11,962 research outputs found

    Evolutionary and demographic correlates of Pleistocene coastline changes in the Sicilian wall lizard Podarcis wagleriana

    Get PDF
    Aim Emergence of coastal lowlands during Pleistocene ice ages might have provided conditions for glacial expansions (demographic and spatial), rather than contraction, of coastal populations of temperate species. Here, we tested these predictions in the insular endemic Sicilian wall lizard Podarcis wagleriana. Location Sicily and neighbouring islands. Methods We sampled 179 individuals from 45 localities across the whole range of P. wagleriana. We investigated demographic and spatial variations through time using Bayesian coalescent models (Bayesian phylogeographic reconstruction, Extended Bayesian Skyline plots, Isolation‐with‐migration models) based on multilocus DNA sequence data. We used species distribution modelling to reconstruct present and past habitat suitability. Results We found two main lineages distributed in the east and west portions of the current species range and a third lineage restricted to a small area in the north of Sicily. Multiple lines of evidence from palaeogeographic (shorelines), palaeoclimatic (species distribution models), and multilocus genetic data (demographic and spatial Bayesian reconstructions) indicate that these lineages originated in distinct refugia, located in the north‐western and south‐eastern coastal lowlands, during Middle Pleistocene interglacial phases, and came into secondary contact following demographic and spatial expansions during the last glacial phase. Main conclusions This scenario of interglacial contraction and glacial expansion is in sharp contrast with patterns commonly observed in temperate species on the continent but parallels recent findings on other Mediterranean island endemics. Such a reverse expansion–contraction (EC) dynamic has been likely associated with glacial increases of climatically suitable coastal lowlands, suggesting this might be a general pattern in Mediterranean island species and also in other coastal regions strongly affected by glacial marine regressions during glacial episodes. This study provides explicit predictions and some methodological recommendations for testing the reverse EC model in other region and taxa

    Analysis of Migration Models of Biogeography-based Optimization Using Markov Theory

    Get PDF
    Biogeography-based optimization (BBO) is a new evolutionary algorithm inspired by biogeography, which involves the study of the migration of biological species between habitats. Previous work has shown that various migration models of BBO result in significant changes in performance. Sinusoidal migration models have been shown to provide the best performance so far. Motivated by biogeography theory and previous results, in this paper a generalized sinusoidal migration model curve is proposed. A previously derived BBO Markov model is used to analyze the effect of migration models on optimization performance, and new theoretical results which are confirmed with simulation results are obtained. The results show that the generalized sinusoidal migration model is significantly better than other models for simple but representative problems, including a unimodal one-max problem, a multimodal problem, and a deceptive problem. In addition, performance comparison is further investigated through 23 benchmark functions with a wide range of dimensions and diverse complexities, to verify the superiority of the generalized sinusoidal migration model

    A Dynamic System Model of Biogeography-Based Optimization

    Get PDF
    We derive a dynamic system model for biogeography-based optimization (BBO) that is asymptotically exact as the population size approaches infinity. The states of the dynamic system are equal to the proportion of each individual in the population; therefore, the dimension of the dynamic system is equal to the search space cardinality of the optimization problem. The dynamic system model allows us to derive the proportion of each individual in the population for a given optimization problem using theory rather than simulation. The results of the dynamic system model are more precise than simulation, especially for individuals that are very unlikely to occur in the population. Since BBO is a generalization of a certain type of genetic algorithm with global uniform recombination (GAGUR), an additional contribution of our work is a dynamic system model for GAGUR. We verify our dynamic system models with simulation results. We also use the models to compare BBO, GAGUR, and a GA with single-point crossover (GASP) for some simple problems. We see that with small mutation rates, as are typically used in real-world problems, BBO generally results in better optimization results than GAs for the problems that we investigate

    A Dynamic System Model of Biogeography-Based Optimization

    Get PDF
    We derive a dynamic system model for biogeography-based optimization (BBO) that is asymptotically exact as the population size approaches infinity. The states of the dynamic system are equal to the proportion of each individual in the population; therefore, the dimension of the dynamic system is equal to the search space cardinality of the optimization problem. The dynamic system model allows us to derive the proportion of each individual in the population for a given optimization problem using theory rather than simulation. The results of the dynamic system model are more precise than simulation, especially for individuals that are very unlikely to occur in the population. Since BBO is a generalization of a certain type of genetic algorithm with global uniform recombination (GAGUR), an additional contribution of our work is a dynamic system model for GAGUR. We verify our dynamic system models with simulation results. We also use the models to compare BBO, GAGUR, and a GA with single-point crossover (GASP) for some simple problems. We see that with small mutation rates, as are typically used in real-world problems, BBO generally results in better optimization results than GAs for the problems that we investigate

    Phylogenetic and phenotypic divergence of an insular radiation of birds

    Get PDF
    Evolutionary divergence of lineages is one of the key mechanisms underpinning large scale patterns in biogeography and biodiversity. Island systems have been highly influential in shaping theories of evolutionary diversification and here I use the insular Zosteropidae of the south west Pacific to investigate the roles of ecology and biogeography in promoting evolutionary divergence. Initially I build a phylogenetic tree of the study group and use it to reveal the pattern of colonisation and diversification. My results suggest a complex history of dispersal with the observed pattern most likely a result of repeated bouts of colonisation and extinction. I then use the new phylogeny to quantify the diversification rates of the Zosteropidae. I find a very high rate of lineage divergence and suggest the most likely explanation relates to extensive niche availability in the south west Pacific. I also find evidence for an overall slowdown in diversification combined with repeated bursts of accelerated speciation, consistent with a model of taxon cycles. I do not find evidence for sympatric speciation, however. Finally I combine morphological and phylogenetic data to investigate the mode of evolution, evidence for character displacement and influence of biogeography on trait evolution. I find little support for the traditional theory of character displacement in sympatric species. I do, however, find some support for biogeographic theories. Taken together my results do not support traditional theories on the ecological and biogeographical basis of divergence, even in those cases where Zosterops have been used as exemplars. This appears to be because those theories assume rather simple patterns of colonisation and a static ecological system. Instead, my results suggest that evolutionary diversification is dominated by recurrent waves of colonisation and extinction, which, viewed at any particular moment, tend to obscure any underlying ecological rules

    Stable isotopes of Hawaiian spiders reflect substrate properties along a chronosequence.

    Get PDF
    The Hawaiian Islands offer a unique opportunity to test how changes in the properties of an isolated ecosystem are propagated through the organisms that occur within that ecosystem. The age-structured arrangement of volcanic-derived substrates follows a regular progression over space and, by inference, time. We test how well documented successional changes in soil chemistry and associated vegetation are reflected in organisms at higher trophic levels-specifically, predatory arthropods (spiders)-across a range of functional groups. We focus on three separate spider lineages: one that builds capture webs, one that hunts actively, and one that specializes on eating other spiders. We analyze spiders from three sites across the Hawaiian chronosequence with substrate ages ranging from 200 to 20,000 years. To measure the extent to which chemical signatures of terrestrial substrates are propagated through higher trophic levels, we use standard stable isotope analyses of nitrogen and carbon, with plant leaves included as a baseline. The target taxa show the expected shift in isotope ratios of δ15N with trophic level, from plants to cursorial spiders to web-builders to spider eaters. Remarkably, organisms at all trophic levels also precisely reflect the successional changes in the soil stoichiometry of the island chronosequence, demonstrating how the biogeochemistry of the entire food web is determined by ecosystem succession of the substrates on which the organisms have evolved
    corecore