instance, in a study 

conducted to evaluate various machine learning algorithms for applications in health care, 

it was found that even though a black box model could  produce high objective accuracy, 

the results might not be desirable on ethical grounds (Caruana, et al. 2015). For the task of 

predicting risk of death in patients of pneumonia based on their previous health data, neural 

networks out-performed a rule-based algorithm. However, apart from providing the 

probability of death, the rule-based method also provided correlations present in the data 

that led to the final outcome. One such ‘rule’ made a connection that the patients who had 

a history of asthma were less likely to die. On further probing, the reason for this correlation 

was found to be that the asthma patients had already received good care that decreased 
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their probability of death. Therefore, even though models like the neural networks may 

provide results that are more accurate objectively, their black box nature prevents a deep 

probing into their inner working. Another application that has drawn a lot of focus recently 

is the deployment of AI for autonomous driving. Unless these algorithms allow a window 

inside their workings, it would become really difficult to pin-point the exact reason why an 

autonomous driving vehicle performed a certain action. The current opaqueness of the self-

driving systems has made the regulators hesitant to allow them on public streets (Doshi-

Velez, et al. 2017).  

The increased calls to develop Explainable AI systems is a testament to their importance 

in modern AI driven lifestyles. One such step is the European Union’s General Data 

Protection Regulation (GDPR) which requires AI systems to be able to explain themselves 

(Goodman and Flaxman 2016). The XAI initiative of DARPA, which calls researchers to 

produce more transparent models that are understood and trusted by human users (Gunning 

2017), is another evidence of the importance of explainable AI systems.           

Although the meteoric rise in the popularity of explainable AI systems is only recent, 

researchers have been interested in developing XAI techniques for quite some time. These 

systems have not always been described as explainable but are frequently termed as 

interpretable, understandable or transparent models. In-fact, in order to review explainable 

AI literature, researchers often query for papers having all or any of these terms (Doran, et 

al. 2017, Alonso, et al. 2018). Biran et al. (Biran and Cotton 2017) trace the history of 

machine learning techniques designed to have explanation capabilities to as early as 1980s. 
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According to them, the earliest systems to provide explanations of their workings were 

rule-based expert systems, which later evolved into Bayesian networks. (Lacave and Díez 

2002) provides a comprehensive survey of explanation techniques for Bayesian networks. 

They classify the explanation methods based on their content, communication and the 

adaptation. The content of the explanation controls what aspects of the network are to be 

explained, while the communication is the method by which the explanations are conveyed, 

for example visually or in natural language. The adaptation property drives the level of 

detail to be included in the explanation of the network based on the level of the user’s 

knowledge. While these properties are only specified for Bayesian networks, they can form 

a good guiding principal for explanations of AI systems in general. 

A machine learning method that has been quite popular traditionally is Support Vector 

Machines (SVMs). Most commonly, SVMs are used for the task of classifying data into 

separate classes. Although the objects are assigned to a class based on their distances to a 

decision boundary, the interpretation of the model requires technical expertise; hence, the 

results are not readily explainable. An approach to make SVM results more understandable 

is to use them along with rule extraction techniques (Martens, et al. 2008). In this approach, 

the data is first relabeled based on the results produced by SVM.  This ‘cleaned’ data is 

then used to extract rules, which are then said to mimic the hard to decipher SVM model. 

Such methods where an explainable model is used along with a black box model are termed 

as model-agnostic interpretable techniques, as the explainable model is not dependent on 

the real model which is tasked to perform the actual decision making (Ribeiro, et al. 2016). 
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It has been argued that there is a tradeoff between the interpretability of a model and its 

capability in handling complex datasets. Therefore, in order to maintain the ability of AI 

models to perform highly complex tasks, the model agnostic interpretability approach 

offers a potential solution. However, the explanations produced by model agnostic 

approaches can be locally inconsistent as these methods are limited by recording the 

response of the black box model for only a small set of input.  

The impressive predictive capabilities of the deep learning models have brought a lot of 

focus on techniques to make these models interpretable/explainable. The non-linear 

structure of these models that makes them highly accurate and flexible, also makes it 

difficult to understand their inner workings for a given task. To interpret the deep learning 

models, researchers have approached the explainability by producing visual or textual 

explanations. To name a few, for the task of classifying names of birds from images, 

(Hendricks, et al. 2016) produced explanations such as “This is western grebe because this 

bird has a long white neck, pointy yellow beak and a red eye.” In another work, the textual 

explanations like “This is a healthy meal because it contains a variety of vegetables” were 

accompanied by the highlighting the elements of the image that led to this explanations 

(Huk Park, et al. 2018). A recent survey of the explainability in deep learning models is 

presented in (Gilpin, et al. 2018). 

Fuzzy logic-based models are a class of algorithms that have a high degree of 

interpretability deep-rooted in their design. Due to the ability of fuzzy sets to represent 

linguistic variables in mathematical form, they provide opportunities to develop models 
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that are more natural for human understanding. In the bibliometric analysis of machine 

learning related literature with a focus on works related to explainable AI, papers related 

to fuzzy sets were found to be most prolific (Alonso, et al. 2018). In their analysis, the 

authors found 3000 papers (since the year 2000) containing terms related to explainable 

AI. Out of these 3000, about 28% were found to also contain terms related to fuzzy sets 

and systems, which attests the focus of the fuzzy set community towards development of 

interpretable models.  

The most cited work in this regard was found to be a paper that described designing fuzzy 

inference systems (FIS) from data (Guillaume 2001) for classification and/or data 

exploration tasks. FIS are fuzzy rule-based systems where the rules can either be designed 

by experts or learned from data. Fuzzy rules provide a tool to design highly interpretable 

systems since the rules can be described in intuitive natural language statements. Another 

popular work which employs fuzzy rules for the task of classification of high dimensional 

data was presented in (Jin 2000). There, the main focus was on pruning the number of 

fuzzy rules, since a high dimensional data can result in a very large number of fuzzy rules 

that makes it very difficult to interpret the learned model.  

A fuzzy logic-based system to detect falls from videos was presented in (Anderson, et al. 

2009). The activities performed in the video were first described using fuzzy set based 

linguistic variables. These variables were then used with a fuzzy rule base to detect falls in 

the video. The authors argued that a system driven by fuzzy logic was better than traditional 

fall detection activity models in terms of interpretability. The use of linguistic variables 
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and fuzzy rules also made the system more flexible in that the rules could be easily 

modified based on the systems performance for a given dataset. Fuzzy clustering 

algorithms (Bezdek, et al. 1999) are another class of popular fuzzy set based models that 

provide higher interpretability as compared to their crisp counterpart. With the membership 

degree of a data point denoting its belongingness in a certain cluster, they provide a better 

insight into the data.  

Linguistic Protoform Summaries (LPSs), have been recently used to produce pattern 

recognition systems which are capable of producing results which are explainable in textual 

format (Wilbik and Keller 2013, Wilbik, et al. 2014). LPSs are template-based sentences 

that employ fuzzy logic to produce natural language summaries of data. In (Wilbik, et al. 

2014), LPSs were used to represent baseline patterns of sensor data, which were then used 

to find anomalies in data at some later point in time. The representation of data using LPSs 

readily provided linguistic explanations behind the anomalies, which makes this system 

inherently explainable.  

The large array of approaches to design systems that allow a peek inside their workings 

has made it difficult to have a widely agreed global definition of explainable AI. Doran et. 

Al (Doran, et al. 2017) performed an analysis of the machine learning literature to define 

different types of AI systems with respect to their explaining capabilities. They classify the 

works in the AI related literature into three types: opaque, interpretable and comprehensible 

systems. An opaque system is one where the model does not allow the user to understand 

how the inputs are processed to produce a certain output. For example, an opaque 
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classification system would not provide any information other than the class a certain input 

belongs to. On the other hand, interpretable models are transparent in the sense that a user 

could mathematically map the inputs to outputs. These types of models require the users to 

possess an expertise to understand the underlying mathematical model of the AI system. 

Comprehensible systems provide a visual or a textual explanation of why a certain input 

was mapped to an output. However, in a comprehensible system, the actual AI model need 

not be transparent. Deep neural networks fall under the category of opaque systems while 

SVM, data clustering, decision trees, Bayesian networks etc. are common examples of 

interpretable models. Models that explain the results of deep learning models visually or 

in textual form are comprehensible systems. Methods based on fuzzy sets can potentially 

have both the interpretability and the comprehensibility property. To illustrate the 

classification of the XAI systems into the three aforementioned categories, the authors of 

(Doran, et al. 2017) describe the communication between a doctor and a patient as a 

comprehensible system where the doctor provide the patient with a high-level explanation 

of why their symptoms led to a certain diagnosis. On the other hand, the communication 

among doctors is analogous to an interpretable system where the details of the diagnosis 

are discussed on a technical level.   

Due to the critical nature of clinical applications, it is imperative that the AI models 

designed to make decisions based on health care data needs to be explainable in nature 

(Caruana, et al. 2015, Holzinger, et al. 2017, Ahmad, et al. 2018). Using the classification 

of AI systems of Doran et al. (Doran, et al. 2017), the models need to be interpretable as 
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well as comprehensible. The high cost of inaccurate diagnosis in the clinical domain, makes 

it essential for the models to be transparent in nature. Moreover, the models need to be 

interpretable in order to be trustworthy by the health care personnel using them (Ahmad, 

et al. 2018). On the other hand, the comprehensibility property of the models is required 

for them to be used to the fullest by both clinicians and the patients.  

The explainable models could either use visual or textual representations to express the 

reasoning behind their results. Visualization techniques are able to explain important 

details of the data, but they require some amount of expertise and a learning curve to be 

fully useful. Moreover, due to the short amount of time available to the clinical personnel 

to review a patient’s records, visualization techniques are not ideal in the healthcare 

domain. Natural language representations of these models could provide an intuitive and 

efficient way to understand the results of the comprehensible models. Although the idea of 

using Natural Language Generation (NLG) as a communication agent for intelligent 

systems is still quite new, it is believed to be a key element of the explainable AI framework 

(Biran and McKeown 2015, Biran and Cotton 2017).  

2.4. Natural Language Generation in Decision Making 

With the advent of big data, the field of Natural Language Generation (NLG) has seen a 

significant amount of work in the last two decades. NLG techniques are designed to extract 

important information from different forms of data and express that in natural language. 

Traditionally the de-facto method to understand data has been to employ visualization 
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techniques that present a coherent picture of important content in the data. Visualization 

makes it easier to make sense of the data and draw important observations from it. 

However, this becomes less feasible as the data becomes more complex and ‘big’. 

Visualization comes with its own set of shortcomings. First, graph literacy is not uniform 

across different groups of people. When presented with simple graphs, the ability to extract 

relevant information from the graphs varies among people based on levels of education, 

familiarity with the underlying data in the graphs (Friel, et al. 2001) or even culture 

(Galesic and Garcia-Retamero 2011). Second, most of the visualization techniques involve 

selection of parameters like axis scale, size of the graphs, color etc. which makes it difficult 

to objectively interpret graphs even for experts in their respective domains. Moreover, 

natural language has been shown to be helpful in interpreting numerical data and improve 

decision making in the presence of uncertain information (Gkatzia, et al. 2016). 

In the recent past, NLG technology has proven its utility in numerous applications ranging 

from weather reporting to health care data summarization (Gatt and Krahmer 2018). One 

of the earliest applications where NLG was postulated to have significant impact was in 

health care (Cawsey, et al. 1997). Since then, a lot of work has been done to help health 

care processes by summarizing their data in natural language. In (Gatt, et al. 2009), nursing 

discharge summaries were automatically generated from sensor data in Neonatal Intensive 

Care Units (NICUs). The summaries produced by the NLG system were found to be 

comparable to the ones produced by nurses. Hospital records of patients were converted 

into reports in natural language in (Scott, et al. 2013). The system was designed so that the 
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summaries could be customized in terms of the content based on the audience. The system 

was evaluated for accuracy and efficiency by presenting health care personnel with the auto 

generated summaries and summaries produced by humans. While the auto-generated 

summaries were found to be on par with the human written summaries, the doctors found 

them more efficient in terms of the time it took to go through them. (Di Eugenio, et al. 

2014) designed an NLG system to combine physician discharge summaries and nursing 

documentation. The discrepancies between the discharge summaries and information 

logged by the nurses was the motivation for this work. (Goldstein and Shahar 2016) 

designed a system called CliniText, which summarized multivariate numeric and linguistic 

data generated in a cardiac ICU during a patient’s stay. Although the over-all quality of the 

clinician written summaries were superior to the auto generated summarizations, the 

CliniText system was found to be better than the summarizations produced by clinicians in 

terms of the completeness of the content and extraction of information.  

The continuous streams of data generated by the sensors monitoring different types of 

processes has attracted NLG techniques towards these applications. In (Yu, et al. 2007), 

large amounts of data generated by sensors monitoring the functioning of gas turbines was 

textually described to aid engineers in maintaining different part of the turbine system. 

There, corpus of text written by experts to describe the time series were used to design 

various features of the NLG system. The time series were summarized in a hierarchical 

fashion by focusing on the larger picture and then drilling down into finer patterns of the 

temporal data. This NLG architecture was also used in (Sripada, et al. 2003) to produce 
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weather forecasts.  In (Banaee, et al. 2013), physiological data comprising of respiration 

and heart rate measurements were obtained from wearable sensors. Features such as trends, 

along with basic statistical parameters, were used to summarize the information content of 

the data, which were then expressed in natural language. In (Alexander, et al. 2014), 

Linguistic Protoform Summaries (LPSs) were shown to be successful in correlating in-

home sensor data with changes in health. The output of this system expressed the changes 

in sensor patterns in linguistic terms. However, the language of the output was not very 

intuitive. To the best of our knowledge, the only system that expressed data generated by 

in-home sensors in natural language was presented in (Jain and Keller 2015). There, we 

used LPSs to summarize the state of a resident as the sensor measurements obtained 

currently, as compared to measurements over the last two weeks. We also described if there 

was any increasing or decreasing trends leading to the current day.  

2.5. Linguistic Protoform Summaries 

Linguistic Protoform Summaries (LPSs) are template-based natural language statements 

that summarize data in linguistic terms. They are capable of quantifying one or more 

properties of data. For instance, LPSs can be used to generate statements like: Most of the 

students in class are tall, summarizing the heights of collection of students, or weather 

during a month: Few of the cold days in this month were windy. The use of Fuzzy Sets to 

represent terms like most, few, tall, cold etc. gives LPSs the ability to produce ‘human’ 

like natural language sentences. 
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In the fuzzy set literature, the term linguistic summary is a general term that encompasses 

many different techniques to produce textual output. An in-depth review about the different 

types and applications of linguistic summaries can be found in (Boran, et al. 2016). 

Linguistic Protoform Summaries are fuzzy quantified sentences and are just one of the 

types of linguistic summaries that employ fuzzy sets. LPSs were introduced by Yager 

(Yager 1982) to summarize numerical data in easy to understand natural language like 

sentences. In comparison to the traditional data summarization operators like mean, 

median, and standard deviation, LPSs allow for a more informative, but still concise, 

representation of data. The first use of the term protoform (short for prototypical form) to 

describe these fuzzy quantified sentences was done by Zadeh (Zadeh 2002) in 2002. The 

protoform is an abstracted form of a quantified sentence. For example, the protoform of 

the proposition “Most students are tall” is “Q y’s are A” where Q is a fuzzy quantifier and 

A is the property of objects, 𝑦, being summarized.   

Since the proposal of Yager in 1982, Linguistic Protoform Summaries have seen a lot of 

work in terms of sentence templates (protoforms) as well as in various application domains. 

Among the different applications, linguistic summarization of time series has especially 

seen a lot of attention. For instance, (Kacprzyk, et al. 2010) segment the time-series 

comprising of mutual fund data and relate different features in the segments by the use of 

fuzzy quantifiers. Features such as trends, variability and duration are extracted from the 

time-series segments to produce summaries like: Most of slowly increasing trends are of a 

medium length. In another work, Sanchez et al (Sanchez-Valdes, et al. 2016) make use of 
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fuzzy quantifiers to produce a hierarchical system describing daily/weekly patterns of 

activities inferred from data recorded by smart phones. The smart phone sensor derived 

short terms activity patterns like walking, running, idling are aggregated to denote a day as 

sedentary, active etc. These daily patterns are in turn accumulated to describe the weekly 

activity pattern of a user. The LPS based hierarchical scheme is used to describe a week as 

“In summary, this week the user had a moderate lifestyle, because all the days the lifestyle 

was moderate.”  In (Ramos-Soto, et al. 2015), LPSs were used along with a template based 

NLG system to produce linguistic descriptions of short term weather forecasts. Wilbik et 

al. (Wilbik and Dijkman 2016) employ LPSs to summarize process data, which is 

comprised of sequences of activities performed in a process. To keep the description 

provided by the LPSs short, they use a set of rules to determine LPSs that convey similar 

information. In (Wilbik, et al. 2011), LPSs were used to summarize activities of elderly 

residents using the data obtained from their apartments that were equipped with sensors. 

There, the amount of activity performed over a time period was summarized by LPSs of 

the form: On most of the nights the resident had a medium level of motion. With the help 

of a case study, they pointed out the existence or absence of summaries when the person 

was having health issues.  

Recognizing the potential of LPSs to summarize numerical data, authors in (Wilbik and 

Keller 2012) introduced a distance measure over the space of LPSs which enabled their use 

as features of data. This allowed the authors to compare two object sets by first 

summarizing them using LPSs and then quantifying the difference between the two sets 
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numerically. This approach was used in (Wilbik and Keller 2013) to compare nightly 

sleeping and movement patterns in sensor data obtained from homes of the elderly. The 

technique was extended in (Wilbik, et al. 2014) to cluster LPSs generated from sensor data 

over a certain time period. A similar approach was used to compare patterns of activity of 

two elderly residents suffering from depression (Jain, et al. 2016). There, we focused on 

the out-of-apartment activity of the residents during a month when they were suffering 

from depression, a month before, and a month after taking depression medication. The use 

of LPS allowed us to linguistically compare the patterns of out of apartment activity during 

the three time periods. We were also able to show that, quantitatively, the LPS 

representation of the out of apartment activity prior to the onset of depression were closer 

to the month after the medication use than the month when the residents were suffering 

from depression. In (Jain, et al. 2017), we used LPSs as input to fuzzy rules to produce a 

decision support system for in-home blood pressure data. We showed that the DSS based 

on LPSs was able to match judgements of three physicians with high accuracy. 

2.5.1. LPS generation 

The central task in using Linguistic Protoform Summaries to summarize numerical data is 

to measure their validity based on the underlying information. This assessment of LPSs 

that takes into account the fuzzy set representation of terms forming the LPSs is itself a 

fuzzy value indicating the validity of a given LPS corresponding to the dataset being 

summarized. Since the seminal work of Yager (Yager 1982), a substantial number of LPS 

evaluation techniques have been proposed in the literature. Although there are many 
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metrics measuring different aspects of the LPS (Wilbik 2010), the most widely studied is 

called the degree of truth or the truth-value metric, which gives the validity of the LPS in 

terms of how true it is with respect to the corresponding data. Sanchez et al. (Delgado, et 

al. 2014) provides a comprehensive review of different approaches to compute the truth-

value in relation to the format of the LPSs and the design of fuzzy sets representing 

linguistic terms. In the following, we describe a few of these techniques concerning this 

work.  

At the very basic level, LPSs or fuzzy quantification is nothing but quantifying one or more 

properties of data in terms of the fuzzy sets representing the quantifier and the said 

properties. With this definition in mind, the two most widely used LPS protoforms are 

called: Simple and Extended protoforms (Wilbik 2010) or type I and type II protoforms 

(Delgado, et al. 2014). An example of a type I LPS is Few days were cold, which, in 

general, can be represented by the protoform: 𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃 where 𝑄 and 𝑃 denote the 

quantifiers and the summarizers, respectively. A type II LPS can be illustrated by: Most of 

the windy days were cold where the windy days in the above example are used to qualify 

the type I LPS expression. Type II LPS are represented by protoforms of the form: 

𝑄 𝑅 𝑦′𝑠 𝑎𝑟𝑒 𝑃 where the terms 𝑄 and 𝑃 represent the quantifiers and summarizers as in 

type I LPS, while the term 𝑅 is aptly called the qualifier. Another component that plays a 

key role in the computation of the truth-values of LPSs is the definition of the fuzzy set 

representing the quantifiers. As noted in (Delgado, et al. 2014), the quantifiers can be 

defined in two ways according to the semantic meaning of the linguistic term being 
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represented: coherent and non-coherent quantifiers. Coherent quantifiers are defined by 

monotonically non-decreasing membership functions and are used to represent terms like: 

almost all, at least a few, at least some etc. The non-coherent quantifiers represent terms 

like: a few, about 25% and so on and can be modelled by monotonically non-increasing or 

non-monotonic membership functions. We are mostly interested in linguistic terms 

modeled by non-coherent quantifiers, as they are more applicable in producing statements 

that are natural in communication.  

The quantifiers can also be classified as relative or absolute in terms of the represented 

quantity. Quantifiers like few, some, many, about 25% are deemed as relative quantifiers, 

as they are quantifying a proportion of the given objects. Absolute quantifiers, as their 

name suggests, are used to represent the absolute quantity of objects being quantified, for 

example, about 10, exists, all etc. In the following, we describe the various truth-value 

computation techniques available in the literature with a focus on methods for LPSs 

comprising of non-coherent, relative quantifiers. 

The truth-value computation technique employed in the seminal paper of Yager is arguably 

the most widely used in the LPS literature for both type I and type II LPSs. This technique 

is based on works of Zadeh; hence, it is often called the Zadeh’s method of truth-value 

computation. Although it performs as expected for coherent quantifiers, it has been shown 

to produce non-intuitive truth-values for non-coherent quantifiers like few. In (Wilbik, et 

al. 2015), the authors showed that even when all the objects being summarized have a small 
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belongingness to a certain property, Zadeh’s method produced a high truth-value for an 

LPS comprising of a non-coherent quantifier (a few).  

Many truth-value techniques presented in the literature are only applicable to LPS 

composed of coherent quantifiers. Yager’s ordered weighted average has been used to 

compute truth-value for coherent quantifiers (Delgado, et al. 2014). The truth-value is 

basically the weighted average of the memberships of the objects in the property being 

quantified. The weights are obtained using the membership function of the quantifier in the 

LPS. The OWA based method is equivalent to the truth-value computation method based 

on Choquet Integral (Delgado, et al. 2014), where the membership function of the 

quantifier forms the fuzzy measure which is used to aggregate the memberships of the 

objects in the given property.  

Similar to the use of Choquet integral, Sugeno integral has also been used to compute truth-

value of the LPSs. Initially, the method involving Sugeno integral was only defined for 

coherent quantifiers (Kacprzyk, et al. 2006). However, it was later extended for non-

coherent quantifiers (Wilbik, et al. 2015). We present this method in detail in the following. 

Note that although most of the truth-value computation methods described next are 

applicable to both absolute and relative quantifier, we only focus on relative quantifiers as 

they are the most relevant to our work.  
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2.5.1.1. Truth-Value computation using Sugeno Integral 

Consider the type I LPS shown in Equation 2.1, where 𝑄 and 𝑃 are the quantifiers and the 

summarizers, respectively.  

𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃 (2. 1) 

The Sugeno integral formulation of the truth-value computation of this LPS is presented in 

Equation 2.2.    

𝑇(𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃) = max
𝛼 ∈𝑢𝑛𝑖𝑞𝑢𝑒(𝑃(𝑦))

(𝛼 ∧ 𝑄(𝑃𝛼)) (2. 2) 

Here, ⋀ is the min operator, 𝑃(𝑦) is the membership function of the summarizer 𝑃, 𝑃𝛼 =

|{𝑦𝑖∈𝑌|𝑃(𝑦𝑖)≥𝛼 }|

𝑁
 is the proportion of objects whose membership 𝑃(𝑦) is greater than or equal 

to 𝛼, 𝑢𝑛𝑖𝑞𝑢𝑒(𝑃(𝑦)) is the set of 𝛼 cuts of 𝑃(𝑦), | | denotes the cardinality of a set . 𝑄(𝑥) 

is a normal, convex and monotonically non-decreasing membership function of the 

quantifier 𝑄. This method was adapted in (Wilbik, et al. 2015), to compute truth-values of 

LPS comprising of quantifiers having non-coherent (non-monotonic) membership 

functions. There, the non-coherent quantifiers, 𝑄(𝑥) are split into two monotonically non-

decreasing functions, 𝑄1(𝑥) and  𝑄2̅̅ ̅(𝑥) (which is the inverse of 𝑄2(𝑥)) and the truth-value 

is computed as shown in Equation 2.3. Since both 𝑄1 and 𝑄2̅̅ ̅ are both monotonically non-

decreasing quantifiers, the truth-values of the corresponding LPS can be computed using 

Equation 2.2.  

𝑇(𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃) = 𝑇(𝑄1 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) − (1 − 𝑇(𝑄2̅̅ ̅ 𝑦

′𝑠 𝑎𝑟𝑒 𝑃)) (2. 3) 
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Although, this method provided a way to compute truth-values of LPS comprising of non-

coherent quantifiers, it still produced non-intuitive truth-values in some cases. To be 

specific, the truth-values computed by this method were not semantically ordered with the 

quantifier definitions. This was addressed in (Jain and Keller 2015) by replacing the 

difference operator with a min operator in Equation 2.3, as shown in Equation 2.4. There, 

we proved that the truth-values computed by this method follows the semantic order of the 

quantifiers, which makes it more intuitive to use LPSs as a linguistic representation of 

numeric data.  

𝑇(𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃) = 𝑇(𝑄1 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) ∧ (1 − 𝑇(𝑄2̅̅ ̅ 𝑦

′𝑠 𝑎𝑟𝑒 𝑃)) (2. 4) 

In that work, we also adapted the Sugeno integral method for type II summaries of the form 

𝑄 𝑅 𝑦′𝑠 𝑎𝑟𝑒 𝑃, as shown in Equation 2.5.  

𝑇(𝑄 𝑅 𝑦′𝑠 𝑎𝑟𝑒 𝑃) = max
𝛽∈𝑢𝑛𝑖𝑞𝑢𝑒(𝑅(𝑦𝑖))

𝛽 ∧ ( max
𝛼∈𝑢𝑛𝑖𝑞𝑢𝑒(𝑃

𝑅𝛽(𝑦𝑖))

(𝛼 ∧ 𝑄 (𝑃𝛼
𝑅𝛽)) ) (2. 5) 

where, 𝑅𝛽 = {𝑦𝑖 ∈ 𝑌|𝑅(𝑦𝑖) ≥ 𝛽 } 

𝑃𝑅𝛽 = {𝑃(𝑦𝑖)|𝑦𝑖 ∈ 𝑅𝛽} 

𝑃𝛼
𝑅𝛽 =

|{𝑦𝑖 ∈ 𝑅𝛽|𝑃(𝑦𝑖) ≥ 𝛼}|

|𝑅𝛽|
, for |𝑅𝛽| > 0  

For the case of type II summaries, we take beta cuts of the qualifier data. For each of the 

objects falling in the current beta cut, we follow the procedure for the simple protoforms. 
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The intuition behind this is that when computing truth-values of summaries like Some of 

the big balls are heavy, we should only focus on the balls that are big under certain 

condition, which is the beta cut in Equation 2.5. 

2.5.1.2. Truth-Value computation using Fuzzy Cardinality  

A family of truth-value computation techniques that are applicable to non-coherent 

quantifiers was presented in (Delgado, et al. 2000). For type I LPS of the form 𝑄 𝑦′𝑠 𝑎𝑟𝑒 𝑃, 

these methods obtain the truth-value by computing the degree of compatibility between the 

cardinality of the fuzzy set, 𝑃 and the quantifier, 𝑄, as depicted in Equation 2.6. 

⨁ 

𝑖∈{0,…,𝑛}

(𝑄(𝑖)⨂𝐶(𝑃, 𝑖)) (2. 6) 

Here, 𝑄(𝑖)  𝑎𝑛𝑑 𝐶(𝑃, 𝑖) are the values of the quantifier and the cardinality of the 

summarizer at some point 𝑖. ⨁ and ⨂ are the t-conorm (for ex. max operator) and the t-

norm (for ex. min operator), respectively,  

Similarly, for type II sentences, of the form 𝑄 𝑅 𝑦′𝑠 𝑎𝑟𝑒 𝑃, the degree of compatibility is 

given by Equation 2.7. In this case, the truth-value is evaluated by computing the 

compatibility between relative cardinality of the fuzzy set 𝑃 with respect to the qualifier, 

𝑅, and the quantifier, 𝑄. 

⨁ 

𝑐∈{0,…,𝑛}

(𝑄(𝑐)⨂𝐶(𝑃/𝑅, 𝑐)) (2. 7) 
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Using this model of evaluating the degree of compatibility, several truth-value computation 

equations were derived, which differ by the methods to obtain the cardinality of the fuzzy 

sets and the choice of t-norm and t-conorm.  

The cardinality of a crisp set 𝐴 = {1,4,7} is simply the number of elements in the set. 

However, the computation of cardinality is not so straightforward for the case of fuzzy sets 

where each element of the set belongs to it with a certain degree. For example: consider 

the fuzzy set 𝐴 = {0.8/x1,  0.66/x2, 0.58/x3, 0.54/x4, 0.43/x5, 0.4/x6}. The cardinality 

of a fuzzy set can be a scalar quantity, or it can be a fuzzy set itself (Zadeh 1983). For 

example, the power of the fuzzy set 𝐴, calculated by ∑𝐴(𝑥𝑖) =3.41, is an example of a 

scalar method where the cardinality is a single crisp number. Delgado et al. (Delgado, et 

al. 2000) argue that although using a scalar cardinality of a fuzzy set for the task of truth-

value computation is simpler, useful information is lost in the process. To this end, they 

list a number of fuzzy cardinality methods, which are then used to obtain various truth-

value techniques for type I and II LPS. Recognizing their ability to be compatible with non-

coherent quantifiers, we provide a detailed description of these methods in the following.   

• GD method for type I LPS 

𝑇𝐺𝐷(𝑄 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) = ∑𝐸𝐷(𝑃, 𝑖)  × 𝑄 (

𝑖

𝑁
)

𝑁

𝑖=0

(2. 8) 

Here, ED is the fuzzy cardinality of the fuzzy set 𝑃 and is given by: 

𝐸𝐷(𝑃, 𝑘) = 𝑏𝑘 − 𝑏𝑘+1 (2. 9) 
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with 𝑏0 = 1 𝑎𝑛𝑑 𝑏𝑛+1 = 0  

where, 𝑏𝑘 is the 𝑘𝑡ℎ largest value of membership of the fuzzy set 𝑃.   

• ZS method for type I LPS 

𝑇𝑍𝑆(𝑄 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) = max

𝑘∈{0,…,𝑛}
(min(𝑍(𝑃, 𝑘), 𝑄 (

𝑘

𝑛
)))) (2. 10) 

Here, Z is the Zadeh fuzzy cardinality (Zadeh 1983), which is defined as in Equation 2.11.  

𝑍(𝐴, 𝑘) = {
0 

sup{𝛼 | |𝐴𝛼| = 𝑘} 
𝑖𝑓 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝛼 | |𝐴𝛼| = 𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2. 11) 

The 𝐺𝐷 𝑎𝑛𝑑 𝑍𝐷 methods have been extended to compute the truth-value of type II LPSs. 

The only difference between the truth-value computation of the type I and type II LPSs is 

process of computing the cardinality. For the type II sentences, the cardinality of the fuzzy 

set 𝑃 is computed with respect to the fuzzy set 𝑅.  

•  GD method for type II LPS 

𝑇𝐺𝐷(𝑄 𝑅 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) = ∑ 𝐸𝑅(P/R, 𝑐) × 𝑄(𝑐)

𝑐∈𝐶𝑅(𝑃/𝑅 )

(2. 12) 

The relative cardinality, 𝐸𝑅(𝑃/𝑅) is computed by: 

𝐸𝑅(P/R, 𝑐) = ∑ 𝛼𝑖 − 𝛼𝑖+1
∀𝛼𝑖|𝐶𝑅(𝑃/𝑅)=𝑐

 ∀𝑐 ∈ 𝐶𝑅(P/R) (2. 13) 

𝐶𝑅(𝑃/𝑅) = {
|(𝑃 ∩ 𝑅)𝛼|

|𝑅𝛼|
| 𝛼 ∈ 𝑀(𝑃/𝑅)} (2. 14) 
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Where 𝑀(𝑃) = {𝛼 ∈ (0,1): ∃𝑥𝑖 ∈ 𝑋 such that 𝑃(𝑥𝑖) = 𝛼} that is, 𝑀(𝑃) is the set 

representatives of alpha cuts of the set 𝑃 with 1 = 𝛼1 < 𝛼2 < ⋯𝛼𝑛 < 𝛼𝑛+1. 𝑀(𝑃/𝑅) =

𝑀(𝑃 ∩ 𝑅) ∪ 𝑀(𝑅) is the set of representative alpha cuts of the set obtained by the union 

of the set 𝑃 ∩ 𝑅 and set 𝑅.    

• ZS method for type II LPS 

𝑇𝑍𝑆(𝑄 𝑅 𝑦
′𝑠 𝑎𝑟𝑒 𝑃) = max

𝑐∈𝐶𝑅(𝑃/𝑅)
(min(𝐸𝑆(𝑃/𝑅, 𝑐), 𝑄(𝑐)))) (2. 15) 

𝐸𝑆(𝑃/𝑅, 𝑐) = max
∀𝛼𝑖|𝐶𝑅(𝑃/𝑅)=𝑐

𝛼𝑖   ∀𝑐 ∈ 𝐶𝑅(P/R) (2. 16) 

That is, the relative cardinality of set 𝑃 with respect to 𝑅, at each c is the highest 𝛼 value 

which resulted in 𝑐. 

Both the GD and ZS methods for type II LPS require the set 𝑅 to be a normal fuzzy set 

(max (𝑅(𝑦𝑖) = 1)). Therefore, before we begin the process, the method requires for the 

set 𝑅 to be normalized, and the use of the same scaling factor to scale the fuzzy set 𝑃 ∩ 𝑅.  

2.5.2. Comparison of Truth-value Methods  

The existence of various truth-value computation techniques brings forth the question of 

how these methods compare with each other. The authors in (Delgado, et al. 2014) study 

the evaluation techniques for type I and type II sentences based on a set of properties like 

time complexity and their ability to produce fuzzy assessment, among others. Although the 

behavior of the computation techniques with respect to the theoretical properties help in 

having a better understanding, they do not provide a practical comparison. To this end, we 
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take a different approach towards studying these truth-value computation techniques by 

observing their response with respect to data. We design a set of synthetic data experiments 

to see whether these methods produce intuitive results.    

2.5.2.1. Type I LPSs 

Consider the five quantifiers shown in Figure 2.2 and a bag containing 100 balls where for 

each ball, we have its degree in bigness (between 0 and 1). We summarize the size of the 

balls in the bag by computing truth-value of LPS of the form: 𝑄 𝑏𝑎𝑙𝑙𝑠 𝑎𝑟𝑒 𝑏𝑖𝑔 with 𝑄 

being the quantifiers of Figure 2.2. In other words, the bigness of balls in the bag are 

summarized by an LPS set with one LPS for each of the five quantifiers. We start the 

experiment with all the balls having a small membership in the property bigness. That is, 

all the 100 balls are relatively small. Now we replace one small ball at a time with a big 

ball until all the balls in the bag have a high membership in bigness. At each change of the 

ball, we compute the truth of the LPS set summarizing the contents of the current bag. 

Figure 2.3 compares three methods based on the variation of truth-values of all the five 

LPS in the set, quantifying the number of big balls in the bag at each stage.  

Figure 2.2: Membership functions of Quantifiers 
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For the Sugeno and Delgado GD method, we see that at the beginning when the bag 

contains all relatively small balls, the truth-value of the LPS with the quantifier almost 

none is the highest, and as the smaller balls are replaced with big ones, the truth-value with 

almost none drops and few increases. At the middle of the experiment, when around half 

of the balls are big, the truth-value with the quantifier some is highest which is then 

followed by truth-value with many and which then finally gives way to the truth-value of 

almost all being highest. The ZS method does not produce this intuitive variation in truth-

values in response to the contents of the bag. Hence, with the results of this experiment, 

Figure 2.3: Variation in truth-value of type I LPSs of the form: Q balls are big as the 

size of balls in the bag changes. 
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we conclude that both the Sugeno and Delgado-GD truth-value computation methods 

produce equally acceptable values throughout the course of the experiment described 

above. However, as mentioned before, the Sugeno integral based method has an advantage 

in that it produces semantically ordered truth-values, which is not true for the Delgado GD 

method. Hence, in the rest of this work, we employ the Sugeno integral based method to 

compute the truth-values of type I LPSs.    

2.5.2.2. Type II LPSs 

Similar to the type I LPSs, we design a synthetic data experiment to test the truth-value 

computation methods for type II LPSs. Again, consider a bag of 100 balls and suppose we 

want to summarize the size of the balls in this bag relative to their color by sentences of 

the form: Q of the red balls are big. Here, the features red and big are fuzzy and form the 

qualifier (𝑅) and the summarizer (P) of the type II summaries of the form: 𝑄 𝑅 𝑦′𝑠 𝑎𝑟𝑒 𝑃. 

At the beginning of the experiment, we start with a bag with 100 ‘small’ and ‘red’ balls. 

Now similar to the pervious experiment, we replace the small red balls with big red balls, 

one by one until all the balls in the bag are big and red. That is, we keep the redness property 

of the balls fixed and just change the size of the balls. At each step, we compute the truth-

value of the LPSs of the form 𝑄 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑏𝑎𝑙𝑙𝑠 𝑎𝑟𝑒 𝑏𝑖𝑔 using the quantifiers of Figure 

2.2. The variation of truth-values comparing the Sugeno integral method and the two 

Delgado et al. methods, GD and ZS are shown in Figure 2.4. We expect a gradual variation 

in truth-value as we change the size of balls in the bag, starting from the truth-values 

depicting that the bag contains no red balls that are really big, while at the other side of the 
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experiment, the truth-values should suggest that almost all the red balls in the bag are big. 

We see that with all the three methods, the truth-values convey the contents of the bags 

correctly at the start and end of the experiment. Also, with all the methods, the LPS with 

the highest truth-value switches sequentially from the one with quantifier almost none to 

the LPS with the quantifier almost all. However, with the Sugeno and Delgado-ZS method, 

the variation is not gradual. In the Sugeno integral based method, the truth-value drops 

abruptly from a higher value to a very lower value. For example, when about 10 percent of 

the red balls in the bag are big, the truth-value of the LPS with quantifier almost none is 

quite high at one point and suddenly drops to a very low value with just change of one 

small ball to a big ball, which is very non-intuitive. Also, with the Delgado-ZS method, the 

Figure 2.4: Variation in truth-values of the form: Q of the red balls are big as the 

size of the balls in the bag changes, with all the balls having high degree in the 

redness property.  
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truth-value variation looks very non-intuitive relative to the other two methods. Contrary 

to these two methods, the Delgado-GD method produces truth-values that vary gradually 

as the size of the balls in the bag changes. We can see that, as with the type I LPS, the truth-

values follow the pattern of the quantifier membership functions, which is what we expect. 

Therefore, due to the intuitive and gradual variation in the truth-values computed by the 

Delgado-GD method, for our purposes, we deem it best among the available truth-value 

computation methods for type II LPSs. Hence, in the rest of this work, we use it for 

computation of truth-values of type II LPSs.   
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3. Explainable AI for Dataset Comparison 

One of the central elements of any pattern recognition task is the distance/similarity 

measure. Numerous distance measure techniques have been proposed in the literature. 

Most of the time, the choice of a distance measure is made based on the application 

concerned. Perhaps the most well-known, and well-used, of these distances is the Euclidean 

distance. A survey of various distance measures available is presented in (Cha 2007). 

Specifically, they use synthetic data to study techniques that find distance between 

probability density functions (pdfs). In these methods, histograms of sets of objects are 

converted to pdfs, which are then compared to get a measure of dissimilarity between the 

object sets. Histograms are one of the most common ways to visualize and analyze the 

distribution of sets of objects. Almost all of the available methods to quantify differences 

between histograms provide a number that gives an estimate of how similar or dissimilar 

two given histograms are. However, in some applications a method that provides the 

comparison between sets of objects in linguistic terms can be more beneficial. 

We make use of Linguistic Protoform Summaries in tandem with Fuzzy Rules to design a 

system that can compare datasets numerically, as well as explain the difference in linguistic 

terms. We validate our method with the help of synthetic data and show that it produces 

high correlation with the well-known Euclidean distance measure. 
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3.1. Dissimilarity between LPS sets 

Consider two bags of balls, with each containing 1000 balls of varying sizes. The 

distribution of the size of balls in the two bags is shown in Figure 3.1. To summarize the 

balls in the two bags using Linguistic Protoform Summaries, we define a Protoform of the 

form 𝑄 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑔 𝑎𝑟𝑒 𝑃, where 𝑄 and 𝑃 are the quantifier and the 

summarizer, respectively. Suppose we want to partition the size of the balls with the 

linguistic terms: small and big, and quantify the number of balls by linguistic variables: 

almost none, few, some, many and almost all. Figure 3.2 and Figure 3.3 show the fuzzy set 

definitions of the aforementioned linguistic terms. Using these definitions, we compute the 

truth-value of all the LPSs comprising of all combinations of the quantifiers and 

summarizers. That is, for 5 quantifiers and 2 summarizers, we get a total of 10 LPSs. The 

truth-value of the summaries representing both the bags are shown in Table 3.1. If we 

compare the truth-values for the two bags, we can infer that bag 1 has a higher number of 

bigger balls compared to bag 2, which has a higher number of the smaller balls. Figure 3.1 

also conveys this information.  

Bag 1 Bag 2 

Figure 3.1 Distribution of size of balls in two bags 
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Quantifiers Summarizers 

Bag 1 

Truth-

value 

Bag 2 

Truth-

value 

Difference 

(Bag 2-Bag1) 

almost none small 0.2 0 
-0.2 

few small 0.8 0 
-0.8 

some small 0 1 
1 

many small 0 0 
0 

almost all small 0 0 
0 

almost none big 0 0 
0 

few big 0 0 
0 

some big 0 1 
1 

many big 0.8 0 
-0.8 

almost all big 0.2 0 
-0.2 

 

Table 3.1: Truth-values of the LPSs representing the two bags of balls 

Figure 3.3 Membership functions of the Quantifiers 

Figure 3.2: Membership functions of the summarizers representing size of balls 
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3.1.1. LPS Sets Dissimilarity Method of (Wilbik, et al. 2014) 

The LPSs are a concise representation of data. Hence, a comparison between them is 

analogous to comparison between the underlying data. To this end, in (Wilbik and Keller 

2012), a method was presented to quantify the dissimilarity between LPSs. The authors 

also proved that the distance measure is a metric. This method was later used in (Wilbik, 

et al. 2014) to compute dissimilarity between two datasets composed of sensor data. Next, 

we provide a brief description of that method. 

Consider two LPSs: 𝑄1  𝑦
′𝑠 𝑎𝑟𝑒 𝑃1 @ 𝑇1 and 𝑄2  𝑦

′𝑠 𝑎𝑟𝑒 𝑃2 @ 𝑇2, where 𝑄1 and 𝑄2 are the 

quantifiers, 𝑃1 and 𝑃2 are the summarizers, and 𝑇1 and 𝑇2 are the truth-values of the two 

LPSs. Equation 3.1 gives the similarity between the two LPSs.  

𝑠𝑖𝑚((𝑄1 𝑦
′𝑠 𝑎𝑟𝑒 𝑃1@𝑇1), (𝑄2 𝑦

′𝑠 𝑎𝑟𝑒 𝑃2@𝑇2))

= min(𝑠𝑖𝑚(𝑄1, 𝑄2), 𝑠𝑖𝑚(𝑃1, 𝑃2), 𝑠𝑖𝑚(𝑇1, 𝑇2)) (3. 1)
 

That is, the overall similarity between the two LPSs is given by their least similar elements. 

The similarity between the two quantifiers, 𝑄1 and 𝑄2 is given by Equation 3.2. 

𝑠𝑖𝑚(𝑄1, 𝑄2) =
∫(𝜇𝑄1 ∩ 𝜇𝑄2)

∫(𝜇𝑄1 ∪ 𝜇𝑄2)
(3. 2) 

Here, 𝜇𝑄1 and 𝜇𝑄2are the membership functions of the two quantifiers. Basically, the 

similarity is the ratio of the overlapping area between the two membership functions and 

the sum of the area covered by them together. Similarly, the similarity between the two 
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summarizers 𝑃1 and 𝑃2, having membership function 𝜇𝑃1  and 𝜇𝑃2 , is given by the ratio of 

the overlapping area and the sum of the two areas.        

𝑠𝑖𝑚(𝑃1, 𝑃2) =
∫(𝜇𝑃1 ∩ 𝜇𝑃2)

∫(𝜇𝑃1 ∪ 𝜇𝑃2)
(3. 3) 

Note that, this equation is only valid when the two summarizers are describing the same 

attribute of the objects being summarized. That is, the membership functions for both 𝑃1 

and 𝑃2 are defined on a common domain. Finally, the similarity between the truth-values, 

𝑇1 and 𝑇2 is given by the complement of the difference between the two truth-values 

(Equation 3.4). 

𝑠𝑖𝑚(𝑇1, 𝑇2) = 1 − 𝑎𝑏𝑠(𝑇1 − 𝑇2) (3. 4) 

Consider two LPS sets, 𝑆1 = {𝑠11, 𝑠12, … , 𝑠1𝑛} and 𝑆2 = {𝑠21, 𝑠22, … , 𝑠2𝑚} containing 𝑛 

and 𝑚 number of summaries, respectively. Then the similarity between the two sets is 

given by Equation (3.5). 

𝑠𝑖𝑚(𝑆1, 𝑆2) =
1

𝑛 + 𝑚

(

 
 
 
∑ max

𝑗=1,2,..𝑚
𝑠𝑖𝑚(𝑠1𝑖 , 𝑠2𝑗)

𝑛

𝑖=1

+

∑ max
𝑖=1,2,..𝑛

𝑠𝑖𝑚(𝑠1𝑖 , 𝑠2𝑗)

𝑚

𝑗=1 )

 
 
 

(3. 5) 

Here, for each summary in 𝑆1 we find the most similar summary in set 𝑆2, and vice versa. 

The final similarity value is the average of all the individual similarities. Note that the two 

LPS sets, 𝑆1 and 𝑆2, do not have same number of summaries. This is because, in the method 

of (Wilbik, et al. 2014), after generating the truth-values of all the summaries (as shown in 
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Table 3.1), only the summaries with truth-values higher than a threshold are kept. For 

example, in Table 3.1, if the truth-value threshold is 0.5, then only summaries 1 and 8 are 

kept for bag 1 and summaries 3 and 7 are kept for bag 2. Note, that the 

distance/dissimilarity between the two LPS sets, is the inverse of their similarity. We call 

this dissimilarity computation method as 𝑑𝐿𝑃𝑆 in the rest of this Chapter.  

𝑑𝐿𝑃𝑆 = 𝑑𝑖𝑠𝑠𝑖𝑚(𝑆1, 𝑆2)  = 1 − 𝑠𝑖𝑚((𝑄1 𝑦
′𝑠 𝑎𝑟𝑒 𝑃1), (𝑄2  𝑦

′𝑠 𝑎𝑟𝑒 𝑃2)) (3. 6) 

This method was used in (Wilbik and Keller 2013) to compare nightly sleeping and moving 

patterns of elderly residents who have sensors installed inside their apartments. The data 

coming from the sensors was summarized by summaries of the form: Many of the 15-

minute slots had high bed restlessness, or Few of the 15-minute slots had low bedroom 

motion. These types of summaries were generated for each night during a time-period. The 

distance between the summaries was then used to estimate how similar or dissimilar each 

of the nights are from each other.  

3.1.2. Proposed Method 

The block diagram in Figure 3.4 presents an overview of our proposed method. The process 

starts by computing truth-values of the summaries comprising of all the quantifiers for a 

given summarizer. In the method depicted in Figure 3.4, only summaries with a common 

summarizer are compared with each other (For example: All the summaries with 

summarizer as big in Table 3.1). In case of multiple summarizers, we can obtain an overall 
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comparison by aggregating distances for each of the summarizers. We discuss this in detail 

later on in this Chapter.  

Consider a summarizer 𝑃 and 𝑛 quantifiers 𝑄1 , 𝑄2 , …𝑄𝑛. We start by computing truth-

values of summaries: 𝑄𝑖  𝑦
′𝑠 𝑎𝑟𝑒 𝑃, for 𝑖 = 1 𝑡𝑜 𝑛 for the two datasets which we wish to 

compare. Then for each quantifier, we compute the difference between the truth-values of 

the corresponding LPSs obtained for dataset 1 and dataset 2.  

The difference in the truth-values form the input to a Mamdani type Fuzzy Inference 

System (FIS) (Keller, et al. 2016). Fuzzy Inference Systems are very apt at representing 

human intuition in a computational system. Since with the use of LPSs, we already have 

the two datasets represented in intuitive linguistic terms, FIS is a suitable choice for dealing 

with these linguistic representations. 

The fuzzy rule base is the central element of an FIS. Table 3.2 shows a fuzzy rule base for 

the quantifiers defined in Figure 3.2, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑛𝑜𝑛𝑒, 𝑓𝑒𝑤, 𝑠𝑜𝑚𝑒,𝑚𝑎𝑛𝑦, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙. The 

rules encode the relationships between the differences in the truth-values corresponding to 

Figure 3.4: Overview of the system comparing two sets of objects using Linguistic Protoform 

Summaries and Fuzzy Inference System  

Data 1 

Data 2 

Summarizer 

Quantifiers 

Summarizer 

Quantifiers 

LPS Set 1 

LPS Set 2 

- 

Fuzzy 

Inference 

System 
dissimilarity 

Distance / 

Similarity 
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the five quantifiers. For example, the first rule reads as: If the difference between the truth-

value of LPS corresponding to almost none decreases, and the difference between the 

truth-value of LPS corresponding to few increases, then, there is an increase in the object 

property represented by the summarizer. For instance, if the LPS is used to describe the 

size of the balls in a bag by a summarizer big, with the Protoform:𝑸 𝑏𝑎𝑙𝑙𝑠 𝑎𝑟𝑒 𝒃𝒊𝒈, then 

rule # 

Antecedents Consequent 

almost 

none few some  many  

almost 

all change 

1 dec inc    inc 

2 dec  inc   inc 

3 dec   inc  significant inc 

4 dec    inc significant inc 

5 inc dec    dec 

6 inc  dec   dec 

7 inc   dec  significant dec 

8 inc    dec significant dec 

9  dec inc   inc 

10  dec  inc  inc 

11  dec   inc significant inc 

12  inc dec   dec 

13  inc  dec  dec 

14  inc   dec significant dec 

15   dec inc  inc 

16   dec  inc significant inc 

17   inc dec  dec 

18   inc  dec significant dec 

19    dec inc inc 

20    inc dec dec 

21 sim sim sim sim sim sim 

 

Table 3.2: Fuzzy rule base with five antecedents and one consequent. The terms 

dec, sim and inc represents decrease, similar and increase, respectively  
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the consequent of the fuzzy rules denotes the change in the number of big balls in two bags. 

The fuzzy sets used to represent antecedents and the consequent of the fuzzy rule base are 

shown in Figure 3.5. Here, the definition of decrease, similar and increase are common to 

all the five inputs (difference in truth-value). The antecedents are defined over [-1, 1], 

which is the range of the difference between the truth-values.   

When the difference in the truth-value are divided into 3 linguistic labels (increase, 

decrease and similar), then for five quantifiers, in order to cover the complete input space, 

we need to define a total of 35 = 243 rules. However, since the truth-values corresponding 

to the quantifiers are not independent of each other, we only need a small set of rules to 

cover most of the input space. The rules of Table 3.2 are defined based on the reasoning 

Figure 3.5a & b: Membership functions of the antecedents (3.5a) and consequents 

(3.5b) used in the Fuzzy Inference System 
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that for every significant change in the underlying data, the truth-values of at least two 

LPSs change significantly. Moreover, the change in the truth-value is in the opposite 

direction (if one increases, then the other decreases).  

Naturally, this behavior is dependent on the way we define the fuzzy sets used to represent 

the quantifiers. Mindful of this, we define a fuzzy rule for every pair of quantifiers. This 

leads to 𝐶2
5  +  1 = 21 fuzzy rules. If the truth-values corresponding to all the quantifiers 

do not change by much (i.e. remain similar), then the fuzzy rules suggest no change in the 

data (rule # 21). Note that although it’s very unlikely, but if a situation arises when none 

of the fuzzy rules fire with a strength greater than zero, we deem the two datasets as similar. 

The distance based on the fuzzy rule firings is obtained as the defuzzified value of the FIS. 

We employ centroid defuzzification to combine the firing strengths of all the fuzzy rules. 

For the consequent membership functions shown in Figure 3.5b, the smallest defuzzified 

value is obtained when a rule with the consequent decrease fires at a maximum strength of 

Defuzzified 

value 

Change 

[0,0.15) Significant Decrease 

[0.15,0.4) Decrease 

[0.4,0.6) Similar 

[0.6,0.8) Increase 

[0.8,1.0] Significant Increase 

 

Table 3.3: Interval of defuzzified values for 

each of the five consequents of Figure 3.5b 
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one, while the highest defuzzified value is obtained when a rule with the consequent 

increase fires at a strength of one. Based on this, the defuzzification value ranges from 0.1 

to 0.9. We linearly scale the defuzzified value so that it spans from zero to one. To obtain 

the direction and strength of dissimilarity in linguistic terms, we take the linguistic label 

that has the highest membership for the scaled defuzzified output. Table 3.3 presents the 

mapping of the dissimilarity and the linguistic labels assigned to each value.  

Accordingly, if the scaled defuzzified value is between zero and 0.15, then it is assigned 

the label significant decrease, if the value is between 0.15 and 0.4. then it is assigned the 

label decrease and so on. Based on this, the change is least when the defuzzified value is 

0.5, while a defuzzified value less than 0.5 suggests a decrease and a value greater than 0.5 

implies an increase. As per the normal convention, we would like a distance value of zero 

to represent no change, and a distance value of one to represent maximum change. To this 

end, we perform the computation given in Equation 3.7 to convert the defuzzified value to 

a distance  measure. 

𝑑𝐹𝐼𝑆 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑑𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 0.5

0.5
(3. 7) 

We carry on this process separately for each summarizer that describes the dataset. For 

example, in the example in Table 3.1, the dissimilarity computation process is carried out 

separately for the LPSs describing the datasets in terms of the summarizer big and the 

summarizer small.  The distance computed with respect to each of the summarizer are then 
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aggregated to obtain an overall distance between the two datasets. We can use any of the 

well-known aggregation operators like mean, median, maximum, minimum and so on.  

We illustrate our dissimilarity computation method with the help of the two bags of balls 

example presented before in Section 3.1. There, Figure 3.1 showed the distribution of sizes 

of the two bags and Table 3.1 displayed the truth-values of the LPSs and the difference 

between them. The difference vector is input to the FIS to compute the distance. Figure 

3.6a and b shows the output of the FIS for the two summarizers: Small and Big, 

respectively. Here, the shaded portion of the fuzzy sets of the FIS consequents show the 

fuzzy set obtained as a result of firing of fuzzy rules. Since the two summarizers, small and 

big, are complements of each other, the FIS output for the two are also complements. 

However, this may not be the case for a different set of summarizers.  

We observe that for the summarizer Small, the truth-value corresponding to the quantifier 

few decreases and that for some increases. This leads to the firing of rule # 9 listed in Table 

3.2. The truth-value corresponding to the quantifier almost none also decreases a little 

which leads to firing of rule # 2, but with less strength. Similarly, for the summarizer Big, 

there is increase in the truth-value corresponding to the quantifier some, a decrease with 

Figure 3.6a & b: Fuzzy output of the FIS for the two summarizers: Small and Big. The vertical line shows 

the defuzzified value of the fuzzy sets. 

Small 
Big 
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that for many and a small decrease with that of almost all. This leads to the firing of rule 

#17 and #18. The scaled defuzzified output for the two summarizers, Big and Small, are 

0.19 and 0.81, respectively. This leads to the individual distance between both of them to 

be 0.62. Using the mean operator to aggregate the two distances the overall dissimilarity 

between the two bags of balls is 0.62. The explanation for the dissimilarity is given by the 

consequent that has the highest membership for each defuzzified value, that is, decrease 

for the summarizer big and increase for small. Based on this, the following statement 

describes the comparison between the contents of the two bags: The dissimilarity between 

the two bags is 0.62. There is an increase in the number of small balls in bag 2 while a 

decrease in the number of big balls.   

3.2. Method Validation 

In this section, we present results of various experiments that we conducted to study and 

validate our distance/similarity computation algorithm. In the two experiments, we study 

the functioning of our algorithm with the help of synthetic data, where we compare the 

LPS based methods with two histogram distance measures, the Euclidean and the Canberra 

metric (Cha 2007). We briefly describe the two techniques in the following. Suppose 𝑋 is 

a set of 𝑛 elements, then its histogram 𝐻(𝑋) represents the frequency of each value falling 

inside a user-defined bin. A pdf of the corresponding histogram 𝐻(𝑋) is produced by 

dividing each level by the total size of 𝑋, 𝑃(𝑋) = 𝐻(𝑋)/𝑛. If 𝑋 and 𝑌 are two sets of 

objects with their histograms as 𝐻(𝑋) and 𝐻(𝑌) and pdfs as 𝑃 and 𝑄, respectively, each 
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having 𝑑 number of bins, then the Euclidean and the Canberra distance between the two 

pdfs is given by Equation 3.8 and 3.9, respectively. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛, 𝑑𝐸𝑢𝑐 = √∑|𝑃𝑖 −𝑄𝑖|2
𝑑

𝑖=1

(3. 8) 

𝐶𝑎𝑛𝑏𝑒𝑟𝑟𝑎, 𝑑𝐶𝑎𝑛 =∑
|𝑃𝑖 − 𝑄𝑖|

𝑃𝑖 + 𝑄𝑖

𝑑

𝑖=1

(3. 9) 

3.2.1. Gradual Change in Data 

In this experiment, we show the working of our method by computing distance between 

two sets of objects, which gradually grow further apart from each other. To this end, we 

start with two bags of balls with both of them having 1000 small balls. We gradually change 

the distribution of the size of balls in the second bag by replacing 5 small balls with balls 

of bigger size. That is, at first step, we replace five small balls in bag 2 with big balls, then 

in step 2 we replace 10 small balls in bag 2 with big balls and so on. This would leave us 

with all big balls in bag 2 at the end of the experiment. Note that, the small balls are drawn 

from a Gaussian distribution with the Mean and the Standard deviation of one, with the 

distribution restricted between 0 and 2.5. Similarly, the big balls are drawn from a Gaussian 

distribution with a Mean value of 4 and a Standard Deviation of 1 and is restricted between 

2.5 and 5. 
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At each step, we compute how dissimilar bag 1 is from bag 2. Figure 3.7 shows the distance 

computed by the proposed method (𝑑𝐹𝐼𝑆), the method of (Wilbik, et al. 2014) (𝑑𝐿𝑃𝑆) and 

the method based on Euclidean distance (𝑑𝐸𝑢𝑐). For the LPS based methods, we use the 

summarizers and the quantifiers of Figure 3.2 and Figure 3.3, and for the Euclidean 

distance based method, we divide the histogram into 5 bins. We see that 𝑑𝐸𝑢𝑐 increases 

gradually throughout the experiment. 𝑑𝐿𝑃𝑆 and 𝑑𝐹𝐼𝑆 also increase gradually until a certain 

point, after which they saturate. In 𝑑𝐹𝐼𝑆 the distance value saturates at the point when the 

majority of the balls in bag 2 are big  (around 500), while with 𝑑𝐿𝑃𝑆  the saturation occurs 

much earlier. Also, in 𝑑𝐿𝑃𝑆, the change in distance is less gradual than the proposed 

method, as suggested by large leaps in Figure 3.7.  

Figure 3.7: Distance plot for the three distance measures used in 

Experiment 3.2.1 
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The main advantage of our method is that it can specify the dissimilarity between the two 

datasets in linguistic terms. This, in turn, can be used to explain the differences between 

datasets. Based on the consequents of Figure 3.5b, the change is described as an increase, 

a decrease, a significant decrease or a significant increase in the property represented by 

the summarizer. In the above example, the FIS suggests a similar number of small balls in 

bag 2 up to a certain point, which then changes to a decrease in the number of small balls 

and then finally saturates at a significant decrease in the number of small balls. This 

variation is shown in Figure 3.8 for both small and big balls. We see that the two bags are 

judged as similar until there are less than 80 big balls in bag 2. After this, the FIS suggests 

that bag 2 has a little higher number of big balls, and a little fewer small balls, as compared 

to bag 1 (shown by inc) until there are about 250 big balls out of 1000. Then, the 

dissimilarity saturates and suggests that there are a lot of big balls (shown by significant 

inc) and fewer small balls in bag 2 (shown by significant dec). We note that there is a small 

spike in the change in the number of small and big balls just before it switches from inc to 

significant inc, and dec to significant dec, respectively. Figure 3.9 shows the histograms of 

the distribution of bag 2 which led to the spike and just before (spike -1) and after the spike 

Figure 3.8: Representation of linguistic terms showing the change detected by 

the FIS  
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(spike +1). The three histograms suggest a similar distribution among the corresponding 

bags. Also, the Euclidean distance of these three distributions to the distribution of bag 1 

is 0.07 (spike-1), 0.09 (spike), 0.07 (spike+1). That is, for both 𝑑𝐹𝐼𝑆  and 𝑑𝐸𝑢𝑐, the bag with 

the distribution of Figure 3.9b, is different than the bags with distribution of Figure 3.9a 

and 3.9c. 

3.2.2. Correlation between distance measures 

In this experiment, we study the behavior of the proposed method in terms of how it 

correlates with 𝑑𝐿𝑃𝑆 and 𝑑𝐸𝑢𝑐. We use the synthetic data setting consisting of two bags of 

balls, as used before. We start by filling two bags with randomly sized balls and compute 

distance between the two bags. This process is carried out for N number of times, and the 

dissimilarity measured by the different methods are plotted against each other. The random 

assignment of the balls in the two bags is done as follows: For each bag, we randomly 

select the number of small balls by drawing an integer between 1 and 1000 from a uniform 

distribution. Then, the number of big balls are equal to 1000 minus the number of small 

balls. Note that the small and big balls are drawn from the Gaussian distributions used in 

Figure 3.9a, b & c: Histogram of the distribution of bag 2 that resulted in spike 

in Figure 3.8, distribution before the spike and after the spike 
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the last experiment. Figure 3.10 shows the correlation plots between the proposed method, 

𝑑𝐿𝑃𝑆 and 𝑑𝐸𝑢𝑐. For reference, we also show correlation between the Euclidean measure 

(𝑑𝐸𝑢𝑐) and the Canberra measure (𝑑𝐶𝑎𝑛). For each correlation, we also compute the 

correlation coefficient using Equation 3.10 (Cha 2007).  

𝐶𝑜𝑟𝑟(𝑑1, 𝑑2) =  
∑ (𝑑1(𝑝𝑖 , 𝑞𝑖) − 𝑑1̅̅ ̅)(𝑑2(𝑝𝑖 , 𝑞𝑖) − 𝑑2̅̅ ̅)
𝑁
𝑖=1

√∑ (𝑑1(𝑝𝑖 , 𝑞𝑖) − 𝑑1̅̅ ̅)
2𝑁

𝑖=1 ∑ (𝑑2(𝑝𝑖 , 𝑞𝑖) − 𝑑2̅̅ ̅)
2𝑁

𝑖=1

(3. 10)
 

𝑤ℎ𝑒𝑟𝑒 𝑑1̅̅ ̅ = (∑ 𝑑1(𝑟𝑖,𝑞𝑖)
𝑁
𝑖=1 )/𝑁  

Here, 𝑑1 and 𝑑2 represent the two distance measures, and 𝑝𝑖 and 𝑞𝑖 are the datasets between 

which we are computing the dissimilarity. A higher correlation coefficient suggests a high 

degree of correlation.     

Figure 3.10: Correlation plots comparing distance values produced by 

dEuc, dLPS, dFIS, dCan 
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We see that 𝑑𝐸𝑢𝑐 and the proposed method exhibit a fairly high correlation coefficient of 

0.87, although not as high as the correlation between the Euclidean and the Canberra metric 

(0.95). The correlation plot suggests that, in general, 𝑑𝐹𝐼𝑆 produces smaller dissimilarities 

as compared to 𝑑𝐸𝑢𝑐. The correlation coefficient between 𝑑𝐿𝑃𝑆 and 𝑑𝐸𝑢𝑐 is much lower as 

compared to the proposed method and the correlation plot between them shows that 𝑑𝐿𝑃𝑆 

saturates around 0.7, after which all of the distance values are around 1.  

In order to have a better understanding of the two LPS based methods, we conduct the same 

experiment as above, but with a different set of summarizers. Instead of just two 

summarizers (small and big), we use five summarizers: about 0, about 1, about 2, about 3, 

about 4 and about 5, as shown in Figure 3.11. This is akin to increasing the number of bins 

in a histogram. With these summarizers, we can express the size of the balls on a finer 

level, as compared to just two summarizers. The correlation plots, along with the 

correlation coefficients for the new set of summarizers are shown in Figure 3.12. We 

observe a better correlation to 𝑑𝐸𝑢𝑐 for both the LPS based distance measures (0.98 and 

Figure 3.11: Membership functions of summarizers describing size of balls in a 

bag  
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0.94, for 𝑑𝐹𝐼𝑆& 𝑑𝐿𝑃𝑆, respectively). Moreover, the correlation with the proposed method 

and the Euclidean distance measure (0.98) surpasses the correlation between the Canberra 

and Euclidean distance measure (0.95). This suggests that, with an increased number of 

summarizers used to describe the property being compared, the proposed method correlates 

very highly with a standard measure like the Euclidean distance.  

Figure 3.12: Correlation plots comparing distance values produced by 

dEuc, dLPS, dFIS when dLPS& dFIS are used with Summarizers of Figure 3.11 

 



69 

 

4. Routine Modelling 

4.1. Overview 

We outline our routine modelling and deviation detection approach in Figure 4.1. We start 

with the assumption that a time period that can be considered as normal in terms of an 

Baseline Data 

LPS 

Clustering 
LPS 

Dissimilarity 

  

New Data 

Numeric & 

Linguistic Deviation 

LPS 

Dissimilarity 

Routine 

Representatives 

NLG 
Deviation 

Explanation 

Figure 4.1: Block diagram showing computaiton of routine and deviation from it. Linguisitic Protoform 

Summaries are first used to represent routine based on baseline time period, which is then compared 

to new data. The NLG block is responsible for describing results in natural language.   

NLG 
Routine 

Explanation 
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elderly resident’s health has been identified as baseline by either their caretakers or using 

their health records. We model the daily routine of the resident over this baseline time 

period and use this model to find changes in their routine with time.  

The first step in our routine modelling and deviation detection approach is to express the 

daily behavioral and physiological data in linguistic terms using the Linguistic Protoform 

Summaries (LPSs). This involves selection of the protoforms that are most appropriate for 

the underlying data. The type of LPSs drives the choice of the truth-value computation 

method. The representation of data into LPSs also requires the design of fuzzy sets 

modeling the quantifiers, summarizers and the qualifiers. The choice of the LPS 

protoforms, fuzzy definitions of the linguistic terms and the truth-value computation 

method come together to represent the daily physiological and behavioral patterns of the 

elderly residents.   

Given the daily LPS representation of behavioral and physiological patterns of activities, 

we need an aggregation mechanism that combines this information over the baseline time 

period and produces an overall representation of the routine. A straightforward and 

simplistic way to achieve this is to aggregate all the daily representations into one global 

representative. Since one of our aims is to be able to explain the discovered routine in 

natural language, this strategy might not produce very intuitive results if a person has 

multiple routines during a time period, for example weekend and weekday routines. A 

different technique that helps in dealing with this existence of multiple patterns is to 

identify the presence of more than one routine, and if so, then model each individual routine 
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separately. These individual routines together form the overall routine of a resident. To this 

end, we employ clustering to find groups of similar days in both the behavioral and the 

physiological data.   

Clustering is a very well-known and widely used technique to discover patterns in data in 

an unsupervised manner. The clustering techniques present in the literature are broadly 

classified into two categories: algorithms for object data and relational data, where the 

objects are the entities over which clustering is performed (Bezdek, et al. 1999). The 

clustering methods for the object data requires the objects to be defined by a set of feature 

vectors and the relation between them are assessed by some distance measure over the 

feature vectors. The clustering is obtained by using the distance measure between the 

objects to analytically optimize some objective function. On the other hand, the relational 

clustering techniques use the pairwise relations (dissimilarities) between the objects to 

perform clustering, without depending on the analytical form of the method to compute the 

relationship. Since the fuzzy-rule based method directly produces a dissimilarity between 

the LPS sets representing the data, only the relational clustering methods are appropriate 

to our routine modelling approach. To this end, we employ the dissimilarity technique 

presented in Chapter 3 to compute pairwise dissimilarities between daily behavioral and 

physiological activities, which is in-turn is used to find groups of similar days using a 

relational clustering method. We then use the medoids of the obtained clusters to represent 

the routine.  
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Once we have a model of the general routine of a resident, our next task is to compare it 

with the data outside of the baseline time period. This entails the representation of this new 

data using LPSs and then use the method to compare LPS sets to determine deviation 

between the baseline model and new data in numeric as well as linguistic terms.  

The use of LPSs to both represent the routine and then to linguistically quantify the 

deviation between the baseline data and the new data allows us to produce natural language 

explanations of the baseline routine as well as changes in the data. We make use of template 

based NLG techniques to generate natural language descriptions of the behavioral and 

physiological patterns in the data and produce explanations of the changes in the routines, 

as the new data arrives.  

In the following we present our approach to model the behavioral and physiological 

patterns. In Section 4.2, we describe our process to represent the behavioral routine of a 

hypothetical elderly resident. We design several synthetic datasets to illustrate our method. 

We also describe our technique to generate natural language summaries of the obtained 

routine model. The data dissimilarity method of Chapter 3 is employed to find deviations 

in the routine that can be expressed in natural language. Section 4.3 lays out our approach 

to model the physiological routines comprising of the pulse rate and the respiration rate 

data. We make use of pulse rate measurements of a resident taken over a three-month 

period to show the method can detect changes in physiological measurements, which can 

be described in natural language. For both behavioral and physiological routines, we 

present multiple retrospective case studies to validate our method.  
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4.2. Behavioral Routine 

As mentioned before, the behavioral routine is responsible for capturing the activity 

patterns of residents longitudinally, over a given time-period. We describe our behavioral 

routine modelling algorithm with the help of synthetic datasets with an assumption that a 

set of activity detection algorithms provides us with information about the whereabouts of 

the resident throughout the day in one of the four activities: inside apartment (INA), outside 

apartment (OOA), in the bed or in the bathroom. The use of synthetic data allows us to 

better study the various properties of our algorithm, as well as to probe it with respect to 

different parameter settings.  

Consider a hypothetical resident, named Mr. Jones, who lives in a sensor-equipped aging 

in place facility. In his normal routine, Mr. Jones sleeps in his bedroom during the night 

and gets up around 7 am in the morning. After getting up, he goes through his usual 

morning routine in the bathroom. After getting ready around 9 am, he goes out to the dining 

place outside the apartment to get breakfast. He returns around 10 am and spends time 

watching TV or preforming normal chores inside the apartment. Then the resident leaves 

the apartment again for lunch around noon. He spends about an hour and a half having 

lunch before returning back to the apartment around 1:30 PM. Then he usually watches 

some TV before taking a nap in the bedroom. He gets up around 3:30, fixes himself coffee 

in the kitchen, and watches some TV in the living room. He stays in the living room 

watching TV, reading and doing other activities until 6 in the evening when he goes out of 

the apartment again for dinner. He comes back around 7:30 and then watches some more 



74 

 

TV before going to bed around 9 PM. Adding to this overall routine, he goes to the 

bathroom at around 7 AM, 11 AM, 3 PM, 5 PM, 9 PM, 4 AM, where the first visit in the 

morning is longer. This activity is presented in a pictorial form in Figure 4.2. We call this 

plot a patch plot.  

4.2.1. Using LPSs to Represent Behavioral Patterns 

Given the location information presented in Figure 4.2, our goal here is to assess how much 

time a person spends at a certain location at a given time of day. For instance, we would 

like to know how the person spent their morning hours. In this statement, morning is a 

general as well as a personal term. People tend to have their own definition of what is 

morning time, however, universally, morning comprises of early hours of the day. In other 

words, the definitions of different times of days, like morning, daytime, nighttime are not 

crisp, but have a fuzzy nature. To this end, we first divide a day into slots of 𝛥𝑡 minutes 

Figure 4.3: Fuzzy sets representing sub division of a day. The lower x-axis shows the time of the day 

in Hour:Min format. The upper x-axis has 15 min slot numbers for corresponding times 

Figure 4.2: Patch plot showing location pattern of a hypothetical resident over a day. The time on x-axis 

varies from midnight to midnight, from left to right. The four locations are depicted by different colors. 
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and then to each slot, assign a degree of belongingness to the different subdivisions of a 

day, as shown in Figure 4.3. We divide the 24 hours of a day into three sub-time divisions, 

namely: morning, daytime and nighttime.    

For example, if 𝛥𝑡 = 15 minutes, then in total we would have 24*60/15 = 96 slots. Next, 

for each of the Δ𝑡 slots, we assign a degree of membership in each of the four locations. 

Due to quantization, a time slot can have some portions of it in different locations. 

Therefore, for each slot we determine the fraction of time spent in each of the four 

categories. For example, consider the first 4 minutes of a slot were spent outside of the 

apartment, and then the person goes to bathroom for 5 minutes and then stays in the living 

room for rest of the 15 minutes. Then the 15 min slot will have 4/15 = 0.27 in OOA, 0.33 

in the bathroom, 0.4 in INA and 0 in bed. Given the data in Figure 4.2, we can compute a 

membership in all the four locations for each of the 96 slots, as shown in Figure 4.4. We 

see that during the nighttime, almost all of the slots have highest degree in the location bed, 

while during the day there are certain intervals where the degree of OOA is highest, these 

are the times the person went outside the apartment.     

Now for each of the Δ𝑡 slots, we have a degree in each of the four activities and a degree 

in the four sub-divisions of the day. This information enables us to use Linguistic 

Protoform Summaries as an aggregation mechanism to calculate the amount of time that 
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was spent in a certain activity, at a given time of day. To this end, we define type II LPS 

(described in Section 2.5) with the protoform: 

𝑸 𝑜𝑓 𝑡ℎ𝑒 Δ𝑡 𝑠𝑙𝑜𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑹 𝑤𝑒𝑟𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑷 

For example,  

𝑴𝒂𝒏𝒚 𝑜𝑓 𝑡ℎ𝑒 15 𝑚𝑖𝑛𝑢𝑡𝑒 𝑠𝑙𝑜𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝒎𝒐𝒓𝒏𝒊𝒏𝒈 𝑤𝑒𝑟𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝒃𝒆𝒅 

Where, 𝑄 (Many) is the quantifier, R (morning) is the qualifier and P (in bed) is the 

summarizer.  

Figure 4.5: Quantifier membership functions 

Figure 4.4: Membership of the 96 fifteen minute slots in four locations representing pattern of 

Figure 4.2 



77 

 

To generate statements of this form, we use the fuzzy definitions of the quantifiers shown 

in Figure 4.5. 

Using the Delgado-GD truth-value computation technique for type II protoforms that was 

defined in Section 2.5.1, we summarize the location activity of a person for a day by 

generating LPSs comprising of all the combinations of quantifiers, qualifiers and 

summarizers. Considering the 5 quantifiers shown in Figure 4.5 (almost none, few, some, 

many, almost all), 3 qualifiers representing the time of day (morning, daytime, night) and 

4 summarizers for the activities (bathroom, bed, OOA and INA), for each day we will have 

5*4*3=60 LPSs. Table 4.1 shows an example containing all the LPSs representing the 

activity pattern in Figure 4.2. Based on the truth-values of LPSs in the table, we can draw 

the following observations: 

- The truth-values of LPSs pertaining to the morning time suggest that a considerable 

amount of the time was spent inside the apartment, with a little time in each of the 

other three activities.    

- Most of the time during the daytime was spent inside and outside the apartment, 

with a little time in bed and the bathroom 

- The LPSs corresponding to nighttime suggests that almost all of the night was spent 

in the bed.  
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LPS 

# 

Quantifier 

(Q) 

Qualifier 

(R) 

Summarizer 

(P) 

Truth-

value 

(TV) 

1 'almost none' 'morning' 'Bathroom' 0.47 

2 'few' 'morning' 'Bathroom' 0.54 

3 'some' 'morning' 'Bathroom' 0.00 

4 'many' 'morning' 'Bathroom' 0.00 

5 'almost all' 'morning' 'Bathroom' 0.00 

6 'almost none' 'morning' 'Bed' 0.41 

7 'few' 'morning' 'Bed' 0.59 

8 'some' 'morning' 'Bed' 0.00 

9 'many' 'morning' 'Bed' 0.00 

10 'almost all' 'morning' 'Bed' 0.00 

11 'almost none' 'morning' 'OOA' 0.11 

12 'few' 'morning' 'OOA' 0.89 

13 'some' 'morning' 'OOA' 0.00 

14 'many' 'morning' 'OOA' 0.00 

15 'almost all' 'morning' 'OOA' 0.00 

16 'almost none' 'morning' 'INA' 0.00 

17 'few' 'morning' 'INA' 0.12 

18 'some' 'morning' 'INA' 0.88 

19 'many' 'morning' 'INA' 0.00 

20 'almost all' 'morning' 'INA' 0.00 

21 'almost none' 'daytime' 'Bathroom' 0.89 

22 'few' 'daytime' 'Bathroom' 0.11 

23 'some' 'daytime' 'Bathroom' 0.00 

24 'many' 'daytime' 'Bathroom' 0.00 

25 'almost all' 'daytime' 'Bathroom' 0.00 

26 'almost none' 'daytime' 'Bed' 0.60 

27 'few' 'daytime' 'Bed' 0.40 

28 'some' 'daytime' 'Bed' 0.00 

29 'many' 'daytime' 'Bed' 0.00 

30 'almost all' 'daytime' 'Bed' 0.00 

 

LPS 

# 

Quantifier 

(Q) 

Qualifier 

(R) 

Summarizer 

(P) 

Truth-

value 

(TV) 

31 'almost none' 'daytime' 'OOA' 0.00 

32 'few' 'daytime' 'OOA' 0.48 

33 'some' 'daytime' 'OOA' 0.52 

34 'many' 'daytime' 'OOA' 0.00 

35 'almost all' 'daytime' 'OOA' 0.00 

36 'almost none' 'daytime' 'INA' 0.00 

37 'few' 'daytime' 'INA' 0.32 

38 'some' 'daytime' 'INA' 0.68 

39 'many' 'daytime' 'INA' 0.00 

40 'almost all' 'daytime' 'INA' 0.00 

41 'almost none' 'night' 'Bathroom' 1.00 

42 'few' 'night' 'Bathroom' 0.00 

43 'some' 'night' 'Bathroom' 0.00 

44 'many' 'night' 'Bathroom' 0.00 

45 'almost all' 'night' 'Bathroom' 0.00 

46 'almost none' 'night' 'Bed' 0.00 

47 'few' 'night' 'Bed' 0.00 

48 'some' 'night' 'Bed' 0.00 

49 'many' 'night' 'Bed' 0.00 

50 'almost all' 'night' 'Bed' 1.00 

51 'almost none' 'night' 'OOA' 1.00 

52 'few' 'night' 'OOA' 0.00 

53 'some' 'night' 'OOA' 0.00 

54 'many' 'night' 'OOA' 0.00 

55 'almost all' 'night' 'OOA' 0.00 

56 'almost none' 'night' 'INA' 1.00 

57 'few' 'night' 'INA' 0.00 

58 'some' 'night' 'INA' 0.00 

59 'many' 'night' 'INA' 0.00 

60 'almost all' 'night' 'INA' 0.00 

 

Table 4.1: LPS representing the location activity presented in Figure 4.2. Each individual LPS is of 

the format, Q of the 15 in slots in R were spent in P @ (TV) 
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Next, we present a few experiments to better understand and test the LPS representation of 

activity patterns.   

4.2.1.1. Experiment: Gradual Change in Routine  

In this experiment, we design a synthetic data set that spans over multiple days. The goal 

here is to test and understand the variation of truth-value computation based on a synthetic 

dataset, where we are confident about what to expect. We take the activity information 

presented in Figure 4.2, and change the time of each activity by a small amount, computing 

the LPS representation of the activity information at each step. We shift the activities 

minute by minute until the activities at the current step are 60 minutes apart from the start. 

Figure 4.6 below depicts this variation.    

Next, we compute the truth-values of for all the 60 LPSs describing the activity over the 

60-day period, plotted in Figure 4.7. We can draw the following observations:   

- Even though the change in the location pattern in Figure 4.7 is gradual over the 

course of 60 days, the truth-values have oscillations going up and down throughout 

the experiment, which is due to the truth-value computation method.  

- Except the oscillations, the truth-value pertaining to bathroom activity remains 

almost constant throughout the experiment for all the three time divisions. During 

the morning hours, the truth-values suggests a very small fraction of amount being 
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spent in the bathroom, while almost no proportion of time during daytime and 

nighttime.  

- The truth-values corresponding to the quantifier few and some related to the 

morning bed activity suggest an increase in the time in bed as the experiment 

Figure 4.6: Sliding routine. Synthetic data used to test the computation of truth-values representing 

daily activity patterns of a resident. The activity pattern is shifted by 1 minute between each 

consecutive day, untill the last day is 60 minute further than the first day. 
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proceeds. During the daytime, the proportion of time spent in bed decreases as the 

time of the activities shift throughout the experiment. This makes sense since the 

night-time bed activity moves into the morning time and the daytime bed activity 

moves into the night, as the experiment moves forward. This variation of course, 

depends on the membership functions representing different times of the day and 

the behavior would change if their fuzzy set definitions change. 

- The OOA activity remains more or less constant during the course of the 

experiment, with a slight increase in the daytime.  

Δt = 15 min 

Figure 4.7: Variation of truth-values of LPSs, depicting location pattern of Figure 4.6, of the form: 

Q of the 𝛥𝑡 slots in R were spent in P, where Δ𝑡 = 15 𝑚𝑖𝑛, Q is the quantifer, R is the time of day 

(morning, daytime, nighttime) and P is one of the four locations. 
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- The truth-values representing the inside apartment activity suggest a small decrease 

during the morning time and increase during the nighttime, as the truth-value 

corresponding to the quantifier some decreases and few increases for the morning 

duration and that of almost none decreases and few increases, during the nighttime.  

Based on these observations, we conclude that even though the oscillations are unexpected, 

the variations in the truth-values are intuitive according to the changes in location patterns 

in Figure 4.7.  

4.2.1.2. Experiment: Effect of the quantization factor (𝛥𝑡) 

Another factor that plays an important role in the LPS representation of the activity 

information is the way we quantize the day, that is the value of Δ𝑡. A higher value of Δ𝑡 

will make the calculation of truth-values less computationally expensive since it will result 

in less objects to being summarized. Also, with a higher value, small changes in the data 

will have a lesser impact on the location memberships in the Δ𝑡 slots. On the other hand, a 

small value of Δ𝑡 would allow for the slots to represent the actual change in the data on a 

finer level. To this end, we compute the variation of truth-values when the value of Δ𝑡 is 

set lower than 15 minutes. Figure 4.8 shows the variation of truth-values with Δ𝑡 = 5 𝑚𝑖𝑛 

and Δ𝑡 = 1 𝑚𝑖𝑛, respectively.  

We see that even though the overall pattern of variation in truth-values is very similar with 

all the three values of Δ𝑡, the change is more gradual with Δ𝑡 = 5 𝑚𝑖𝑛 as compared to 

Δ𝑡 = 15 𝑚𝑖𝑚 and even more gradual with the Δ𝑡 =1 min. Moreover, smaller the value of 
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Δ𝑡, lesser the oscillations in the truth-values. Although, the variation of truth-values looks 

more natural for the case of Δ𝑡 = 1 𝑚𝑖𝑛, it is computationally expensive since it has five 

times more slots as compared to the value of 5 min. Hence, considering the value of Δ𝑡 =

5 𝑚𝑖𝑛 as an acceptable trade-of between Δ𝑡 = 15 𝑚𝑖𝑛 and Δ𝑡 = 1 𝑚𝑖𝑛, we use it in the 

rest of this work.  

  

Δt = 5 min 

Figure 4.8: Variation of truth-values of LPSs, depicting location pattern of Figure 4.6, of the form: Q of 

the 𝛥𝑡 slots in R were spent in P, where Δ𝑡 = 5 𝑚𝑖𝑛, Q is the quantifer, R is the time of day (morning, 

daytime, nighttime) and P is one of the four locations.  
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4.2.2. Dissimilarity between Daily Behavioral Patterns 

The fuzzy rule based LPS dissimilarity computation method described in Chapter 3 

compares two events based on some property quantified by LPSs. We utilize this method 

to compare two events with more than one property, for example activity during a day. If 

we describe activities on two days in this fashion, then we will have two LPS sets with 60 

LPSs in each set. Given the quantifiers of Figure 4.5, each combination of the time of day 

and an activity has five LPSs associated with it. We can use the fuzzy rule based 

dissimilarity method to compute how dissimilar is each activity at a given time of day. This 

Delgado method, Δt = 1 min 

Figure 4.9: Variation of truth-values of LPSs, depicting location pattern of Figure 4.6, of the form: Q of the 

𝛥𝑡 slots in R were spent in P, where Δ𝑡 = 1 𝑚𝑖𝑛, Q is the quantifer, R is the time of day (morning, daytime, 

nighttime) and P is one of the four locations.  
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would result in 60/5 = 12 dissimilarity values across all activities and time of day 

subdivisions. That is, the dissimilarity values individually quantify the comparison 

between bathroom activity in morning, bathroom activity in the daytime, bathroom activity 

in the nighttime, bed activity in the morning, bed activity in the daytime, bed activity in 

the nighttime, and so on for the ONA and INA activities.  

Now to compute overall dissimilarity between days, we need an aggregation mechanism 

to combine the 12 dissimilarities. Here we study the behavior of three such aggregation 

methods. Let 𝑑𝑡𝑎 be the dissimilarity between LPS set representing activity a and time of 

day t for day 1 & 2 (for example, 𝑡 = 1 & 𝑎 = 1 is the bathroom activity in the morning). 

Then we define three ways to aggregate the dissimilarities between all activities at different 

times of day by the following equations, where 𝑁𝑇 & 𝑁𝐴 are the number of times we divide 

the day in and number of activities represented by the LPS sets, respectively.   

𝐷𝑚𝑎𝑥 = max
𝑡=1:𝑁𝑇

( max
𝑎=1:𝑁𝐴

𝑑𝑡𝑎) (4. 1) 

𝐷𝑚𝑎𝑥𝑀𝑒𝑎𝑛 =
1

𝑁𝑇
∑ max

𝑎=1:𝑁𝐴
𝑑𝑡𝑎

𝑁𝑇

𝑡=1

(4. 2) 

𝐷𝑚𝑒𝑎𝑛 =
1

𝑁𝑇 ∗ 𝑁𝐴
∑∑𝑑𝑡𝑎

𝑁𝐴

𝑎=1

𝑁𝑇

𝑡=1

(4. 3) 

- In 𝐷𝑚𝑎𝑥 we find the time of day and activity that are farthest apart from each other 

and deem that as the dissimilarity between the two days. 
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- In 𝐷𝑚𝑎𝑥𝑀𝑒𝑎𝑛  we find the activity that is most dissimilar between the two days for 

each time of day. The overall dissimilarity between the two days is their average.  

- In 𝐷𝑚𝑒𝑎𝑛  the overall dissimilarity is the average of the dissimilarities between each 

activity at each time of the day.  

We compare the three methods by computing overall dissimilarity between day 1 and the 

rest of the days of Figure 4.6. Figure 4.10 shows the comparison. We observe that with all 

the three methods, barring the small bumps, the dissimilarity value increases gradually. 

This is intuitive since the location pattern of Figure 4.6 also varies gradually.  Also, as 

expected, we see the dissimilarity with the 𝑚𝑎𝑥 operator to be highest among the three, 

while that with 𝑚𝑒𝑎𝑛 is the lowest. The dissimilarity with 𝑚𝑎𝑥𝑀𝑒𝑎𝑛 is somewhere in the 

middle of the two, which seems to be a good trade-off between the maximum and the mean 

operator.  

Figure 4.10: Dissimilarity between location pattern of day 1 of Figure 4.6 

and the rest of the days with the three aggragation methods 



87 

 

4.2.3. Prototype Behavioral Routine 

Using the method to compare LPS representation of daily activity patterns, we delve further 

into the problem of routine discovery and design another synthetic dataset. The thought 

behind this dataset is to make it closer to a realistic routine than the previous experiment, 

and hence, to facilitate a better understanding of the behavioral routine modelling problem.  

To this end, we use Mr. Jones’s day activity described in Figure 4.2 in Section 4.2.1 as a 

starting point and design 30 days of similar activity around it. To get a month’s worth of 

day-to-day activity, we add small amounts of ‘noise’ (time shifts and variation in duration 

of each activity) to the activities of Figure 4.2. Moreover, to obtain a slightly different 

routine on the weekends, we assume that the person spends some part of the afternoon 

outside attending church or meeting family. Figure 4.11 shows a month of location 

information of Mr. Jones. We see that on weekends, the person gets up around the same 

time as weekdays but does not return to the apartment until around 2 PM after leaving at 

around nine in the morning. To model the behavioral routine of Mr. Jones from the data 

presented in Figure, we first represent each individual day’s activity in terms of LPSs. This 

results in 30 sets of summaries, with 60 LPSs in each set. Given the 30 sets of 60 LPSs 

each, we use clustering to produce a monthly representation of the activity of the resident.  
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Using the maxMean aggregated dissimilarity computation method to compare LPS sets, 

we perform relational clustering to find groups of days with similar location patterns. As a 

first step, in order to better understand the grouping nature of the LPS sets, we make use 

of iVAT (Havens and Bezdek 2012). iVAT is a popular method to study the presence of 

clusters in datasets. The iVAT image in Figure 4.12 is a reordered representation of the 

distance between the location patterns of every pair of days presented in Figure 4.11. To 

obtain the clusters, we can choose from many of the relational clustering techniques 

available in the literature (Bezdek, et al. 1999). Due to its simplicity, we employ 

hierarchical single linkage clustering here. Figure 4.13 shows the dendrogram plot using 

Figure 4.11: Thirty days of location pattern of a Mr. Jones, obtained by adding ‘noise’ to the pattern of Figure 4.2. 

Note the slightly different morning and daytime pattern on the weekdays and the weekends 
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single linkage hierarchical clustering. The two blocks of low dissimilarities in the iVAT 

image (shown by the darker colors) and the dendrogram plot strongly suggest the presence 

of two clusters. To this end, we cluster the LPS representation of the 30 days into two 

clusters using single linkage clustering.   

The clustering assigns each of the 30 days of Figure 4.11 into one of the two clusters, as 

shown in Table 4.2 where each day belongs to either cluster number 1 or 2. It is easy to see 

all the weekdays fall into one cluster and weekends into the other. The existence of two 

clusters makes sense looking at the truth-values of all the 60 LPSs over the complete month, 

Figure 4.12: iVAT image showing grouping of 

days in Figure 4.11 

Figure 4.13: Dendrogram plot using single linkage showing dissimilarity between LPS 

representations of location patterns of days in Figure 4.11 
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in Figure 4.14. We see that all the LPSs have very similar truth-values during the nighttime, 

which is also suggested by Figure 4.11 where the night routine is very similar over the 

month. The variation among truth-values of LPS corresponding to OOA and INA during 

the morning and daytime suggest a change in these activities over these days. For example, 

during the weekends the truth-value associated with the quantifier some for the morning 

and daytime OOA activity is higher than on weekdays, while the truth-value associated 

with few is lower, suggesting an increase in OOA activity. Also, the truth-value 

corresponding to the quantifier few is higher for the morning and daytime INA activity, 

indicating a decrease in the INA activity.  

To extract the routine out of the clustering results, we find the representatives of the two 

clusters. Two common choices are the centroid or the medoid of the clusters. The centroid 

Date 

Day of 

week 

Cluster 

# 

'2017-01-01' 'Sun' 2 

'2017-01-02' 'Mon' 1 

'2017-01-03' 'Tue' 1 

'2017-01-04' 'Wed' 1 

'2017-01-05' 'Thu' 1 

'2017-01-06' 'Fri' 1 

'2017-01-07' 'Sat' 2 

'2017-01-08' 'Sun' 2 

'2017-01-09' 'Mon' 1 

'2017-01-10' 'Tue' 1 

'2017-01-11' 'Wed' 1 

'2017-01-12' 'Thu' 1 

'2017-01-13' 'Fri' 1 

'2017-01-14' 'Sat' 2 

Date 

Day of 

week 

Cluster 

# 

'2017-01-16' 'Mon' 1 

'2017-01-17' 'Tue' 1 

'2017-01-18' 'Wed' 1 

'2017-01-19' 'Thu' 1 

'2017-01-20' 'Fri' 1 

'2017-01-21' 'Sat' 2 

'2017-01-22' 'Sun' 2 

'2017-01-23' 'Mon' 1 

'2017-01-24' 'Tue' 1 

'2017-01-25' 'Wed' 1 

'2017-01-26' 'Thu' 1 

'2017-01-27' 'Fri' 1 

'2017-01-28' 'Sat' 2 

'2017-01-29' 'Sun' 2 

Table 4.2: Table showing the cluster to which each day of Figure 4.11 belongs to. 
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of a cluster is obtained by computing its mean. In our case, the objects being clustered are 

LPSs sets, hence the average LPS set would be a set with the mean truth-value across all 

the sets in the cluster. Since we are interested in finding a routine that is explainable, 

treating the centroid as a cluster representative might not produce a very cohesive routine. 

That is, since the centroid is a mixture of multiple days of activity, explanation of such a 

representative might not be very intuitive. On the other hand, the medoid of a cluster is the 

element that is closest to all the other members of the cluster. If a cluster 𝑝𝑖 has 𝑐 elements, 

then its medoid is given by Equation 4.4, where 𝑑(𝑠𝑖𝑗 , 𝑠𝑖𝑘) is the dissimilarity between 

object 𝑠𝑗𝑘 and 𝑠𝑖𝑘.  

Figure 4.14 Variation of truth-values of LPSs, depicting location pattern of Figure 4.11, of the form: Q of 

the 𝛥𝑡 slots in R were spent in P, where Δ𝑡 = 5 𝑚𝑖𝑛, Q is the quantifer, R is the time of day (morning, 

daytime, nighttime) and P is one of the four locations. Notice the significantly different truth-values on 

weekends and weekdays. 
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𝑝𝑖 = argmin
𝑘
( ∑ 𝑑(𝑠𝑖𝑗 , 𝑠𝑖𝑘)

𝑗=1,…𝑐;𝑗≠𝑘

) (4. 4) 

For the behavioral routine modelling problem, the medoid will be the day whose activity 

pattern is closest to all the other days in that cluster. We call the medoid of the cluster 

Linguistic Medoid Prototype (LMP), as was done in (Wilbik, et al. 2014). Next, we focus 

on the obtained LMPs by describing them in natural language.  

4.2.4. Natural Language Explanation of Routine  

In this section, we describe our method to produce natural language explanations of the 

Linguistic Medoid Prototypes (LMPs) that represent the behavioral routine of the resident 

during the baseline period. We produce natural language explanations individually for each 

of the LMPs and together they form the linguistic explanation of the routine.  

4.2.4.1. Natural Language description of the LPS set representing daily 

activity  

Table 4.3a shows LPSs representing the morning activity of one of the cluster prototypes 

of the aforementioned synthetic routine. The activity over the whole day is represented by 

an LPS set, similar to Table 4.1, for morning, daytime, and nighttime. We use the LPS set 

of Table 4.3a to describe our natural language generation process for the morning routine 

and follow the same procedure for the daytime and nighttime LPS sets. Together, they form 

the natural language description of the activity over an entire day. 
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Figure 4.15 presents an overview of our process to convert sets of LPSs to natural language 

statements. The first step in our process is to select one LPS per activity. We use the LPS 

Quantifier Daytime Activity 
Truth 
Value 

'almost none' 'morning' 'Bathroom' 0.53 

'few' 'morning' 'Bathroom' 0.48 

'some' 'morning' 'Bathroom' 0.00 

'many' 'morning' 'Bathroom' 0.00 

'almost all' 'morning' 'Bathroom' 0.00 

'almost none' 'morning' 'Bed' 0.36 

'few' 'morning' 'Bed' 0.64 

'some' 'morning' 'Bed' 0.00 

'many' 'morning' 'Bed' 0.00 

'almost all' 'morning' 'Bed' 0.00 

'almost none' 'morning' 'OOA' 0.06 

'few' 'morning' 'OOA' 0.94 

'some' 'morning' 'OOA' 0.00 

'many' 'morning' 'OOA' 0.00 

'almost all' 'morning' 'OOA' 0.00 

'almost none' 'morning' 'INA' 0.00 

'few' 'morning' 'INA' 0.27 

'some' 'morning' 'INA' 0.73 

'many' 'morning' 'INA' 0.00 

'almost all' 'morning' 'INA' 0.00 

 

Quantifier Daytime Activity 
Truth 
Value 

'almost 
none' 'morning' 'Bathroom' 0.53 

'few' 'morning' 'Bed' 0.64 

'few' 'morning' 'OOA' 0.94 

'some' 'morning' 'INA' 0.73 

 

Table 4.3a & b:  LPS set representing morning routine of a resident. The table on the right shows the LPS 

with highest truth-value for each of the four activities. 

LPS Set 

representing 

activities at a time 

of day 

One LPS per 
activity 

(Bathroom, Bed, 

OOA, INA) 

Combine 

LPSs  

Natural 

Language 

Description  

Figure 4.15: Overview of the process to generate natural language description of an LPS set 
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with highest truth-value, as shown in Table 4.3b. The next step is to combine the four LPSs 

representing the four activities into a natural language statement. For example, the LPSs of 

Table 4.3b convey that during the morning, the resident spent a small amount of time in 

bed, a small amount of time outside the apartment, and almost no time in the bathroom. 

The rest of the time was spent inside the apartment, but during this time, the resident was 

not in bed or in the bathroom. We can consider the time inside the apartment when the 

resident is neither in the bathroom nor in the bed as the time when the resident was in the 

living area, performing activities such as cooking or watching TV. Based on this reasoning, 

the LPSs of Table 4.3b can be expressed in the statement: During the morning, the resident 

spent almost half of the time in the living area inside the apartment and a little time each 

in bed, and outside the apartment. Note that we do not include any information about the 

time spent in the bathroom since the LPS corresponding to the bathroom activity has the 

quantifier as almost none.  

Similarly, we can define natural language statements for different combinations of 

quantifiers. However, realistically, there are only a few combinations possible, as the LPSs 

with highest truth value for each activity are not independent of each other. For example, 

intuitively, it is very unlikely that all the LPSs that have the highest truth-values will have 

the quantifier almost all. To this end, we first enumerate the combinations of quantifiers 

that are likely to occur together and then define natural language templates for each of 

them.  
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Likely Combinations of Quantifiers that can Occur Together 

In order to find the combinations of quantifiers that are likely to occur together in the LPSs, 

we assign a weight to each quantifier, based on its semantic meaning. The weights roughly 

represent the percentage of information quantified by the quantifier. For example, the 

quantifier almost all quantifies more information than the quantifier some. We set the 

weights as the centroids of the fuzzy sets representing the quantifiers, as shown in Figure 

4.16. Intuitively, we can think of the weights as a rough estimate of the fraction of 

information quantified by the corresponding quantifier. Based on centroids, almost none, 

few, some, many, and almost all quantify about 8%, 25%, 50%, 75%, and 92% of the 

information being summarized.  

Considering the total information being summarized to be 100%, we find tuples of size 4 

(for the four activities: bed, bathroom, INA, OOA) from the five quantifiers that will result 

in around 100% of the information. Since the weights assigned to the quantifier only 

roughly represent the fraction of information represented by them, we use a slack variable 

that relaxes the constraint of 100% information. For example, given a slack variable of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

almost none

few

some

many

almost all

Figure 4.16: Fuzzy set definitions and their centroids for each quantifier 
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20%, we find tuples of size 4 that represent 80% to 120% of the information. Table 4.4 

shows the possible combinations of the four quantifiers and the corresponding natural 

language templates when using the centroid as the weights, and the slack variable set as 

20%. To apply this method to generate natural language summaries corresponding to the 

LPSs selected for each activity, as in Table 4.4, we first sort the LPSs in the descending 

order of the corresponding quantifier weights. Then, Quantifier 1 & ACT 1 of Table 4.4 

are associated with the LPS with the highest weighted quantifier, Quantifier 2 & ACT 2 

are associated with the next LPS and so on. ACT 1, ACT 2, ACT 3, and ACT 4 represent 

the four activities. To make the natural language statements intuitive, we realize the four 

activities as: in the bathroom, in the bed, outside the apartment, in the living area inside 

the apartment. The TIME-DAY variable is either morning, daytime or nighttime based on 

the time of day being summarized.  

# 
Quantifier 

1 
Quantifier 

2 
Quantifier 

3 
Quantifier 

4 
Natural Language Template 

1 many  
almost 
none  

almost 
none  

almost 
none  

During the TIME-DAY, the resident spent most of 
the time ACT1   

2 almost all  
almost 
none  

almost 
none  

almost 
none  

During the TIME-DAY, the resident spent almost all 
the time ACT1  

3 some  few  
almost 
none  

almost 
none  

During the TIME-DAY, the resident spent about half 
of the time ACT1 and a little time ACT2  

4 many  few  
almost 
none  

almost 
none  

During the TIME-DAY, the resident spent most of 
the time ACT1 and a little time ACT2  

5 some  some  
almost 
none  

almost 
none  

During the TIME-DAY, the resident spent about half 
of the time ACT1 and the other half ACT2   

6 few  few  few  
almost 
none  

During the TIME-DAY, the resident spent a little 
time each at ACT1, ACT2, and ACT3  

7 some  few  few  
almost 
none  

During the TIME-DAY, the resident spent almost 
half of the time ACT1 and a little time each ACT2 
and ACT3  

8 few  few  few  few  
During the TIME-DAY, the resident spent a little 
time each ACT1, ACT2, ACT3, and ACT4  

Table 4.4: Likely combinations of quantifiers and the corresponding natural language templates. ACT 1 

is the activity corresponding to Quantifier 1, ACT 2 corresponds to Quantifier 2 and so on, where 

Quantifier 1 is the quantifier with highest weight based on the centroid 



97 

 

Natural Language Summary of the prototypes of synthetic routine 

Based on the procedure described above, the two Linguistic Medoid prototypes of the 

synthetic routine of Section 4.2.3 is described by the natural language summaries shown in 

Figure 4.17. The summary rightly describes the change in outside apartment activity on the 

weekend routine (Pattern 2) as compared to the weekday routine (Pattern 1). The summary 

of the first pattern says that the resident spent almost half of the morning inside the 

apartment, while the summary of the second prototype says that the resident spent almost 

Pattern 1: 

• During the morning, the resident spent almost half of the time in the living area 

inside the apartment and a little time each in the bed and outside the apartment 

• During the daytime, the resident spent about half of the time outside the 

apartment and the other half in the living area inside the apartment 

• During the night, the resident spent almost all the time in the bed 

Pattern 2: 

• During the morning, the resident spent almost half of the time outside the 

apartment and a little time each in the bed and in the living area inside the 

apartment 

• During the daytime, the resident spent about half of the time outside the 

apartment and the other half in the living area inside the apartment 

• During the night, the resident spent almost all the time in the bed 

Figure 4.17: Natural language summaries of the two linguistic medoid prototypes of the synthetic routine of 

Figure 4.11  
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half of the morning outside the apartment. The rest of the information in the natural 

language summaries is the same for the two prototypes. 

4.2.5. Changes in Behavioral Routine 

In this experiment, we focus on using LPSs to detect deviation in behavioral pattern, in 

numeric and linguistic terms. We use the activity pattern presented in the previous 

experiment as the baseline routine and modify it to come up with a changed activity pattern. 

Specifically, we assume a person suffering from Urinary Tract Infection (UTI) and modify 

the baseline routine in order to simulate that. Figure 4.18 shows the behavioral activity 

pattern of Mr. Jones for a period of 38 days starting from the 1st of January. In the figure, 

the month of January shows the baseline behavioral pattern of the resident, while the next 

9 days, in February, show an increase in bathroom activity, to depict UTI symptoms. 

Similar to the previous section, we generate LPSs for each day shown in Figure 4.18. The 

truth-values of the LPSs including the days with increased bathroom activity is shown in 

Figure 4.19. We see that the truth-values reflect the higher number of bathroom visits 

during the morning, daytime and nighttime on days when the resident was suffering from 

UTI. For the bathroom activity, the truth-value of LPSs corresponding to quantifier almost 

none decreases while that for few increases. This is also reflected by less amount of time 

spent in bed throughout the day for the days depicting UTI.  
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From the results of Section 4.2.3, we have the LPS sets describing the baseline month, in 

terms of weekend and weekday routines. To compare the induced routine pattern to the 

days with increased bathroom activity pattern, we compute dissimilarity between the LMPs 

and the LPSs sets representing the days shown in Figure 4.18.  

Consider Π = {𝑃1, 𝑃2…𝑃𝐶} as the set of 𝐶 𝐿𝑀𝑃𝑠 and 𝐿 as an LPS set, then the dissimilarity 

between 𝐿 and Π is computed using Equation 4.5. That is, the dissimilarity between an 

Figure 4.18: Location pattern showing days with increased bathroom activity along with the usual 

routine during the baseline time period 
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individual LPS set and the prototypes is its dissimilarity with the prototype that is closest 

to the LPS set.  

𝑑𝑖𝑠𝑠𝑖𝑚(𝐿, Π) = min(𝑑𝑖𝑠𝑠𝑖𝑚(𝐿, 𝑃1), 𝑑𝑖𝑠𝑠𝑖𝑚(𝐿, 𝑃2),… , 𝑑𝑖𝑠𝑠𝑖𝑚(𝐿, 𝑃𝐶)) (4. 5) 

The 𝑑𝑖𝑠𝑠𝑖𝑚(𝐿, 𝑃𝑐) is the comparison between the LPS set 𝐿 and the LMP set 𝑃𝑐, which was 

defined in Equation 4.2.  

Figure 4.20 shows the dissimilarity between the LMPs and each of the 39 days shown in 

Figure 4.18, using the 𝑚𝑎𝑥𝑀𝑒𝑎𝑛 aggregation. The first 30 dissimilarity values show the 

comparison between the LMPs and the baseline month. Therefore, we expect the 

dissimilarity to be very small (very similar). The next 9 days denoted by U in the 

Figure 4.19: Variation of truth-values of LPSs, depicting activity pattern of Figure 4.18, of the form: Q 

of the 𝛥𝑡 slots in R were spent in P, where Δ𝑡 = 5 𝑚𝑖𝑛, Q is the quantifer, R is the time of day (morning, 

daytime, nighttime) and P is one of the four locations. Notice the significantly different truth-values on 

days with increased bathroom activity. 
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dissimilarity plot are the days with increased bathroom activity. We observe that these are 

at a relatively higher dissimilarity than the days in the baseline month.      

To further study the reason behind the dissimilarities of Figure 4.20, we plot the output of 

the Fuzzy Inference System (FIS) that is used to compare LPS sets. Note that, the 

dissimilarity is nothing but a scaled version of the value that is obtained after performing 

centroid defuzzification to the output of the FIS. Also, the linguistic dissimilarity is 

obtained by thresholding this value, as explained in Section 3.1.2. In Figure 4.21, the first 

subplot presents the output of the FIS for the Bathroom, In Bed, OOA and INA activity for 

the morning hours, while the next 2 subplots show the comparison for daytime and 

nighttime, respectively. In all the three subplots, for the first 30 days, the baseline period, 

the FIS output is close to 0.5 for all locations (which is equivalent to a dissimilarity close 

to zero). This suggests almost no deviation from the routine prototypes, which is also 

indicated by the overall dissimilarity plot in Figure 4.20. Table 4.5 shows the linguistic 

Figure 4.20: Dissimilarity between the Linguistic Medoid Prototypes and the location pattern of the days 

in Figure 4.18. N depicts days with usual location pattern, while U shows the days with increased bathroom 

activity. 
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dissimilarity between the LMPs and the days with increased bathroom activity (31-39). 

The first four columns show the dissimilarity between the time spent in each activity in the 

morning hours, while the next two sets of columns show the same for daytime and 

nighttime. To increase readability, we do not fill the cells corresponding to the activities 

that were found to be similar. We use a template based natural language generation 

methodology to express the changes in the routine linguistically. In Figure 4.22, we show 

the natural language description of change for February 8.  

Figure 4.21: Output of the Fuzzy Inference System depicting dissimilarity between the LMPs and the days 

of Figure 4.18. A value of 0.5 represents zero dissimilarity, while a value above and below 0.5 means an 

increase and decrease, respectively. The fist subplot compares the location pattern during morning, while 

the next two compares patterns during the daytime and the nighttime.  



103 

 

Using Figure 4.21 and Table 4.5, we draw the following observations: 

- The first plot in Figure 4.21 suggests an increase in the bathroom activity during 

the morning for all the days in February, when the UTI symptoms start showing in 

Figure 4.18. This is also reported in the first column of Table 4.5, where an increase 

Day # 

morning daytime nighttime 

bath-
room 

bed OOA INA 
bath-
room 

bed OOA INA 
bath-
room 

bed OOA INA 

02-01 inc       inc               

02-02 inc       inc         dec     

02-03 inc       inc       inc dec     

02-04 inc       inc dec     inc dec     

02-05           dec   dec inc dec     

02-06           dec   dec inc dec     

02-07 inc       inc dec     inc dec     

02-08 inc       inc dec     inc dec     

02-09 inc       inc dec       dec     

 

Table 4.5: Comparison of the LMPs and the days of Figure 4.18 in lingusitic terms. The first block of four 

columns shows the changes during morning, while the next two blocks depict changes during daytime and 

nighttime. The cells corresponding to location patterns where no change was detected are left empty for 

readability. 

As compared to the baseline, on February 8: 

• During the morning, there was an increase in time spent in the bathroom 

• During the daytime, there was an increase in time spent in the bathroom and a 

decrease in time spent in bed 

• During the nighttime, there was an increase in time spent in the bathroom and a 

decrease in time spent in bed 

Figure 4.22: Natural language description of change on February 8 as compared to the baseline routine 
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in bathroom activity is shown on all the mornings except the weekends (Feb 5 & 

6). This makes sense according to Figure 4.18 where the person made less visits to 

the bathroom on two weekend days when most of the morning was spent outside 

the apartment.     

- The variations in the second plot indicate an increase in bathroom activity and a 

decrease in bed activity during the daytime for UTI days. This can also be observed 

in the daytime columns of Table 4.5 which shows an increase in the bathroom 

activity on all the days except the weekends of UTI symptoms. Again, on these 

weekends there was more time spent outside the apartment, hence the table does 

not report an increase on those days. Similarly, a decrease in INA activity is only 

reported for the weekends of UTI days.   

- The third subplot and the columns of Table 4.5 pertaining to the nighttime activities 

suggest an increase in bathroom activity during the night concurrent with a decrease 

in time in bed. This is easiest to relate to the activity shown in Figure 4.18, since 

most of the time during nights is spent in bed during the baseline period, but during 

the UTI days, some of this bed time gets occupied by bathroom time. We note that 

for Feb 02 and Feb 09, even though the plot indicates a small increase in the 

bathroom activity, it is not reflected in Table 4.5. This is because, eventually in the 

end, we need to apply a crisp threshold to report a linguistic change, and the FIS 

output values just missed the threshold; hence, they are not reported in the table. 
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4.2.6. Retrospective Case Studies 

In this section, we validate our behavioral routine modelling strategy with the help of 

retrospective cases studies where we model and detect changes in the behavioral routine 

and relate those changes to the resident’s Electronic Health Records. The data for the case 

studies comes from apartments of the elderly living at aging in place facilities around 

Columbia, MO. The behavioral routine modelling approach described above requires an 

activity map of a resident containing activity information of the residents throughout the 

day. That is, the algorithm assumes that a separate method pre-processes the sensor data to 

label the resident’s activity into one of the four categories: in bathroom, in bed, out of 

apartment and inside apartment.  

4.2.6.1. Data Pre-processing 

We employ the activity recognition algorithms described in (Wang 2011) to detect 

bathroom and out of apartment activities. In (Wang 2011), the sequence of motion sensor 

firings inside the apartment were used to identify times spent in the bathroom and outside 

the apartment. They used fuzzy inference systems to interpret motion sensor data at 

different locations inside the apartment in order to infer the start and end times of bathroom 

and out of apartment activities. 

To recognize the time in bed activity, we use data from the bed sensor. The bed sensor 

system produces raw text files whenever it detects an activity on bed (based on weight). A 

file is generated every 10 minutes whenever a person is detected on the bed. Each file is 
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saved in the database with the time stamp of the 10-minute period included in its name. No 

data files are produced when the person is not detected on the bed. We use the time stamps 

included in these filenames to determine whether a resident is in bed.  

The inside apartment activity is determined from the raw motion sensor firings around the 

apartment, barring the bathroom activity. The motion sensor fires every 7 seconds and we 

use the raw firings as the inside apartment activity to determine the complete activity map 

of a resident. Figure 4.23 shows the activity map of a resident over a 6 month period, where 

the times when the resident was in bed are shown in red, bathroom activity in magenta, 

Figure 4.23: Activity map of a resident for a six month period using raw motion sensor firings to determine 

inside apartment activity 
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outside apartment activity in blue and the times when the resident was inside the apartment 

in green. We see that there is almost no green and a lot of white, which are times when no 

activity was observed (holes in the data). As we mentioned before, we use the raw motion 

sensor firings to determine inside apartment activity, therefore, we do not have the start 

and end times of when the resident was inside the apartment. Hence, we do not observe 

any green activity in the figure and a lot of white space. To fix this, we use the following 

heuristic: If same activity is detected both immediately before and after a hole in the data, 

then fill the hole with that activity. Using this heuristic, we obtain the activity pattern shown 

in Figure 4.24. We observe that Figure 4.24 shows a fairly regular activity pattern where 

the resident wakes up around 8 AM and goes to bed around 11 PM most of the days. 

Figure 4.24: Activity map of a resident over a six month period, with overlaps 
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However, there is one issue that still remains; we see that on most of the nights there is bed 

activity as expected, but on some nights the figure suggests that the resident was out of the 

apartment, which seems counter intuitive. It turns out, that on these nights, there were 

overlapping activities. That is, both in bed activity and out of apartment activity was 

observed simultaneously. This can be due to a caretaker or some family member leaving 

the apartment at night when the resident is in bed. To resolve this, we define a priority list 

among the activities in the following order: Bed, Bathroom, Outside apartment and Inside 

Figure 4.25: Activity map of a resident over a six-month period after data pre-processing  
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apartment. That is, given an overlapping set of activities, the bed activity is given highest 

priority, followed by bathroom activity and so on. Applying this heuristic on the data, we 

obtain the activity map in Figure 4.25. We see a regular nightly pattern throughout the six-

month time period. We use the pre-processing steps to obtain the behavioral activity map 

for all the cases described next.  

4.2.6.2. Case I 

In this case we use our behavioral routine modelling strategy to study and analyze 

behavioral data pattern for a 97-year-old female resident living at an assisted living facility 

in Boonville, MO. Figure 4.26 show the behavioral data for this resident for a six-month 

period starting from July 2019 through December 2019.  

The activity pattern of Figure 4.26 suggests that the resident had a fairly stable routine up 

until the month of October. On almost all days she gets up around 8:00 AM and after 

performing some personal hygiene activity, she goes out of the apartment around 8:30 AM. 

Then on some days she takes a nap around 9 AM and goes out around noon, most likely 

for lunch. Then during the daytime, on some days she goes out of the apartment, while on 

other days she spends most of her afternoon inside the apartment. She again goes out of 

the apartment for about an hour in the evening around 5:30 PM and then stays inside the 

apartment up until bedtime around 11:00 PM. 
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During this six-month period, the resident had two adverse health events that were noted 

in her Electronic Health Record (EHR). The resident suffered from a Fall on August 12, as 

described by the following nursing note in the EHR (verbatim, some information is 

redacted due to privacy concerns): 

“Resident page CMA . CMA found resident on floor in bathroom on her bottom resident 

stated she hit her head and lower back. CNA noticed that back on the right side has a 

scrape.By this afternoon to scrape turn into a bruise which also popped up a bruise on the 

Figure 4.26: Activity map of a resident over a six month period (Case I)  

B
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left side also across the lower back. Cma offered to some resident to ER to be checked out 

wasn’t refused and said that she was not hurt. CMA  notified DON  and fax Dr. XXX.” 

Then on October 12, the resident reported significant pain, noted in the EHR in the 

following note (verbatim): 

“Resident has a lot of pain in the right hip refuses to go out and be checked. Resident has 

been up and moving around in your room need some assistance with getting back in bed 

this am. Resident has eight both breakfast and lunch in her recliner in the room and has 

ate 100%. Resident was given aleave at 8 AM this morning.” 

Based on the activity pattern of the resident during the month of July and absence of any 

significant adverse health events that were recorded in the EHR during this period, we use 

this time period to model the behavioral routine of this resident. We then use our method 

to compare the routine model to the activity pattern over the entire six-month time period. 

Behavioral Routine Modelling & Explanation 

We follow the procedure described in Section 4.2.3 to model the behavioral routine of the 

resident based on the data obtained over the month of July. We divide the overall routine 

of the resident into morning, daytime and nighttime routine, where the boundaries between 

these three time periods are defined by fuzzy sets that were previously shown in Figure 

4.3.   
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Next, we compute linguistic features representing the activity pattern of the resident on 

each day from the baseline period. Note that we use the same parameter definitions that 

were used with the synthetic data in Section 4.2.3. The process of linguistic feature 

extraction produces LPS sets with 60 LPSs in each set. Next, we compute distance between 

LPS sets to measure dissimilarity between activity patterns on each pair of days in the 

baseline time period. This results in a 31x31 distance matrix that is used to perform 

relational clustering. To visualize the clusters, we use the iVAT image (Havens and Bezdek 

2012) and dendrogram plot, as shown in Figure 4.27.  

We label each data point in both the iVAT image and the dendrogram plot with the first 

letter of the day of the week. Both the iVAT and the dendrogram plot show evidence that 

all the weekend days (Saturdays and Sundays) during the baseline period fall in one cluster, 

while the rest of the days fall in the other cluster. This suggests that the resident has 

different behavioral routine pattern on weekends and weekdays.  

Figure 4.27: iVAT image & dendrogram plot to visualize clusters in the baseline time period (Case I). Each 

day is labeled by the first letter of the day of the week 
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Using the above plots as evidence for existence of two clusters, we use the fuzzy relational 

clustering algorithm, Non-Euclidean Relational Fuzzy c-means (NERF) (Hathaway and 

Bezdek 1994) to cluster the data into two clusters. Contrary to a crisp relational clustering 

algorithm like single linkage clustering, NERF provides a membership degree of each point 

in each of the specified number of clusters. Figure 4.28 shows the memberships of each 

day in the baseline period into the two clusters. We see that, the weekends have a relatively 

high membership value in Cluster 2, while the weekdays have a high membership value in 

Cluster 1.  

We use the membership values to separate the days into two clusters by assigning a data 

point to the cluster in which it has a higher membership value. Similar to the synthetic data 

example, we use the medoids of the two clusters as the cluster prototypes. We use our NLG 

process to linguistically describe the Linguistic Medoid Prototypes (LMPs) of the two 

clusters, shown in the box in Figure 4.29. Here pattern 1 corresponds to the weekdays, 

while pattern 2 corresponds to the weekends.  

Figure 4.28 Membership of each day in the baseline period 

in the two clusters using NERF (Case I) 
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From the linguistic explanation of the two prototypes, we see that the resident has a slightly 

different morning routine on weekends than on weekdays, where on weekends the resident 

spends less time in bed than on weekdays. However, the significant change between the 

weekend and weekday routine is due to change in her daytime activity. On weekdays, the 

resident spends almost half of the time inside the apartment during the daytime and the 

Pattern 1: 

• During the morning, the resident spent about half of the time in the bed and a 

little time in the living area inside the apartment 

• During the daytime, the resident spent about half of the time outside the 

apartment and the other half in the living area inside the apartment  

• During the night, the resident spent most of the time in the bed and a little time 

in the living area inside the apartment 

Pattern 2: 

• During the morning, the resident spent almost half of the time in the living 

area inside the apartment and a little time each in the bathroom and in the bed 

• During the daytime, the resident spent most of the time in the living area inside 

the apartment  

• During the night, the resident spent most of the time in the bed and a little time 

in the living area inside the apartment 

 

Figure 4.29: Natural language explanations of the cluster prototypes in the baseline period (Case I). Pattern 

1 is the weekday prototype, while Pattern 2 corresponds to weekends 
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other half outside the apartment, while on weekends, she spends most of her daytime hours 

inside the apartment. 

Deviation in behavioral routine 

Here, we use our method to detect changes in the behavioral routine by comparing the 

routine model to the activity pattern throughout the six-month time period. We start by 

computing a numerical dissimilarity between the baseline routine and each day over the 

study period. Then we delve deeper to quantify the changes in the individual activities at 

different times of days. We follow this with the linguistic explanation of the changes in the 

routine.  

Overall Dissimilarity 

Figure 4.30 shows the overall dissimilarity between the behavioral routine model and each 

day in the six-month time period. In the figure, each data point in red shows the 

dissimilarity between the routine model and activity pattern on the corresponding day. In 

order to facilitate a better visualization of changes in routine, we also draw a smoothing 

line, which is the LOWESS fit (Cleveland 1979) of the raw dissimilarity value. We also 

show the baseline time period highlighted in green and the dates of the health events 

according to the EHR. 
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We observe an increase in dissimilarity before and around the time when the resident 

suffered a fall, suggesting a change in routine. This implies a change in the routine of the 

resident even before the actual fall happened. After the fall, the dissimilarity value remains 

high temporarily until September, but gets back to the usual value after that, signaling a 

return to their baseline routine. The dissimilarity increases again around the second event 

when the resident reported severe pain. This increase in the dissimilarity value is more 

significant than the change during the event of fall, suggesting that the routine changed 

more drastically. After this event, the dissimilarity value increases sharply and then drops 

a little. However, the value is still higher than the baseline dissimilarity value, suggesting 

a permanent change in the routine after the second health event. 

Individual Dissimilarity 

In Figure 4.31, we investigate changes in the individual activities performed at different 

times of day. In the figure, using stacked bar plots, we present three plots showing the 

Figure 4.30: Dissimilarity between the routine model and each day in the six month time period (Case I) 
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changes in the morning, daytime and nighttime activity patterns of the resident as compared 

to the baseline routine model. Each stacked bar shows the contribution of each activity in 

the overall dissimilarity from the routine model, where the colors blue, cyan, yellow, and 

brown represent dissimilarity in the bathroom activity, bed activity, out of apartment 

activity, and inside apartment activity, respectively.  

Comparing the dissimilarities during the baseline period to the dissimilarities during the 

rest of the time, we see that the morning routine changes around August and stays this way 

Figure 4.31: Dissimilarity of each of the four activities from the baseline time period for morning, daytime, 

and night time over the 6 month study period (Case I). Note that each bar represents dissimilarities for the 

four activities stacked on top of each other  
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until the end of December. The length of the yellow and brown bars in the daytime routine 

after both the health events suggests that the change in the daytime routine is mainly due 

to the change in the inside apartment and outside apartment activity. The nighttime routine 

of this resident stays fairly constant with only some small changes around the two health 

events. From looking at the individual dissimilarities during morning, daytime and 

nighttime, we conclude that most of the changes in the overall dissimilarity values around 

the health events in Figure 4.30 were due to the change in the daytime outside apartment 

and inside apartment activity pattern of the resident.   

Linguistic Dissimilarity 

From Figure 4.30 and Figure 4.31 we can conclude that the health events lead to deviations 

in the normal routine of the resident and moreover, the significant amount of change was 

due to the change in the daytime routine. However, the direction of change and whether it 

was significant or not is still unknown. Next, we show that our method is able to detect the 

direction of the change in linguistic terms. In Figure 4.32, we show the linguistic change 

as computed by our method during the daytime period. Our method quantifies the change 

in the following linguistic terms: decrease, significant decrease, similar, increase, and 

significant increase. We see that some days have a decrease in the daytime bathroom 

Figure 4.32: Linguistic change in the four activities during daytime (Case I) 



119 

 

activity throughout the study period and a significant increase at the end of December. The 

most significant change is in the daytime outside apartment and inside apartment activity, 

where the method detects a significant decrease in the daytime outside apartment and a 

significant increase in the daytime inside apartment, after the second event. This was also 

conveyed in EHR notes, where it was noted that: “…Resident has a lot of pain in the right 

hip refuses to go out and be checked…”.  

Natural Language Descriptions of Changes in Routine 

In Figure 4.33, we provide explanation of changes in the behavioral routines as determined 

by our method around the end of the study period, on December 25. We see that in the 

natural language description, along with reporting a change in the activities, the method 

provides information about their significance in the inside and outside apartment activities 

during daytime on December 25. 

Compared to the baseline routine, on December 25: 

• During the morning, there was an increase in time spent in the bathroom, an 

increase in time spent in the living area inside the apartment and a decrease in 

time spent in the bed 

• During the daytime, there was an increase in time spent in the bathroom, a 

significant decrease in time spent outside the apartment and a significant 

increase in time spent in the living area inside the apartment 

• During the night, there was an increase in time spent in the bathroom and a 

decrease in time spent in the living area inside the apartment 

•
Figure 4.33: Natural language description of change in behavioral routine (Case I) 
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4.2.6.3. Case II 

In this case we use our method to analyze 8 months of behavioral activity data for a 95 year 

old female resident living at an assisted living facility in Columbia, MO. Figure 4.34 

presents data for this resident from January to September 2019. The resident was admitted 

to the hospital on April 27, 2019 and was diagnosed with UTI, as per the following EHR 

note (verbatim, some information is redacted due to privacy concerns): 

B
aselin

e
 

Figure 4.34: Activity map of a resident over an eight month period (Case II) 
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Resident is very lethargic. Oriented only to name. Resident is denying any pain at the 

moment. Vitals WNL. XXX (emergency contact) informed of residents condition. Spoke to 

Dr. XXX and advised to send Resident to the ER for further evaluation. Resident 

transferred to UHC via EMS for further evaluation, instructed by Dr. XXX. Resident 

admitted to 4W with an admitting diagnosis of UTI.  

The resident suffered from another UTI related episode on June 20, 2019, which was 

described in the following EHR note (verbatim): 

This RN called to resident''s room by activity personnel because resident refused activity 

due to shortness of breath. Upon entering resident room resident denies shortness of 

breath, but states was short of breath earlier so she thought she would take it easy this 

afternoon. Vitals WNL see vitals flowchart. Pulse ox 96percent on room air, respirations 

18. Resident did state that yesterday she had two episodes of urine release while in 

hairdressers. This was quite unusual for her. Resident has just returned from physician 

visit. Will re-evlauate. 

Figure 4.34 suggests that the resident had a fairly stable pattern until the UTI diagnosis on 

April 27 and there were no adverse health events that were noted in their EHR. Based on 

this, we consider the period from January 17 to Feb 17 as the baseline period for this 

resident. During this period, the resident usually gets up in the morning around 6:30 AM 

and then goes out around 7:45 AM. After returning at around 8:15, the resident spends time 

inside the apartment until going out again at noon. The resident spends some time in bed 
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during the afternoon, and then goes out again at 5 PM. The resident returns to the apartment 

at around 6 PM and then retires for the night at 7 PM.  

Behavioral Routine Modelling & Explanation 

We employ the analysis pipeline used in Case Study I to model the behavioral routine of 

the resident. To this end, we describe each day’s activity with LPSs and then find the 

distance between LPS representation of each pair of days to find clusters of activity 

patterns. Figure 4.35 shows the iVAT image and dendrogram plot for the activity pattern 

during the baseline time period. We see that the iVAT image as well as the dendrogram 

plot does not provide evidence of clusters in this data. That is, according to our method, 

the resident does not have multiple well-defined sets of behavioral activity pattern during 

the baseline period. Therefore, we use the medoid of data over the entire baseline time 

period as the prototypical routine of this resident.  

Figure 4.35: iVAT image & dendrogram plot to visualize clusters in the baseline time period (Case II). 

Each day is labeled by the first letter of the day of week 
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In Figure 4.36, we show the natural language summary of the obtained LMP. The summary 

suggests that typically the resident spends most of the morning active inside the apartment, 

with little time in the bed and outside. During the daytime she sleeps for some time, spends 

some time outside and inside the apartment, while during the nighttime, most of her time 

is spent in bed. 

Deviation in behavioral routine 

Using the prototypical routine computed in the previous section, we compare it to the LPS 

representation of the activity pattern on each day of the entire 8-month study time period. 

Similar to Case Study I, we first compute the overall numerical dissimilarity and then delve 

further into the changes in specific activity patterns.  

Overall Dissimilarity 

Figure 4.37 presents the daily overall dissimilarity from the baseline routine. We see that 

the dissimilarity increases gradually leading to the UTI diagnosis and hospital admission 

on April 27, suggesting a gradual change in the resident’s routine. Following this, the 

Figure 4.36: Natural language summary of the prototypical behavioral routine of a resident (Case II) 

• During the morning, the resident spent almost half of the time in the living area 

inside the apartment and a little time each in the bed and outside the apartment 

• During the daytime, the resident spent a little time each in the bed, outside the 

apartment, and in the living area inside the apartment 

• During the night, the resident spent almost all the time in the bed 
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dissimilarity drops back to the usual value but increases again around the second UTI 

related event. No significant change in the dissimilarity was observed around the time when 

the resident suffered from a skin tear on her left leg at the end of June.  

Individual Dissimilarity 

In Figure 4.38 we show the changes detected by our method during the morning, daytime 

and nighttime for each of the four activities, using a stacked bar plot. We see that leading 

to the UTI diagnosis, a change in the bed and the inside apartment activity during the 

morning. The method also detects a large change in the inside apartment, outside 

apartment, and bed activity when the resident was hospitalized, showing that they were in 

the hospital during early May. A change in the morning bathroom activity is observed for 

a few days after the second health event when an episode of urine release was noted in mid-

June. After this second health event, a long-lasting change in the inside and outside 

apartment activity is observed during the morning. Similarly, during the daytime, a short-

term change in the bathroom activity and a longer lasting change in inside and outside 

Figure 4.37: Dissimilarity between the routine model and each day in the eight month time period (Case II) 
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apartment activity is observed after the second health event. A change in the resident’s 

nighttime activity pattern is also observed due to a changed bed activity, as suggested by 

the bottom subplot. The plot also suggests a large change in the nighttime bed activity 

leading to the UTI diagnosis in April, signaling a changed bed routine.  

Figure 4.38: Dissimilarity of each of the four activities from the baseline time period for morning, daytime, 

and night time over the 8 month study period (Case II). Note that each bar represents dissimilarities for the 

four activities stacked on top of each other 
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Linguistic Dissimilarity  

In Figure 4.39, we present the linguistic change in each of the four activities during 

morning, daytime, and nighttime over the entire 8-month study period. We observe that 

there is an increase in the bathroom activity in the morning and daytime after the second 

UTI related event. During the nighttime, there is a consistent decrease in the bed activity 

until the second health event. On some mornings after the second health event, a significant 

increase in the inside apartment activity is reported by the method suggesting that the 

resident is spending significantly more time inside the apartment. 

Figure 4.39: Linguistic change in the morning, dayitme, and nighttime routine for each of the four activities 

over the 8-month duration (Case II) 
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Natural Language Descriptions of Changes in Routine 

Next, in Figure 4.40 we provide the natural language description of change on the day of 

the second health event, when urine release was reported. We see that, as compared to the 

baseline, the resident spent less time in the living area inside the apartment during both the 

morning and daytime. Also, an increase in the bathroom activity is observed during 

daytime. The method reports no significant change in the nighttime activity pattern.  

4.2.6.4. Case III 

In this case, we use our method to study the impact of COVID-19 on the behavioral activity 

pattern of a 95-year old female resident living at an assisted living facility in Columbia, 

MO. Figure 4.41 shows about 3 months of data for this resident starting from February 

through April, 2020.  We see that the resident’s activity pattern changes around the middle 

of March when she starts spending less time outside and more time inside the apartment.  

Compared to the baseline routine, on June 20:  

• During the morning, there was an increase in time spent outside the apartment 

and a decrease in time spent in the living area inside the apartment 

• During the daytime, there was an increase in time spent in the bathroom, a 

decrease in time spent in the living area inside the apartment and an increase in 

time spent in the bed 

• No change in night routine 

Figure 4.40: Natural langauge description of change on the day of the second UTI related health event in 

Case II 
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Behavioral Routine Modelling & Explanation 

We model the resident’s normal routine using the data obtained during the month of 

February and then use it analyze changes in the behavioral pattern due to the COVID-19 

lockdown, which took place on March 13. We follow our behavioral routine modelling and 

deviation detection pipeline that was used previously. Figure 4.42 shows the iVAT image 

Figure 4.41:Activity map of a resident over a 3 month period, showing the change in the acidity pattern 

after COVID-19 lockdown on March 13 (Case III) 
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and the dendrogram plot obtained over the month of February. We see that the iVAT image, 

as well as the dendrogram plot does not present a clear evidence of clusters in the data. 

Hence, we use the medoid of the data over the entire month of February as the prototypical 

routine of this resident during this time period. Figure 4.43 shows the natural language 

description of the obtained Linguistic Medoid Prototype. We see that in her normal routine, 

the resident spends the majority of her morning active inside the apartment, while about 

Figure 4.42: iVAT image & dendrogram plot to visualize clusters in the baseline time period (Case III). 

Each day is labeled by the first letter of the day of week 

• During the morning, the resident spent almost half of the time in the living 

area inside the apartment and a little time each in the bed and outside the 

apartment 

• During the daytime, the resident spent almost half of the time in the bed and 

a little time each outside the apartment and in the living area inside the 

apartment 

• During the night, the resident spent almost all the time in the bed 

Figure 4.43: Natural language summary of the prototypical behavioral routine of a resident during the 

baseline period (Case III) 
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half of her daytime hours are spent in bed. The resident goes outside the apartment for a 

small duration of time during both the morning and the daytime.  

Deviation in behavioral routine 

Here, we use our method to quantify and describe changes in the resident’s behavioral 

routine after the COVID-19 lockdown.  

Overall Dissimilarity 

Figure 4.44 presents the dissimilarity between the model of the behavioral routine and the 

activity pattern of the resident on each day over the entire 3-month time period. The plot 

shows an increase in the dissimilarity value about a week after the COVID-19 lockdown 

on March 13, suggesting a change in the resident’s behavioral activity pattern. We observe 

that the dissimilarity value remains at this level until the middle of April, when it seems to 

Figure 4.44: Dissimilarity between the routine model and each day in the three month time period (Case III) 
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be dropping down to it usual value, signaling that the resident is getting back to their routine 

after about a month of lockdown.  

Individual Dissimilarity 

Figure 4.45 shows the changes detected by our method during the morning, daytime, and 

nighttime for each of the four activities, using a stacked bar plot. During the morning hours, 

we observe that the bed activity changes significantly after the month of February, even 

more so after the COVID-19 lockdown. A change in the inside apartment and outside 

apartment activity is also observed after March 13. Similarly, a very high change is the 

Figure 4.45 : Dissimilarity of each of the four activities from the baseline time period for morning, 

daytime, and night time over the 3 month study period (Case III). Note that each bar represents 

dissimilarities for the four activities stacked on top of each other 
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daytime inside and outside apartment activity is observed about a week after the lockdown. 

No significant change in the nighttime routine is observed throughout the time period.  

Linguistic Dissimilarity 

Here, we present the change detected by our method in linguistic terms. In Figure 4.46, we 

display the linguistic change in each of the four activities during the morning, daytime, and 

nighttime. The figure shows a significant increase in the time spent in bed on many 

mornings after the COVID-19 lockdown. Also, a significant decrease in the time spent 

outside the apartment is observed on many mornings. Relating this to the patch plot of 

Figure 4.41 shows that the method was able to detect that after the lockdown, the resident 

starts getting up later than usual. During the daytime, many days show a significant 

increase in the time spent inside the apartment during the lockdown, while a decrease in 

both the time spent in bed and time spent outside the apartment is observed.  

Figure 4.46: Linguistic change in the four activities during morning, daytime, and nightitme  (Case III) 
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Natural Language Descriptions of Changes in Routine 

In Figure 4.47, we present the natural language description of change in the behavioral 

routine, as produced by our method a week after the lockdown, on March 21. We see that 

the description notes a significant increase in the time spent in bed in the morning and 

significant increase in the time spent active inside the apartment during the daytime.  

  

As compared to the baseline, on March 21:  

• During the morning, there was a decrease in time spent in the living area 

inside the apartment and a significant increase in time spent in the bed 

• During the daytime, there was a decrease in time spent outside the apartment, 

a significant increase in time spent in the living area inside the apartment 

and a decrease in time spent in the bed 

• No change in night routine 

Figure 4.47: Natural langauge description of change a week aftet the COVID-19 lockdown in Case III 
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4.3. Physiological Routine 

The sensors installed in the apartments are capable of providing continuous measurements 

of physiological parameters such as the pulse rate and the respiration rate. Modelling and 

detecting changes in the usual patterns of these measurements can help assess important 

health changes in the elderly. To this end, we use our routine modelling approach presented 

in Section 4.1, to model the physiological routine of the residents.  

4.3.1. Using LPSs to Represent Physiological Measurements 

To illustrate our physiological routine modelling approach, we use a running example 

comprising of pulse rate data obtained from an apartment of an elderly living in a sensor 

equipped facility. As mentioned before, the apartments of elderly used in this study are 

equipped with various types of sensors, like motion sensors to monitor activity, bed sensors 

to monitor their sleep and depth sensors to monitor their walking parameters (Rantz, et al. 

2013). The sensors installed on the bed of the residents can measure their pulse rate at 15-

Figure 4.48: Daily Pulse Rate measurements of a resident for a period of three months. The blue line 

shows the daily average pulse rate 
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minute intervals. Various methods to measure pulse rate from the bed sensor data have 

been introduced in the literature. Here, we use a technique that employs Hilbert Transform 

and was published in (Su, et al.). Figure 4.48 shows 15-minute interval pulse rate 

measurements of a 90-year old male resident for a period of 3-months starting from January 

through March 2016. Each column in the figure shows all the pulse rate measurements 

recorded on that day. The blue line in the plot is the average daily pulse rate. The resident 

was diagnosed with Congestive Heart Failure (CHF) on February 25. If we compare the 

measurements over the month of January and late February, then we see that during 

January, most of the days have measurements in the range of 60 BPM, while during late 

February the majority of the measurements are around 50 BPM. Based on this observation, 

we model the resident’s regular pulse rate pattern over the month of January and compare 

it with the measurements over the entire three-month time period. Next, we describe the 

use of Linguistic Protoform Summaries to model the pulse rate pattern or the pulse rate 

routine over the baseline period. We then use our FIS based dissimilarity method to 

measure deviations from this pulse rate routine and explain the reason behind the changes 

in natural language.  

Linguistic Protoform Summaries of the form, Few pulse rate measurements are high, are 

well suited at summarizing each days pulse rate measurements. First, this form of LPS can 

record the distribution of the pulse rate measurements over a day in detail. Second, the 

terms high/low/normal pulse rates are better represented by fuzzy sets instead of crisp 

thresholds. Unlike the behavioral routine where we used type II LPS to represent location 
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patterns at different times of day, to model physiological routines, we use type I LPS with 

the protoform:  𝑸 𝑝𝑢𝑙𝑠𝑒 𝑟𝑎𝑡𝑒/𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑷 where 𝑄 and 𝑃 

are the quantifier and the summarizer, respectively. Since the pulse rate and respiration rate 

are obtained from the bed sensor while the person is in bed, the substantial number of 

patterns are recorded during the nighttime. Hence, we do not model the patterns separately 

for morning, daytime and nighttime; instead, we construct the model using all the 

measurements taken together. The definitions of the quantifiers are the same as those used 

in previous experiments (Figure 4.5). The summarizers are composed of fuzzy sets used to 

represent low, normal and high pulse rate and respiration rate, as shown in Figure 4.49 & 

Figure 4.50, respectively. 

Figure 4.49: Fuzzy set definations of low, normal, and high pulse rate 

Figure 4.50: Fuzzy set definations of low, normal, and high respiration rate 
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4.3.2. Prototype Pulse Rate Routine 

In order to find the pulse rate routine over a baseline time period (the month of January in 

Figure 4.48), we summarize the pulse rate measurements for each day with the LPSs of the 

form mentioned previously. That is, for the measurements recorded over each day, we use 

the sematic truth-value method for type I summaries to generate LPSs comprising of all 

the combinations of the summarizers and the quantifiers. For five quantifiers of Figure 4.5 

and 3 summarizers of Figure 4.49, measurements over each day are represented by 5x3=15 

LPSs. Similar to the behavioral routine modelling, we use our FIS based dissimilarity 

measure to perform NERF c-means over LPS sets of each day and use the Linguistic 

Medoid Prototypes as the cluster representatives. To estimate the number of clusters in this 

dataset, we draw the iVAT image and dendrogram plot, shown in Figure 4.51. The iVAT 

image presents 6 clusters, 4 of which have very few elements and the rest of the two clusters 

are large. Based on this, we use the NERF c-means to cluster the data into two clusters. 

Figure 4.51: iVAT image and dendrogram plot to visualize clusters in pulse rate pattern during the baseline 

period (Case I) 
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Figure 4.52 shows the membership of each point in the two clusters. Table 4.6 lists the 

prototypes for the two clusters. We see that the truth-values of the LPSs in the two 

Figure 4.52: Memberhsip of each point in the baseline period into the two 

clusteres obtained by using NERF 

# Quantifier Summarizer 
Prototype 1 
Truth-Values 

Prototype 2 
Truth-Values 

1 almost none low 0.6 0.8 

2 Few low 0.4 0.2 

3 some low 0.25 0.05 

4 many low 0 0 

5 almost all low 0 0 

6 almost none normal 0 0 

7 few normal 0 0 

8 some normal 0.25 0.05 

9 many normal 0.4 0.2 

10 almost all normal 0.6 0.8 

11 almost none high 1 1 

12 few high 0 0 

13 some high 0 0 

14 many high 0 0 

15 almost all high 0 0 

Table 4.6: Linguistic Medoid Prototypes obtained using NERF  
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prototypes are very similar. Based on the truth-values, the second prototype represent the 

days that have a slightly fewer low pulse rate measurements than prototype 1. Both the 

LMPs suggest that there were almost no days in this period with high pulse rate recordings. 

4.3.3. Natural Language Explanation of Routine 

In this section, we describe the procedure to produce natural language explanation of the 

physiological routine. We follow a method similar to the behavioral routine where we 

convert each Linguistic Medoid Prototype to natural language, and the summaries of all 

the LMPs together form the natural language summary of the physiological pattern. We 

use the LMPs shown in Table 4.6 to illustrate our natural language generation process. 

In order to describe the LMPs in natural language, we select the LPS with highest truth-

value for each summarizer in a given LMP, as shown in Table 4.7. We then use templates 

to convert the LMPs into natural language. For both the LMPs, the LPS with quantifiers 

almost none, almost all, and almost none have the highest truth value for summarizers low, 

normal, and high, respectively. Therefore, we describe the baseline pulse rate pattern of 

  Quantifier Summarizer TV 

LMP # 1 

almost none low 0.6 

almost all normal 0.6 

almost none high 1 

LMP # 2 

almost none low 0.8 

almost all normal 0.8 

almost none high 1 

Table 4.7: LMPs of Table 4.6 with one LPS per summarizer (LPS with 

highest truth-value for each summarizer) 
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Figure 4.48 with the natural language expression: Almost all instances had normal pulse 

rate.  

4.3.1. Changes in Pulse Rate Routine 

We compare the LMPs obtained during the month of January to each day in the three-

month period using our FIS based dissimilarity algorithm. We follow Equation 4.5 to 

compute the dissimilarity between the LMPs and the LPS sets representing each day’s 

pulse rate data. There, we compare the LPS representation of each day’s pulse rate to both 

the LMPs and select the smaller value as the distance between the day and the LMPs. 

Figure 4.53 shows the distance value between the LMPs and each day in the three-month 

period of Figure 4.48. We observe that the method is able to detect a sharp drop in the pulse 

rate measurements around the end of February (increase in dissimilarity). The dissimilarity 

increases gradually until a few days before the CHF event and then rises sharply 

immediately prior to the event. The dissimilarity then drops back to a lower value; 

Figure 4.53: Dissimilarity between the baseline and the pulse rate data over the entire 3 month period 
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however, we see fluctuations, suggesting that the resident’s pulse rate does not return to 

their normal pattern after suffering from CHF.  

We also use our method to produce natural language summary of the change in pulse rate 

pattern just before the CHF diagnosis. The following summary was produced on the day 

before the CHF diagnosis, February 24: Compared to the baseline, on February 24, there 

was a significant increase in the number of low pulse rate measurements. 

4.3.2. Retrospective Case Studies 

4.3.2.1. Case I 

In Section 4.2.6.2 we analyzed the behavioral routine pattern of a 97 year old female 

resident for a six-month period starting from July through December 2019. Here, we use 

our physiological routine modelling approach to study the respiration rate measurements 

pattern for this resident during the same time period, as shown in Figure 4.54. Recall that 

this resident suffered a fall on August 12 and reported severe pain in October. Earlier, we 

Figure 4.54: Daily Respiration Rate measurements of a resident for a period of six months (Case I) 
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saw that our method detected a change in the behavioral routine of the resident around the 

two health events. Similarly, we see a change in the respiration rate measurements of the 

resident around these events. We see a sharp increase in the respiration rate after the fall 

on August 12. The respiration rate gradually drops until mid-October, after which it again 

increases.  

Physiological Routine Modelling 

We follow the procedure described in the previous section to model the respiration rate 

measurements pattern. We summarize the daily respiration measurements by LPSs of the 

form: Q of the instances has P respiration rate, where Q are the quantifiers: almost none, 

few, some, many, and almost all, and P are the summarizers, low, normal, and high, defined 

previously in Figure 4.50.  

Similar to the behavioral routine for this resident, we model the respiration pattern of the 

resident by the measurements taken over the baseline month of July. Figure 4.55 shows the 

Figure 4.55: iVAT image and dendrogram plot to visualize clusters in the baseline period (Case II) 
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iVAT image and dendrogram plot obtained after converting measurements over each day 

during the baseline period to LPSs and then computing pairwise distance between them. 

The iVAT image shows 4 clusters with two large clusters. Based on this, we cluster the 

respiration rate measurements over the baseline period into two clusters using the NERF 

c-means. Figure 4.56 shows the membership of each day during the baseline into the two 

clusters. We use the membership values to assign each data point into one of the two 

clusters, which results in one cluster of size 10 & the other of size 21. We then use the 

medoids of the two clusters as their prototypes. This results in two typical respiration rate 

patterns for this resident, for which the natural language summaries are shown in Figure 

4.57. The summaries suggest that for some days, the resident had almost all of the 

respiration rate measurements as normal, while on some days only many of the 

measurements were in the normal range. 

Figure 4.56: Memberhsips of each day in the baseline period into the two clusters 
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Deviation in Physiological Routine 

Here we compute changes in the respiration rate pattern of the resident through the six-

month time period. Figure 4.58 shows the dissimilarity. We see that the dissimilarity during 

the baseline days is close to zero for almost all the days, while it increases around the health 

events. Specifically, the respiration rate of the resident changed around the time when she 

fell, and it remains high until mid-September when it went back to the usual pattern as 

suggested by the almost zero dissimilarity from mid-September to mid-October. The 

dissimilarity again increased after the second health event, and remained changed until the 

Figure 4.58: Dissimularity between the baseline and the respiration rate data over the entire 6 month period 

Pattern 1: 

Almost all instances had normal respiration rate 

Pattern 2: 

Many instances had normal respiration rate 

Figure 4.57: Nautral langauge description of the cluster prototypes 
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end of December. Next, we generate the linguistic explanation of the change just before 

the resident had the fall: There was a decrease in the number of low respiration rate 

measurements. We see that the method reports fewer low pulse rate measurements than 

usual, which is also observed in Figure 4.54, where more number of high respiration rate 

measurements were recorded before the resident had a fall. 

4.3.2.2. Case II  

In this case we use our method to analyze pulse rate data of a 32-year-old male resident of 

Columbia, MO. The pulse rate measurements were obtained from his Apple Watch. 

Throughout the time period, the subject wore the device only during the daytime before 

bedtime. The subject’s health data was exported to a JSON file using the Apple Health App 

and the resting pulse rate measurements were extracted from this file. Note that in this 

study we focus only on the resting pulse rate measurements and do not include the readings 

that were taken when the subject was active or performing workouts. Figure 4.59 shows 9 

months of resting heart rate measurements starting from January 2019 to September 2019. 

We observe that broadly, the daily pulse rate measurements are stable and vary from 60 

BPM to 120 BPM, with a slight increase during the months of May, June, and August. The 

person travelled to Ohio for a wedding in the end of May, while a friend was visiting him 

in the end of July. The person was visiting family in India from July 23 to August 23.  
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Pulse Rate Routine 

Similar to the above case studies, we define a baseline time period and model the usual 

pulse rate pattern of this person using the data obtained in that period. We then compare 

the usual pulse rate pattern with data over the entire time period. In this case, we use the 

data obtained over the month of January as the baseline.  

Figure 4.61 shows the iVAT image and dendrogram plot to examine any clusters in data. 

The plots were obtained after summarizing and computing distance between each day’s 

pulse rate measurements using LPS of the form: Q pulse rate measurement were P.  

The iVAT image suggests three big and two relatively small clusters. Based on this, we 

cluster the data into three clusters using NERF c-means. Figure 4.60 shows the 

memberships of the baseline data points into the three clusters. We use the membership 

Figure 4.59: 9 months of resting pulse rate data of a subject obtained from their Apple Watch (Case II) 
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values to assign each data point into one of the clusters, and use their medoids as the cluster 

prototypes. The natural language summaries of the obtained prototypes is shown in Figure 

4.62.  

Figure 4.61: iVAT image and dendrogram plot for the baseline period (Case II) 

Figure 4.60: Memberhsips of each day in the baseline period into the three clusters 
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We see that the person has three typical daily pulse rate patterns and they differ mostly in 

the number of daily high pulse rate measurements. On some days there are almost no high 

pulse rate measurements, while on some days there are a few measurements that are high 

and the rest are in normal range. There are some measurements in the high and some in the 

normal range on the rest of the days. Typically, the subject does not have any significant 

number of low pulse rate measurements.  

Pattern 1: 

Some instances had normal pulse rate and some instances had high pulse rate 

Pattern 2: 

Almost all instances had normal pulse rate 

Pattern 3: 

Many instances had normal pulse rate and few instances had high pulse rate 

Figure 4.62: Natural language description of the typical pulse rate patterns during the baseline period (Case II) 



149 

 

Deviation in Pulse Rate Routine  

Here, we compare the entire 9-month time period with the baseline pulse rate pattern in 

Figure 4.63. We see that our method produces low dissimilarity when the subject is in his 

regular routine, while a high dissimilarity is always correlated with some unusual event in 

his day to day life, for example, travelling. A high dissimilarity is obtained when the subject 

was travelling to Minnesota and Rocheport on 25 March and 23 June, respectively and 

when he participated in a Table Tennis tournament. An even higher dissimilarity value was 

obtained on many of the days during the time when the subject was taking trips to Ohio, 

New Orleans, and India. In Table 4.8, we present natural language summaries of change in 

their pulse rate data on a few of the high dissimilarity days from Figure 4.63. We see that 

for March 25, April 21, and June 23 there is a small increase in the number of high pulse 

Figure 4.63: Dissimularity between the baseline and the pulse rate data over the entire 9 month period 

(Case II) 
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rate measurements, while on May 21, June 15, and August 19, there is a significant increase 

in the number of high pulse rate measurements. 

4.4. Conclusions  

We presented our explainable routine modelling and change detection approach to 

recognize patterns in both behavioral and physiological data obtained from sensor-

equipped homes of the elderly. We made use of Linguistic Protoform Summaries to 

summarize daily activities and used our method to compute dissimilarity between LPS sets 

to model and detect changes in the regular patterns. The use of LPSs allowed us to express 

the results produced by our method in natural language. After rigorously testing our method 

with the help of synthetic data, we presented multiple case studies to validate our method 

on real data obtained from homes of the elderly. We showed that our technique is able to 

detect changes in the behavioral and physiological activity patterns that are correlated with 

changes in the health of the elderly using Electronic Health Records. Lastly, we produced 

natural language description of both their regular activity pattern and deviations in those 

patterns.   

Date Natural Language Description of Change 

March 25, April 21, 

June 23 There is an increase in the number of high pulse rate measurements.  

May 21, June 15, 

August 19 

There is a significant increase in the number of high pulse rate 

measurements.  

Table 4.8: Natural language description of change on days with high dissimilarity from baseline 

pattern (Case II) 
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5. Linguistic Summarization of In-Home Sensor Data 

5.1. Overview 

In the previous chapter, we introduced a method to use in-home sensor data to monitor the 

general behavioral and physiological routines of the elderly. Although identifying changes 

in routine can provide important insights towards changes in the health of the elderly, the 

in-home sensor data is believed to contain much richer information that can be of assistance 

in monitoring the residents’ wellbeing. In this chapter, we present a Natural Language 

Generation system that summarizes important health relevant information from the in-

home sensor data generated in the apartments of elderly. This system is deployed as part a 

National Library of Medicine (NLM) funded project (Popescu, NIH-NLM 

#R01LM012221). 

In Section 5.2, we provide an overview of the existing infrastructure that is already setup 

at the sites that are part of this project. Section 5.3 lists different components of the 

summarization process and describes each individual part in detail. In Section 5.4, we 

present the results of multiple surveys that we conducted to validate different components 

of our summarization pipeline. Next, in Section 5.5 we present results of our NLM project 

and discuss a few case studies to validate and illustrate the functioning of our linguistic 

summarization system. We conclude with a discussion on the utility and future prospects 

of this system. 
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5.2. Existing Infrastructure 

We summarize the data generated from the Passive InfraRed (PIR) motion sensors, which 

are strategically placed to monitor activities of the residents inside the apartments; 

hydraulic bed sensors, which are used to measure the quality of sleep and other 

physiological parameters while the person is in bed; depth cameras, which are placed in 

the living rooms to measure gait parameters, such as walking speed, stride time and stride 

length.  The raw data obtained from the sensors is processed in two stages in order to extract 

meaningful behavioral and clinical information. The first stage involves converting raw 

data to various useful measurements, which in this work we call health concepts. Health 

concepts are the general measurements that can be extracted from the raw sensor data. 

Table 5.1 presents the health concepts obtained from the sensors installed at various sites 

that are part of our study. Most of the sites are equipped with a bed sensor, 4 to 6 motion 

sensors and a depth camera sensor. The raw analog signal obtained from the bed sensor is 

fed to different algorithms to obtain measurements like restlessness, pulse rate, respiration 

rate and time spent in bed. While the other measurements are self-explanatory, restlessness 

quantifies the amount of motion a person makes while lying in bed. The motion sensors 

produce ‘hits’ (time stamped events) at different locations inside the apartment. These are 
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aggregated time-wise to assess the overall activity of a person, while the motion sensors 

placed inside the bathroom are used to measure the time spent in the bathroom. 

The health concepts are further processed to compute what we call health features. The 

health features make the health concepts more understandable and each health concept can 

result in multiple health features. For example, the health concept restlessness can be 

further processed to obtain restlessness during the nighttime or average restlessness per 

hour and so on. Table 5.2 lists the health features used. We aggregate the restlessness, time 

#  Health Concept Obtained from  Description 

1 Restlessness Bed sensor 

Movements made by person while 

on bed 

2 Pulse Rate Bed sensor Measured while the person is on bed 

3 Respiration Bed sensor Measured while the person is on bed 

4 Time in Bed Bed sensor Times when the person is in bed 

5 

Inside apartment 

activity Motion sensors 

Monitors activity made by the 

person when inside apartment 

6 Bathroom activity Motion sensors 

Monitors bathroom activity of the 

person 

7 Walking speed Depth sensor 

The speed with which the person 

walks inside the apartment 

8 Stride Time Depth sensor 

Time between two consecutive 

footsteps 

9 Stride Length Depth sensor 

Distance  travelled in each walking 

step  

 

Table 5.1 : Health concepts extracted from the sensors 
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in bed, inside apartment activity and bathroom activity to daily and nightly measurements, 

while walking speed, stride time and stride length are aggregated over 24-hour periods. 

The restlessness, amount of motion inside the apartment and bathroom motion are obtained 

as an overall measurement over a given course of time, while the physiological parameters 

like pulse rate, respiration rate, walking speed, stride time and stride length are measured 

as an average over a duration. Pulse rate and respiration rate measurements over each 15-

# Health feature name 

Obtained from 

health concept Description Unit 

1 

Total Daily/Nightly 

Restlessness Restlessness 

Total restlessness during the night-time and 

day-time minutes 

2 

Average Daily/Nightly 

Pulse rate Pulse Rate 

Average pulse rate during the night-time and 

day-time beats/min 

3 

Average Daily/Nightly 

Respiration rate Respiration Rate 

Average respiration rate during the night-

time and day-time breaths/min 

4 

Total Daily/Nightly 

Bathroom Motion Bathroom Activity 

Total time spent in the bathroom during 

night-time and day-time minutes 

5 

Total Daily/Nightly 

Apartment Motion 

Inside Apartment 

Activity 

Total time spent inside the apartment during 

night-time and day-time minutes 

6 

Total Daily/Nightly 

Time in Bed Time in bed 

Total time spent in bed during night-time and 

day-time minutes 

7 

Average daily walking 

speed Walking speed Average walking speed over a 24 hr period cm/sec 

8 

Average daily stride 

time Stride time Average stride time over a 24 hr period sec 

9 

Average daily stride 

length Stride length Average stride length over a 24 hr period cm 

10 Pulse rate details Pulse rate 

Average pulse rate over each 15 min slot 

when the person is in bed  beats/min 

11 Respiration rate details Respiration rate 

Average respiration rate over each 15 min 

slot when the person is in bed  breaths/min 

 

Table 5.2 : Health features extracted from the health concepts 
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minute period, while the person is in bed, are used to focus deeper on the variation of these 

health concepts.  

In the linguistic summarization framework, the health features are monitored daily to look 

for unusual patterns in the data by an alert mechanism described in (Rantz, et al. 2013). An 

alert is sent to the clinical personnel if an abnormality is detected, which, in turn, initiates 

our summarization system. Currently, the alerts are uni-modal in nature (each parameter 

has its own alert), which may cause multiple alerts per resident, per day. The clinicians are 

notified about the alerts via email. In the standard system, the email lists the number of 

alerts that have been generated for a resident. A screenshot of an email is shown in Figure 

5.1. Here, the email heading displays the id of the resident along with their apartment 

number. The heading is followed by the number of alerts that have been generated since 

the last time an alert was sent for this resident. The email also contains a link that takes the 

user to a visual interface containing the resident’s data. As mentioned before, one of the 

aims of our NLM project is to describe the data related to this alert in natural language. To 

Figure 5.1: Screenshot of the standard alert email 

notification (non-linguistic) 
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linguistically describe the sensor data related to an alert, we start by summarizing the 

reason behind the alert and the sensor feature(s) that caused it.  

We envision to employ the linguistic summaries presented in this chapter along with the 

routine modelling and change detection framework of Chapter 4. Specifically, we propose 

to use the technique to detect significant change in the routine as a trigger to produce 

linguistic explanations that have information about the routine as well as other important 

sensor parameters. In Figure 5.2, Figure 5.3, and Figure 5.4  we replicate the dissimilarity 

plots of Section 4.2.6 along with the alerts generated by the current alert generation system 

that was described above.  

In Figure 5.2, we see multiple gait alerts (decrease in walking speed) around the time the 

person fell in August. We also observe multiple increase in restlessness alerts between the 

two health events. An increase in living room activity alert is observed right after the 

resident reported severe pain. We also see a living room (increase) and a restlessness 

(increase) alert about a month after the resident reported pain. For Case II in Figure 5.3, a 

Figure 5.2: Dissimilarity plot showing deviation in behavioral routine (Case I, Section 4.2.6.2 ) along with 

alerts triggered by the current alert generation algorithm 
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gait (decrease in walking speed) and a bathroom alert (decrease) is triggered after the 

resident was admitted to hospital in April due to UTI. We also observe a gait alert around 

the time when the resident suffered from a skin tear. For the last case study shown in Figure 

5.4, we see a bathroom alert (decrease) about a week after the COVID-19 lockdown. We 

also observe a restlessness (decrease) and a bathroom (decrease) alert after a month of the 

lockdown.  

Since the routine modelling framework is still in the early stages of development, here we 

describe the proposed linguistic summarization system with the sensor alert framework 

Figure 5.3: Dissimilarity plot showing deviation in behavioral routine (Case II, Section 4.2.6.3 ) along 

with alerts triggered by the current alert generation algorithm 

Figure 5.4: Dissimilarity plot showing deviation in behavioral routine (Case III, Section 4.2.6.4) 

along with alerts triggered by the current alert generation algorithm 
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that was described above. In the following, we describe the mechanism used to 

linguistically summarize different types of alerts implemented in the online monitoring 

system. 

5.2.1. Alerts Based on Significant Changes from Baseline 

This type of alert compares the current values of the health features to a baseline, which is 

defined by the measurements recorded in the past two weeks. Note that, in a previous study, 

it was determined that a health event (e.g. hospitalization or fall) can be indicated by 

changes in health features two weeks prior to the event (Rantz, et al. 2012). An alert is 

generated if the current reading deviates significantly from the baseline. The significance 

of the deviation is quantified by computing the standard deviation of the current value from 

the baseline distribution. The reader is referred to (Rantz, et al. 2013) for a detailed 

description of the alert generation mechanism. We describe this alert linguistically by 

listing the health features that caused it. For example, if an alert is generated because of a 

significant increase in the living room motion during the night, then it is summarized as: 

Yesterday, nighttime living room activity was significantly higher than usual.  

5.2.2. Alerts Based on Hard Limits 

These types of alerts are generated if a health feature crosses a user defined absolute 

threshold. They are only applicable for physiological parameters since it is not possible to 

put a meaningful absolute threshold on the behavioral health features. To this end, the 
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health features that generate such alerts are pulse rate and respiration rate. An example of 

linguistic description of an alert of this kind is: Yesterday, pulse rate exceeded the threshold 

of 120 bpm. 

5.2.3. Gait Alerts 

There are two types of alerts implemented to monitor the gait of a resident. The first alert 

is based on the study conducted in (Phillips, et al. 2017), where the authors found that a 

cumulative decrease of more than 5.1 cm/sec in walking speed over a week suggests an 

increased risk of fall. The second type of gait alert is generated if average walking speed 

over a week deviates significantly from a pre-defined baseline (Stone, et al. 2014). We 

design the summary of these alerts to concisely explain the underlying mechanism that 

generated the alerts. The summaries of the gait alert of the first and second kind 

respectively are: Over the last week, walking speed decreased more than the threshold of 

5.1 cm/sec, and, the average walking speed over the last week was significantly lower than 

usual. Summarization Process 

5.3. Summarization Process 

The alert generation algorithm is run for each resident, every morning. If there are one or 

more alerts generated for a resident, the sensor data leading to the current day is 

summarized. After describing the sensor parameter that caused the alert, we broaden our 

scope towards all the health features. The reasoning behind this is that if there is an unusual 
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change in any one of the sensor parameter, then a clinician might be interested in looking 

at other sensor readings before making any judgements. Hence, irrespective of the sensor 

feature that generated the alert, we look for and report important patterns in all the sensor 

streams. We call these patterns data features. All the significant data features along with 

the alert trigger form the linguistic alert summary. Figure 5.5 an overview of our alert 

summarization system and the data features we look for. Next, we describe the rationale 

behind each of the data features and their generation mechanism in detail.  

5.3.1. Tuple Summary 

In a survey (Popescu, et al. 2017), we asked several clinicians in our team to list health 

features which might correspond to specific health conditions in the elderly. The findings 

suggested that changes in health conditions are often reflected in more than one parameter. 

For example, an onset of a Urinary Tract Infection (UTI) may be reflected in bathroom 

activity as well as bed restlessness. Inspired from these results, we designed a data feature 

Raw 
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Figure 5.5: Overview of the linguistic alert summarization system  
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to detect and summarize concurrent abnormal variations in pairs of health features. We call 

this data feature Tuple Summary. For a given set of health feature measurements over a 

two-week period, we find the pairs for which the following statement is applicable: There 

were many days with high/low health feature A and high/low health feature B. That is, we 

investigate the data to find pairs of features that had significant number of instances when 

they were high together, or low together, or when one was low and the other was high. The 

applicability of this statement is determined according to the algorithm described in the 

following. 

For two features A and B, the input to the algorithm are two time series of the same length, 

containing measurements of two health feature recorded daily for a period of two weeks. 

Also, for both the features, along with the time duration for which the tuple summary is to 

be calculated, measurements for a pre-defined length of baseline period also needs to be 

supplied.  

Preprocessing: The tuple summary quantifies the number of occasions when two features 

are high or low simultaneously or when one is high and the other is low. In a strict sense, 

the term simultaneous would require the two health feature measurements to occur on the 

exact same date. However, a loose definition of the word can include events occurring in 

some user-defined neighborhood. For example, when considering a night-time health 

feature, it is not clear whether to associate the feature value to the date on which the night 

started (say, 10 PM), or the date on which it ended (for example 7 AM the next day). To 

this end, we pre-process the series of the two sensor features separately, using the following 
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computation. For each data series: 𝜏 = 𝑥1, 𝑥2, 𝑥3,… . , 𝑥𝑛, where 𝑥𝑖 is the sensor feature 

value at time 𝑡𝑖, we compute two new series by using the 𝑚𝑎𝑥 and the 𝑚𝑖𝑛 operator: 

𝑥_𝑚𝑎𝑥𝑖
′ = max

𝑗=𝑖−𝑤:𝑖+𝑤
𝑥𝑗 and 𝑥_𝑚𝑖𝑛𝑖

′ = min
𝑗=𝑖−𝑤:𝑖+𝑤

𝑥𝑗, where, 𝑤 is the window size and 

𝜏𝑚𝑎𝑥
′ = 𝑥_𝑚𝑎𝑥1

′ , … 𝑥_𝑚𝑎𝑥𝑛
′  and 𝜏𝑚𝑖𝑛

′ = 𝑥_𝑚𝑖𝑛1
′ , … 𝑥_𝑚𝑖𝑛𝑛

′  are the two pre-processed 

series. For example, if 𝑤 = 1, then this pre-processing step basically replaces each value 

in the time series by the highest or the lowest value in its neighborhood of size 1. To fix 

ideas, we illustrate this process with the help of a time series of length 7 in Table 5.3. We 

can see that each observation in the processed series is replaced by the highest / lowest 

value in its neighborhood in the original series. We use the series obtained by using the 

max operator for finding features that are high, while using the one obtained with min 

operator when finding low features.  The next step is to compute the distance of the current 

measurements from the baseline. The baseline is comprised of data samples over some time 

duration prior to the current time-period being summarized. For each health feature series, 

we compute the Mahalanobis distance of each measurement from the baseline distribution. 

The computation is shown in Equation 5.1 & 5.2, where 𝑏 is the set of baseline 

measurements. 

𝜏  284 426 352 333 328 525 273 

𝜏𝑚𝑎𝑥
′  426 426 426 352 525 525 525 

𝜏𝑚𝑖𝑛
′  284 284 333 328 328 273 273 

Table 5.3:Pre-processing step in Tuple Summaries    
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𝜏𝑚𝑎𝑥
′′ ≡ 𝑥_𝑚𝑎𝑥𝑖

′′ =
𝑥_𝑚𝑎𝑥𝑖

′ −𝑚𝑒𝑎𝑛(𝑏)

𝑠𝑡𝑑(𝑏)
 (5. 1) 

𝜏𝑚𝑖𝑛
′′ ≡ 𝑥_𝑚𝑖𝑛𝑖

′′ =
𝑥_𝑚𝑖𝑛𝑖

′ −𝑚𝑒𝑎𝑛(𝑏)

𝑠𝑡𝑑(𝑏)
(5. 2) 

Linguistic Protoform Summaries: The new time series, 𝜏𝑚𝑎𝑥
′′  and 𝜏𝑚𝑖𝑛

′′  are then used to 

compute the applicability of the summary: There were many days with high/low health 

feature A and high/low health feature B. The validity of this statement can be calculated 

using Linguistic Protoform Summaries (LPSs) methodology developed in Section 2.5. If 

we treat the summary There were many days with high/low health feature A and high/low 

health feature B as a type I LPS, then the terms many and high/low are called the quantifier 

and the summarizer, respectively, and are defined by fuzzy sets. Figure 5.6 shows the fuzzy 

sets representing the terms high/low and many, which are used to compute the tuple 

summaries. In the fuzzy set for the summarizer high and low, the x-axis is the Mahalanobis 

distance between baseline and the current point, while the y-axis is the membership for 

each distance value. The quantifier many, is defined as a standard relative quantifier used 

in Linguistic Protoform Summaries.  
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To compute the truth-value of the tuple summaries, we use the semantic truth-value 

computation method for type I summaries, which was described in Section 2.5.1. Note that 

the LPS defined above is a slightly modified form of type I LPS mentioned earlier. The 

exact procedure to compute their truth-values was described in (Jain and Keller 2015). 

The statement: There were many days with high/low feature A and high/low feature B, is 

deemed worthy of being reported if it meets a user defined truth-value threshold. A 

threshold of 0.7 is empirically selected for this study. In case there are more than one pairs 

of sensor features that meet this criterion, we include all of them in the same summary 

sentence, separated by conjunction operators. For example, if there are 3 pairs, A & B, A 

& X, and X & Y that meet the truth-value threshold, they are reported as: There were many 

days with high A & high B, high A & low X, low X & low Y. 

5.3.2. Trend Summary 

Looking for increasing or decreasing trends in time stamped data is, arguably, the most 

common technique to extract information from time series. While the tuple summaries look 

for sporadic changes in the health feature time series, we use the trends to find gradual 

Figure 3: Fuzzy sets representing the Summarizer (left) & Quantifier (right)    Figure 5.6 Fuzzy sets representing the Summarizer (left) & Quantifier (right)    
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changes. In our long collaboration with nurses monitoring the sensor information, we have 

found that they often look for trends in the data. As we demonstrate below, 

detecting/interpreting trends in data streams is not a trivial task, for humans as well as 

machines. The first step in expressing trends in linguistic summaries is to detect trends in 

the data with good accuracy. Below we describe the trend detection algorithm used in this 

work. 

Normalization: The most widely used techniques to detect increasing/decreasing trends is 

to fit a line to the data and use the slope of this line to determine the type of trend. The sign 

of the slope of the best fit line does not depend on the scale of x and y axis values, however, 

its magnitude does depend on this scale. Therefore, in order to avoid the dependence of the 

magnitude of slope on the range of the points on which we fit the line, we first normalize 

the data. The normalization is done so that the resultant data points have zero mean and a 

standard deviation of one. Note that we do not change the x-axis values since they are of 

the same scale for all sensor features. 

Best fit: After normalization, we use a least squared error methodology (implemented as 

Matlab’s fitlm) to find the slope. Suppose the given data points are modelled by Equation 

5.3 where 𝛽 and 𝛼 are the slope and the intercept of the line, respectively, and 𝜇𝑖 is the 

random noise. Then, the slope of the least square fit line is given by Equation 5.4, where, 

𝑥𝑖 and 𝑦𝑖 are the coordinates of 𝑖𝑡ℎ point, and 𝑥 and 𝑦 is the mean value of the two 

coordinates. 
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𝑦𝑖 = 𝛽𝑥𝑖 + 𝛼 + 𝑢𝑖 (5. 3) 

𝛽̂ =
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

∑(𝑥𝑖 − 𝑥)2
(5. 4) 

The fitlm function also returns a p value as an indicator of whether the fit is good or not. A 

small p value suggests that there is a small probability that the slope of the least square fit 

line is 0, that is, a higher chance of the slope being either positive or negative. 

Fuzzy Inference System (FIS) to refine trend reporting: The p value obtained by the 

above method is a good indicator of trend in the underlying data. However, in our 

experiments, we found it to be very sensitive to small changes in the data. To alleviate this 

problem, we design a Mamdani fuzzy rule-based system (Keller, et al. 2016) with the p 

value forming one of the inputs. The other input to the system is the slope of the fitted line. 

Table 5.4 shows the rules used in the FIS. Here, the membership functions used to represent 

the antecedents (p value and gradient) and consequents (report trend) are shown in Figure 

5.7. We call the final defuzzified value of the FIS the trend score and use it as the final 

indicator of goodness of fit.  
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We use the process mentioned above to determine whether there is a trend in a given time 

series. However, trend in data leading to a certain day can be reported in several ways. For 

example, we can use a trend-based time series segmentation algorithm to break the series 

into different parts, and then report the trends in all the segments. Applying this process to 

multiple health features might result in too many reportable trends, which would be too 

much detail for a summarization system. An alternative approach is to find the overall trend 

in the two weeks of data. This would work for the cases where the change in the health 

feature is gradual over the two weeks period, but we won’t be able to find the trend reliably 

if the change is only over the last few days. To avoid this problem, we made the trend 

Rule # Fuzzy Rules 

1 If the p value is low then report trend is yes 

2 If the p value is high then report trend is no 

3 If the p value is medium and gradient is low then report trend is no 

4 If the p value is medium and gradient is medium then report trend is yes 

5 If the p value is medium and gradient is high then report trend is yes 

Table 5.4: Fuzzy Rules used to refine trend detection 

Figure 5.7: Fuzzy sets representing the antecedents  (gradient-left and p value -middle)  and the 

consequent (report -right)  
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detection algorithm to be dynamic in terms of duration of the trend. To this end, for each 

health feature we start with 5 days leading to the alert day, and then go back up to two 

weeks, one day at a time, computing trend scores at each step. Note that, in a previous 

study, it was determined that a health event (e.g. hospitalization or fall) can be indicated 

by changes in health features two weeks prior to the event (Rantz, et al. 2012). The trend 

with the highest score is selected as the best trend. If this score of the best trend is greater 

than a threshold of 0.5, then the trend is considered worthy of being included in the alert 

summary. Note that we fix the minimum length to 5, because we need at least a few points 

to find a reliable trend.  

After making a decision about the existence of a trend in a given health feature time series, 

we require it to fulfil one more criterion before it can be reported. Sometimes, we observe 

that even though there is a trend in a sensor feature, the change it causes is very small with 

respect to changes in health. For example, if there is an increasing trend in the average 

pulse rate over 5 days but increase is just 3 beats per minute, this might not be worth 

reporting. In such cases, when the change is below a given threshold, we do not report the 

trend. To obtain these thresholds, we conducted a focus group session among clinicians in 

our group. For each health feature, we presented them with questions like the one shown 

in Figure 5.8. The focus group setting allowed the experts to have a discussion before 

reaching a consensus about the thresholds. Even though the experts are quite familiar with 

the data, they were not very confident about the definite thresholds. At the end of the focus 

group, they ended up assigning a minimum 20% change required to most of the sensor 
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features for all the time periods, except the gait parameters, time in bed and time spent in 

the bathroom during night-time. For the gait parameters, they believed that a change of 2% 

is enough for it to be reportable, while for time in bed they required a change of at least 

50%. They suggested that the time spent in the bathroom during the daytime does not carry 

significance and hence need not be reported, while for the nighttime, a change of 30 

minutes or 10% would be needed for it to be of any significance. At the end, they also 

suggested that these thresholds are not definite, and we should monitor the sensor data and 

the alerts and adjust them as we gain more experience with the system.  

In cases where our algorithm detects reportable trends in more than one health feature, we 

can either list each trend separately or combine the trends using some heuristic. In the 

former case, each detected trend will have its own sentence with the health feature name 

and the length of the trend as part of the summary. For example, consider two features X 

and Y in which an increasing trend has been detected, with the length of trend equal to 7 

for Feature X and 14 for Feature Y. When listing each trend separately, the summary would 

Time period Absolute Relative 

One week     

Two weeks     

One month     

 Figure 5.8: Sample question used in focus group survey with clinicians   

What is the smallest absolute and/or relative change in 

average pulse rate (beats/minute) over 24 hours you 

would determine necessary to report during a period of: 
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be something like: Feature X has been increasing for 7 days and Feature Y has been 

increasing for 14 days. This summary would get wordier very quickly with the increase in 

the number of trends being reported. In our experience in showing these summaries to 

clinicians, we found that they do not like such verbose statements. Also, the exact length 

of the trend is less important to them than just the fact that there is an increase or decrease 

in the sensor feature measurements. To this end, we combine the trends with the same 

direction with the following heuristic: In case of more than one health features having trend 

in the same direction, report the length of the shortest trend along with the names of all 

health features. With this heuristic, the summary of the above example would be: Feature 

X and Feature Y have been increasing for 7 days. We apply this heuristic separately to both 

increasing and decreasing trends, that is, we do not combine trends of different direction. 

There is some loss of information in this type of summary but having a short and concise 

summary is more desirable as we do not want to overwhelm the clinician with a lot of not 

very useful information.  

In our conversations with the clinicians on our team, they suggested that for the 

physiological sensor features, along with the trend, they would also like to know the 

absolute change the trend induced. Accordingly, we include the exact change in the 

measurements for pulse rate, respiration rate, walking speed, stride time and stride length. 

In the summary, the change is included in parenthesis besides the name of the health 

feature. For example, in the above example, assume that Feature X was pulse rate and 

Feature Y was time in bed, and the pulse rate at the start of the 7 day trend was 60 BPM 
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and at the end was 75 BPM. Then the summary becomes: Pulse rate (60 to 75 BPM) and 

time in bed have been increasing for the past 7 days. Note that, irrespective of the length 

of the trend reported in the summary, we include the change in the feature over the entire 

duration of trend. 

5.3.3. Simple LPS Summary 

Physiological parameters like pulse rate and respiration rate measure the health condition 

of the elderly in a more direct sense as compared to behavioral parameters like time in bed 

or amount of activity inside the apartment. An abnormal measurement in pulse rate or 

respiration rate might be of immediate concern to the clinicians and they would not want 

to wait until there is a trend in these parameters. To this end, we design this data feature, 

called simple LPS summary, to detect and report finer changes in the physiological 

parameters. These summaries are of the form: There were few instances with low pulse 

rate. The instances are the small time periods over which the measurements are being 

made. Their duration can be defined by the designer, for example, 15 minutes, 30 minutes 

etc. Basically, these summaries quantify the number of times the feature in focus had a 

certain property in some given interval of time. For example, the above summary 

quantifiers the number of times the pulse rate was low. The mechanism to produce these 

summaries is described below.  

As the name suggests, these summaries are computed with the help of LPSs which was 

described previously in this section in relation to Tuple Summaries. The protoforms used 
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in this case are: There were Q instances of P pulse rate, and There were Q instances of P 

respiration rate, where Q and P are the quantifiers and summarizers, respectively, both 

defined by fuzzy sets over suitable domains. Figure 5.9 presents the definitions of the fuzzy 

sets representing the quantifiers. Figure 5.10a displays the definition of low, normal and 

high pulse rate, while Figure 5.10b presents that of low, normal and high respiration rate. 

Note that the pulse rate and respiration rate definitions were created with the help of 

clinicians in our team.  

Similar to the Tuple summaries, we use the truth-value computation method for type I LPS 

defined in Section 2.5. For a given pulse rate and respiration rate data, the truth-value is 

calculated using the fuzzy sets defined in Figure 5.9 and Figure 5.10. For both pulse rate 

and respiration rate, we compute the truth-value of all the LPSs formed by each 

Figure 5.9: Fuzzy Sets representing quantifiers used in 

Simple LPS summaries 

Figure 5.10a & 10b: Fuzzy sets representing pulse rate (left) and respiration rate (right) 
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combination of the summarizer and the quantifier. Therefore, given 3 summarizers for both 

pulse rate and respiration rate (Figure 5.10), and 5 quantifiers (Figure 5.9), we compute the 

truth-value of 5x3=15 LPS to describe the pulse rate and 15 LPSs to describe the respiration 

rate measurements. Including all the 15 LPSs in the final alert summary would be 

unnecessary information. Hence, from these 15 LPSs for each of the health feature, we 

select the summary with the highest truth-value for each summarizer. This gives us a total 

of 3 LPSs, one per summarizer. Now from these 3 LPSs, we select the one which contains 

the most amount of information about the underlying data. By amount of information, we 

mean the quantifier which corresponds to most number of objects (the data points being 

summarized). For example, the quantifier almost all encompasses higher number of objects 

than the quantifier few. By this logic, the order of quantifiers with decreasing amount of 

information is: {almost all, many, some, few, almost none}. After this comparison, if the 

summarizer of the LPS to be reported in the summary is ‘normal’, then it is considered not 

worthy of reporting since it is basically saying that the feature value is normal. However, 

if the summarizer is any other than ‘normal’, then that LPS is included in the alert 

summary.  

To fix ideas, we illustrate this process with the help of an example in Figure 5.11. Consider 

the pulse rate measurements over a night as shown in the plot on the top-left of Figure 5.11. 

For these sets of measurements, we compute the truth-value of all the 15 LPSs as shown in 

the table on the right. From these 15 LPSs, for each of the three summarizers: low, normal 

and high, we select the one with the highest truth-value. This results in three LPSs, as 
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shown in the Table on the left. The table suggests that there were some instances of low 

pulse rate, some instances of normal pulse rate and almost no instances of high pulse rate. 

Out of these three statements, we select the statement saying: There were some instances 

of low pulse rate, since this is the one with most useful information. 

 

  

Quantifiers Summarizers Truth-value 

'almost none' 'low' 0.00 

'few' 'low' 0.10 

'some' 'low' 0.90 

'many' 'low' 0.05 

'almost all' 'low' 0.00 

'almost none' 'normal' 0.00 

'few' 'normal' 0.35 

'some' 'normal' 0.65 

'many' 'normal' 0.10 

'almost all' 'normal' 0.00 

'almost none' 'high' 0.85 

'few' 'high' 0.15 

'some' 'high' 0.00 

'many' 'high' 0.00 

'almost all' 'high' 0.00 

Quantifiers Summarizers 

Truth-

value 

'some' 'low' 0.9 

'some' 'normal' 0.65 

'almost none' 'high' 0.85 

There were some instances 

of low pulse rate 

Figure 5.11: Illustration of the process to produce Simple LPS summary of data 
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5.4. Results 

Here, we present the design and results of multiple surveys that we conducted to validate 

different components of our summarization pipeline. For each survey, we follow the 

guidelines of (Hripcsak and Wilcox 2002), where a minimum of six experts were 

recommended to effectively evaluate medical informatics systems. 

5.4.1. Validation of the Tuple Summary 

The goal of this experiment is to compare the tuple summaries produced by the LPS 

algorithm to the responses by humans when presented with the same data that produced 

the tuple summaries. To this end, we generated tuple summaries for five synthetic data 

examples. We then showed this data to six members of our engineering team who are 

familiar with the general nature of this research but do not have knowledge of the exact 

topic at hand. Figure 5.12 shows a sample question that was presented to the audience. The 

questionnaire asked the people to treat the two graphs as some imaginary features obtained 

from the apartments of the residents. For both the features, the first two weeks form the 

baseline (left of the green line in Figure 5.12) against which to compare the next two weeks 

(to the right of the green line). Based on this information, we asked them to assess the 

validity of the statement that quantifies the number of instances when both features A and 

B were high concurrently. Note that in order to not complicate the experiment, we only 

asked the audience to look for features that were high concurrently (and not when they 

were low, or one of them was low and other was high).   
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The truth-value of the LPS is used to compare the audience responses with that of the 

algorithm. The human responses range from 1 to 5, while the truth-value varies from [0,1]. 

To bring the two responses in the same scale, the truth-value range of [0, 1] is divided into 

five equal intervals, with truth-value between [0.0, 0.2) interpreted as confidence rating of 

1 and [0.8, 1.0] as having confidence of degree 5. Table 5.5 shows the confidence ratings 

provided by all the five participants along with the confidence of the LPS algorithm. The 

Considering the measurements on the left of the 

vertical line (2 weeks) as baseline, please write down 

how much you agree with the following statement for 

the data on the right hand side of the line (2 weeks). 

The following figure shows measurements of two imaginary 

features, A and B over a period of 4 weeks.  

There are many days with high feature A and high 

feature B. 

Rating (1 to 5):   

1 = Completely Disagree 

5 = Completely Agree 

Figure 5.12: Sample question used in survey to validate tuple summaries 
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first column shows the ratings produced by the tuple summary algorithm, while the cells 

in yellow in the subsequent columns contain participant ratings that were closer to the 

algorithm (within a neighborhood of 1). The last column shows the average of the ratings 

provided by the six participants. 

We see that, overall, there are more cells in yellow than white, which implies that the rating 

of the algorithm and the participants matches more often than not. The mean participant 

ratings are also close to the algorithm ratings for all cases but Case 4. We observe that for 

this case, the ratings are a lot farther apart amongst the participants themselves. Participant 

2 & 6 rated it as a 1 while Participant 4 rated it as a 5. This suggests that this is a peculiar 

case and the algorithm is no better or worse than the participants are. If we focus on 

individual participants, we see that Participant 4 is in most disagreement with the 

algorithm, with only two close matches. However, if we look closely, we observe that this 

participant always provides relatively higher ratings.  

Case 

# 
LPS P1 P2 P3 P4 P5 P6 

Average 

(P1:P5) 

1 1 1 2 1 3 1 1 1.5 

2 2 1 2 3 4 2 1 2.2 

3 4 3 3 2 5 4 1 3.0 

4 1 3 1 2 5 4 1 2.6 

5 5 4 2 5 5 5 4 4.2 

Table 5.5: Results comparing tuple summary algorithm with participant 

responses 
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We note that we could have placed the two plots together on one graph to facilitate the 

human participants in viewing the two features together. The two features might have 

different scales on the y-axis, but this could be resolved by normalizing them between 0 

and 1. The more important reason that we did not present the two features together is that 

in doing so, we did not want the participants to perform actual mathematics to come up 

with a response. This is because we intend to use these tuple summaries in the real care 

coordination environment, and the clinicians looking at these features would not have 

enough time and/or ability to look at and analyze each graph. In fact, this is the basic 

motivation behind producing these types of summaries in the first place. 

We are aware of the fact that this is a small sample size, both in terms of the number of 

examples in the survey as well as the number of participants. Nevertheless, the limited 

results that we presented suggest that the algorithm produces meaningful results and gives 

us confidence to use it in a real-world environment.   

5.4.2. Validation of the Trend Summary 

To validate our trend detection algorithm, we created a survey where we presented a 

number of line-graphs to users and asked them to express their confidence about the 

presence of a trend in the graphs. We then compared the ratings obtained from the survey 

to the confidence produced by our algorithm. Before we discuss the results of the survey, 

we would like to mention a few factors concerning line-graphs that influence the way 

people perceive trends in them.  
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Figure Aspect Ratio: The aspect ratio of the figure containing the line-graph of a time 

series can have a significant impact on the trend perception. For example, Figure 5.13a and 

b show the same data presented in the form of a line-graph with two images having different 

aspect ratios. We see that in Figure 5.13a, a clear increasing trend is evident. However, this 

trend does not appear to be as evident and significant in Figure 5.13b where the aspect ratio 

of the figure is changed to have a larger width and smaller height. Mindful of this impact 

of the aspect ratio, we set it arbitrarily to one fixed value in all the graphs presented in the 

survey.  

Scale of axis: Another factor that might influence the way people perceive trends in line-

graphs is the scale of the y axis. Similar to the aspect ratio, making the range of the y axis 

scale too large or too small can impact the perceived trend. For instance, Figure 5.14a and 

Figure 5.14b show the same data but one with a scale that just fits the data while the other 

with a much higher range. It is clear from the two figures that the trend is much more 

apparent in Figure 5.14a as compared to Figure 5.14b. Aware of this effect, we set the scale 

to fit the measurements (like in Figure 5.14a) in all the graphs presented in the survey.  

Figure 5.13a and b: Same data displayed in figures having different 

aspect ratios 
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Survey description: To find candidate graphs for this survey, we selected 24 days 

distributed over 8 residents at TigerPlace, all of which were flagged to have abnormal 

activity by the alert generation algorithm. We then extracted two weeks of data leading to 

each of these 24 days. For each day, we extracted data for all the health features mentioned 

in Table 5.2 and ran our trend detection algorithm on the time series composed of these 

features. We selected 27 time series from these using stratified random sampling. Note that 

we did not perform fully random sampling, as we wanted to cover as much diversity as 

possible in the limited 27 examples. The examples were forced to contain at least one case 

for each of the health features. Also, the random process was forced to contain a few cases 

for which our algorithm detected an increasing trend, a few for which it detected a 

decreasing trend and a few cases where no trend was detected at all.  

We asked six people in our Engineering team to provide a rating from 1 through 10 about 

the existence of a trend in each of the 27 cases, 1 being the lowest confidence that the line-

graph contains a trend and 10 being the highest. Recall that our fuzzy rule-based trend 

detection algorithm produces confidence on the scale of 0 to 1. We linearly scaled its output 

Figure 5.14a & b: Same data displayed in graphs with different 

scales 



181 

 

from 0 to 1 to 1 to 10 to match the scale of human responses. To quantify the agreements 

among the participants and the trend detection algorithm, we computed Inter Class 

Coefficient (ICC) (Hallgren 2012). An ICC of 1 denotes complete agreement between the 

participants while that of 0 suggests complete disagreement. Table 5.6 presents the results. 

P1 to P6 are the six participants, while FIS is the fuzzy inference system. Column 2 shows 

the results of the FIS described in Section 5.3.2, which was composed of both the p value 

and the gradient inputs. We also wanted to verify whether including the gradient in the FIS 

produced any positive impact in terms of detecting trends. Therefore, in Column 3, we 

show the results when the FIS was only composed of the p value. The fuzzy rules for the 

system with only the p value are: 1) If the p value is low, then report trend is yes, 2) if the 

p value is medium or high, then report trend is no. That is, this system is equivalent to the 

system with only a crisp p value threshold. We see that the FIS with both p value and 

  
ICC (p value 

& Gradient) 

ICC (just p 

value) 

P1-FIS 0.76 0.69 

P2-FIS 0.85 0.66 

P3-FIS 0.62 0.55 

P4-FIS 0.87 0.70 

P5-FIS 0.84 0.66 

P6-FIS 0.78 0.61 

Average ICC between 

Participants 1 to 6 
0.74 

Average ICC between 

system and all participants 
0.79 0.64 

Table 5.6: Results comparing the two Fuzzy Rule Based trend detection 

systems 
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gradient inputs  produces much higher agreement with the participants (0.79) than the FIS 

with only the p value (0.64). Also, the average agreement between the FIS and the 

participants (0.79) is higher than the average agreement between the participants 

themselves (0.74). This shows that our p value and gradient based FIS performs at par or 

even better than the participants in terms of detecting trends in line graphs. 

5.4.3. Validation of the Simple LPS Summary 

As described before, the simple LPS summaries are designed to look at the physiological 

parameters in more detail. To test the algorithm computing the simple LPS summaries, we 

created five synthetic data examples for summarizing pulse rate and five examples for 

respiration rate. Figure 5.15 shows a sample question where we show pulse rate 

measurements over a day, measured in 15-minute chunks. The x-axis of the plot lists the 

15-minute chunk number whose pulse rate is shown on the y-axis. We presented this 

questionnaire to clinicians in our team, where they were asked to quantify, in linguistic 

terms, the number of instances of low pulse rate, normal pulse rate and high pulse rate. 

For each level of pulse rate, the participants were asked to choose one of the quantifiers 

out of {almost none, few, some, many and almost all}. Note that unlike the tuple and trend 

summaries validation, the audience of this survey are clinicians who are adept at 

interpreting medical parameters like pulse rate and respiration rate.  



183 

 

We presented the 10 examples (5 for pulse rate and 5 for respiration rate), like the one 

shown in Figure 5.15, to six clinicians. To facilitate the comparison of the responses, we 

converted the linguistic terms to numerical terms by representing Almost none as 1, Few 

as 2, Some as 3, Many as 4 and Almost all as 5. The linguistic quantifiers are ordered and 

so are the numbers. Table 5.7 presents the results. For each statement, we show the 

quantifier chosen by the algorithm and the mean participant response. The cells in yellow 

show the questions where the mean response is close to the output of the algorithm. We 

see that the mean responses and the algorithm output are close to each other most of the 

times. Most of the cases when they are further apart have one thing in common. The 

participants use the quantifier many differently than the way we define it in Figure 5.10. 

For example, in Case 5 for the pulse rate, P2 reported that almost all of the instances have 

_____________ instances have low pulse rate. 

 _____________instances have normal pulse rate. 

 _____________ instances have high pulse rate. 

Describe the pulse rate by filling in each blank with 

one of the following:  

{Almost none, Few, Some, Many, Almost all} 

The following figure presents pulse rate measurement of a person 

through a day. Each reading is the average pulse rate during a 15 min 

period. 

Figure 5.15: Sample question used in survey to validate LPS summaries 
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normal pulse rate (5) and many instances have high pulse rate (4). This is not possible with 

the fuzzy set definitions of Figure 5.10, where many is designed to represent about 75% of 

the objects while almost all covers about 100% of the objects. Similarly, for this case, 

  LPS 
Algo-

rithm 

Mean 

Response 

(P1-P6) 

Case 

1 

_____ instances have 

low pulse rate. 
4 4.3 

_____ instances have 

normal pulse rate. 
2 2.8 

_____ instances have 

high pulse rate. 
1 1.0 

  

Case 

2 

_____ instances have 

low pulse rate. 
1 1.2 

_____ instances have 

normal pulse rate. 
2 3.8 

_____ instances have 

high pulse rate. 
4 3.5 

  

Case 

3 

_____ instances have 

low pulse rate. 
1 1.7 

_____ instances have 

normal pulse rate. 
5 4.8 

_____ instances have 

high pulse rate. 
1 1.0 

  

Case 

4 

_____ instances have 

low pulse rate. 
3 3.8 

_____ instances have 

normal pulse rate. 
3 3.8 

_____ instances have 

high pulse rate. 
1 1.2 

  

Case 

5 

_____ instances have 

low pulse rate. 
1 1.7 

_____ instances have 

normal pulse rate. 
3 4.3 

_____ instances have 

high pulse rate. 
3 3.3 

 

  LPS 
Algo-

rithm 

Mean 

Response 

(P1-P6) 

Case 

1 

_____ instances have 

low respiration rate. 
4 4.3 

_____ instances have 

normal respiration 

rate. 

2 3.3 

_____ instances have 

high respiration rate. 
1 1.7 

  

Case 

2 

_____ instances have 

low respiration rate. 
1 1.7 

_____ instances have 

normal respiration 

rate. 

5 4.0 

_____ instances have 

high respiration rate. 
1 2.2 

  

Case 

3 

_____ instances have 

low respiration rate. 
1 1.5 

_____ instances have 

normal respiration 

rate. 

2 2.2 

_____ instances have 

high respiration rate. 
4 4.8 

  

Case 

4 

_____ instances have 

low respiration rate. 
3 2.8 

_____ instances have 

normal respiration 

rate. 

3 4.0 

_____ instances have 

high respiration rate. 
1 2.5 

  

Case 

5 

_____ instances have 

low respiration rate. 
1 1.0 

_____ instances have 

normal respiration 

rate. 

3 3.0 

_____ instances have 

high respiration rate. 
3 4.5 

Table 5.7a (left – Pulse Rate) & 5.7b (right – Respiration Rate): Clinician responses to simple LPS 

survey. Participants were asked to fill in each blank with one of the quantifiers: Almost None (1), Few 

(2), Some 
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participants P3 and P4 reported that that many instances have normal and many have high 

pulse rate. Again, this is unlikely, since according to our definition of many, there cannot 

be many instances of normal, as well as many instances of high pulse rate for the same set 

of objects. This explains the disagreement between the mean response and the algorithm 

for most of the cases. Similar to the validation of tuple summaries, this is a very small 

sample size to comment on the absolute validity of these types of summaries, but at the 

same time, it suggests that the algorithm produces meaningful results.  

5.5. Discussion 

Our monitoring system has been installed in six Americare, Inc facilities around Columbia, 

MO during the last year, including Tiger Place. We started with 30 apartments in August 

2017 (systems from Tiger Place were installed during a previous project (Rantz, et al. 2017) 

and we reached the projected number (110 apartments) in October 2018. During this time, 

the monitoring system issued 699 health alerts, 377 of which were in linguistic format. 

Next, we present a few examples of linguistic summaries to show our summarization 

system in action. The summary is a composite of the individual data feature summaries, 

presented as a bulleted list. Also, in the final summary, we italicize the name of the health 

feature for emphasis. We first present an example that provides a screenshot of a linguistic 

alert email to demonstrate our alert notification system. Then, we present five retrospective 

case studies in which the summaries produced by our system correlates with changes in 

health conditions in five elderly residents. 
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Figure 5.16 shows a screenshot of the alert email that was sent to the nursing staff at the 

facility, where the alert was triggered due to an increase in the time spent in bed by the 

resident. We present this example in order to illustrate our alert notification mechanism 

where the information is provided in linguistic format. Also, for this alert, the conditions 

were such that all the different parts of the alert summary were deemed worthy of being 

reported. As seen in the email screenshot, the summary starts with a description of the 

sensor feature that caused the alert. This is followed by the tuple summary listing the 

features that were high/low concurrently in the last two weeks. Next, all the increasing and 

decreasing trends in the data are reported. The last part of the summary describes the pulse 

rate measurements on the day of the alert.  

Figure 5.16: Screenshot of alert summary email corresponding 

to Example 1 
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We present five retrospective case studies in Table 5.8, where the summaries describe the 

change in sensor data that occurred around different health events for five residents living 

Resident 
ID Date 

Symptom / 
Health Event Summary 

1 11/14/2017 
Not sleeping 

well 

• Yesterday, pulse rate was significantly higher 

than usual.  

• Night-time bed restlessness, night-time time in 

bed, overall stride time(from 1 to 1.1 sec) and 

overall stride length(from 76.9 to 79.1 cm) 

have been increasing for the past 7 days.  

• Day & night-time overall activity have been 

decreasing for the past 6 days. 

2 8/27/2017 Pneumonia 

• Yesterday, time in bed was significantly higher 

than usual.  

• Day & night-time bed restlessness have been 

increasing for the past 8 days. 

3 09/19/2018 UTI 

• Night-time time spent in bathroom, night-time 

time in bed have been increasing for the past 13 

days. 

• Day & night-time overall activity, day-time bed 

restlessness, day-time time in bed have been 

decreasing for the past 10 days. 

4 2/25/2016 

Congestive 

Heart Failure 

(CHF) 

• In the past two weeks, there were many days 

with high time spent in bathroom & low pulse 

rate, high bed restlessness & low pulse rate, 

low time spent in bathroom & low pulse rate.  

• Day-time overall activity, night-time bed 

restlessness, night-time time in bed have been 

increasing for the past 8 days.  

• Night-time time spent in bathroom, day-time 

bed restlessness, day-time time in bed, day & 

night-time pulse rate(from 62.16 to 46.58 

beats/min) have been decreasing for the past 10 

days. 

5 3/30/2019 
Weakness / 

Hospitalization 

• Day & night-time overall activity, day & night-

time bed restlessness, day & night-time time in 

bed have been decreasing for the past 8 days. 

 

Table 5.8: Five retrospective case studies. For each case, we show the health event and the date it 

occurred, along with the summary produced by out method on that date. 
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at various sensor equipped facilities. For each case study, we list the diagnosis and the 

summary produced by our system on the day of the event. In the following, we list the 

health history of the resident around the time of the diagnosis, along with the two-week 

variation of the feature that is most directly related to the health event.   

5.5.1. Case I 

In this case, the sensors recorded a higher than usual pulse rate during the night-time for a 

resident. The email informs about the pulse rate increase that was the reason for the alert 

to begin with. It also informs about an increase in time in bed and restlessness during the 

night, which was also found to be the true according to the conversation between the nurse 

and the resident. After receiving the alert, one of the nurses checked on the resident and 

found that the resident was not sleeping well for the past couple of days. The lab work 

revealed that the resident’s sodium levels were high, and she was in renal failure. In Figure 

5.17, we show the restlessness of the resident during the nighttime for the past 14 days. We 

see a gradual increase over this time period (also shown by the trend line in blue). Note 

Figure 5.17: Nighttime restlessness of Resident 1 for the past two weeks leading 

to the day of health event. The blue line shows the least square fit line    
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that although the restlessness was found to be increasing for the past 14 nights, in the 

summary it is only reported to be increasing for the past 7 days. This is because when 

reporting multiple trends, we take the feature with smallest duration of trend and include 

only that in the summary (as described in Section 2.2.2). 

5.5.2. Case II 

In this example, an alert was generated by an increase in the time spent in bed. The 

summary starts by describing the reason for the alert. It also informs about an increase in 

the restlessness during the daytime as well as nighttime. This alert and the corresponding 

summary were generated on August 27, and the resident was diagnosed with pneumonia 

in early October. Since pneumonia takes a good amount of time to take full effect, there is 

a strong reason to believe that the increase  in time spent in bed and restlessness were 

symptoms of the disease and were caught by the sensors much earlier than the actual 

diagnosis. Figure 5.18 shows the amount of time the resident was restless during the past 

14 nights. According to the American Lung Association [106], symptoms of pneumonia 

Figure 5.18: Nighttime restlessness of Resident 2 for the past two weeks leading 

to the day of health event. The blue line shows the least square fit line    
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include, but not limited to: low energy, fatigue, chest pain, and confusion. These symptoms 

could have contributed to the resident’s restlessness and time in bed. 

5.5.3. Case III 

In this case, the resident was diagnosed with UTI on September 19. On the day of the 

diagnosis, the following entry was made into the EHR: “…resident has had c/o burning 

sensation with urination and has had 1-2 episodes of chills…”. The alert generation 

algorithm did not trigger an alert due to the gradual increase in the nighttime bathroom 

activity. However, the summarization method detected an increasing trend in the time spent 

in the bathroom over the past two weeks. The overall increase in the bathroom activity 

during the nighttime suggests that the summarization process was able to catch the 

symptoms of the underlying health condition. Figure 5.19 shows the bathroom activity of 

the resident during the nighttime for the two-week period. We see that the bathroom 

activity has been gradually increasing over this time period.  

 

Figure 5.19 Bathroom activity of Resident 3 for the past two weeks leading to the 

day of health event. The blue line shows the least square fit line    
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5.5.4. Case IV 

In this case, the resident suffered from Congestive Heart Failure (CHF) on the mentioned 

date. Although the alert generation algorithm did not issue an alert, we ran our 

summarization process to summarize the data leading to the day of CHF. Both the tuple 

summary and the trend summary suggested a change in the pulse rate. The trend detection 

algorithm detected a gradual decrease in pulse rate for the past 14 days during both 

nighttime and daytime, where the pulse rate decreased from 62 Beats per Minute to 46 

Beats per Minute, as shown in Figure 5.20. This is a significant drop in pulse rate, which 

can be attributed to the change in the cardiovascular health of the resident leading to the 

day of CHF. Moreover, according to the American Heart Association, a resting heart rate 

of fewer than 60 beats per minute, as this resident exhibited, qualifies as bradycardia, which 

can lead to CHF.  

 

 

Figure 5.20: Nightly Pulse rate of Resident 4 for the past two weeks leading to the 

day of health event. The blue line shows the least square fit line    
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5.5.5. Case V 

In this case, the nurse wrote the following note in the EHR: “Res was sent to hospital this 

morning by ambulance res was unable to sit even with assistance she would just fall right 

back over ….” Similar to the Case IV, the alert generation algorithm was not able to find 

any significant changes in the sensor data, hence it did not produce an alert. However, the 

summary produced on the day of hospitalization informed about the decrease in the overall 

activity, restlessness and time in bed over the past 8 days. This drop in activity can be 

attributed to the general weakness, which was reported by the nurse in the EHR. Figure 

5.21 shows the overall activity of the resident inside the apartment for the past two weeks. 

We see over the eight days leading to the health event, the activity decreased form about 

175 minutes to about 100 minutes. 

Approximately one month leading up to the resident’s hospitalization and prominent 

weakness, nurses noted in EHR that the resident was “sent out to the hospital for excessive 

diarrhea and vomiting, she return with no order changes ER gave prescription for lomotil. 

Figure 5.21: Overall activity of Resident 5 for the past two weeks leading to the 

day of health event. The blue line shows the least square fit line    



193 

 

The hospital called to inform facility that resident has Norovirus in her stool, universal 

precautious in place”. This illness would have played in a significant role in the resident’s 

weakness.  

5.6. Conclusions & Future Work 

Although the smart home sensor technology has a lot of potential to help the elderly remain 

independent, the amount and complexity of the data generated by the sensors make it 

difficult and time consuming for the clinicians to exploit the data to its fullest. We presented 

an NLG system that extracts important information from the sensor data and summarizes 

it in natural language. We carefully selected the information features that are most helpful 

to the clinicians and developed algorithms to compute these features from the data. We 

validated our algorithms with the help of multiple clinician surveys and focus groups using 

synthetic and real data. The outcome of the surveys showed that our algorithms have 

similar performance to the human subjects in terms of extracting the said features. We 

installed the in-home sensors in 110 elderly residents’ apartments as part of an NIH-NLM 

project and implemented our summarization system to produce summaries of the sensor 

data leading to health alerts. We presented five retrospective case studies to illustrate the 

workings of our summarization system and show that the linguistic summaries can help 

detect change in the health of the elderly before the actual event happens.  

Our immediate next step is to investigate whether the linguistic summarization framework 

can help improve the efficiency of the nurses in monitoring the in-home sensor data. To 
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this end, we aim to compare the time taken by the nurses to monitor the linguistic alerts 

versus the traditional graph-based alerts. As a long-term goal, we would like to see if 

describing the in-home sensor data in natural language can help reduce decline in the health 

of the elderly residents. Recently, hybrid techniques that employ both textual and visual 

formats have been found to be effective in communicating information contained in the 

data (Mahamood, et al. 2014, Gkatzia, et al. 2017). In line with these works, we would also 

like to explore the coupling of linguistic summaries and visualization techniques in way 

that they complement each other in presenting the in-home sensor data.  
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