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OPTIMIZATION USING MARKOV THEORY  
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Analysis of migration models of biogeography-based optimization using 
Markov theory 
Haiping Ma a.•, Dan Simon b 

a Department of Electrical Engineering, Shaoxing University, Shaoxing, Zhejiang, China 
b Department of Electrical and Computer Engineering, Cleveland State University, Cleve/and, Ohio, USA 

ABSTRACT  

Biogeography-based optimization (BBO) is a new evolutionary algorithm inspired by biogeography, 
which involves the study of the migration of biological species between habitats. Previous work has 
shown that various migration models of BRO result in significant changes in performance. Sinusoidal 
migration models have been shown to provide the best performance so far. Motivated by biogeography 
theory and previous results, in this paper a generalized sinusoidal migration model curve is proposed. A 
previously derived BBO Markov model is used to analyze the effect of migration models on 
optimization performance, and new theoretical results which are confirmed with simulation results 
are obtained. The results show that the generalized sinusoidal migration model is significantly better 
than other models for simple but representative problems, including a unimodal one-max problem, a 
multimodal problem, and a deceptive problem. In addition, performance comparison is further 
investigated through 23 benchmark functions with a wide range of dimensions and diverse complex-
ities, to verify the superiority of the generalized sinusoidal migration model. 

1. Introduction 

Mathematical models of biogeography describe the immigra-
tion and emigration of species between habitats. Siogeography-
based optimization (SSO) was first presented in 2008 (Simon, 
2008) and is an extension of biogeography theory to evolutionary 
algorithms (FAs). SSO has demonstrated good performance on 
various unconstrained and constrained benchmark functions 
(Du et aI., 2009; Ergezer et aI., 2009; Ma and Simon, 2010). It 
has also been applied to real-world optimization problems, 
including sensor selection (Simon, 2008), groundwater detection 
(Kundra et al., 2009), satellite image classification (Panchal et al., 
2009), and power system optimization (Rarick et al., 2009). See 
reference Gardner and Simon (2009) for a web-based SSO 
graphical user interface. Like other EAs (Ahn, 2006; Schwefel, 
1995; Yao et al., 1999), SSO is based on the idea of probabil-
istically sharing information between candidate solutions based 
on their fitness values. In tEO, each solution is comprised of a set 
of features. Each solution immigrates features from other solu-
tions based on its immigration rate, and emigrates features to 
other solutions based on its emigration rate. In the original SSO 
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paper (Simon, 2008), a linear migration model is used for the sake 
of simplicity. In Ma (2010) and Ma et al. (2009) more complicated 
and life-like migration models are presented to give better 
optimization results. These research provided empirical evidence 
of the potential benefit of alternative migration models of SSO. 
However, as with most other FAs, there are limited theoretical 
results for SSo. 

Markov models have been a valuable theoretical tool to 
analyze EAs, including simple genetic algorithms (Davis and 
Principe, 1993; Nix and Vase, 1992; Reeves and Rowe, 2003; 
Suzuki, 1995, 1998) and simulated annealing (Lundy and Mees, 
1986). Markov models have already been derived for SSO (Simon 
et al., 2009, 2010), along with Markov model comparisons 
between SSO and genetic algorithms (Simon et al., 2011). A 
Markov chain is a random process, which has a discrete set of 
possible state values Si 0=1,2, ... , T). The probability that the 
system transitions from state Si to Sj is given by the probability Pij' 
which is called a transition probability. The TxT matrix P=[Pij] is 
called the transition matrix. A Markov state in Simon et al. (2010) 
represents a SSO population distribution. Each state describes 
how many individuals at each point of the search-space are there 
in the population. Probability Pij is the probability that the 
population transitions from the ith population distribution to 
the jth population distribution in one generation. Although the 
SSO Markov model is established and some useful results are 
obtained, there have not been any reports in the literature to 
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analyze the influence of migration models based on Markov 
theory. This paper uses Markov models to study the effect of 
migration models on the performance of BBO. 

Section 2 gives an introduction to BBO, provides its Markov 
chain model and presents a new generalized sinusoidal migration 
model. Section 3 compares various migration models based on 
the Markov chain model and simulation results. Some concluding 
remarks and directions for future work are provided in Section 4. 

2. Markov chains for biogeography-based optimization 

This section presents an overview of the BBO algorithm 
(Section 2.1), provides its Markov chain model (Section 2.2), and 
discusses different migration models of BBO (Section 2.3). 

2.1. Biogeography-based optimization 

In this section a general presentation of the BBO algorithm is 
given. Consider an optimization problem with a certain number of 
candidate solutions. A good solution is analogous to a habitat 
with a high habitat suitability index (HSI). This corresponds to a 
geographical area that is well suited for hosting biological species 
in biogeography. In optimization problems, HSI corresponds to a 
measure of the goodness of a BBO solution, which is also called 
fitness. In the following text the term fitness instead ofHSI is used 
to be consistent with standard EA notation. A poor solution is like 
a habitat with a low fitness. High fitness solutions correspond to 
habitats with a large number of species, and low fitness solutions 
correspond to habitats with a small number of species. High 
fitness solutions are more likely to share their features with other 
solutions, and low fitness solutions are more likely to accept 
shared features from other solutions. This approach to solve 
general optimization problems is called biogeography-based 
optimization (BBO). Similar to all other EAs, BBO consists of two 
main steps: information sharing (which is implemented with 
migration in BBO) and mutation. 

Migration is a probabilistic operator that improves a candi-
date solution Yk. The migration rates of each solution are used to 
probabilistically share features between solutions. For each solu-
tion Yk, the immigration rate Ak is used to probabilistically decide 
whether or not to immigrate. If immigration is selected, then the 
emigrating solution Yj is selected probabilistically based on the 
emigration rate flj. Migration is denoted by 

(1) 

where S is a solution feature, equivalent to a gene in GAs. Here, 
immigration rate A and emigration rate fl are based on a 
particular migration model, such as the linear model presented 
in Simon (2008). Additional details about migration models are 
discussed in Section 2.2. 

Mutation is a probabilistic operator that randomly modifies a 
solution feature. The purpose of mutation is to increase diversity 
among the population. For low fitness solutions, mutation gives 
them a chance of enhancing the quality of solutions, and for high 
fitness solutions, mutation is able to improve them even more 
than they already have. 

A description of one generation of BBO is given in Table 1. 
Migration and mutation of the entire population take place before 
any of the solutions are replaced in the population, which 
requires the use of the temporary population z in the algorithm. 

2.2. Markov chain model 

In Simon et al. (2010) a BBO Markov chain model is derived. 
This subsection reviews this Markov model. A Markov model of 

Table 1 
One generation of the BBO algorithm. Y is the entire population of candidate 
solutions, Yk is the kth candidate solution, and y r-( s) is the sth feature ofYk. 

For each solution Yk, define emigration rate {ik proportional to fitness 
ofYko{ikE [0,11 
For each solution Yk, define immigration rate h inversely proportional to 
fitness ofYk, h E [0,11 
'~y 

For each solutiol1Zk 
For each solution feature s 

Use h to probabilistically decide whether to immigrate to Zk 

If immigrating then 
Use {~} to probabilitically select the emigrating solution Yj 
zr-(s) +-Yis) 

End if 
Probabilitically decide whether to mutate zr-(s) 

Next solution feature 
Next solution 
y ~' 

BBO provides the probability Pij of transitioning from the ith 
population distribution to the jth population distribution. In BBO, 
two main steps, migration and mutation, are significant, which 
indicate that the transition probability includes the migration 
probability and the mutation probability for one generation. 

Consider a problem whose solutions are in a binary search 
space. The set of candidate solutions is the set of all bit strings Xi 

consisting of q bits each. Therefore, the cardinality of the search 
space is n =2Q• Use N to denote the population size, and use v to 
denote the population vector, where the component Vi is the 
number of candidate solutions Xi in the population. Use Yk to 
denote the kth individual in the population, and use S to denote 
the sth feature of a solution. According to Simon et al. (2010), the 
migration probability during generation t, which results in an 
individual at generation t+ 1, is the following: 

Pr(Yk,c+ 1 (5) ~ x,es»~ 

= Pr(no imigration to Yk,t)Pr(Yk,t+ 1 (s) = Xi(s)1 no immigration) 

+Pr(immigration to Yk,t)Pr(Yk,t+ 1 (s) = Xi(S) I immigration) 

1 1 Lj E SiCS) Vj flj
= (1-AmCk)10(xmCk)(s)-Xi(S»+ AmCk) ~ii-"=--"-~ (2) 

Lj-1 Vjflj 

where 10 is the indicator function on the set {O}, and 

Yk=XmCk) for k=l, ... ,N (3) 

where m(k) is defined as 

m(k) = min r such that 
cL Vi ~ k (4) 

i -1 

The notation SiCS) denotes the set of population indices j such that 
the sth bit of Xj is equal to the sth bit of Xi' That is 

(5) 

In fact, from (2) the total migration probability includes two parts: 
the probability that immigration did not occur and the probability 
that immigration occurred. When Yk(S) does not change from 
generation t to generation t+ 1, that is, the sth feature of Yk is not 
selected for immigration during generation t, then 

Yk(S)t+1 =XmCk)(S) (no imigration tOYk,t) (6) 

When the sth feature of Yk is selected for immigration during 
generation t, the probability that Yk(S)t+l is equal to XAS) is 
proportional to the combined emigration rates of all individuals 



whose sth feature is equal to XAS). This probability can be written as 

Lj_""jVj!1j (" "" )Primm (yk s ()t+1 =Xi S (» = n Immigration tOYk,t (1)
Lj -1 Vjf1j 

Eqs. (6) and (7) are combined with the fact that the probability of 
immigration to Yk(S) is equal to Ak to obtain (2). 

For q bits in each solution, Pki(V) denotes the probability that 
immigration results in Yk=Xi, given that the population distribu-
tion is equal to v, which can be written as 

Pki(V) = Pr(Yk,t+1 =Xi) 

[ , ,(l-AmCk)lo(xmCk)(s)-xi(s»+Am(k) Lj_""lVj!1j] (8)n "II 
q 

5-1 L;-1V;f1; 

Note that the kth row of p(v) corresponds to the kth iteration of 
the outer loop in Table 1 (there are N iterations of the outer loop 
in Table 1). The ith column of p(v) corresponds to the probability 
of obtaining island Xi during each outer loop iteration; that is, PkAV) 
means the probability of the ith outcome on the kth migration trial. 

In (8) only migration is calculated. Mutation probability needs 
to be included after migration is completed. Use U to denote the 
n x n mutation matrix, where Uij is the probability that Xj mutates 
to Xi. The probability that the kth immigration trial followed by 
mutation results in Xi is denoted as I1~)(v). This can be written as 

" 
I1~)(v) = Z=UijPkj(V) 

j -1 

(9) 

where the elements of p(v) are given in (8). 0 2 }(v) contains the 
probabilities when both migration and mutation are considered. 
Define u as the population vector after migration and mutation 
are completed, where the component Ui is the number of solu-
tions Xi in the population. Then the transition probability Pr(ulv) 
where population vector u is obtained after one generation, given 
that the population vector is v at the beginning of the generation, 
can be obtained as 

N " 
Pr(ulv)~ LJ_Y II II[p:-;J(v)y', 

k -1i-1 

Y ~ {i ERNxo : iki E{O, l)',P,ki ~ 1 for all k, tiki ~ u, for all i}
k-1 

(10) 

Eq. (10) can be used to find the transition matrix for BBO with 
migration and mutation. In order to find the probability that the 
BBO population transitions from v to u after one generation, find 
all of the} matrices that satisfy the condition of (10). For each of 
these} matrices, compute the product of products given in (10). 
Then add up all the product-of-products to obtain the desired 
probability. The Markov transition matrix Q is obtained by 
computing (10) for each possible v and each possible u. The 
element Clij will give the probability of transitioning from popula-
tion vector v to u after one generation. Note the matrix Q is a TxT 
matrix, where T is the total number of possible populations, 
which can be calculated by several different methods, as dis-
cussed in Simon et al. (2010). Once the transition matrix Q is 
calculated, a wealth of Markov tools (Grinstead and Snell, 1997) 
can be applied to the transition matrix to find statistical proper-
ties of BBO, including the limiting probability of each possible 
BBO population, and population distributions of different BBO 
migration models. This is discussed further in Section 3. 

2.3. Migration models 

According to different mathematical models of biogeography 
(Lomolino et aI., 2009; Whittaker, 1998), various migration model 

a b 

~ ] 
A ~ 

A ~ <t 
filnes, fitness 

c d 

Fig. 1. Four migration model CUlves, where (a}-(d) respectively denote the linear 
migration curve, quadratic migration curve, sinusoidal migration curve, and 
generalized sinusoidal migration curve, respectively. 1 is immigration rate and {f 

is emigration rate, and it is assumed that the maximum immigration rate and 
maximum emigration rate are both equal to 1. 

curves can be obtained. In Ma (2010), the influences of six 
representative migration model curves on optimization perfor-
mance are explored, based on empirical experiments, including 
three linear curves and three nonlinear curves. In this paper, the 
Markov model discussed above is used to verify the effect of 
migration curves on BBO. The three best migration models in Ma 
(2010) are used here, namely, the linear migration model, quadratic 
migration model, and sinusoidal migration model. In addition, a new 
model is introduced here, which is called the generalized sinusoidal 
migration model. The curves of these four models are shown in 
Fig. 1, where Fig. l(a)-(d) respectively denote the linear migration 
curve, quadratic migration curve, sinusoidal migration curve, and 
generalized sinusoidal migration curve. In Fig. 1, A denotes immi-
gration rate and f1 denotes emigration rate, and it is assumed that 
the maximum inunigration rate and maximum emigration rate are 
both equal to 1. This subsection first reviews the previously 
proposed migration models, then discusses the generalized sinusoi-
dal migration model. 

According to Simon et al. (2010), the linear migration model is 
given as follows 

A~ 1-fitness 

(11) 

where fitness denotes solution fitness, and is normalized to the 
range [0,1]. This model was first presented in the original BBO 
paper (Simon, 2008). It means that immigration rate A and 
emigration rate f1 are linear functions of solution fitness. This is 
illustrated by Fig. l(a). The linear migration model does not exist 
in natural biogeography. Nevertheless this model exhibits fea-
tures and properties of the process of migration that are much 
simpler than the general, nonlinear case. 

The second model is the quadratic migration model, which is 

A~(1-fitness)' 

!1 ~ (fitness)' (12) 

where migration rate A and f1 are concave quadratic functions of 
solution fitness, and where fitness is again normalized to the range 
[0,1]. This is illustrated by Fig. l(b). This model is inspired by island 
biogeography, which is developed to explain the species distribution 
of biological habitats. Based on an experimentally tested theory of 
island biogeography (Whittaker, 1998), we know that migration in a 
single habitat follows a quadratic function of the size of the habitat 



and geographical proximity to other habitats. According to (12), 
when solution fitness is small, immigration rate rapidly decreases 
from its maximum while emigration rate slowly increases from zero. 
When solution fitness is large, immigration rate gradually decreases 
to zero and emigration rate rapidly increases to its maximum. 

The sinusoidal migration model is given by 

A = !i(cos(jitness x n)+ 1) 

1
f1 ~ z(-cos(fitness x nH 1) (13) 

where migration rate A and f1 are sinusoidal functions of solution 
fitness, and where fitness is again normalized to the range [0,1]. This 
model describes the migration curves to take into account species 
mobility, the evolution of particular species, and population size. 
These factors make the migration curves look like sinusoids. This is 
illustrated by Fig. l(c). Based on (13), when solution fitness is small 
or large, immigration rate and emigration rate both change slowly 
from their extremes, and when solution fitness is medium, the 
migration rates change rapidly from their intersection. 

Classical island biogeography theory indicates that the inunigra-
tion rate decreases and emigration rate increases as the number of 
species increases in a habitat. In BBO this corresponds to a mono-
tonic decrease in inunigration rate and a monotonic increase in 
emigration rate as solution fitness increases, as shown in the 
previous three migration models, although their curve shapes are 
different. This means that as a solution becomes more fit, the 
probability of incorporating features from other solutions decreases. 
However, recent advances in biogeography indicate that for some 
pioneer species, at least for plants, an initial increase in species 
count results in an initial increase in immigration rate and an initial 
decrease in emigration rate (Lomolino et aI., 2009; Whittaker, 1998). 
This is because the original unfavorable environmental conditions of 
the island are ameliorated by the first colonists, which make it more 
hospitable to additional species. That is, the positive effect of 
increased diversity due to initial immigration overcomes the nega-
tive effect of increased population size. In BBO this would corre-
spond to an initial increase in immigration rate as a very poor 
candidate solution initially improves its fitness. This can be viewed 
as a temporary positive feedback mechanism in BBO. A very poor 
candidate solution accepts features from other solutions, increasing 
its fitness, which subsequently increases its likelihood of accepting 
even more features from other solutions. This idea can be incorpo-
rated into other FAs (Miihlenbein and Schlierkamp-Voosen, 1993) 
also, but its initial motivation comes from biogeography. This is 
depicted in Fig. l(d), and is expressed as 

,l ~ 5: (cos(fitness x n +PH 1) 

1
f1 ~ z(-cos(fitness x n+PH 1) (14) 

Table 2 

where f3 is a negative trigonometric offset angle (typically between 
- nj2 and 0), but in BBO, it denotes the degree of temporary positive 
immigration rate feedback With this model, fitness is normalized to 
[0, l-f3jn]. This is called the generalized sinusoidal migration 
model. This proposed model shows that immigration initially 
increases with solution fitness. It gives improving solutions the 
momentum that they need to continue improving. As a solution 
continues to become fitter after the initial increase in inunigration, 
immigration begins to decrease to give less fit solutions relatively 
greater opportunities to immigrate good solution features. 

3. Result comparisons 

This section first investigates the effect of the parameter f3 in 
the generalized sinusoidal migration model (Section 3.1), then 
compares the performance of the four migration models proposed 
in Section 2.3 using the BBO Markov chain model (Section 3.2), 
and finally compares the generalized sinusoidal migration model 
with the regular sinusoidal migration model using 23 benchmark 
testing functions (Section 3.3). 

3.1. Generalized sinusoidal migration model: effect of the parameter f3 

In the first experiment the effect of the parameter f3, which is 
the degree of temporary positive immigration rate feedback in the 
generalized sinusoidal migration model, is investigated. The 
limiting population distribution of the generalized sinusoidal 
migration model ofBBO is given in Eq. (10). This is the probability, 
in the limit as the generation count approaches infinity, that the 
BBO population consists of any particular set of individuals. Test 
functions are limited to three-bit problems with a search space 
cardinality of eight and a population size of four, due to the 
exponential increase of Markov matrix sizes with problem size. 
Three fitness functions are investigated, which are given as 

h~(1 2345678) 

h~(1 2 3 2 1 2 3 2) 

h~(5 2 2 3 2 3 3 4) (15) 

where ft is an unimodal one-max problem, h is a multimodal 
problem, andh is a deceptive problem. Fitness values are listed in 
binary order, so the first element of each fitness function 
corresponds to the bit string 000, the second element corresponds 
to the bit string 001, and so on. 

Theparameterf3=O, -nj4, -nj3, and -nj2 inEq. (14) is used to 
investigate its influence on performance of the generalized sinusoidal 
migration model. In addition, simulation experiments are used to 
confirm the results. The other parameters of BBO are reconunended 
as follows: population size of 50, maximum immigration rate and 

Optimization results of the generalized sinusoidal migration model for unimodal one-max problem/1 when p=O, -rt/4, - nI3, and -nI2. The table shows the probabilities 
of obtaining an aU-optimal population and the probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in 
bold font in each row. 

Mutation Population Probability 
rate vector 

p~O p= - n/4 p= -n/3 p= -n/2 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 AU optimal 0.0456 0.0455 0.0475 0.0483 0.0526 0.0545 0.1001 0.1024 
No optimal 0.1994 0.1872 0.1975 0.1817 0.1756 0.1703 0.1542 0.1517 

0.01 AU optimal 0.6076 0.6008 0.6205 0.6260 0.6542 0.6618 0.7354 0.7361 
No optimal 0.0367 0.0351 0.0314 0.0306 0.0376 0.0371 0.0394 0.0317 

0.001 AU optimal 0.9062 0.9094 0.9335 0.9327 0.9363 0.9368 0.9456 0.9513 
No optimal 0.0151 0.0147 0.0112 Om05 0.0102 0.0099 0.0103 0.0158 



Table 3 
Optimization results of the generalized sinusoidal migration model for multimodal problem h when p=O, - n/4, - n/3, and - n/2. The table shows the probabilities of 
obtaining an aU-optimal population and the probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in 
bold font in each row. 

Mutation Population Probability 
rate vector 

p~O p= - n/4 p= - n/3 p= - n/2 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 AU optimal 0.2414 0.2419 0.2522 0.2592 0.2790 0.2716 0.2941 0.2824 
No optimal 0.1519 0.1433 0.1507 0.1578 0.1175 0.1214 0.1483 0.1311 

om AU optimal 0.8584 0.8415 0.8774 0.8613 0.8806 0.8893 0.8972 0.9022 
No optimal 0.0241 0.0257 0.0213 0.0227 0.0199 0.0190 0.0287 0.0281 

0.001 AU optimal 0.9627 0.9617 0.9526 0.9604 0.9637 0.9619 0.9834 0.9712 
No optimal 0.0216 0.0244 0.0193 0.0187 0.0142 0.0153 0.0087 0.0090 

Table 4 
Optimization results of the generalized sinusoidal migration model for deceptive problem h when p=O, - n/4, - n/3 , and - n/2. The table shows the probabilities of 
obtaining an aU-optimal population and the probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in 
bold font in each row. 

Mutation Population Probability 
rate vector 

p~O p= - n/4 

Markov Simulation Markov 

0.1 AU optimal 0.0714 0.0709 0.0866 
No optimal 0.4821 0.4894 0.4648 

om AU optimal 0.7479 0.7422 0.7609 
No optimal 0.1119 0.1214 0.1105 

0.001 AU optimal 0.9224 0.9251 0.9164 
No optimal 0.0322 0.0317 0.0267 

maximum emigration rate of 1, mutation rates of 0.1, 0.01, and 0.001 
per bit per generation, generation count of 20,000, and 100 Monte 
Carlo runs for each function. Tables 2-4 show comparisons between 
theoretical (Markov) and simulation results of the generalized 
sinusoidal migration model with different values of f3. The tables 
show the probability of obtaining a population in which all indivi-
duals are optimal, and the probability of obtaining a population in 
which no individuals are optimal. The mutation rates shown in 
Tables 2-4 are applied to each bit in each individual at each 
generation. 

Several things are notable about the results in Tables 2-4. First, 
the mutation rate affects the performance of the generalized 
sinusoidal migration model. For three different test problems, 
the performance of the generalized sinusoidal migration model 
improves as the mutation rate decreases; that is, the probability 
of obtaining a population in which all individuals are optimal 
increases, and the probability of obtaining a population in which 
no individuals are optimal decreases. A high mutation rate of 
0.1 per bit results in too much exploration, so the probability of 
obtaining the optimal population is low. However, as the muta-
tion rate decreases to the values of 0.01 and 0.001, the probability 
of obtaining the optimal population significantly increases. 

Second, when the parameter f3 = - nj2, the generalized sinu-
soidal migration model performs the best on all three test 
problems for most cases. For example, for the unimodal one-
max problem (Table 2), the best performance is obtained by the 
generalized sinusoidal migration model with the parameter 
f3 = - nj2 and a mutation rate of 0.001 in its high probability of 
obtaining a population with all optimal individuals (94.6%), and in 
its low probability of obtaining a population with no optimal 
individuals (1.0%). When the parameter f3=0, -nj4, and -nj3, 

p= - n/3 p= - n/2 

Simulation Markov Simulation Markov Simulation 

0.0812 0.0890 0.0901 0.1127 0.1072 
0.4607 0.4321 0.4294 0.4078 0.4007 

0.7745 0.7879 0.7822 0.8115 0.8110 
0.1184 0.1006 0.1034 0.0941 0.0935 

0.9275 0.9312 0.9381 0.9689 0.9548 
0.0271 0.0204 0.0253 0.0186 0.0177 

the probabilities are 90.6%, 93.3%, and 93.6%, respectively, for 
obtaining a population with all optimal individuals, and 1.5%, 
1.1 %, and 1.0%, respectively, for obtaining a population with no 
optimal individuals. This indicates that the value of parameter f3 
can significantly affect the performance of the generalized sinu-
soidal migration model. 

Third, from Tables 2-4, the Markov model results and the 
simulation results match well for all test problems, which con-
firms the Markov theory, and verifies the significance of para-
meter f3 for the generalized sinusoidal migration model. 

Fig. 2 shows the probability of obtaining an all-optimal 
population for the generalized sinusoidal migration model for 
the unimodal one-max problem when the parameter f3=0, -nj4, 
-nj3 and -nj2, and when the mutation rate is 1% per bit. It is 
seen that the results agree with Table 2, providing further 
confirmation of the Markov theory results. 

3.2. Theoretical comparison of migration models 

The next experiment investigates the effect of migration 
models on BBD performance using the BBD Markov chain model. 
The limiting population distribution of BBD with the four migra-
tion models proposed in Section 2.3 is compared using Eq. (10). 
Test functions and the parameters used in this experiment are the 
same as those described in the previous section. For the general-
ized sinusoidal migration model, f3 = - nj2, which provides the 
best performance based on the results in the previous section 
(when f3=0, the generalized sinusoidal migration model reduces 
to the regular sinusoidal migration model). Tables 5-7 show 
comparisons between theoretical and simulated BBD with the 
four proposed migration models. 



From Tables 5-7, first, the mutation rate affects the perfor-
mance of BBO for all four migration models, which is similar 
to the results discussed in the previous section. Second, the 
generalized sinusoidal migration model performs better than 
the other three migration models for most cases. For example, 
for the deceptive problem (Table 7 ), the best performance is 
obtained by the generalized sinusoidal migration model with a 
mutation rate of 0.001 in its high probability of obtaining a 
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Fig. 2. Simulation results obtained by the parameter /3=0, -n/4, - n /3 and - n/2 
for the generalized sinusoidal migration model for a three-bit unimodal optimiza-
tion problem with a mutation rate of 1% per bit. The figure shows the cumulative 
percent of obtaining an aU-optimal population. 

Table 5 

population with all optimal individuals (96.9%), and in its low 
probability of obtaining a population with no optimal individuals 
(1.9%). The probabilities of linear model, quadratic model, and 
sinusoidal model are 90.7%, 91.9%, and 92.2%, respectively, for 
obtaining a population with all optimal individuals, and 7.3%, 
6.0%, and 3.2%, respectively, for obtaining a population with no 
optimal individuals. Third, the Markov theory results are con-
firmed by the simulation results. 

Tables 5-7 indicate that changing the migration model curve 
can provide a valuable approach for enhancing BBO. From Tables 
5-7, we further see that the nonlinear migration models (quad-
ratic, sinusoidal, and generalized sinusoidal) are better than the 
linear migration model with different mutation rates for all test 
problems. Such results are similar to those reported in previous 
work (Ma, 2010). This confirms that when BBO migration model 
curves are closer to migration characteristics in nature, such as 
the generalized sinusoidal migration model, optimization perfor-
mance is better. 

3.3. Empirical comparison with sinusoidal migration model 

To confirm the performance of the proposed generalized 
sinusoidal migration model, it is compared with the regular 
sinusoidal migration model using 23 benchmark functions, which 
are chosen from Hedar and Fukushima (2003). These functions 
are briefly summarized in Table 8. A more detailed description of 
these functions can be found in the literature (Yao et al., 1999), 
where functions fOl-f07 are high-dimensional and unimodal, 
functions f08-f13 are high-dimensional and multimodal with 
many local minima, and functions f14-f23 are low-dimensional 
with only a few local minima. For both migration models, the 

Optimization results of four migration models for unimodal one-max problem h The table shows the probabilities of obtaining an aU-optimal population and the 
probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in bold font in each row. 

Mutation 
rate 

Population 
vector 

Probability 

Linear model Quadratic model Sinusoidal model Generalized model 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 AU optimal 
No optimal 

0.0257 
0.2738 

0.0214 
0.2709 

0.0363 
0.2117 

0.0360 
0.2108 

0.0456 0.0455 
0.1994 0.1872 

0.1001 0.1024 
0.1542 0.1517 

0.01 AU optimal 
No optimal 

0.5049 
0.1004 

0.5146 
0.1097 

0.5529 
0.0416 

0.5621 
0.0411 

0.6076 
0.0367 

0.6008 
0.0351 

0.7354 
0.0394 

0.7361 
0.0317 

0.001 AU optimal 
No optimal 

0.8676 
0.0761 

0.8504 
0.0755 

0.9309 
0.0395 

0.9274 
0.0356 

0.9062 
0.0151 

0.9094 
0.0147 

0.9456 
0.0103 

0.9513 
0.0158 

Table 6 
Optimization results offour migration models for multimodal problemh The table shows the probabilities of obtaining an aU-optimal population and the probabilities of 
obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in bold font in each row. 

Mutation Population Probability 
rate vector 

Linear model Quadratic model Sinusoidal model Generalized model 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 	 AU optimal 0.1203 0.1231 0.2078 0.2166 0.2414 0.2419 0.2941 0.2824 
No optimal 0.1827 0.1759 0.2173 0.2078 0.1519 0.1433 0.1175 0.1214 

0.01 	 AU optimal 0.7760 0.7767 0.8311 0.8246 0.8584 0.8415 0.8972 0.9022 
No optimal 0.0515 0.0438 0.0354 0.0251 0.0241 0.0257 0.0287 0.0281 

0.001 	 AU optimal 0.9154 0.9212 0.9318 0.9412 0.9627 0.9617 0.9834 0.9712 
No optimal 0.0355 0.0541 0.0274 0.0264 0.0216 0.0244 0.0087 0.0090 



Table 7 
Optimization results of four migration models for deceptive problem/J. The table shows the probabilities of obtaining an aU-optimal population and the probabilities of 
obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in bold font in each row. 

Mutation Population Probability 
rate vector 

Linear model Quadratic model Sinusoidal model 

Markov Simulation Markov Simulation Markov Simulation 

0.1 	 All optimal 0.0145 0.0144 0.0334 0.0332 0.0714 0.0709 
No optimal 0.7954 0.8012 0.5048 0.5007 0.4821 0.4894 

om 	 All optimal 0.6407 0.6513 0.7009 0.7145 0.7479 0.7422 
No optimal 0.1921 0.1825 0.1193 0.0987 0.1119 0.1214 

0.001 	 All optimal 0.9074 0.9017 0.9194 0.9152 0.9224 0.9251 
No optimal 0.0733 0.0691 0.0597 0.0590 0.0322 0.0317 

Table 8  
Benchmark functions. More details about these functions can be found in Yao. et al. (1999).  

Function Name 	 Dimension Domain 

f01 Sphere model 30 
f02 Schwefel"s problem 2.22 30 
f03 Schwefel"s problem 1.2 30 
f04 Schwefel"s problem 2.21 30 
f05 Generalized Rosenbrock's function 30 
f06 Step function 30 
f07 Quartic function 30 

f08 Generalized Schwefel's problem 2.26 30 
f09 Generalized Rastrigin's function 30 
flO Ackley's function 30 
fl1 Generalized Griewank's function 30 
f12 Generalized Penalized function 1 30 
f13 Generalized Penalized function 2 30 

fl4 Shekel's Foxholes function 2 
fl5 Kowalik's function 4 
fl6 Six-Hump Camel-Back function 2 
f17 Branin's function 2 
fl8 Goldstein-Price's function 2 
fl9 Hartman's function 1 3 
f20 Hartman's function 2 6 
f21 Shekel's function 1 
f22 Shekel's function 2 
f23 Shekel's function 3 

following parameters of BBO have to be examined: population 
size, maximum migration rates, and mutation rate. In the litera-
ture (Ma, 2010) these parameters have been discussed in detailed. 
This paper uses a reasonable set of tuning parameters, but does 
not make any effort in finding the best parameter settings. For 
this experiment, the parameters of BBO used in the two migration 
models are the same: population size of 50, maximum immigra-
tion rate and maximum emigration rate of 1, mutation rate of 
0.01 per bit per generation, generation limit of 20,000 for fOl-f13, 
and 1000 for f14-f23, and 30 Monte Carlo runs. In addition, 
f3 = - nj2 for the generalized sinusoidal migration model. 

Table 9 summarizes the performance on 23 benchmark func-
tions for the generalized sinusoidal migration model and the 
regular sinusoidal migration model. It is apparent that the 
generalized sinusoidal migration model performs significantly 
better than the regular sinusoidal migration model in terms of 
the final results for the most functions. The generalized sinusoidal 
migration model performs the best on 16 functions, and the 
regular sinusoidal migration model performs the best on four 
functions (f06, f12, f17, 123). For functions f14, f19, 120, both 
models attain the global optimum. 

-100 ~ Xi ~ 100 
-1O ~ Xi ~ 10 

-100 ~ Xi ~ 100 
-100 ~ Xi ~ 100 
-30 ~ Xi ~ 30 

-100 ~ Xi ~ 100 
-1.28 ~ Xi~ 1.28 

-500 ~ Xi ~ 500 
-5.12~Xi~ 5.12 

-32 ~ Xi ~ 32 

-600 ~ Xi ~ 600 
-50 ~ Xi~ 50 

-50 ~ Xi~ 50 

-65.536 ~ Xi ~ 65.536 
-5 ~ Xi~ 5 

-5 ~ Xi~ 5 

-5 ~ Xl ~ 10, 0 ~ x2~ 15 , 

-2 ~ Xi~ 2 

O ~ xi ~ l 

O ~ xi ~ l 

0 ~ xi~ 10 

0 ~ xi~ 10 

0 ~ xi~ 10 

Generalized model 

Markov Simulation 

0.1127 0.1072 
0.4078 0.4007 

0.8115 0.8110 
0.0941 0.0935 

0.9689 0.9548 
0.0186 0.0177 

Minimum 

o 
O. 
o 
o 
o 
o 
o 
-12569.5 
o 
o 
o 
o 
o 

0.003075 
-1.0316285 
0.398 
3 
-3.86 
-3.32 
-10.1532 
-10.4029 
-10.5364 

Table 9 also indicates statistically significant differences of the 
two models based on the p value, which is the probability that the 
two sets of data come from the same distribution. From p value 
comparison between the generalized sinusoidal migration model 
and the regular sinusoidal migration model, there are 17 p values 
smaller than 0.05 (which is often used as the significance level or 
critical p value). Based on this result, the probability that two 
models are from the same distribution is low. It indicates that the 
parameter f3 is influential on BBO performance. Furthermore, the 
generalized sinusoidal migration model generally outperforms 
the regular sinusoidal migration model, which indicates that the 
parameter f3, which is the degree of temporary positive immigra-
tion rate feedback in the generalized sinusoidal migration model, 
contributes to improve the optimization ability of BBO. Finally, 
note that the benchmark functions outperformed by the general-
ized sinusoidal migration model include high-dimensional and 
unimodal functions, high-dimensional and multimodal functions 
with many local minima, and low-dimensional functions with 
only a few local minima. Therefore, the type of benchmark 
function is not of importance for successful optimization using 
the generalized sinusoidal migration model. 



Table 9 
Comparison of experimental results over 30 Monte Carlo runs of the generalized sinusoidal migration model and the regular sinusoidal migration model. The table shows 
the best, mean and its standard deviation. The p value for each benchmark gives the probability that the two sets of results come from the same distribution. Best results 
for each benchmark function are shown in bold font. 

Fun. BBO 

Sinusoidal model 

Best Mean Stdev 

ID1 2.17E-02 6.38E-02 5.46E-03  
ID2 1.84E-04 8.03E-04 3.84E-04  
ID3 6.33E -02 8.31E-02 1.17E-02  
f1l4 5.68E-15 5.34E-14 2.54E-15  
IDS 9.24E-01 3.47E+00 4.33E-Ol  
f1l6 O.OOE+OO O.OOE+OO O.OOE+OO  
ID7 1.37E-15 2.36E-15 1.96E-16  

IDS 2.63E-06 5.08E-06 2.74E-06  
tD9 1.55E-03 1.21E-02 3.78E-03  
flO 2.54E-01 9.71E-01 7.16E-02  
fl1 7.49E -01 1.97E+00 9.33E-Ol  
fl2 2.26E-30 4.IIE-30 S.45E-3I  
f13 1.28E -10 7.36E- 10 6.32E-11  

fl4 O.OOE+OO O.OOE+OO O.OOE+OO  
flS 3.19E-04 5.29E-04 6.27E-05  
fl6 2.67E-09 1.51E-08 7.32E-09  
f17 2.17E-15 1.44E-14 4.77E-15  
flS 6.06E-15 7.05E-15 2.56E-16  
fl9 O.OOE+OO O.OOE+OO O.OOE+OO  
120 O.OOE+OO O.OOE+OO O.OOE+OO  
121 5.29E-08 6.14E-07 6.60E-08  
f22 9.60E-12 7.89E-1O 2.31E-I0  
t23 3.55E-12 7.34E-ll 5.7SE-12  

4. Conclusions 

This paper proposed a generalized sinusoidal migration model 
based on the natural migration relations in island biogeography, 
and explored optimization performance of BBQ with different 
migration models based on Markov chain models of the BBQ 
algorithm. New theoretical results for different migration models 
have been obtained, which are confirmed with simulation results. 
The experiments for a unimodal one-max problem, multimodal 
problem and deceptive problem: (1) show that the generalized 
sinusoidal migration model further improves BBQ's performance. 
Namely, the parameter {3, the degree of temporary positive 
immigration rate feedback in this model, can affect BBQ's opti-
mization ability; (2) verify that different migration models in BBQ 
result in significant changes in performance based on Markov 
theory; (3) further show that BBQ migration models which are 
closer to natural biogeography are significantly better than gen-
eral models. Although the theoretical results are limited to small 
problem dimensions due to the factorial increase of the Markov 
transition matrix size with problem dimension, these results 
provide confidence that migration models based on island bio-
geography can improve BBQ performance. In addition, to confirm 
the above conclusions, empirical performance comparison 
between the generalized sinusoidal migration model with the 
sinusoidal migration model was investigated through 23 bench-
mark functions. The results showed that generalized sinusoidal 
migration exhibits superior optimization performance. 

Future work includes several important directions. The first is 
to explore additional migration model features as indicated by 
natural biogeography theory to obtain better BBQ performance. It 
has been shown in this paper that the generalized migration 
model generally gives better BBQ performance, but it remains to 
be seen how other migration model features will affect BBQ 
performance. There are many other interesting possibilities for 
aligning BBQ more closely with island biogeography. For example, 

p value 

Generalized model 

Best Mean Stdev 

9.55E-04 S.24E-03 9.7SE-04 8.24E-03 
1.22E-04 1.47E-04 4.S6E-05 0.47 
2.71E-03 3.0SE-03 5.71E-04 0.03 
5.36E-15 4.64E-14 1.07E-15 0.16 
6.54E-OI 9.36E-OI 2.44E-0l 0.08 
1.16E-15 8.21E-15 1.83E-16 7.19E-04 
O.OOE+OO O.OOE+OO O.OOE+OO 6.58E-04 

6.S5E-09 9.3SE-09 4.76E-I0 1.28E-03 
l.I5E-04 4.3SE-04 9.33E-05 om 
l.I4E-03 2.54E-03 S.25E-04 5.32E-03 
2.55E-OI 3.65E-OI 1.72E-02 0.03 
3.74E-25 7.81E-25 5.38E-26 9.21E-04 
1.07E-ll 9.05E-II 6.72E-12 0.02 

O.OOE+OO O.OOE+OO O.OOE+OO 0.56 
S.46E-06 7.ISE-05 l.S0E-06 0.02 
7.11E-12 4.02E-II 1.22E-12 5.01E-04 
5.34E-I0 3.94E-09 3.89E-1O 3.76E-04 
O.OOE+OO O.OOE+OO O.OOE+OO 2.37E-04 
O.OOE+OO O.OOE+OO O.OOE+OO 0.56 
O.OOE+OO O.OOE+OO O.OOE+OO 0.56 
2.69E-OS 3.57E-OS 6.96E-09 0.03 
6.65E-15 3.47E-14 5.73E-15 4.88E-04 
1.75E-I0 4.54E-I0 1.58E-1O 0.03 

habitat similarity, species age criterion, resource competition, and 
migration time correlation, could inspire other variations to the 
BBQ algorithm and to the shape of the migration curves. The 
second important direction for future research is the development 
of Markov theory results for BBQ variations with the additional 
migration model features mentioned above. The third important 
direction for future research is the development of additional 
theoretical tools to study BBQ performance. For example, the 
asymptotic convergence of BBQ with different migration models 
and their convergence rates could be worth further study. Fourth, 
adaptive migration rates and their theoretical analysis could be 
considered. 
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