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A dynamic system model of biogeography-based optimization" 

Dan Simon 
Clf>Veland Siale University. Df>partmenr ofElectrical and Computer Engineering. CIne/and. OH. United Slaies 

1. Introduction 

Biogeography is [he study of the migration, speciation. and 
extinction of species [1.2[. Biogeography has often been considered 
as a process that enforces equilibrium in the number of species in 
habitats. However. equilibrium in a system can also be considered 
as a minimum-energy configuration, so we see that biogeography 
can be viewed as an optimization process. This idea is further dis­
cussed in 13 [. 

Biogeography-based optimization (BBO) is an evolutionary 
algorithm (EA) morjv.ned by the optimality perspective of nat­
ural biogeography, and was initially developed in [4 [. Just as 
species migrate back and forth between islands, BBO operates 
by sharing information between individuals in a population of 
candidate solutions. BBO has shown good performance both on 
benchmark problems [J-5 [ and on real-world problems, includ­
ing aircraft engine sensor selection [4 J, power system optimization 
[6,7J. groundwater detect ion [8 j, mechanical gear train design [9J, 
satellite image classification [10J. and neuro-fuzzy system training 
for biomedical applications 111 J. 

Section 1.1 summarizes some of the important notation used in 
this paper. Sect ion 1.2 gives an overview of BBO. Section 1.3 gives 
an overview and outline of the remainder of this paper. 

t)' This work was supponed by NSF erant 0816114 in the CMMI Division of the 
Enginet'ring Directorate. 

E-mail address: d.j.simon@Csuohio.edu 

1.1. Notation 

This section summarizes some of the notation used in BBO and 
in this paper. Some of these terms may be more general or more 
speCific in other contexts. The definitions indi cated here are not 
universal. but are commonly used. and more importantly for our 
purposes, are specifically used in this paper. 

BBO: Biogeography-based optimization, an EA which is moti­
vated by the mathematical principles of natural biogeography. 

Dynamic system: A process whose state at time step (t -+- 1) 
depends only on the state at time t. The transition of the state from 
one time step to the next is deterministic. 

Emigration : The sharing of a solution feature in BBO from one 
individual to another. The emigrating solution feature remains in 
the emigrating individual. This is similar to emigration of a species 
in biogeography. in which representatives of a species leave an 
island but the species does not become extinct from the emigrating 
island. 

GASP: A genetic a lgorithm with single-point crossover. 
GAGUR: Agenetic algorithm with global uniform recombination. 

This means that a solution feature of an offspring can receive each 
solution feature from a different parent. The likelihood that any 
given solution feature in the offspring comes from any given parent 
is proportional to that parent's fi tness. 

Individual: Acandidate solution in an EA. 
Immigration: The replacement of an old solution feature in an 

individual with a new solution feature from another individual. The 
solution feature comes from the contributing individual by way of 

mailto:d.j.simon@Csuohio.edu


        

  

           

             

       

       

           

             

          

          

       

            

    

         

          

  

         

           

         

  

         

       

         

          

        

          

         

           

          

          

         

            

           

      

          

           

          

           

       

         

             

         

      

       

           

          

          

           

           

       

       

              

           

         

           

              

           

        

         

          

         

          

           

 

  

 

           

        

         

        

          

           

         

         

         

            

       

       

   

   

          

           

          

                

             

         

         

        

        

           

         

            

      

         

             

         

             

        

      

          

            

         

          

            

       

         

        

   

emigration. The immigrating solution feature replaces a feature in 
the immigrating individual. 

Markov process: A process whose state at time step (t + 1) 
depends only on the state at time t. The transition of the state from 
one time step to the next is probabilistic. 

Population distribution: The distribution of individuals in the 
search space. For example, if the search space consists of four possi­
ble solutions, {x1, x2, x3, x4}, and the population size is three, then a 
population distribution might consist of one copy of x1, zero copies 
of x2, two copies of x3, and one copy of x4. 

Solution feature: An independent variable of an optimization 
problem. For example, if the solution domain is a bit string, then a 
solution feature is a bit. 

Generational EA: An EA in which recombination is performed to 
create an entire new population before any of the old population 
members are replaced. 

Steady-state EA: An EA in which recombination is performed to 
create a single new individual which replaces one of the old individ­
uals in the population before the next recombination is performed. 

1.2. Biogeography-based optimization 

This section gives an overview of BBO. BBO operates by 
migrating information between individuals, thus resulting in a 
modification of existing individuals. Individuals do not die at the 
end of a generation. In addition, a high-fitness BBO individual is 
unlikely to accept information from a low-fitness individual. This 
is motivated by biogeography and does not have an analog in 
GAs. In natural biogeography, a very habitable island is unlikely 
to accept immigrants from a less habitable island [12]. This is due 
to two reasons. First, the very habitable island is already saturated 
with species and does not have many additional resources to sup­
port immigrants. Second, the inhabitable island does not have very 
many species to begin with, and so it does not have many potential 
emigrants. 

BBO is motivated by biogeography but is not intended to be a 
simulation of biogeography. The analogy between biogeography 
and BBO breaks down at several points. For example, in biogeog­
raphy the number of species varies from island to island, while in 
BBO the number of solution features is constant for all individuals 
and is equal to the problem dimension. BBO can currently only deal 
with optimization problems of constant dimension; its extension 
to variable-sized problems is a topic for future research. Although 
the analogy is not perfect, the key point in BBO is that the migra­
tion of solution features between individuals is motivated by the 
mathematical theory of species migration in biogeography. 

Like other EAs, BBO operates probabilistically. The probability 
that an individual shares a feature with the rest of the popula­
tion is proportional to its fitness. The probability that an individual 
receives a feature from the rest of the population decreases with 
its fitness. When a copy of feature s from individual zj replaces a 
feature in individual yk, we say that s has emigrated from zj and 
immigrated to yk; that is, yk(s) ← zj(s). 

Although nonlinear migration curves may give better optimiza­
tion results [5], in this paper we use linear curves as shown in Fig. 1. 
Fig. 1 depicts two BBO individuals. S1 depicts a poor solution and S2 

depicts a good solution. The immigration probability for S1 will thus 
be higher than that of S2, and the emigration probability for S1 will 
be lower than that of S2. Note that if a good solution is obtained in 
the population, then there may be a high probability that the pop­
ulation will converge towards that solution, resulting in premature 
convergence. As with any other EA, an appropriate mutation rate 
needs to be used in BBO to balance exploration and exploitation. 

There are several ways to implement BBO. The original BBO 
algorithm, which we use in this paper, is called partial immigration-
based BBO [13]. In this approach, for each feature in each individual 

1 

immigration 
λ 

emigration 
μ

pr
ob
ab
ili
ty

 

S1 S2 fitness 

Fig. 1. Illustration of two BBO individuals using linear migration curves. S1 repre­
sents a poor solution and S2 represents a good solution. 

we probabilistically decide whether or not to immigrate. If immi­
gration is decided upon, then a fitness-based probabilistic method 
(e.g., roulette wheel selection) is used to select the emigrating indi­
vidual. This gives the algorithm shown in Fig. 2 as a description 
of one BBO generation. We perform migration and mutation for 
each individual in the current generation before any individuals are 
replaced, resulting in a generational EA [14]. The migration decision 
requires that the individuals be sorted in order of fitness, which is a 
computational consideration. However, in almost all real-world EA 
applications, fitness function evaluation comprises the vast major­
ity of computational effort. 

1.3. Overview and outline 

In previous work we derived a Markov chain model for BBO 
[15,16]. A Markov chain is a random process which has T possible 
state values [17, chap. 11]. The probability that the system transi­
tions from state i to state j is given by the probability Pij. The T × T 
matrix P = [Pij] is called the transition matrix. Each state in the BBO 
Markov model represents a population distribution, that is, a dis­
tribution of individuals in the search space. Probability Pij is the 
probability that the population transitions from the ith population 
distribution to the jth population distribution in one generation. 

Although we use BBO Markov theory in this paper to derive a 
dynamic system model, the states in the dynamic system model 
are not the same as the states in the Markov model. BBO Markov 
states represent population distributions. BBO dynamic system 
states represent the proportion of each individual in the popula­
tion; that is, the ith state is the proportion of the ith individual in 
the population. The state dimension of the BBO dynamic system 
will thus be only a small fraction of the state dimension of the BBO 
Markov model. This makes the dynamic system model applicable 
to larger problems than the Markov model. 

Section 2 reviews the BBO Markov model which forms the basis 
for this work and which was derived in [15,16]. Section 3 and fol­
lowing comprise the new contributions of this paper. Section 3 
derives the BBO dynamic system model and some of its proper­
ties. We also extend the dynamic system model to a GA with global 
uniform recombination (GAGUR). Section 4 compares the dynamic 
system models of BBO, GAGUR, and GA with single-point crossover 
(GASP). We provide concluding remarks and suggestions for future 
work in Section 5. 



 

                          

     

           

          

           

           

        

           

            

           

          

             

           

            

          

         

        

         

         

         

          

         

         

          

       

        

  

           

        

         

         

       

       

  

       

  

          

  

 

         

        

           

           

           

             

        

          

            

        

     

         

       

         

           

         

          

 

         

  

               

            

            

           

 

Fig. 2. One generation of the BBO algorithm. z is the entire population of individuals, zk is the kth individual, and zk(s) is the sth feature of zk . 

2. A Markov model for BBO 

In [15,16] we derived a Markov model for BBO. In this section 
we review that model as a foundation for our later development 
of a dynamic system model in Section 3. The BBO Markov model 
in this section is based on several assumptions. First, we use a 
generational BBO algorithm rather than a steady-state BBO algo­
rithm, as can be seen from the use of the temporary population 
y in Fig. 2. Second, an individual can emigrate a feature to itself. 

bit of xi is denoted as xi(s). We use Ji(s) to denote the 
set of search space indices j such that xj(s) = xi(s). That 
is, 

Ji(s) = {j : xj(s) = xi(s)}, i ∈ [1, n]. (3) 

Note that |Ji(s)| = n/2 for all i and s. From (2) we see 
that 

This means that in the statement “use the � values to proba­
bilistically select the emigrating individual zj ” in Fig. 2, j might 
be chosen to be equal to k. This is similar to the possibility of 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

x1 for k = 1, . . . , v1 

x2 for k = v1 + 1, . . . , v1 + v2 

x3 for k = v1 + v2 + 1, . . . , v1 + v2 + v3 

. .selecting the same parent twice in a GASP, which results in an yk = . . (4). . 
offspring which is a clone of its parent. However, in BBO it is 
not the individual, but rather the solution feature, that is cloned 
in this situation. Third, the migration rates are independent of 

n−1 
xn for k = vi + 1, . . . , N 

the population distribution; that is, absolute fitness values rather 
i=1 

than rank-based fitness values [18] are used to obtain migra- which can also be written as 
tion rates. Fourth, our optimization problem has a binary search 
space. Fifth, we ignore the possibility of mutation; mutation will yk = xm(k) for k = 1, . . . , N 
be considered in Section 3 when we derive the dynamic system 
model. 

Suppose that the search space consists of all bit strings r 
xi which have q bits each. The cardinality of the search m(k) = min r such that vi ≥ k. (5) 
space is therefore n = 2q. The population size is denoted i=1 

by N. The n-element population-count vector v denotes 
the number of each xi individual in the population. There- We use the additional subscript t to denote generation num­
fore, ber. For example, yk(s)t is the value of the sth bit of the 

kth individual at generation t. With these definitions, it is 
n shown in [15,16] that the probability that yk(s)t+1 = xi(s) can be vi = N. (1) 

written as 
i=1  
The kth individual in the population is denoted by yk. The yk vj�j 

values are ordered so that identical individuals are grouped. j ∈ Ji(s)
Pr(yk(s)t+1 = xi(s)) = (1 − �m(k))1[xm(k)(s) = xi(s)] + �m(k)Furthermore, the order of the yk values is same as that n 

  

of the xi values. The BBO population can thus be depicted vj�j 
as 

j=1 

Population = {y1, . . . , yN } (6) 

= {x1, x1, . . . , x1, x2, x2, . . . , x2, . . . xn, xn, . . . , xn}. (2) where 1[·] is the predicate function; that is, 1[A] = 1 if A is true, and           
v1 copies v2 copies vn copies 

0 otherwise. There are q bits in each yk. Therefore, if the population-
count vector is equal to v at the tth generation, then the probability 

The emigration probability of xi is denoted as �i, and the that immigration results in yk,t+1 = xi is denoted by Pki(v) and can be 
immigration probability of xi is denoted as �i. The sth written as 



   

      

 
   

                 

             

            

           

          

        

   

  

            

          

        

  

 

 
  

      

 
    

 
   

          

          

              

             

              

         

 

    

 

        

      

            

           

           

           

           

             

           

       

       

          

        

          

               

          

   

         

  

  

 
  

  

        

        

        

 
 

 

     

  

 
      

 
    

       

 

 

          

                 

 

 

 
      

 
   

 
      

 
  

           

            

            

             

          

    

   

 
    

 
  

            

            

       

      

            

           

            

         

   

         

     

      

             

     

Pki(v) = Pr(yk,t+1 = xi) We can combine (4), (5) and (11) to get  ⎤⎡  
m(k−1) m(k) 

vj�j Pr(yk1 
= xi) = Pr(yk2 

= xi) if (k1, k2) ∈ vi + 1, vi . 

i=1 i=1 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
.= 

q

s=1 

I j ∈ Ji(s)
(1 − �m(k))1[xm(k)(s) = xi(s)] + �m(k) (12)n 

vj�j 
Therefore (10) can be written as 

j=1 

(7) ⎧ ⎪⎪⎪⎪⎨ 

⎫ ⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

. 

⎤⎡ 
vj�j⎢⎢⎢⎢⎣ 

(1 − �k )1[xk (s) = xi(s)] + �k 

⎥⎥⎥⎥⎦ 

Pki(v) can be computed for each k ∈ [1, N] and each i ∈ [1, n] in order q

s=1 

I n 

1 j ∈ Ji (s) 

n
Pr(Mh = xi ) = (13)to form the N × n matrix P(v). This gives the probability that each vkN ⎪⎪⎪⎪⎩ 

of N BBO migration trials results in each of n search space individ- k=1 

uals. We use wi to denote the total number of times that individual 
vj�j 

j=1 
xi is obtained after all N migration trials have been completed for 

a given generation, and we define w = [ w1 · · · wn ]
T . The prob- Now we define the proportionality vector p as 

ability that we obtain the population-count vector w at the (t + 1) v 
(14)p = .st generation, given that v is the population-count vector at the N 

tth generation, can be obtained from the generalized multinomial 
That is, pi is the proportion of xi individuals in the population for theorem [15,16,19] as 
i ∈ [1, n], and the elements of p add up to 1. Eq. (13) can then be 
written as N n I
I
 

Pr(w|v) = PJki (v)
ki ⎧ ⎪⎪⎪⎪⎨ 

⎫ ⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

⎤⎡ 
J ∈ Y(w) 

Y (w) = J ∈ RN×n : Jki ∈ {0, 1}, Jki = 1 for all k, Jki = wi for all i

 k=1 i=1  (8) vj�jn N ⎢⎢⎢⎢⎣ 
(1 − �k )1[xk(s) = xi(s)] + �k 

⎥⎥⎥⎥⎦ 

n Iq

s=1 

j ∈ Ji (s) 

n 

. 
Pr(Mh = xi ) = pk 

i=1 k=1 

The Markov transition matrix is obtained by computing (8) for each 

⎪⎪⎪⎪⎩ 
k=1 vj�j 

j=1 

possible v vector and each possible w vector. The transition matrix  I 
 

q
  

is thus a T × T matrix, where T is the total number of possible pop- n 

pk
 

(pT �)q

T �(1 − �k)1[xk (s) = xi (s)] + �k vj�julation distributions. That is, T is the number of all possible n × 1 

integer vectors such that Ti = N and 0 ≤ Ti ≤ N. In [20] it is shown k=1 

 p= . 

s=1 j ∈ Ji (s) 

that T can be calculated using the formula for combinations: (15)   The quantities on the right side of the above equation are defined 
at the tth generation. The left side of the above equation gives the 

n + N − 1
T = . (9)

N

I 

probability of obtaining xi at the (t + 1) st generation. We can use 
[21, Theorem 2] to see that the left side of the above equation is Other methods for calculating T are discussed in [15]. 
equal to the proportion of xi individuals in the population at the 
(t + 1) st generation: 

q
3. A dynamic system model for BBO  

n 
pk(t)  

pT (t)�(1 − �k)1[xk(s) = xi(s)]pi(t + 1) =In this section we use the Markov model of Section 2 to derive (pT (t)�)q

a dynamic system model for BBO and GAGUR. Eq. (7) gives Pki(v), s=1k=1 

which is the probability that the kth migration results in yk = xi at 
the (t + 1) st generation, assuming that v is the population-count + �k vj(t)�jvector at the tth generation. In order to derive a dynamic system 

⎫⎬ 

⎭ 

⎤
⎦ (16) 

model for BBO, we make a slight change in the algorithm of Fig. 2. 
We still cycle through the immigration loop N times, where N is 
the population size. However, instead of deterministically cycling 
through each population member yk for immigration, we randomly 
select a population member for immigration each of the N times 
through the loop. Therefore, each time through the immigration 
loop, each yk has a 1/N chance of being selected for immigration. 
Note that as N →∞, this is equivalent to the algorithm of Fig. 2. With 
this change, the BBO algorithm is modified to become the algorithm 
shown in Fig. 3. 

With this algorithm, the probability that the hth migration trial 
Mh results in xi is 

N 
1

Pr(Mh = xi) = Pr(yk = xi). (10)
N 

k=1 

Now note that 

Pr(yk1 
= xi) = Pr(yk2 

= xi) if yk1 
= yk2 

. (11) 

j ∈ Ji (s) 

where we have now explicitly shown that p is a function of t. 
Writing the above equation for i ∈ [1, n] gives a nonlinear dynamic 
system for the evolution of the proportionality vector: 

p(t + 1) = f (p(t)). (17) 

To include the possibility of mutation, we denote the n × n muta­
tion matrix as U, where Uij is the probability that xj mutates to xi. 
If the elements of the search space {x} are in natural binary order 
and each bit has a probability u of mutation, then 

Uij = udij (1 − u)q−dij (18) 

where dij is the Hamming distance between xi and xj [22, p. 153]. 
This gives the dynamic system equation 

p(t + 1) = Uf (p(t)). (19) 

If mutation is not used in the BBO algorithm, then U is the identity 
matrix and (19) reduces to (17). 



 

              

     

           

            

 

   

  
  

 
 

      

       

 

   

 
     

         

          

  

         

              

         

         

           

         

           

             

          

           

           

          

           

 

            

           

 

        

              

              

           

                   

              

  

 
   

 
    

           

  

 
  

 
    

               

     

  

  
  

 
  

 

            

  

  
 

Fig. 3. One generation of the BBO algorithm with random selection of the immigrating individual. 

3.1. Special case: � = 0 written as 

It is instructive to consider the dynamic system when �k = 0 for Pr(yk,t+1=xi|s)=Pr[yk,t (r : r =/ s)=xi(r : r =/ s)]Pr(yk,t+1(s)=xi(s)). 
all k. In this case, there is no possibility of immigration and (15) (23)
reduces to 

The first term on the right side of (23) is the proportion of the popu­q

pi(t + 1) = pk(t) 1[xk(s) = xi(s)] . (20) lation which has all bits r such that r =/ s, equal to the corresponding 

s=1 bits in xi. We denote the indices of these individuals as Li(s):k=1 

Since each xi is distinct, we see that Li(s) = {j : xj(r : r =/ s) = xi(r : r =/ s)}, i ∈ [1, n]. (24) 

q

I 

I 

n 

Note that |Li(s)| = 2 for all (i, s). Now we can write (23) as 
1[xk(s) = xi(s)] = 1[k = i] (21) ⎞⎛⎞⎛ 

s=1 ⎜⎜⎜⎜⎝ 

vj 

j ∈ Li(s) 

n 

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 

j ∈ Ji (s) 

n 

vj�j ⎟⎟⎟⎟⎠ 

which gives 

n 
Pr(yk,t+1 = xi|s) = . (25) 

pi(t + 1) = pk(t)1[k = i] = pi(t). (22) vj vj�j 

j=1 j=1k=1 

That is, with no immigration and no mutation, the proportionality We can use (1) and (14) to write the above equation as 
vector does not change from one generation to the next, which 
agrees with intuition. pj�j 

j ∈ Ji (s)
Pr(yk,t+1 = xi|s) = pj . (26)

n3.2. Special case: � = 1 and random feature selection 
j ∈ Li (s) pj�j 

If �k = 1 for all k, then the BBO algorithm of Fig. 3 becomes a j=1 

special type of a genetic algorithm with global uniform recombina­
tion (GAGUR) [23]. GAGUR can be implemented in many different Fig. 4 shows that each bit s ∈ [1, q] has a 1/q probability of being 
ways, but if it is implemented with the entire population as poten- selected as the migrating feature. Therefore, 
tial contributors to the next generation [24], and with fitness-based ⎤⎡⎤⎡ 
selection for each solution feature in each offspring, then it is equiv- q

1
alent to BBO with �k = 1 for all k. In this case, immigration takes Pr(yk,t+1 = xi) = pj�j

⎦ . (27)⎣ pj
⎣⎦ 

qpT �place for all individuals in the population, and the new individual s=1 j ∈ Li(s) j ∈ Ji (s) 
that results from each immigration can be thought of as an offspring 
of the previous generation. Suppose also that in addition to �k = 1 This is a quadratic function of the pi terms and can thus be written 
for all k, each immigration trial migrates one randomly selected bit. as 
Then the BBO algorithm of Fig. 3 becomes the GAGUR algorithm of 

n nFig. 4. 
Pr(yk,t+1 = xi) = Yi,abpapb. (28)The probability that yk at the (t + 1) st generation is equal to 

xi, given that solution feature s was selected for migration, can be a=1 b=1 



                    

            

       

 
    

 
    

              

            

               

               

    

        

      

 
       

             

       

  

 
    

 
         

           

      

         

             

       

      

          

    

    

         

        

        

     

           

           

           

         

          

  

   

 

            

            

                

          

         

              

        

    

     

     

     

     

         

               

          

         

  

       

 

         

           

       

         

        

           

          

           

         

Fig. 4. One generation of GAGUR with random selection of the immigrating individual and random selection of the migrating solution feature. 

Eq. (27) shows that the p2 coefficient on the right side of (28), where m 
m ∈ [1, n], can be written as 

q q 

Yi,mm = �m1[m ∈ Ji(s)]1[m ∈ Li(s)]= �m1[m ∈ (Ji(s) ∩ Li(s))]. 
s=1 s=1 

(29) 

From the definition of Li(s) in (24) we know that i ∈ Li(s). We also 
know that there is only one other element in Li(s). The other ele­
ment in Li(s), say ˛, has a bit string such that x˛(r) = xi(r) for all 
r =/ s. But since ˛ =/ i we know that x˛(s) =/ xi(s), which means 
that ˛ /∈ Ji(s). Therefore 

Ji(s) ∩ Li(s) = {i} for all s. (30) 

Eq. (29) can therefore be written as 

q 

Yi,mm = �m1[m = i] = q�m1[m = i]. (31) 

s=1 

We can use (27) to show that the pmpk coefficient (k =/ m) on the 
right side of (28) can be written as 

q 

Yi,mk + Yi,km = �m 1[m ∈ Ji(s)]1[k ∈ Li(s)] 
s=1 

q 

+ �k 1[k ∈ Ji(s)]1[m ∈ Li(s)] for m =/ k. (32) 

s=1 

The GAGUR dynamic system model can thus be written as the fol­
lowing set of n coupled quadratic equations: 

pi(t + 1) = pT (t)Yip(t), i ∈ [1, n] (33) 

where Yi,mk is the element in the mth row and kth column of Yi. If 
mutation is included in the GAGUR algorithm, then 

p(t + 1) = U diag(pT (t)Yip(t)) (34) 

where diag(pT(t)Yip(t)) is the n × n diagonal matrix consisting of 
pT(t)Y1p(t), . . ., pT(t)Ynp(t). 

4. Dynamic system model results 

Section 4.1 verifies the dynamic system model derived in the 
previous section. Section 4.2 compares the dynamic system models 
of GA with single-point crossover (GASP), GAGUR, and BBO. 

4.1. Verification of dynamic system models 

The dynamic system model for BBO is given in (16)–(19) with �k 

proportional to fitness, and �k = 1 − �k. The dynamic system model 
for GAGUR is given in (16)–(19) with �k = 1, which is equivalent 
to (34). The dynamic system model for GASP with roulette-wheel 
selection was originally developed in [25]. It is summarized in [22, 
chap. 6] as 

pT (t)diag(�)UT C(i)U diag(�)p(t) 
pi(t + 1) = (35) 

(pT (t)�)2 

where diag(�) is the n × n diagonal matrix consisting of the ele­
ments of � (fitness), and U is the mutation matrix given in (18). 
C(i) is an n × n matrix such that the element in its mth row and kth 
column is the probability that xm and xk cross over to produce xi. 

To verify the dynamic system models, we consider a simple 
three-bit problem (n = 8) with a per-bit mutation rate u = 0.2. The fit­
ness values, which are equivalent to unnormalized BBO emigration 
rates, are given as follows: 

�(000) = 8, �(001) = 1, 
�(010) = 1, �(011) = 1, 

(36)
�(100) = 1, �(101) = 1, 
�(110) = 1, �(111) = 9. 

This is a relatively difficult optimization problem because x1 = 000 
has a high fitness, and every time we add a 1 bit to it the fitness 
decreases dramatically, but the individual with all 1’s has the high­
est fitness. We begin with an initial population with proportionality 
vector 

p(0) = [ 0.8 0.1 0.1 0 0 0 0 0 ]T
. (37) 

Figs. 5–7 show some dynamic system model results and simulation 
results for EAs with a population size of 1000. The plots provide 
confirmation for the dynamic system models presented earlier. 
The simulation results oscillate around their mean value, which is 
expected because of the mutation operator. The simulation results 
will vary from one simulation to the next, and will never exactly 
match the theory, due to the stochastic nature of the simulations. 
That is why the dynamic system models can be more useful than 
simulation; the models are exact while simulation results are only 
approximate. 
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Fig. 5. BBO dynamic system results giving confirmation that simulation matches 
theory. The traces show the proportion of the optimal individuals for a typical 
simulation, the mean of that proportion over all generations, and the proportion 
according to the dynamic system model. 
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2.5 

Fig. 8. Dynamic system model results for a 3-bit problem (search space cardinality 
n = 8) showing the steady-state proportion of optimal individuals. 

4.2. Comparison of dynamic system models 

Next we compare dynamic system model results between BBO, 
GAGUR, and GASP. We consider a problem whose fitness values are 
given as 

8 for xi = (0· · ·0) 

simulation 

simulation mean 

theory 

�i = 9 for xi = (1· · ·1) (38)
2 

1 for all other xi. 

This is the same as (36) except that it is generalized for an arbitrary 1.5 
number of bits. The proportionality vector of the initial population 
is given as 

1

pe
rc

en
t o

f o
pt

im
um

p(0) = 
1 

[ 1 . . . 1 0 ]T
. (39) 

n − 1
0.5 

That is, the initial population is evenly distributed among the sub­
optimal individuals, and there are no optimal individuals. Figs. 8–10 
show steady-state dynamic system model results for three differ­

0
0 20 40 60 80 100 

generation 

Fig. 6. GAGUR dynamic system results giving confirmation that simulation matches 
theory. The traces show the proportion of the optimal individuals for a typical 
simulation, the mean of that proportion over all generations, and the proportion 
according to the dynamic system model. 
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ent search space cardinalities, plotted as functions of mutation rate. 
Fig. 8 shows that BBO is much better at achieving a high percentage 
of optimal individuals than GASP and GAGUR for small problems. 
Figs. 9 and 10 show that as the problem dimension gets larger, BBO 
performance gets worse relative to the GAs for large mutation rates. 
However, BBO remains many orders of magnitude better than the 
GAs for small mutation rates, which are more typical for real-world 
problems. 
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theory. The traces show the proportion of the optimal individuals for a typical probability of mutation 
simulation, the mean of that proportion over all generations, and the proportion 
according to the dynamic system model. Fig. 9. Dynamic system model results for a 5-bit problem (search space cardinality 

n = 32) showing the steady-state proportion of optimal individuals. 
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Fig. 11. Dynamic system model results for mutation rate = 0.1% per bit showing the 

mutation rate is low, as is typical of real-world problems. 
Figs. 12 and 13 show that as the mutation rate increases, BBO 
remains better than the GAs for small problem dimensions, but 
becomes worse than GASP as the problem dimension increases. 

As seen in Fig. 11, with realistic mutation rates BBO is much 
better than the GAs for all problem dimensions. Furthermore, the 
relative advantage of BBO increases as the problem dimension 
increases. This is consistent with the conclusions presented in [23] 
which were based on a different type of analysis and which were 
confirmed with a variety of standard benchmark simulations. 

Next we compare the dynamic system model results of BBO, 
GASP, and GAGUR, on standard benchmark functions. The Nee­
dle Function is given in (38). The Onemax Function has a fitness 
that is proportional to the number of one-bits in each bit string. 
The Deceptive Function is the same as the Onemax Function, 
except that the bit string with all zeros has the highest fitness. 
The continuous functions that we use are listed in Table 1 and 

steady-state proportion of optimal individuals. 

Figs. 11–13 depict the same information as that shown in 
Figs. 8–10, but presented in a different way. Figs. 11–13 show 
dynamic system model results for three different mutation rates, 
plotted as functions of problem dimension. Fig. 11 shows that BBO 
is much better than the GAs for all problem dimensions if the 

are documented in [26–28]. We implemented the continuous func­
tions as two-dimensional functions whose independent variables 
are coded with three or four bits per independent variable. This 
gives an optimization problem with either six or eight bits total, 
which results in a search space cardinality of either 64 or 256. We 
initialized the population with a uniform distribution over all of 
the non-optimal solutions. The initial population did not have any 
optima. We recorded the percent of optimal solutions in the pop­
ulation after 10 generations, which gives an idea of how fast each 
algorithm converges. Table 1 shows the results. Note that these are 
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Fig. 12. Dynamic system model results for mutation rate = 1% per bit showing the 

not simulation results, but exact dynamic system model results. 
For both the 64-bit and 256-bit problems, BBO performed the 

best in 15 out of 19 benchmarks. More importantly, for very difficult 
problems (the Needle and Deceptive Functions), BBO performed 
better than GASP and GAGUR by orders of magnitude. 

These results are not intended to give a comprehensive com­
parison of BBO and GAs; extensive comparisons between BBO and 
other EAs using standard benchmark functions are shown in [3]. 
The theory and results here are instead intended to show how 
dynamic system models can be used to compare EAs in situations 
where probabilities are extremely small and where Monte Carlo 
simulations are therefore not useful. Dynamic system models can 
also be used to study the effect of various parameter settings and 
learning approaches. Dynamic system models can also aid in the 
development of adaptive algorithms or parameter update schemes 
that work well on many different types of problems. Our dynamic 
system models can also be used to help understand the behav­

steady-state proportion of optimal individuals.	 ior of BBO; for example, how and why it works well, or does not 



 

 

                        

         

    

     

             

  

             

     

      

      

      

 

  

      

      

       

       

       

       

      

      

  

      

           

         

         

 

 

         

          

            

           

          

           

        

         

          

          

         

          

       

        

        

             

             

          

           

         

         

    

         

         

       

        

       

       

          

   

         

          

         

        

          

         

       

      

          

        

           

          

        

           

         

            

       

          

         

         

      

      

          

       

          

          

          

            

          

       

          

           

         

        

          

         

        

         

          

           

        

          

        

            

      

       

    

Table 1
Dynamic system results on benchmark functions. The number in each cell indicates the percentage of optimal individuals in the population after 10 generations. The best
result for each benchmark/cardinality combination is shown in boldface font.

Function Cardinality = 64 Cardinality = 256

BBO GAGUR GASP BBO GAGUR GASP

Needle 6.97×10-3 2.32×10−10 2.17×10−6 6.72×10-3 9.95×10−6 6.48×10−6

Onemax 46.04 47.67 42.64 22.44 23.84 19.43
Deceptive 3.89×10-3 2.25×10−4 2.33×10−4 1.03×10-3 5.36×10−5 5.13×10−5

Rosenbrock 10.37 3.56 9.13 6.60 4.18 6.49
Ackley 58.92 25.40 71.38 43.40 54.17 70.00
Fletcher 74.30 88.41 28.88 32.19 23.15 23.73
Griewank 67.82 44.18 49.00 36.12 15.07 25.61
Penalty #1 29.69 24.98 27.77 26.22 25.02 25.68
Penalty #2 32.83 24.96 28.98 13.03 12.51 14.08
Quartic 39.09 26.13 34.12 18.64 12.49 17.01
Rastrigin 43.93 50.05 41.79 46.85 14.64 42.43
Schwefel 1.2 69.37 25.29 49.21 35.91 14.02 25.07
Schwefel 2.22 69.14 25.80 51.27 38.10 13.36 26.84
Schwefel 2.21 75.65 66.84 62.89 49.03 39.82 38.60
Schwefel 2.26 15.93 0.47 1.30 38.07 15.69 8.70
Sphere 69.63 47.69 49.21 35.95 12.50 24.94
Ellipsoid 65.82 56.07 48.84 34.15 16.08 24.80
Michalewicz 34.01 33.30 30.38 14.47 12.32 15.67
Step 50.04 25.04 37.56 25.51 12.52 19.45

work well, on certain type of problems. This paper does not explore
these many possible research directions, but we envision that the
groundwork laid here will encourage these ideas and make their
pursuit possible.

5. Conclusion

Mature EAs, such as GAs, have a well-structured theory. This
paper attempts to extend BBO theory in that direction to enable
its use and study as an alternative EA. We have summarized a pre-
viously derived BBO Markov model and used it to obtain a new
dynamic system model for BBO. We have further shown how it
can be used to derive a new dynamic system model for GAGUR.
We compared the dynamic system models between BBO, GAGUR,
and GASP on some simple optimization problems. We have seen
that BBO far outperforms GAs when mutation rates are low (0.1%
per bit), as are typically used for real-world problems. In addition,
the relative advantage of BBO increases as the problem dimension
increases. This indicates that BBO can be especially useful for large,
real-world problems when small mutation rates are used.

For some real-world problems where small population sizes are
required due to huge computational complexity for fitness evalua-
tion, it may be desirable to use large mutation rates on the order of
10% per bit [29]. In this case BBO still outperforms the GAs for small
problem dimensions, but GASP is the best performer for large prob-
lems. Note that these conclusions are similar to those of [23], which
were obtained using a different approach. Reference [23] also pro-
vides a more extensive discussion of the conceptual similarities and
differences between GAs and BBO.

There are many interesting possibilities for future work. One is
to extend BBO using features of natural biogeography theory [1,2].
This could include modeling nonlinear migration curves, modeling
species populations and their effects on migration, modeling preda-
tor/prey relationships, including species mobilities in the migration
model, including directional migration momentum as a temporal
effect from one generation to the next, modeling habitat area and
isolation, and many others.

In this paper we used Markov theory for partial immigration-
based BBO to derive a dynamic system model. In addition, we
analyzed a generational BBO algorithm; that is, modification of each
individual in the current generation occurs before any individuals
are replaced in the population [14]. Future work could include the
extension of our Markov and dynamic system models for other

variations of BBO. These variations include partial emigration-
based BBO, single immigration-based BBO, single emigration-based
BBO [13], oppositional BBO [30], and a steady-state BBO in which
individuals in the population are modified with replacement. It
would also be of interest to extend the Markov theory and dynamic
system model to BBO with nonlinear migration curves [5]. Also, our
results have been restricted to problems with binary representa-
tions, and it would be interesting and useful to develop Markov and
dynamic system models of BBO with other types of representations.
Finally, our results are exact only in the limit as the population size
approaches infinity. Many EA applications have large populations,
but many others do not. Further work could focus on obtaining
a dynamic system model for small population sizes, perhaps by
combining states into “meta-states,” or perhaps by using the BBO
Markov model in either [13] or [15].

These extensions would allow analytical comparisons between
different types of BBO algorithms rather than a reliance on sim-
ulation results. Although simulation results are important and
necessary, if used apart from theory they can be misleading. For
example, Fig. 11 shows that BBO is orders of magnitude better
than GAs for large problems with a low mutation rate. However,
since the probabilities in Fig. 11 are so small, it would be difficult
to derive such a conclusion from simulation results because of the
huge amount of computation that would be required.

Another suggestion for future work is to combine BBO with other
EAs. Hybrid EAs are an important topic of research and can exploit
the strengths of multiple methods in a single optimization algo-
rithm [31]. BBO has already been combined with opposition-based
learning [30]. Future work could focus on combining BBO with the
many other EAs that are available. These hybrid algorithms should
be studied not only with benchmarks and real-world optimization
problems, but also with analytical approaches such as the Markov
and dynamic system theory used in this paper. Such analytical tools
include the stochastic character of EAs, but do not depend on the
random results of simulation studies to draw general conclusions.
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