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ABSTRACT

Biogeography-based optimization (BBQ) is a new evolutionary algorithm inspired by biogeography,
which involves the study of the migration of biological species between habitats. Previous work has
shown that various migration models of BBC result in significant changes in performance. Sinusoidal
migration maodels have been shown to provide the best performance so far. Motivated by biogeography
theory and previous results, in this paper a generalized sinusoidal migration model curve is proposed. A
previously derived BBO Markov model is used to analyze the effect of migration models on
optimization performance, and new theoretical results which are confirmed with simulation results
are obtained. The results show that the generalized sinusoidal migration model is significantly better
than other models for simple but representative problems, including a unimodal one-max problem, a
multimodal problem, and a deceptive problem. In addition, performance comparison is further
investigated through 23 benchmark functions with a wide range of dimensions and diverse complex-

ities, to verify the superiority of the generalized sinusoidal migration model.

1. Introduction

Mathematical models of biogecgraphy describe the immigra-
tion and emigration of species between habitats. Biogeography-
based optimization (BBO)} was first presented in 2008 (Simon,
2008) and is an extension of biogeography theory to evolutionary
algorithms (EAs). BBO has demonstrated good performance on
various unconstrained and constrained benchmark functions
(Du et al, 2009; Ergezer et al, 2009; Ma and Simon, 2010). It
has also been applied to real-world optimization problems,
including sensor selection (Simon, 2008), groundwater detection
{Kundra et al., 2009}, satellite image classification {Panchal et al,,
2009), and power system optimization (Rarick et al., 2009). See
reference Gardner and Simon (2009) for a web-based BBO
graphical user interface. Like other EAs (Ahn, 2006; Schwefel,
1995; Yao et al,, 1999), BBO is based on the idea of probabil-
istically sharing information between candidate solutions based
on their fitness values. In BBO, each solution is comprised of a set
of features. Fach solution immigrates features from other solu-
tions based on its immigration rate, and emigrates features to
other solutions based on its emigration rate. In the original BBO

* Correspending author.
E-mail addresses: Mahp@usx.edu.cn (H. Ma),
d.j.simon@csuchio.edu (D. Simon),

paper (Simon, 2008}, a linear migration model is used for the sake
of simplicity. In Ma (2010} and Ma et al. {2009) more complicated
and life-like migration models are presented to give better
optimization results. These research provided empirical evidence
of the potential benefit of alternative migration models of BBO.
However, as with most other EAs, there are limited theoretical
results for BBO.

Markov models have been a valuable theoretical tool to
analyze EAs, including simple genetic algorithms (Davis and
Principe, 1993; Nix and Vose, 1992; Reeves and Rowe, 2003;
Suzulki, 1995, 1998) and simulated annealing (Lundy and Mees,
1986). Markov models have already been derived for BBO {Simon
et al, 2009, 2010), aleng with Markov model comparisons
between BBO and genetic algorithms (Simon et al, 2011}. A
Markov chain is a random process, which has a discrete set of
possible state values s; (i=1,2, ..., T). The probability that the
system transitions from state s; to s; is given by the probability py,
which is called a transition probability. The T x T matrix P=[p;] is
called the transition matrix. A Markov state in Simon et al. (2010)
represents a BBO population distribution. Each state describes
how many individuals at each point of the search-space are there
in the population. Probability p; is the probability that the
population transitions from the ith population distribution to
the jth population distribution in one generation. Although the
BBO Markov model is established and some useful results are
obtained, there have not been any reports in the literature to
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analyze the influence of migration models based on Markov
theory. This paper uses Markov models to study the effect of
migration models on the performance of BBO.

Section 2 gives an introduction to BBO, provides its Markov
chain model and presents a new generalized sinusoidal migration
model. Section 3 compares various migration meodels based on
the Markov chain model and simulation results. Some concluding
remarks and directions for future work are provided in Section 4.

2. Markov chains for biogeography-based optimization

This section presents an overview of the BBO algerithm
(Section 2.1), provides its Markov chain model (Section 2.2}, and
discusses different migration models of BBO {Section 2.3).

2.1. Biogeography-based optimization

In this section a general presentation of the BBO algorithm is
given. Consider an optimization problem with a certain number of
candidate solutions. A good solution is analogous to a habitat
with a high habitat suitability index (HSI). This corresponds to a
geographical area that is well suited for hosting biclogical species
in biogeography. In optimization problems, HSI corresponds to a
measure of the goodness of a BBO solution, which is also called
fitness. In the following text the term fitness instead of HSI is used
to be consistent with standard EA notation. A poor solution is like
a habitat with a low fitness. High fitness solutions correspond to
habitats with a large number of species, and low fitness solutions
correspond to habitats with a small number of species. High
fitness solutions are more likely to share their features with other
solutions, and low fitness seclutions are more likely to accept
shared features from other solutions. This approach to solve
general optimization problems is called biogeography-based
optimization (BBO). Similar to all other EAs, BBO consists of two
main steps: information sharing (which is implemented with
migration in BBO} and mutation.

Migration is a probabilistic operator that improves a candi-
date solution y;. The migration rates of each solution are used to
probabilistically share features between solutions. For each solu-
tion y,, the immigration rate A, is used to probabilistically decide
whether or not to immigrate. If immigration is selected, then the
emigrating solution y; is selected probabilistically based on the
emigration rate ;. Migration is denoted by

Y(S) = yi(s) ()

where s is a solution feature, equivalent tc a gene in GAs. Here,
immigration rate A and emigration rate g are based on a
particular migration model, such as the linear model presented
in Simon (2008). Additional details about migration models are
discussed in Section 2.2.

Mutation is a probabilistic operator that randomly modifies a
solution feature. The purpese of mutation is to increase diversity
among the population. For low fitness solutions, mutation gives
them a chance of enhancing the quality of solutions, and for high
fitness solutions, mutation is able to improve them even more
than they already have.

A description of one generation of BBO is given in Table 1.
Migration and mutation of the entire population take place before
any of the solutions are replaced in the population, which
requires the use of the temporary population z in the algorithm.

2.2. Markov chain model

In Simon et al. {2010} a BBO Markov chain model is derived.
This subsection reviews this Markov model. A Markov model of

Table 1
One generation of the BBO algorithm. y is the entire pepulatien of candidate
soluticns, yg is the kth candidate solution, and yy(s) is the sth feature of yy.

For each selution yy, define emigration rate i, proporticnal to fitness
of ¥ it € [0.1]
For each selution yy, define immigration rate A inversely propertional to
fitness of yi, Ar e [0,1]
Zey
For each scluticnz,
For each solution feature s
Use Ay to prababilistically decide whether te immigrate to z;,
If immigrating then
Use {4} to probabilitically select the emigrating selution y;
zds) <yils)
End if
Probabilitically decide whether to mutate zi(s)
Mext sclution feature
Next sclution
Yz

BBO provides the probability p; of transitioning from the ith
peopulation distribution te the jth population distribution. In BBO,
two main steps, migration and mutation, are significant, which
indicate that the transition probability includes the migration
probability and the mutation probability for one generation.

Consider a problem whose seclutions are in a binary search
space. The set of candidate solutions is the set of all bit strings x;
consisting of ¢ bits each. Therefore, the cardinality of the search
space is n =29 Use N to denote the population size, and use v to
denote the population vector, where the component 1v; is the
number of candidate solutions x; in the population. Use yi to
denote the kth individual in the populatien, and use s to denote
the sth feature of a solution. According to Simon et al. (2010}, the
migration probability during generation f, which results in an
individual at generation f+1, is the following:

Pr¥iee 18y =x(5))
= Pr(no imigration to y,  JPryy.; . 1(5) = ;(s}| no immigration)

+Pr{immigration to y,  )Pr(y, .. 1(5) = x(s)|immigration)

=( *lm(k))lo(xm(k)(s)*xi (3))+/1m(k) % (2)
where 14 is the indicator function on the set {0}, and
Vi =Xmy for k=1,...N (3
where m{k} is defined as
5
m(ky=min r such that » v;=k (4

i—1

The notation ¢;(s) denotes the set of population indices j such that
the sth bit of x; is equal to the sth bit of x. That is

Cilsy=1j - (st =05 (3)

In fact, from (2) the total migration probability includes two parts:
the probability that immigration did not occur and the probability
that immigration occurred. When yi{s) does not change from
generation ¢ to generation {1, that is, the sth feature of y is not
selected for immigration during generation £, then

VilSh 41 =Xmga(s} (o imigration to y; ) (&)

When the sth feature of yi is selected for immigration during
generation {, the probability that yi(s),,; is equal to x{s) is
proporticnal to the combined emigration rates of all individuals



whose sth feature is equal to x,{s). This probability can be written as
D POM L
X Vil

Egs. (6) and (7) are combined with the fact that the probability of
immigration to yi{s) is equal to A; to obtain (2).

For g bits in each solution, Pi{v} denotes the probability that
immigration results in y,=x; given that the populaticn distribu-
tion is equal to v, which can be written as

Pu(v)=Pri¥ie 1 =X}
< SicamVity
= 1— At 0 Gmia (S)—Xi(SHA- A =22 88 10D
11 |0 AmaoLo@mp (St S
Note that the kth row of P{v} corresponds to the kth iteration of
the outer loop in Table 1 {there are N iterations of the outer loop
in Table 1}. The ith column of (v} corresponds to the probability
of obtaining island x; during each outer loop iteration; that is, P.{1)
means the probability of the ith outcome on the kth migration trial.
In (8) only migration is calculated. Mutation probability needs
to be included after migration is completed. Use U to denote the
n x n mutation matrix, where Uy is the probability that x; mutates
to x; The probability that the kth immigration trial followed by
mutation results in x; is denoted as P,(fi)(v). This can be written as

Pripm We(S)ean = XS = (immigration to yy .} @

(8)

n
PR =" UyPi(v)

i—1
P2 vy = POvUT (5]

where the elements of P(v) are given in (8). P*)(17) contains the
probabilities when both migration and mutation are considered.
Define u as the population vector after migration and mutation
are completed, where the component t; is the number of sclu-
tions x; in the population. Then the transition probability Pr{u|v)
where population vector u is cbtained after one generation, given
that the population vector is v at the beginning of the generation,
can be obtained as

N n
Pr(ulvi=Y .y [[ T1EE o,

k—1i—1

n N
Y = {j eRan : jki = {0,1},2’;«' =1 forall k, ZJ’M =1U; for all l}

i—1 fe—1
(10

Eq. (10) can be used to find the transition matrix for BBO with
migraticn and mutation. In order to find the probability that the
BBO population transitions from v to u after one generation, find
all of the J matrices that satisfy the condition of (10). For each of
these J matrices, compute the product of products given in (10).
Then add up all the product-of-products to obtain the desired
probability. The Markov transition matrix @ is obtained by
computing {10) for each possible v and each possible w. The
element @y will give the probability of transitioning from popula-
tion vector v to u after cne generation. Note the matrixQisaTx T
matrix, where T is the total number of possible populations,
which can be calculated by several different methods, as dis-
cussed in Simon et al. (2010). Once the transition matrix Q is
calculated, a wealth of Markov tools (Grinstead and Snell, 1997)
can he applied to the transition matrix to find statistical proper-
ties of BBO, including the limiting probability of each possible
BBO population, and population distributions of different BBO
migraticn models. This is discussed further in Section 3.

2.3. Migrafion models

According to different mathematical models of biogeography
{(Lomelinoe et al,, 2009; Whittaker, 1998), various migration model
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Fig. 1. Four migration model curves, where (a)-(d) respectively dencte the linear
migration curve, quadratic migraticn curve, sinusocidal migration curve, and
generalized sinuscidal migration curve, respectively. A is immigration rate and yu

is emigration rate, and it is assumed that the maximum immigration rate and
maximum ermigration rate are both equal e 1.

curves can be obtained. In Ma (2010}, the influences of six
representative migration model curves on optimization perfor-
mance are explored, based on empirical experiments, including
three linear curves and three nenlinear curves. In this paper, the
Markov model discussed above is used to verify the effect of
migration curves on BBO. The three best migration models in Ma
(2010) are used here, namely, the linear migration model, quadratic
migration medel, and sinusoidal migration medel. In addition, a new
model is introduced here, which is called the generalized sinusecidal
migration model. The curves of these four models are shown in
Fig. 1, where Fig. 1{a}-(d) respectively denote the linear migration
curve, quadratic migration curve, sinusoidal migration curve, and
generalized sinusoidal migration curve. In Fig. 1, A denotes immi-
gration rate and u denotes emigration rate, and it is assumed that
the maximum immigration rate and maximum emigration rate are
both equal to 1. This subsection first reviews the previcusly
proposed migraticn models, then discusses the generalized sinusoi-
dal migration model.

According to Simon et al. (2010), the linear migration model is
given as follows

A=1—fitness
= fitness (11

where fitness denotes solution fitness, and is normalized to the
range [0,1]. This model was first presented in the original BEO
paper (Simon, 2008). It means that immigration rate 1 and
emigration rate g are linear functions of selution fitness. This is
illustrated by Fig. 1{a). The linear migration model does not exist
in natural biogeography. Nevertheless this model exhibits fea-
tures and properties of the process of migration that are much
simpler than the general, nonlinear case.

The second model is the quadratic migration model, which is

A = (1—fitness)?
= (fitness)y? (12)

where migration rate A and u are concave quadratic functions of
solution fitness, and where fitness is again normalized to the range
[0,1]. This is illustrated by Fig. 1(b). This model is inspired by island
biogeography, which is developed to explain the species distribution
of biological habitats. Based on an experimentally tested theory of
island biogeography (Whittaker, 1998}, we know that migration in a
single habitat follows a quadratic function of the size of the habitat



and geographical proximity to other habitats. According to (12),
when sclution fitness is small, immigration rate rapidly decreases
from its maximum while emigration rate slowly increases from zero.
When solution fitness is large, immigration rate gradually decreases
to zero and emigration rate rapidly increases to its maximum.

The sinuseidal migration model is given by

A= 1(cos{fitness x m}+1)

U= %(fcos(ﬁmess x )+ 1) (13)
where migration rate A and u are sinuseidal functions of solution
fitness, and where fitness is again normalized to the range [0,1]. This
model describes the migration curves to take into account species
mobhility, the evolution of particular species, and population size.
These factors make the migration curves look like sinusoids. This is
illustrated by Fig. 1(c). Based on (13), when solution fitness is small
or large, immigration rate and emigration rate both change slowly
from their extremes, and when solution fitness is medium, the
migration rates change rapidly from their intersection.

Classical island biogeography theory indicates that the immigra-
tion rate decreases and emigration rate increases as the number of
species increases in a habitat. In BBO this correspends to a mono-
tonic decrease in immigration rate and a monotonic increase in
emigration rate as solution fitness increases, as shown in the
previous three migration models, although their curve shapes are
different. This means that as a seolution becomes more fit, the
probability of incorporating features from other solutions decreases.
However, recent advances in biogeography indicate that for some
pioneer species, at least for plants, an initial increase in species
count results in an initial increase in immigration rate and an initial
decrease in emigration rate (Lomolino et al,, 2009; Whittaker, 1998).
This is because the eriginal unfaverable environmental conditions of
the island are ameliorated by the first colonists, which make it more
hospitable to additional species. That is, the positive effect of
increased diversity due to initial immigration overcomes the nega-
tive effect of increased population size. In BBO this would corre-
spond to an initial increase in immigration rate as a very poor
candidate selution initially improves its fitness. This can be viewed
as a temporary positive feedback mechanism in BBO. A very poor
candidate sclution accepts features from other solutions, increasing
its fitness, which subsequently increases its likelihood of accepting
even more features from other solutions. This idea can be incorpo-
rated into other EAs (Miihlenbein and Schlierkamp-Voosen, 1993}
also, but its initial motivation comes from biogecgraphy. This is
depicted in Fig. 1(d), and is expressed as

A= J(cos(fitness x T+ F)+1)

= %(fcos(ﬁmess x T+H+1) (14)

Table 2

where f is a negative trigonometric offset angle (typically between
—mf2 and 0}, but in BBO, it denotes the degree of temporary positive
immigration rate feedback. With this model, fitness is normalized to
[0, 1—fn]. This is called the generalized sinusoidal migration
model. This proposed model shows that immigration initially
increases with solution fitness. It gives improving solutions the
momentum that they need to continue improving. As a solution
continues to become fitter after the initial increase in immigration,
immigration begins to decrease to give less fit solutions relatively
greater opportunities to immigrate good solution features.

3. Result comparisons

This section first investigates the effect of the parameter £ in
the generalized sinuscidal migration model {Section 3.1}, then
compares the performance of the four migration models proposed
in Section 2.3 using the BBO Markov chain model (Section 3.2},
and finally compares the generalized sinusoidal migration model
with the regular sinuseidal migration medel using 23 benchmark
testing functions (Section 3.3).

3.1. Generalized sinusoidal migration model: effect of the parameter f

In the first experiment the effect of the parameter f, which is
the degree of temporary positive immigration rate feedback in the
generalized sinusoidal migration model, is investigated. The
limiting population distribution of the generalized sinusecidal
migration medel of BBO is given in Eq. {10}. This is the probability,
in the limit as the generation count approaches infinity, that the
BBO population consists of any particular set of individuals. Test
functions are limited to three-bit problems with a search space
cardinality of eight and a population size of four, due to the
exponential increase of Markov matrix sizes with problem size.
Three fitness functions are investigated, which are given as

fi=(1 23 456 7 8)

Hh=(123 2123 2)

fi=(522 3 2 3 3 4) (15)

where f; is an unimodal one-max problem, f> is a multimodal
problem, and f5 is a deceptive problem. Fitness values are listed in
binary order, so the first element of each fitness function
corresponds to the bit string 000, the second element corresponds
to the bit string 001, and so on.

The parameter f=0, —n/4, — /3, and —7/2 in Eq. (14} is used to
investigate its influence on performance of the generalized sinuseidal
migration model. In addition, simulation experiments are used to
confirm the results. The other parameters of BBO are recommended
as follows: population size of 50, maximum immigration rate and

Optimization results of the generalized sinuscidal migratien medel for unimedal one-max prablem fr when =0, —ntf4, —nf3, and —=/2. The table shows the probabilities
of obtaining an all-optimal population and the prebabilities of cbraining a no-optimal population using the BBO Markev moedel and simulations. The best performance is in

bold font in each row.

Mutation Population Probability
rate vector
£=0 B=—nld B=—nf3 B=—nf2
Markov Simulaticn Markov Simulatien Markov Sirmulation Markov Simulation
0.1 All optimal 0.0456 0.0455 0.0475 0.0483 0.0526 0.0545 0.1001 0.1024
Nc optimal 0.1994 0.1872 0.1975 0.1817 0.1756 0.1703 0.1542 0.1517
0.01 All optimal 0.6076 0.6008 0.6205 0.6260 0.6542 0.6613 0.7354 0.7361
Nc optimal 0.0367 0.0351 0.0314 0.0306 0.0376 0.0371 0.0394 0.0317
0.001 All optimal 0.9062 0.9094 0.9335 0.9327 0.9363 0.9368 0.9456 0.9513
No optimal 0.0151 0.0147 0.0112 0.0105 0.0102 0.0099 0.0103 0.0158




Table 3

Optimizatien results of the generalized sinuseidal migratien model for multimodal preblem £, when =0, —n/4, —n/3, and —=/2. The table shows the prebabilities of
abtaining an all-optimal population and the probabilities of abtaining a ne-eptimal pepulatien using the BBO Markev model and simulations. The best performance is in

hold font in each row.

Mutaticn Population Probability
rate vector
p=0 f=-njd f=-n/3 p=—n/2
Markov Simulation Markov Simulation Markov Simulation Markov Simulatien
0.1 All optimal 0.2414 0.2419 0.2522 0.2592 0.2790 0.2716 0.2941 0.2824
Na optimal 0.1519 0.1433 0.1507 0.1578 0.1175 0.1214 0.1483 0.1311
0.01 All optimal 0.35384 0.3415 0.8774 0.3613 0.3806 0.8893 0.8972 0.9022
No optimal 0.0241 0.0257 0.0213 0.0227 0.0199 0.0190 0.0287 0.0281
0.001 All optimal 0.9627 0.9617 0.9526 0.9604 0.9637 0.9619 0.9834 09712
No optimal 0.0216 0.0244 0.0193 0.0187 0.0142 0.0153 0.0087 0.0090
Table 4

Optimization results of the generalized sinuscidal migration model for deceptive preblem f; when §=0, —nf4, —=n/3, and —n/2. The table shows the probabilities of
cbtaining an all-optimal population and the probabilities of obtaining a ne-cptimal pepulation using the BBO Markev model and simulations. The best performance is in

bold font in each row.

Mutation Papulation Prebability
rate vectar
B=0 b= —nfd Bf=—-nf3 A= —nl2
Markov Simulation Markov Simulation Markov Simulation Markov Simulatien
0.1 All optimal 0.0714 0.0709 0.0866 0.0812 0.0890 0.0901 01127 0.1072
Na optimal 0.4821 0.4894 0.4648 0.4607 0.4321 0.4294 04078 04007
0.01 All eptimal 0.7479 0.7422 0.7609 0.7745 0.7879 0.7822 0.8115 038110
Na optimal 0.1119 0.1214 0.1105 0.1184 0.1006 0.1034 0.0941 0.0935
0.001 All eptimal 0.9224 0.9251 0.9164 0.9275 0.9312 0.9381 0.9689 0.9548
Na optimal 0.0322 0.0317 0.0267 0.0271 0.0204 0.0253 0.0186 0.0177

maximum emigration rate of 1, mutation rates of 0.1, 0.01, and 0.001
per bit per generation, generation count of 20,000, and 100 Monte
Carlo runs for each function. Tables 2-4 show comparisons between
theoretical (Markov} and simulation results of the generalized
sinusoidal migration medel with different values of fi. The tables
show the probability of obtaining a population in which all indivi-
duals are optimal, and the probability of obtaining a population in
which no individuals are optimal. The mutation rates shown in
Tables 2-4 are applied to each bit in each individual at each
generation.

Several things are notable about the results in Tables 2-4. First,
the mutation rate affects the performance of the generalized
sinusoidal migration model. For three different test problems,
the performance of the generalized sinusoidal migration model
improves as the mutation rate decreases; that is, the probability
of obtaining a population in which all individuals are optimal
increases, and the probability of obtaining a population in which
no individuals are optimal decreases. A high mutation rate of
0.1 per bit results in toe much exploration, so the probability of
obtaining the optimal population is low. However, as the muta-
tion rate decreases to the values of 0.01 and 0.001, the probability
of obtaining the optimal population significantly increases.

Second, when the parameter §=—7/2, the generalized sinu-
soidal migration model performs the bhest on all three test
problems for most cases. For example, for the unimedal one-
max problem (Table 2}, the best performance is obtained by the
generalized sinusoidal migration model with the parameter
f=—m/2 and a mutation rate of 0.001 in its high probability of
obtaining a population with all optimal individuals (94.6%), and in
its low probability of obtaining a population with no optimal
individuals {1.0%). When the parameter f=0, —xj4, and —x{3,

the probabilities are 90.6%, 93.3%, and 93.6%, respectively, for
obtaining a population with all optimal individuals, and 1.5%,
1.1%, and 1.0%, respectively, for obtaining a population with no
optimal individuals. This indicates that the value of parameter §
can significantly affect the performance of the generalized sinu-
spidal migration model.

Third, from Tables 2-4, the Markov model results and the
simulation results match well for all test problems, which con-
firms the Markov theory, and verifies the significance of para-
meter § for the generalized sinusoidal migration model.

Fig. 2 shows the probability of obtaining an all-optimal
population for the generalized sinusecidal migration model for
the unimodal one-max problem when the parameter =0, — /4,
—7{3 and —n/2, and when the mutation rate is 1% per bit. It is
seen that the results agree with Table 2, providing further
confirmation of the Markov theory results.

3.2. Theoretical comparison of migration models

The next experiment investigates the effect of migration
models on BBO perfoermance using the BBO Markov chain model.
The limiting population distribution of BBO with the four migra-
tion models proposed in Section 2.3 is compared using Eq. (10).
Test functions and the parameters used in this experiment are the
same as those described in the previous section. For the general-
ized sinuscidal migration model, f=—n{2, which provides the
best performance based on the results in the previous section
{when =0, the generalized sinusoidal migration model reduces
to the regular sinusoidal migration model). Tables 5-7 show
comparisons between theoretical and simulated BBO with the
four proposed migration models.



From Tables 5-7, first, the mutation rate affects the perfor-
mance of BBO for all four migration models, which is similar
to the results discussed in the previous section. Second, the
generalized sinuseidal migration model performs better than
the other three migration models for most cases. For example,
for the deceptive problem (Table 7}, the best performance is
obtained by the generalized sinuscidal migration model with a
mutation rate of 0.001 in its high probability of obtaining a
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Fig. 2. Simulation results abtained by the parameter =0, —n/4, —n/3 and —7/2
for the generalized sinusocidal migration model for a three-bit unimoedal eptimiza-
ticn problem with a mutation rate of 1% per bit. The figure shows the cumulative
percent of abtaining an all-aptimal population.
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population with all optimal individuals (96.9%), and in its low
probability of obtaining a population with no optimal individuals
(1.9%). The probabilities of linear model, quadratic model, and
sinuseidal model are 90.7%, 91.9%, and 92.2%, respectively, for
obtaining a population with all optimal individuals, and 7.3%,
6.0%, and 3.2%, respectively, for obtaining a population with no
optimal individuals. Third, the Markov theory results are con-
firmed by the simulation results.

Tables 5-7 indicate that changing the migration model curve
can provide a valuable approach for enhancing BBO. From Tables
5-7, we further see that the nonlinear migration models {quad-
ratic, sinusecidal, and generalized sinusoidal)} are better than the
linear migration model with different mutation rates for all test
problems. Such results are similar to those reported in previous
work (Ma, 2010). This confirms that when BBO migration model
curves are closer to migration characteristics in nature, such as
the generalized sinusoidal migration model, optimization perfor-
mance is better.

3.3. Empirical comparison with sinusoidal migration model

To confirm the performance of the proposed generalized
sinusoidal migration model, it is compared with the regular
sinuseidal migration model using 23 benchmark functions, which
are chosen from Hedar and Fukushima (2003). These functions
are briefly summarized in Table 8. A more detailed description of
these functions can be found in the literature (Yao et al., 1999},
where functions f01-f07 are high-dimensional and unimodal,
functions f08-f13 are high-dimensional and multimodal with
many local minima, and functions f14-f23 are low-dimensional
with only a few local minima. For both migration medels, the

Optimization results of four migration medels for unimedal one-max prablem f. The table shows the praobabilities of obtaining an all-aptimal population and the
probabilities of obtaining a no-optimal pepulatien using the BBO Markev model and simulations. The best performance is in bold font in each row.

Mutation Population Probability
rate vector
Linear model Quadratic model Sinuscidal model Generalized model
Markov Simulatien Markov Simulatien Markaov Simulation Markov Simulation
0.1 All optimal 0.0257 0.0214 0.0363 0.0360 0.0456 0.0455 0.1001 0.1024
No optimal 0.2738 0.2709 0.2117 0.2108 0.1994 0.1872 0.1542 0.1517
0.01 All optimal 0.5049 0.5146 0.5529 0.5621 0.6076 0.6008 0.7354 0.7361
No optimal 0.1004 0.1097 0.0416 0.0411 0.0367 0.0351 0.0394 0.0317
0.001 All optimal 0.8676 0.8504 0.9309 0.9274 0.9062 0.9094 0.9456 0.9513
Mo optimal 0.0761 0.0755 0.0395 0.0356 0.0151 0.0147 0.0103 0.0158
Table 6

Optimization results of four migration medels for multimedal preblem f>. The table shows the probabilities of obtaining an all-optimal pepulation and the prebabilities of
obtaining a no-optimal pepulatien using the BBO Markev model and simulations. The best performance is in bold font in each row.

Mutation Population Probability
rate vector
Linear model Quadratic model Sinuscidal model Generalized model
Markov Simulaticn Markov Simulatien Markov Sirmulation Markov Simulation
0.1 All optimal 0.1203 0.1231 0.2073 0.2166 0.2414 0.2419 0.2941 0.2824
Nc optimal 01327 0.1759 0.2173 0.2078 0.1519 0.1433 0.1175 0.1214
0.01 All optimal 0.7760 0.7767 0.8311 0.8246 0.8584 0.3415 0.8972 0.9022
Nc optimal 0.0515 0.0438 0.0354 0.0251 0.0241 0.0257 0.0287 0.0231
0.001 All optimal 0.9154 0.9212 0.9318 0.9412 0.9627 0.9617 09834 0.9712
No optimal 0.0355 0.0541 0.0274 0.0264 0.0216 0.0244 0.0087 0.0090




Table 7

Optimizatien results of four migratien models for deceptive prablem f;. The table shows the prebabilities of obtaining an all-eptimal pepulation and the prebabilities of
cbtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in bold font in each row.

Mutaticn Population Probability
rate vector
Linear medel Quadratic madel Sinusoidal medel Generalized model
Markov Sirmulation Markov Sirmulation Markov Simulation Markov Simulatien

0.1 All eptimal 0.0145 0.0144 0.0334 0.0332 0.0714 0.0709 0.1127 0.1072
Na optimal 0.7954 0.8012 0.5048 0.5007 0.4821 0.4894 04078 0.4007

0.01 All eptimal 0.6407 0.6513 0.7009 0.7145 0.7479 0.7422 0.8115 0.8110
Na optimal 0.1921 0.1825 0.1193 0.0987 0.1119 0.1214 0.0941 0.0935

0.001 All optimal 0.9074 0.9017 0.9194 0.9152 0.9224 0.9251 0.9689 09548
Na optimal 0.0733 0.0691 0.0597 0.05590 0.0322 0.0317 0.0186 0.0177

Table 8
Benchmark functiens. More details about these functions can be feund in Yac. et al. {1999).

Function Name Dimension Domain Minimum

fo1 Sphere model 30 —100< x; = 100 0

fo2 Schwefel's problem 2.22 30 -10=x;=<10 0.

fo3 Schwefel's preblem 1.2 30 —100< x; = 100 0

fo4 Schwefel’'s problem 2.21 30 —100< x; = 100 0

fo5 Generalized Rasenbrock’s function 30 —30=x; <30 0

fo6 Step function 30 —100 =< x; < 100 0

fo7 Quartic function 30 —128 =x; <128 0

fos Generalized Schwefel's problemn 2.26 30 —500=x; =500 —12569.5

foo Generalized Rastrigin's functicn 30 —512=x =512 0

f10 Ackley's function 30 —32=x=<32 0

f11 Generalized Griewank's function 30 —600 < x; = 600 0

f12 Generalized Penalized function 1 30 —50 = x; =50 0

f13 Generalized Penalized function 2 30 —50 = x; =50 0

f14 Shekel's Foxheles functien 2 —65.536 < x; =65.536 1

f15 Kowalik's function 4 —5<x =<5 0.003075

f16 Six-Hump Camel-Back function 2 —5<x=<5 —1.0316285

f17 Branin's function 2 —5<x; =10, 0=<x; <15, 0.398

f18 Goldstein-Price's function 2 —2=x=2 3

f19 Hartman’s functicn 1 3 D=x; <1 -3.86

f20 Hartman’s functicn 2 6 D=x; <1 -3.32

f21 Shekel's functicn 1 1 D=x; =10 —10.1532

f22 Shekel's function 2 1 D=x; =10 —10.4029

f23 Shekel's functicn 3 1 D=x; =10 —10.5364

following parameters of BBO have to be examined: population
size, maximum migration rates, and mutation rate. In the litera-
ture (Ma, 2010} these parameters have been discussed in detailed.
This paper uses a reasonable set of tuning parameters, but does
not make any effort in finding the best parameter settings. For
this experiment, the parameters of BBO used in the two migration
models are the same: population size of 50, maximum immigra-
tion rate and maximum emigration rate of 1, mutation rate of
0.01 per bit per generation, generation limit of 20,000 for f01-f13,
and 1000 for f14-f23, and 30 Monte Carlo runs. In addition,
p=—mn/2 for the generalized sinusoidal migration model.

Table 9 summarizes the performance on 23 benchmark func-
tions for the generalized sinusoidal migration model and the
regular sinusecidal migration model. It is apparent that the
generalized sinuscidal migration model performs significantly
better than the regular sinusoidal migration model in terms of
the final results for the most functions. The generalized sinusoidal
migraticn model performs the best on 16 functions, and the
regular sinusoidal migration meodel performs the best on four
functicns ({06, 12, f17, f23). For functions f14, 19, 20, both
models attain the global optimum.

Table 9 also indicates statistically significant differences of the
two models based on the p value, which is the probability that the
two sets of data come from the same distribution. From p value
comparison between the generalized sinusoidal migration model
and the regular sinusoidal migraticn model, there are 17 p values
smaller than 0.05 (which is often used as the significance level or
critical p value). Based on this result, the probability that two
models are from the same distribution is low. It indicates that the
parameter § is influential on BBO performance. Furthermore, the
generalized sinusoidal migration model generally outperforms
the regular sinusoidal migration model, which indicates that the
parameter fi, which is the degree of temporary positive immigra-
tion rate feedback in the generalized sinuseidal migration medel,
contributes to improve the optimization ability of BBO. Finally,
note that the benchmark functions cutperformed by the general-
ized sinuscidal migration model include high-dimensional and
unimodal functions, high-dimensional and multimeodal functions
with many local minima, and lew-dimensional functions with
only a few local minima. Therefore, the type of benchmark
function is not of importance for successful optimization using
the generalized sinusoidal migration model.



Tahle 9

Comparison of experimental results over 30 Monte Carle runs of the generalized sinusoidal migraticn medel and the regular sinusoidal migration medel. The table shows
the best, mean and its standard deviation. The p value for each benchmark gives the probability that the two sets of results come from the same distribution. Best results

for each benchmark function are shown in bold font.

Fun. BBO p value
Sinuscidal model Generalized moedel
Best Mean Stdev Best Mean Stdev

fo1 217E-02 6.38E—-02 5.46E—-03 9.55E-04 8.24E - 03 9.78E- 04 8.24E-03
o2 1.84E-04 3.03E-04 3.84E-04 1.22E-04 147E-04 4.86E—05 047

03 6.33E-02 8.31E-02 117E-02 2.71E-03 3.08E-03 5.71E-04 0.03

fod 568E-15 5.34E-14 2.54E-15 5.36E-15 4.64E-14 1.07E-15 0.16

o5 9.24E-01 3.47E+00 433E-01 6.54E—-01 9.36E-01 2.44E-01 0.08

o6 0.00E+00 0.00E+ 00 0.00E+00 1.16E-15 8.21E-15 1.83E-16 7.19E-04
fo7 137E—15 2.36E—-15 1.96E—16 0.00E+00 0.00E-+00 0.00E+00 6.58E-04
o3 2.63E-06 5.08E-06 2.74E-06 6.85E—09 9.38E-09 4.76E—10 1.28E-03
09 1.55E-03 1.21E-02 3.78E-03 1.15E-04 4.38E-04 9.33E-05 0.01

fl0 2.54E-01 9.71E-01 7.16E-02 1.14E-03 2.54E-03 8.25E-04 532E-03
fl1 7.49E-01 1.97E+00 9.33E-01 2.55E—01 3.65E-01 1.72E—-02 0.03

f12 2.26E-30 4.11E-30 8.45E-31 3.74E-25 7.81E-25 538E-26 921E-04
f13 1.28E-10 7.36E-10 632E-11 1.07E-11 9.05E-11 6.72E—12 0.02

f14 0.00E+00 0.00E+ 00 0.00E+00 0.00E+00 0.00E+00 0.00E+ 00 0.56

f15 3.19E-04 5.29E-04 6.27E-05 8.46E - 06 7.18E-05 1.80E-06 0.02

f16 2.67E-09 1.51E-08 732E-09 711E-12 4.02E-11 1.22E-12 5.01E -04
f17 217E-15 1.44E —14 4.77E-15 534E-10 3.94E-09 3.89E-10 3.76E-04
f13 6.06E—15 7.05E-15 2.56E-16 0.00E+00 0.00E+00 0.00E+00 237E-04
f19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+ 00 0.56

f20 0.00E+00 0.00E+ 00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.56

f21 5.29E-08 6.14E — 07 6.60E—08 2.69E—-08 3.57E-08 6.96E - 09 0.03

f22 9.60E—12 7.89E—-10 231E-10 6.65E—15 347E-14 5.73E—-15 4.88E—-04
23 3.55E-12 7.34E-11 5.78E-12 1.75E-10 454E—10 1.58E-10 0.03

4. Conclusions

This paper proposed a generalized sinusoidal migration model
based on the natural migration relations in island biogeography,
and explored optimization performance of BBO with different
migration models based on Markov chain models of the BBO
algorithm. New theoretical results for different migration models
have been obtained, which are confirmed with simulation results.
The experiments for a unimeodal one-max preblem, multimodal
problem and deceptive problem: (1) show that the generalized
sinusoidal migration model further improves BBO's performance.
Namely, the parameter f, the degree of temporary positive
immigration rate feedback in this model, can affect BBO’s opti-
mization ability; {2} verify that different migration meodels in BBO
result in significant changes in performance based on Markov
theory; (3) further show that BBO migration models which are
closer to natural biogeography are significantly better than gen-
eral models. Although the theoretical results are limited to small
problem dimensions due to the facterial increase of the Markov
transition matrix size with problem dimension, these results
provide confidence that migration models based on island bic-
geography can improve BBO performance. In addition, to confirm
the above conclusions, empirical performance comparison
between the generalized sinuscidal migration model with the
sinusoidal migration model was investigated through 23 bench-
mark functions. The results showed that generalized sinusoidal
migration exhibits superior optimization performance.

Future work includes several important directions. The first is
to explore additional migration model features as indicated by
natural biogeography theory to obtain better BBO performance. It
has been shown in this paper that the generalized migration
model generally gives better BBO performance, but it remains to
be seen how other migration meodel features will affect BBO
performance. There are many other interesting possibilities for
aligning BBO more closely with island biogeography. For example,

habitat similarity, species age criterion, resource competition, and
migration time correlation, could inspire other variations to the
BBO algorithm and to the shape of the migration curves. The
second impertant direction for future research is the development
of Markov theory results for BBO variations with the additional
migration model features mentioned above. The third important
direction for future research is the development of additional
theoretical tools to study BBO performance. For example, the
asymptotic convergence of BBO with different migration models
and their convergence rates could be worth further study. Fourth,
adaptive migration rates and their theoretical analysis could be
considered.
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