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General Abstract 

 

Evolutionary divergence of lineages is one of the key mechanisms underpinning large scale 

patterns in biogeography and biodiversity. Island systems have been highly influential in shaping 

theories of evolutionary diversification and here I use the insular Zosteropidae of the south west 

Pacific to investigate the roles of ecology and biogeography in promoting evolutionary 

divergence. 

 

Initially I build a phylogenetic tree of the study group and use it to reveal the pattern of 

colonisation and diversification. My results suggest a complex history of dispersal with the 

observed pattern most likely a result of repeated bouts of colonisation and extinction. I then use 

the new phylogeny to quantify the diversification rates of the Zosteropidae. I find a very high rate 

of lineage divergence and suggest the most likely explanation relates to extensive niche 

availability in the south west Pacific. I also find evidence for an overall slowdown in diversification 

combined with repeated bursts of accelerated speciation, consistent with a model of taxon 

cycles. I do not find evidence for sympatric speciation, however.  Finally I combine morphological 

and phylogenetic data to investigate the mode of evolution, evidence for character displacement 

and influence of biogeography on trait evolution. I find little support for the traditional theory of 

character displacement in sympatric species. I do, however, find some support for biogeographic 

theories. 

 

Taken together my results do not support traditional theories on the ecological and 

biogeographical basis of divergence, even in those cases where Zosterops have been used as 

exemplars. This appears to be because those theories assume rather simple patterns of 

colonisation and a static ecological system. Instead, my results suggest that evolutionary 

diversification is dominated by recurrent waves of colonisation and extinction, which, viewed at 

any particular moment, tend to obscure any underlying ecological rules. 
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Chapter 1 

 
General Introduction   

 

1.1 Speciation and divergence 

Species are a fundamental unit of biological organisation and the mechanisms by which they 

arise is a fundamental question in organismal biology. The importance of divergence and 

speciation to our understanding of the natural world is reflected by a vast historic and 

contemporary literature on the subject. Indeed, there is much ongoing research and debate 

surrounding even the most basic principles of the field (for recent reviews see Coyne & Orr 

2004; Gavrilets 2004; Newton 2003; Price 2008; Sobel et al. 2009). In the context of this 

thesis, for instance, it is notable that intense debate continues concerning the roles of 

ecology (Lack 1947; Schluter 2000b; Sobel et al. 2009) and biogeography (Coyne & Price 

2000; Mayr 1963) in promoting evolutionary divergence; the relative role of sympatric 

speciation in rapid adaptive radiations (Coyne & Orr 2004; Fitzpatrick et al. 2008; Gavrilets & 

Waxman 2002; Phillimore et al. 2008a; Savolainen et al. 2006; Schliewen et al. 2001; 

Sorenson et al. 2003); the temporal pattern of phylogenetic divergence in adaptive radiations 

(Crisp & Cook 2009; Gavrilets & Vose 2005; Givnish & Sytsma 1997; Harmon et al. 2003; 

Lovette & Bermingham 1999; Phillimore & Price 2008; Price et al. 1998; Ricklefs 2003; 

Schluter 2000b; Weir 2006); and the link between phenotypic innovation and phylogenetic 

divergence (Alfaro et al. 2009; Anker et al. 2006; Claßen-Bockhoff et al. 2004; Hodges 1997; 

Leinonen et al. 2008; McKay & Latta 2002; Merilä 1997; Nicholls et al. 2006; Phillimore et al. 

2008b; Sæther et al. 2007). It is these broad ongoing questions that I aim to address in this 

thesis. 

 

Traditionally, the empirical study of modes of evolutionary divergence and speciation have 

proceeded down two lines, that are perhaps best characterised as the (i) Dobzhansky and 
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(ii) Mayr approach. The Dobzhansky approach involves laboratory-based experiments of 

invertebrates, often using Drosophila species as model organisms (Dobzhansky 1951; Rice 

& Hostert 1993). This traditional approach has, of course, reaped many rewards including a 

detailed understanding of the genetics of isolating mechanisms in a series of species, the 

potential role of different evolutionary mechanisms in promoting divergence, and the 

consequences of hybridisation on the divergence process (Dobzhansky 1951). Indeed, it can 

be argued that this traditional experimental approach continues to provide the bedrock for 

much of our understanding of the process of speciation, as demonstrated by its influence in 

recent major reviews and textbooks (Coyne & Orr 2004; Futuyma 1998; Mallet 2006; Noor & 

Feder 2006; Ridley 1996; Swami 2009; Willis 2009). It has, however, also been pointed out 

that the traditional approach is not without its limitations. For instance, the focus of 

laboratory-based experiments on a limited variety of species has been criticised for 

overemphasising the role of genetic isolating mechanisms at the expense of ecological and 

behavioural mechanisms (Coyne 1996; Moehring et al. 2006; Price 2008; Reed et al. 2008; 

Rice & Hostert 1993) and, more generally, for often failing to capture what actually happens 

in real populations (Florin & Odeen 2002; Odeen & Florin 2000; Price 2008). 

 

Fortunately for the study of evolutionary divergence and speciation other modes of study are 

available and many of these have, in fact, been employed since the origin of interest in 

speciation. Several striking ‘natural experiments’ have led to highly influential field studies of 

Darwin’s finches (Grant 1999; Lack 1947), Anolis lizards (Losos 1994; Losos et al. 1997), old 

world leaf-warblers, genus Phylloscopus (Irwin et al. 2001; Richman & Price 1992), Ficedula 

flycatchers (Alatalo et al. 1990a; Alatalo et al. 1990b) and sticklebacks (Hatfield & Schluter 

1999; McKinnon & Rundle 2002), but these remain relatively rare cases. A study method 

that has been particularly influential in the context of speciation is the use of the comparative 

methods (Bennett & Owens 2002; Harvey & Pagel 1991). These were used informally by 

both Darwin (1859; 1868) and Wallace (1858; 1891) in their original formulation of ideas 

regarding evolution and divergence. The Mayr approach is a type of comparative approach 
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that draws comparisons among species from different islands or between island and 

mainland forms (Bennett & Owens 2002; Grant 1968; Lack 1970; Mayr 1942). Island-based 

systems hold particular attraction in the context of studies of divergence and speciation 

because they are commonly home to a high proportion of endemic forms (Orme et al. 2005), 

which potentially makes it easier to identify phylogenetically independent observations 

(Bromham & Woolfit 2004). This field of study has advanced rapidly in recent years with an 

explosion of statistically-robust methods for analysing phylogenetic patterns of divergence 

and a series of studies of island-dwelling systems (Emerson & Kolm 2005; Filardi & Moyle 

2005; Harmon et al. 2003; Losos 1990; Losos et al. 1997; Moyle et al. 2009). One of my 

aims in this thesis is to extend this body of work by constructing a new molecular phylogeny 

of another well-studied insular group, the white-eyes (Zosteropidae) of the South west 

Pacific, and to use this to address a series of questions regarding diversification and 

speciation in an island setting. It is particularly appropriate that this is a bird group because 

studies of insular avian systems have played a high profile role in many areas of ecological 

and evolutionary study (Diamond & Mayr 1976; Freed et al. 1987; Grant 1966; Lack 1947; 

Lack 1971; Mayr 1940). 

 

1.2 Phylogenetic and phenotypic divergence in islan d birds 

Phylogenetic analysis of island species relationship patterns is a classic tool in ecology and 

evolution (Darwin 1859; Lack 1969; MacArthur & Wilson 1967; Mayr 1942; Simberloff 1976; 

Wallace 1880; Whittaker 2006). In large part this is probably because islands systems are 

thought to be relatively simple compared to their continental counterparts and therefore to 

represent relatively tractable systems that are nevertheless outside the laboratory. For 

instance, in island-dwelling species population limits are often clearly delimited by water, 

making comparisons between independent units relatively easy and making it more 

straightforward to identify geographic barriers between populations (Lack 1947; Mayr 1963; 

Rosenzweig 1978). In addition, island populations are usually small promoting short-term 

random genetic drift and thought to be exposed to strong selection pressures, providing ideal 
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conditions for both neutral and adaptive divergence and speciation (Mayr 1942; 1963). 

Finally, insular systems are often particularly well studied, partly because of their interesting 

geographic context and partly because of the high proportion of distinct species, which 

means that data are often readily available for large-scale comparative analyses (e.g. (Clegg 

& Owens 2002). 

 

Birds are excellent colonisers of islands because the combination of relatively large body 

size and power of flight make them good dispersers, and as a result they have often been 

used in comparative island studies (e.g., Fleischer et al. 1998; Lack 1947; Lovette et al. 

1998; Ricklefs & Bermingham 1999). Compared to most taxa, birds are also easy to observe 

and as a result they are one of the best studied and understood groups in terms of 

ecological, morphological, behavioural and phylogenetic data (Price 2008). It can therefore 

be argued that birds have inspired theories on diversification and speciation from the earliest 

works on natural selection (Darwin 1859; Wallace 1871) to many classic works of the new 

synthesis and beyond (Lack 1947; Mayr 1942; 1963; Mayr & Diamond 2001). Having said 

this, it is also notable that, while the study of insular bird species has led to many theories 

about speciation and trait evolution, comparatively few of the predictions emerging have 

been tested with extensive data sets backed up with comprehensive and robust phylogenies 

(Price 2008). Recent advances in molecular phylogenies and analytical tools therefore 

provide a new opportunity to test these predictions. 

 

1.3 The major themes 

There are three major themes that I will explore in this thesis and different aspects of each 

are covered in the various chapters. These are: the mode of evolution, the origins and 

consequences of sympatry and the effects of biogeography on divergence of species and 

traits. 
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1.3.1 Mode of Speciation 

 
1.3.1.1 The Geography of Speciation 
 
Allopatric speciation is believed to be the predominant geographic mode of speciation 

(Coyne & Orr 2004; Mayr 1963). Evidence for birds, based on the phylogenetic patterns and 

geography of contemporary species, conforms to expectations of allopatric speciation 

(Coyne & Price 2000; Phillimore & Price 2008; Price 2008). Trait evolution is also predicted 

to be most rapid in allopatry, that is in the absence of gene flow from other populations 

(Price 2008; Rosenzweig 1995). However divergence with gene flow has been repeatedly 

documented (e.g., Danley et al. 2000; Emelianov et al. 2004; Freeland & Boag 1999; Liou & 

Price 1994). The importance of gene flow as a hindering process in trait evolution of 

geographically separated populations depends on the strength of selection (Postma & van 

Noordwijk 2005), and populations connected by even moderate levels of gene flow can still 

diverge if selection is sufficiently strong (Hedrick 1983). Indeed when previous separate 

species come into allopatry and hybrids are unfit gene flow can actually increase the 

strength of selection (Liou & Price 1994). Hence, the consensus view is that this allopatric 

speciation is driven by natural and sexual selection (Coyne & Orr 2004; Price 1998; Price 

2008; Schluter 2000b). Potentially neutral drift may play a role (Dobzhansky 1951; Mayr 

1942) but overall the evidence suggests that evolution and therefore speciation is dependent 

on intrinsic ecology and drift alone is not sufficient to explain observed rates of trait 

divergence (Clegg et al. 2002b; Merilä 1997). 

 

1.3.1.2. Dispersal and Speciation 
 
Mayr (1947) identified range expansion as a crucial part in the process of speciation. 

Recently there has been a shift in emphasis towards the importance of dispersal as a means 

of increasing the range of available niches leading to the changes in ecological and 

morphological traits that eventually may result in speciation (Sobel et al. 2009). Allopatry can 

potentially operate at very small scales if dispersal ability is poor and yet paradoxically, only 
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species with good dispersal ability are likely to encounter the new ecological opportunities 

that make speciation likely. Therefore it is predicted that rapid speciation will often be the 

result of widely dispersing species swiftly becoming adapted to new environments and, 

perhaps as part of that adaptation, losing dispersal ability (Cody & Overton 1996; Diamond 

1981; Diamond et al. 1976; Moyle et al. 2009). Widely dispersing vagile species may 

therefore act as drivers of speciation and reproductively distinct species may evolve from a 

particular subspecies within a widely dispersed species.   

 

1.3.1.3 The Temporal Pattern of Diversification 
 
Temporal patterns of diversification within species groups can be assessed in the light of 

molecular phylogenies using lineage through time plots and associated statistical tests 

(Harvey et al. 1994; Nee et al. 1994b; Nee et al. 1992). Often the statistical null model is that 

at any moment in time all lineages have an equal probability of speciating per unit time (the 

Yule model or birth-death process). This process will tend to yield a linear relationship 

between time on the x-axis and the log number of lineages in the reconstructed tree on the y 

axis. Related to this is the birth-death model where every lineage has a constant probability 

of going extinct, this process typically leads to an upturn toward the present in the lineage 

through time plot. In a model of an adaptive radiation, speciation is expected to occur more 

frequently early in the radiation as the group spreads into new ecological niches and adapts 

to them. Speciation rates are then expected to decline through time as the available niche 

space is filled (Schluter 2000b; Schluter & Ricklefs 1993; Simpson 1953). Many recent 

phylogenetic studies show evidence for a slowdown in diversification rates toward the 

present on a lineage through time plot  (Phillimore & Price 2008; Weir 2006), which is 

consistent with the adaptive radiation explanation. Since slowdowns are unlikely under a 

birth-death model where extinction is high or increases through time, these findings imply 

that extinction rates are low. 
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1.3.1.4 Trait evolution 
 
Understanding the mechanisms that underlie trait diversification rates and the temporal 

variation of those rates is central to evolutionary biology (Rabosky & Lovette 2008a; Ricklefs 

2007). In particular the processes that lead to high rates of morphological diversification and 

rapid radiations in some lineages have generated much interest (e.g., Baldwin & Sanderson 

1998; Hughes & Eastwood 2006; Schluter 2000b). Both adaptive and non-adaptive models 

have been proposed to account for trait differences in congeneric species, according to the 

role of selection in the diversification process. 

 

The two principal non-adaptive or ‘neutral’ models of evolution are drift and founder effects 

neither of which invoke selection. Drift is a neutral process whereby traits diverge by chance 

because only a random assortment of the available genetic variation in a population is 

passed on to succeeding generations (Huxley 1938; Kaneshiro 1989; Wright 1931; Wright 

1940). Theoretical models have shown that non-ecological trait evolution and speciation 

proceed only slowly unless the mutation rate is exceptionally high (Kondrashov 2003). 

Founder effects, the other type of non-adaptive model, were proposed by Mayr (1954) 

whose ‘genetic revolution’ model explained differentiation in small outlying populations 

through novel gene combinations being created through rapid genetic drift as a result of the 

founding of a new population by a very small number of colonists. Such founder effect 

models can potentially lead to rapid evolutionary change but there is little evidence they are 

common in natural populations (Coyne et al. 1997; Lande 1980).  

 

Adaptive models, on the other hand, allow for rapid speciation because adaptation via 

natural selection leads to divergent selection in related traits (Rundle & Nosil 2005; Sobel et 

al. 2009). It is in these situations, where ecological specialisations for unique environments 

are evident in divergent characters and the imprint of a common ancestor can be deduced 

from shared characters, that the signature of Darwin’s “descent by modification” can be most 

clearly seen. Indeed the Darwin’s finches of the Galápagos, a classic example of rapid, 
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adaptive speciation, influenced Darwin’s original theory of natural selection (Darwin 1859). 

Mayr (1944) considered that since all environments are in some sense unique, all 

geographical races are also ecological races. Therefore the adaptive model is expected to 

be very common especially as it allows some gene flow where selection is strong enough to 

overcome it (Price 2008). 

 

Among the Galápagos Finches for example, the two species of warbler finch (Certhia 

olivacea and C. fusca), which fill similar ecological niches, have been separated for more 

than two million years yet are so similar morphologically that they were only recognised as 

distinct species after molecular study (Petren et al. 1999; Petren et al. 2005) and show only 

weak premating isolation (Grant & Grant 2002). By contrast the small, medium and large 

Ground Finches (Geospiza fuliginosa, G. Fortis and G. magnirostris) are indistinguishable 

based on mitochondrial DNA (Freeland & Boag 1999; Sato et al. 1999) and yet occupy 

distinct ecological niches, display assortative mating and are clearly separate on the 

biological species concept (Mayr 1942; Mayr 1982).  

 

Commonly then ecological trait evolution is expected to happen simultaneously with 

speciation events as morphological adaptation to new niches drives diversification. Typically 

trait evolution is expected to happen quickly and early in a radiation as taxa adapt to new 

niches and then slow down as the niche space fills (Nee et al. 1992). Species may 

divergence enough in allopatry to subsequently co-exist in sympatry following range 

expansion (Mayr 1947), as appears to have happened in the genus Geospiza (Grant & 

Grant 2008b). Potentially this could result in a further burst of speciation if character 

displacement is re-enforced in sympatry by competition that causes later arriving species to 

diverge from their founding populations.  
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1.3.2 The origin and consequences of sympatry 

Sometimes closely related species are found inhabiting the same island this can be 

explained either by sympatric speciation or by multiple colonisation events (Coyne & Price 

2000; Kondrashov et al. 1998). In theory, speciation could happen in sympatry if selection 

were sufficiently strong in two different directions, especially early in an island colonisation 

(Dieckmann & Doebeli 1999; Kondrashov et al. 1998). Comprehensive phylogenies 

combined with information on species geographic ranges are an important first step in 

testing for possible examples of sympatric speciation (Barraclough & Vogler 2000; Lynch 

1989). However little evidence for sympatric speciation has emerged to date and if, as is 

generally agreed, sympatric speciation is rare in birds (Coyne & Price 2000; Futuyma & 

Mayer 1980) then it follows that congenerics must diverge sufficiently in allopatry to occupy 

substantially different niches before they can come into sympatry (Coyne & Orr 2004). 

Species in the same genus tend to have similar ecological requirements so competition 

between them will be more severe (Mees 1969). If two congeneric forms have not 

differentiated enough ecologically, then one or the other will be driven to extinct by 

competition in sympatry. Furthermore, post-zygotic reproductive isolation is slow to evolve in 

birds (Grant & Grant 1992; Lijtmaer et al. 2003; McCarthy 2006). If two congenerics have not 

become pre-zygotically reproductively isolated hybridisation could result in fusion of the two 

forms if there is no selection against the hybrids.  Rates of trait evolution may be important in 

determining the feasibility of sympatry, particularly if there is a minimum distance that must 

separate congenerics in morphospace in order for them to survive in sympatry. Typically, 

where congenerics are found in the same area they are expected to differ morphologically 

and in a way that is related to the ecological differences between them (Losos 1990). This is 

particularly true if they are differentiated by the size or type of food they take rather than by 

differences in habitat, although the requirements of different habitats are also likely to result 

in morphological differences. For example highland species are typically larger than their 

lowland counterparts for reasons of heat conservation but this size difference may also be 

important in areas of overlap. 
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1.3.3 Biogeographical effects on divergence 

Island systems have been shown to be important in the formation of endemism in birds 

(Orme et al. 2005) as many islands have unique subspecies or species which have, 

presumably evolved in situ (Mayr & Diamond 2001). However biodiversity is known to have a 

negative correlation with islands that are progressively smaller and more isolated. Species 

exchange is therefore thought to be heavily directionally biased, regularly flowing from 

continents to islands but seldom in the opposite direction (MacArthur & Wilson 1967), 

although are notable exceptions such as mainland recolonisation by Anolis lizards 

(Nicholson et al. 2005). In the south west Pacific for example, colonisation is predicted to be 

primarily eastwards from the large land masses of Asia and Australia, with the proximity of 

these biodiversity sources explaining the absence of adaptive radiations in the region (Price 

2008). Indeed Mayr and Diamond (2001) emphasize geographic isolation as the primary 

cause of speciation in Northern Melanesia and downplay the role of morphological and 

ecological divergence. 

  

Biogeographical attributes of islands can have important consequences for trait evolution, 

and hence speciation. For example, continental islands that were once part of a major land 

mass are likely to have retained fauna that reduce invasion success. In contrast, oceanic 

islands that have emerged from the sea, offer a “clean slate” and early arriving species may 

be able to exploit niches that would normally be closed to them, and hence evolve in 

unexpected directions (Barton 1989; Cox & Ricklefs 1977; Lack 1969). The ability of birds to 

adapt to fill vacant niches is well documented. This may be a niche normally occupied by a 

bird group absent from the area in question such as the woodpecker niche filled by 

woodpecker finches, Camarhynchus pallidus, on the Galápagos (Millikan & Bowman 1967) 

or a niche normally occupied by other taxa such as in New Zealand where Kiwis (Genus 

Apteryx) replace insectivorous mammals (Burbidge et al. 2003). Other characteristics, apart 

from island origin, which are potentially important for the evolution of novel traits are area, 

available habitats, elevation and prevailing weather conditions. Isolation is another important 
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factor as this determines how easy an island is to colonise and the type of species that are 

likely to colonise it. A small island alone in the ocean is only likely to be colonised by very 

vagile species whereas a larger island connected to the mainland by an island chain may 

eventually be colonised by many species (MacArthur & Wilson 1967). 

 

The number of species and the order in which they arrive can be very important in island 

settings. A newly arriving species on a species-poor island can have a major impact on the 

balance of the ecosystem. This is particularly true of vagile continental species which are 

hypothesised to have high competitive ability as a result of having evolved in competitive 

environments (Mayr & Diamond 2001). One possible consequence of this is that widespread 

vagile species drive colonisation and that endemic species arise from them (Mees 1961; 

1969). Hence species with continental distributions are responsible for the generation of 

biodiversity. Isolated islands have low rates of colonisation and extinction as under the 

theory of island biogeography extinctions balance arrivals at equilibrium (MacArthur & 

Wilson 1967). Although these isolated islands may produce many endemic species, islands 

have not traditionally been thought to be biodiversity sources (Cowie & Holland 2006; Orme 

et al. 2005). Recently however this view has been questioned and it has been suggested 

that the contribution of island fauna to continental regions may be underestimated 

(Bellemain & Ricklefs 2008; Filardi & Moyle 2005). This remains to be evaluated for many 

groups with both continental and insular distributions. 

 

1.4 The requirements of a model system 

Investigating questions relating to modes of evolution, ecological speciation and 

biogeography in the context of island colonisation requires an unusual study system. An 

ideal study system would demonstrate the following attributes: (i) replicated system where 

multiple invasions have resulted in closely related forms inhabiting different islands, (ii) a 

natural pattern of colonisation that has not been greatly affected by human intervention, (iii) 

substantial variation in morphology and ecology across taxa, (iv) both allopatric and 
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sympatric patterns of occurrence across related forms, (v) rapid recent diversification such 

that the effects of extinction are minimised, and (vi) detailed knowledge of the species 

designation, taxonomy, and geographic distribution of all forms within the study region. From 

a practical point of view it is also necessary to be able to sample all forms with the region of 

study and quantify variation in traits of potential ecological relevance. 

 

Taxonomic groups that satisfy all of these requirements are likely to be rare. One such 

group, however, are the Zosteropidae of the south west Pacific, which not only show the 

above characteristics but have also been repeatedly invoked in theories of evolutionary 

divergence and speciation (Coyne & Price 2000; Diamond & Marshall 1977; Grant 1965; 

Lack 1971; Mayr 1963; Moreau 1964). It is this group that is the focus for my work in this 

thesis. 

 

1.5 The family Zosteropidae 

The white-eyes are an almost exclusively tropical group of passerine birds (Mees 1957). 

Their phylogenetic affinities have been uncertain for a long time but a recent molecular study 

of passerine families  suggests that they are most closely related to the babblers (Timaliidae) 

(Barker et al. 2004). There are 12 genera in the family of which the most speciose genus is 

the nominate Zosterops, which contains between 60 and 70 species according to Mees 

(1957), and in excess of 70 according to more recent treatments (Dickinson 2003; Sibley & 

Monroe 1990). Zosterops is therefore the second largest avian genus and its natural 

distribution covers the range of the entire Zosteropidae family from Africa eastwards to the 

Pacific Ocean islands of Western Samoa and Macquarie Island (Mayr 1965; Mees 1957). 

Many of the species in the family are remarkably similar morphologically, which makes it 

difficult to resolve relationships using phenotypic characters alone (Lack 1971; Mees 1969), 

but they are known to have speciated relatively rapidly for an avian clade with the age of the 

entire family placed at only two million years in some estimates (Moyle et al. 2009). This is 
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approximately the same as the average time taken for neotropical sister taxa to diverge to 

the level of recognised species (Weir & Hey 2009). 

 

The white-eyes are the most prolific island colonists of all the species-rich avian families 

(Baille 2001; Clegg et al. 2002b; Clements 2000; Moreau 1964). The Indo-Australian 

Zosteropidae, in particular, have a high frequency of insular occupation (Mees 1969) in 

comparison with the African Zosteropidae (Moreau 1967). There are also multiple cases of 

different Zosterops species inhabiting a single island, making them an obvious candidate 

group to focus questions about both speciation and character displacement (Coyne & Price 

2000; Grant 1965). Moreover, they contain two wide-ranging superspecies groups which are 

potential candidates for drivers of speciation in the region, the Zosterops griseotinctus group 

(Mees 1957) and the Zosterops lateralis group (Mees 1969). The rate of extinction in the 

group prior to historical times is thought to be low and museum specimens survive of the 

recently extinct species (Steadman 2006).  

 

Perhaps not surprisingly given their abundance in island avifanuas, white-eyes have been a 

classic study system for ideas about the role of islands in promoting speciation (Clegg 1999; 

Clegg et al. 2002b; Lack 1971; Mayr 1965; Mayr & Diamond 2001; Mees 1957; 1961; 1969; 

Moyle et al. 2009). Particularly they have been instrumental in forming ideas on island 

colonisation (Mayr 1963), ecological isolation (Lack 1971), the rarity of sympatric speciation 

(Coyne & Price 2000; Mayr 1942; Mayr 1963), interspecific competition (Diamond 1977) and 

founder effects (Clegg et al. 2002a; Mayr 1954). More recently, the south west Pacific 

Zosteropidae have proven valuable in investigating the roles of the microevolutionary 

processes that underlie population divergence and potentially result in speciation (Clegg et 

al. 2002a; Clegg et al. 2008; Estoup & Clegg 2003; Frentiu et al. 2007; Mayr 1954; 

Phillimore et al. 2008b; Robinson-Wolrath & Owens 2003; Scott et al. 2003).  
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1.5.1 The Zosterops of the south west Pacific 

The Zosterops of the south west Pacific are ideal for this study, forming a replicated natural 

system where multiple invasions have resulted in related forms living in allopatry and where 

these forms display variation in morphology and ecology (Figure 1). Many islands in the 

region have two or even three forms of Zosterops showing diverse morphologies and 

behaviours. It is this pattern that has led to the group being invoked in discussions on the 

relative role of ecological speciation (Mayr 1947; Moyle et al. 2009; Warren et al. 2006) and 

sympatric speciation (Coyne & Price 2000; Emerson 2008). In addition, members of the 

Zosterops lateralis species complex have frequently colonised islands where a congeneric is 

already present (Mees 1969). The dispersal abilities of one subspecies (Z. l. lateralis) are 

well documented (Higgins et al. 2006; Mees 1969). This subspecies has colonised New 

Zealand and adjacent islands within recorded history (Mees 1969; North 1904) and the 

occurrence of distinctive endemic subspecies testify to older dispersal events (Mees 1969). 

It is this subspecies that has been invoked in theories of founder effects (Clegg et al. 2002a) 

and more recently used in a series of tests of microevolutionary mechanisms (Clegg et al. 

2002b; Estoup & Clegg 2003; Scott et al. 2003). 

 

While the origins of the Zosteropidae of the south west Pacific has usually been assumed to 

be in the Australasian region (Mees 1969), there has been considerable debate on the 

proximate origins for different species and populations. Lack (1971) suggested that the 

distribution of the insular Zosteropidae is not the result of extensive speciation and further 

colonisation on the islands but rather of multiple colonisations waves from the mainland. In 

contrast, Mayr (1967) suggested that species from New Caledonia (Z. xanthochrous and Z. 

minutus), Fiji (Z. explorator) and Vanuatu (Z. flavifrons) represent a single superspecies and 

therefore must also represent a separate radiation from Australia, rather than successive 

colonisation waves. Although the origins of Z. lateralis are less disputed, with both Mees 

(1969) and Mayr (1965) proposing that Z. lateralis originated in Australia and spread into the 

South Pacific in waves of colonisation, the specifics of direct versus island-hopping 
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colonisation mechanisms remain unclear and the contribution of different subspecies to 

island speciation has been speculative. For instance, based on plumage similarities, Mees 

(1969) concluded that Z. strenuus, Z. tenuirostris (Norfolk Island) and Z. l. tephropleurus 

(Lord Howe Island) evolved not simply from Z. lateralis but specifically from the Z. l. cornwalli 

subspecies and that Z. albogularis (Norfolk Island) evolved from the Z. l. lateralis 

subspecies. Lack (1971) likewise suggested that Z. inornatus (New Caledonia) evolved from 

the widespread Z. l. lateralis based on its similar colouring.  

 

The species and subspecies names that are used in this thesis are shown in Appendix 2.1, 

Table1 A and B. For the most part I follow the nomenclature of Mees (1957; 1961; 1969), 

particularly regarding the delineation of subspecies groups. In one case, however, I depart 

from the stance adopted by Mees (1961) and use the nomenclature preferred by Mayr 

(1965; 1967). Controversy exists over the application of the names Z. kulambangrae, 

Z.ugiensis and Z. rendovae to species in the Solomons (see discussions in Mees 1961; and 

Sibley & Monroe 1990). Mees applies the name Z. rendovae to the group of birds, from San 

Cristobal, Guadalcanal and Bougainville that Mayr (1967) refers to as Z.ugiensis. Mayr uses 

Z. rendovae for the species group, found on Kolombangara, New Georgia, Vangunu, 

Nggatokae, Rendova and Tetepare, which Mees names as Z. kulambangrae. Note that only 

the names are different, both authorities agree on the delineation of the two species. Here I 

use the nomenclature applied by Mayr (1967), which was also preferred in a recent 

molecular phylogeny of the Zosteropidae (Moyle et al. 2009). Thus the name Z. rendovae is 

applied to the species that actually occurs on Rendova, which I believe reduces the potential 

for confusion. Mayr regards Z. r. rendovae from Rendova and Z. r. tetiparus from Tetipari as 

a megasubspecies, distinct from Z. r. kulambangrae, and it may be that these two groups 

are better treated as full species. Moyle et al. (2009) agree that there is a clear split between 

Z. r. kulambangrae, on the one hand, and the other two subspecies on the other but they 

further imply that all three subspecies may be worthy of species status. Additionally their tree 

shows the northern and southern forms of Z. ugiensis as phylogenetically distinct strongly 
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suggesting that this should be split into two species. Subspecific names remain the same as 

in Mees except that the nominate species of Z. ugiensis from San Cristobel, Z. rendovae 

rendovae in Mees, becomes Z. ugiensis ugiensis and the form of Z. rendovae on Rendova, 

Z. kulambangrae paradoxa in Mees, becomes Z. rendovae rendovae. I also include one 

species unknown to Mees and therefore not included in his monograph, Zosterops gibbsi, 

which was described only recently (Dutson 2008). 

 

Although much work has been done on the Zosteropidae, and on those of the Indo-

Australasian region in particular (Lack 1971; Mayr 1965; 1967; Mees 1957; 1961; 1969), it is 

notable that these earlier studies were not informed by a molecular phylogeny. Relationships 

within the Zosteropidae are known to be difficult to resolve using traditional taxonomic 

techniques due to the comparative morphological uniformity of the family (Lack 1971; Mees 

1969).  New techniques of tree building and tree analysis mean that these questions are 

worth revisiting in the light of a comprehensive molecular phylogeny and this is one of the 

key differences between my work and that which has gone before. This tree resolves 

relationships at a finer taxonomic level, roughly to subspecies, than the recent phylogenetic 

analysis by Moyle et al. (2009), which covers a broader range of species than I examine 

here but is therefore inevitably less complete in terms of the proportion of taxa included. 

 

1.5.2 Modes of evolution in the Zosteropidae 

Zosterops have been used as the basis for the study of founder effects in island populations  

(Clegg et al. 2002a; Grant 2002). Clegg (2002a) showed that founder effects have little effect 

on genetic diversity due to large founding populations but repeated island hopping leads to 

decline in genetic diversity. Reporting on this study, Grant (2002) concluded that multiple 

immigration events would obscure changes initially caused by founder effects. 

 

I predict that Zosteropidae of the south west Pacific should follow the early-burst model of 

phenotypic and lineage divergence.  This is because they are a young species group 
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spreading into a new region of unoccupied niche space such that genetic and phenotypic 

(particularly of ecologically relevant morphological traits) change is expected to be rapid as 

new colonists evolve to exploit the novel environment. In particular, the formation of new 

species is expected to occur with arrival on an island, as implied from the number of 

endemics in the region. Following colonisation and niche-filling, rates of both speciation and 

phenotypic evolution should decline. An emergent outcome of the expected concurrent 

divergence in genes and traits is that most morphological change should be concentrated at 

speciation events and hence follow a form of punctuated speciation. I test these ideas in 

Chapter 4 of this thesis. 

 

1.5.3 Origins and maintenance of sympatry in Zosterops  

The Zosteropidae of the south west Pacific have been instrumental in forming many of the 

hypotheses about trait evolution (Lack 1971; Mayr 1965; Mayr & Diamond 2001). Island 

Zosterops are commonly sympatric and have often been used as examples of character 

displacement (Diamond et al. 1989; Grant 1972b). Some sympatric Zosterops are 

segregated by habitat either completely, such as on Kulambagra (Mayr & Diamond 2001) or 

partially, such as on Grande Terre where Zosterops xanthochrous is more numerous in the 

highlands and in the native forest whereas Zosterops lateralis griseonatus is more common 

in cultivated land and on the coastal lowlands (pers.obs, Mees 1969). More typically, 

however, sympatric Zosterops are thought to be separated along a size gradient with most 

islands having two or three species separated either on overall body size or bill size and 

shape (Grant 1968; Grant 1972a; Lack 1971; Mayr 1967; Mees 1957; 1961; 1969). The 

classic theory is that the earlier arriving species grew in size to exploit a greater range of 

foods which allowed a later arriving more typically sized individual to co-exist with it (Lack 

1971). Sympatry is one of the themes that I return to several times in this thesis, quantifying 

first the phylogenetic affinity of sympatric species in Chapter 2 and then testing for non-

random patterns of phylogenetic variation among sympatric forms in Chapter 3. 
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1.5.4 Biogeography of the Zosteropidae 

The Zosteropidae of the south west Pacific are thought to have had an Australian origin and 

to have subsequently spread across the region following a relatively simple ‘stepping stone’ 

pattern of west to east colonisation.  

 

Many insular white-eye species, such as Zosterops inornatus on Lifou or Zosterops 

albogularis on Norfolk Island, are single island endemics. Several single island endemics, 

such as Zosterops splendidus, are separated from other islands by water gaps of only a few 

kilometres. Others species such as Zosterops xanthochrous and the dark and yellow clades 

of Zosterops flavifrons (Chapter 2) are confined to a single archipelago but found on more 

than one island and have, in some cases, been shown to migrate between islands (Clegg & 

Phillimore 2010). At the extreme end the vagile species Z. lateralis has colonised many of 

the islands and archipelagos in the region. The Z. lateralis forms on many of these islands 

show distinct morphological differences from more typical mainland forms. There should be 

a correlation between distribution and wing length in the Zosteropidae. 

 

I also test for evidence for the ‘island rule’, which predicts that insular forms of large species 

should become smaller whereas insular forms of small species should become larger 

(Forster 1964; van Valen 1973). Although the island rule remains controversial, especially in 

birds (Blondel 2000), Clegg and Owens (2002) demonstrated that birds with a body size of 

less than approximately 100g tend towards larger body size on islands and species larger 

than 100g tend towards smaller body size. Since the Zosteropidae are passerines and have 

a mass substantially less than 100g they are therefore expected to be, on average, larger on 

small land masses than they are on large ones. I also investigate the long-standing 

associated prediction that passerine birds on small islands tend to have more robust bills 

than their relatives on larger land masses (Grant 1965; Lack 1947), which again is thought to 

be a consequence of niche expansion (Blondel 2000; Clegg & Owens 2002). 
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1.6 Aims and predictions 

I aim to construct a phylogenetic hypothesis of the relationships between island white-eye 

populations in the south west Pacific. This will be used to investigate questions regarding the 

taxonomic rank of these species and the history and timing of colonisation events in these 

islands. The focus will be the widespread and very subspecies rich Z. lateralis species 

complex. At the broader level the phylogeny will include samples from all the named species 

of Zosteropidae in the south west Pacific except Z. santaecrucis and Woodfordia lacetosa, 

which I was unable to obtain. This will enable me to test proposed colonisation timings of 

these islands and place the diversification that followed in a phylogenetic context.  

 

I will then use this phylogeny to address the importance of modes of phylogenetic and 

phenotypic evolution and interspecific competition in Zosterops species that have colonised 

the islands of the south west Pacific. Based on the system and on the prevailing theories for 

each of these themes I make the following simple predictions for the Zosteropidae in each of 

the principal themes that I have indentified.  

 

(i) Speciation was rapid and early in the history of the Zosteropidae with trait change 

concentrated at speciation events.  

(ii) Sympatric Zosterops are unlikely to have speciated while in sympatry. Therefore they 

should prove to be more distantly related than expected by chance, to allow time for 

reproductive isolation to have developed in allopatry. They are also expected to occupy 

distinct ecological niches and therefore should be more distinct with respect to key 

morphologically traits than expected by chance. 

(iii)  The prediction for the effects of biogeography in the Zosteropidae is that colonisation 

routes are from the continents eastwards, that endemics lose dispersal ability, and that the 

geographical distribution of the islands is important for both speciation and trait evolution. 
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Chapter 2 

 

Insular Evolution in Pacific Island Birds: 

Multiple Colonisations and Mosaic Distribution 

 

2.1 Abstract 

Diversification of groups among islands and archipelagos is thought to play a significant role 

in determining large scale patterns in biogeography and biodiversity. Here I reconstruct the 

molecular phylogeny of a classic study system for insular evolution, the white-eyes of the 

south Pacific, and use this to address a series of long standing questions regarding insular 

evolution. Earlier taxonomic treatments of this group, based on phenotypic characters, have 

typically favoured a relatively simple model of insular phylogeography, including an 

Australian origin for the group, colonisation from west to east driven by wide spread vagile 

species and intra-archipelago, and possibly sympatric, speciation. My results conflict with 

several aspects of this simple model, with little support for an Australian origin, a simple 

pattern of west to east colonisation or for endemic species arising from currently widespread 

forms. Phenotypic variation is, therefore, typically a weak indicator of broad patterns of 

phylogenetic affinity. I also find no support for sympatric speciation, with co-occurring 

species typically being the result of multiple invasion waves. Instead, phylogenetic 

relationships suggest multiple invasions of the region with the most recent of these, the 

supertramp Silvereye (Zosterops lateralis) showing little phylogenetic structure.  Taken 

together my results suggest that the history of colonisation is more complicated than the 

traditional scenario with the mosaic diversity of the region potentially the result of leapfrog 

colonisation events but most likely the result of repeated bouts of colonisation followed by 

extinction. 
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2.2 Introduction 

The mechanisms of insular evolution and speciation and their impact on the world’s 

biogeography and biodiversity in general and on birds in particular have been central to 

evolutionary thought since the earliest days of the discipline (e.g. Darwin 1859; Wallace 

1891) and remain the subject of ongoing study (e.g. Grant & Grant 2008b; Losos & Ricklefs 

2009a; Losos & Ricklefs 2009b; Mayr & Diamond 2001; Whittaker & Fernández-Palacios 

2007). Inferences about insular colonisation and divergence patterns have traditionally been 

based on the distribution of morphologically determined species and subspecies (Mayr & 

Diamond 2001). However molecular studies are challenging traditional interpretations of the 

evolutionary history of insular forms, often revealing that current colonisation patterns have 

resulted from complex colonisation dynamics (Bellemain & Ricklefs 2008; Filardi & Moyle 

2005). In a molecular study of Pacific monarchs, for instance, Filardi and Moyle (2005) found 

evidence of intra-archipelago divergence, colonization among archipelagos and colonization 

in the ‘upstream’ direction, that is from small remote islands to continents. This is a far more 

complicated pattern than the simple stepping stone colonisation and divergence pattern 

described by Mayr (1942) based on morphology and distributional patterns. Here I focus on 

three issues where molecular phylogenetic information can substantially improve our 

understanding of island colonisation dynamics and subsequent speciation events. These are 

(i) elucidating the predominant direction of colonisation, (ii) quantifying the frequency of intra-

archipelago speciation and its role in generating regional biodiversity, and (iii) establishing 

whether sympatric distributions of congeners are the result of sympatric speciation or 

multiple colonisations. 

 

Islands and archipelagos have been identified as hotspots of endemism (Orme et al. 2005; 

Stattersfield et al. 1998) and have been suggested to be of high importance to the 

generation of biodiversity through in situ speciation (Whittaker & Fernández-Palacios 2007). 

However exchange between continental and island faunas is thought to be largely biased in 

a “downstream” direction where waves of colonisation proceed from areas of higher to 
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progressively lower biodiversity (i.e. from continental areas to large islands and from large 

islands to small islands), based on the well-documented gradual reduction of species 

diversity with increasing distance from continents (MacArthur & Wilson 1967; Mayr 1941; 

Wallace 1855). A predominance of downstream colonization is expected because of the 

vulnerability of small island populations to stochastic events (Sæther et al. 2007), that 

presumably result in frequent extinctions and increased niche availability (Diamond & 

Marshall 1977; Ricklefs 2003), the increased competitive ability, or faunal dominance, 

exhibited by species that have evolved in more highly competitive environments (Mayr & 

Diamond 2001) and the greater source pool of continents due to their area. Hence it is 

generally considered that species with continental distributions possess a greater potential 

for contributing to the generation of future biodiversity, via colonization of new areas, than 

insular species do. In this context, insular species, particularly those occurring on small 

isolated islands, are not considered as biodiversity sources. The distribution of faunal 

assemblages in the south west Pacific shows a strong bias for downstream colonisation in a 

west to east direction, from highly speciose regions of mainland Australia and New Guinea 

to successively more remote islands and archipelagos (MacArthur & Wilson 1967; Mayr 

1942). Indeed, the distribution of avifauna in the region led Mayr (1941) to conclude that 

species exchange was so heavily biased in the downstream direction that no true Polynesian 

avifauna was recognisable. However recent molecular studies have found evidence of 

colonisation in the reverse “upstream” direction, including colonisation of continents by island 

forms (Bellemain & Ricklefs 2008; Filardi & Moyle 2005). Levels of upstream colonisation 

and the contribution of island fauna to continental regions may therefore be underestimated, 

and remains to be evaluated for many groups that have both continental and insular 

distributions. 

 

The colonisation of archipelagos rather than single isolated islands sets the stage for intra-

archipelago speciation, and may result in adaptive radiation due to the opportunity for 

sympatry following stages of allopatric divergence (Grant & Grant 2009; Ricklefs & 
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Bermingham 2008). The colonisation of isolated archipelagos has  produced spectacular 

examples of intra-archipelago speciation and adaptive radiations, such as the Darwin’s 

finches (Geospizidae) of the Galápagos (Grant & Grant 2008b; Lack 1945; Lack 1947), the 

Anolis lizards of the Greater Antilles (Losos et al. 1998) and the silversword alliance 

(Compositae) of Hawaii (Baldwin & Sanderson 1998). In cases where there are significant 

barriers to movement between archipelagos, intra-archipelago diversification may be 

particularly important in generating diversity within a group (Mayr & Diamond 2001). 

Furthermore, these groups of sister-species may subsequently provide a rich source for 

colonists over a broader region if they go through stages of expansion, thereby producing 

complex patterns of colonization and divergence. One potential outcome that may arise out 

of complex colonisation patterns including intra-archipelago divergence and further rounds of 

colonization is that several species may arise from different subspecies within a larger 

species group. This means that reproductively isolated species evolve while their parent taxa 

remain part of a wider population that is not reproductively isolated. This situation has been 

suggested for several insular Zosterops species in the south west Pacific (Lack 1971; Mees 

1969). 

 

Although colonisation patterns can result in sympatrically distributed congeners, this 

condition can, theoretically, also arise via sympatric speciation. Coyne and Orr (2004) 

regarded the idea that speciation can occur within a freely interbreeding population as the 

most controversial aspect of speciation theory. High-profile papers have since shown cameo 

examples where sympatric speciation is the best explanation for the origin of certain species 

(Savolainen et al. 2006) but these are often the special case of host shifts by parasitic 

species (Feder et al. 2005; Sorenson et al. 2003). However despite widespread interest it is 

notable that very little evidence has been found for sympatric speciation in island birds 

(Coyne & Price 2000; but see Friesen et al. 2007). The alternative is that sympatric 

congeneric distributions on islands arise from multiple colonisation events. If these 

colonisations are sourced from the same population/species, then in situ speciation is 
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required to occur prior to the next colonisation wave in order for a subsequent colonist to be 

reproductively isolated. Therefore, for highly vagile species that regularly colonise islands, 

speciation must occur quickly for sympatry to result, although it is possible that speciation 

could be completed via reinforcement. 

 

Here I take a phylogenetic approach to examine island colonisation dynamics using the 

white-eyes (Family Zosteropidae) of Australia and the south west Pacific, a group that has 

emerged as a classic study system for insular evolution,(Clegg et al. 2002b; Diamond 1977; 

Diamond & Marshall 1977; Lack 1971; Mayr 1963; Moyle et al. 2009). The morphological 

similarity of many white-eye species renders the taxonomy of the family particularly difficult 

to resolve using phenotypic characters (Lack 1971; Mees 1969) and thus a molecular 

phylogenetic approach is essential for understanding species and population relationships 

and the colonisation dynamics that contributed the divergence patterns. The difficulties in 

resolving the taxonomy may be further complicated by the high rate of speciation, estimated 

at 2.24 taxa per million years (Moyle et al. 2009). This is remarkable in a vertebrate, more 

than twice that estimated for any other bird group studied to date (Baldwin & Markos 1998; 

Lovette et al. 2002; Weir & Schluter 2007) and only exceeded among published studies by 

certain groups from ‘continental islands’ such as montane lupins (Hughes & Eastwood 2006) 

and cichlids in African lakes (Meyer 1993; Seehausen 2000). The white-eyes are a highly 

speciose bird family, having more successful island colonisers than any other passerine 

group (Clegg et al. 2002b; Moreau 1964) with insular forms comprising 63% of currently 

recognised species and 78% of all subspecies (Baille 2001; Clements 2000). The high 

frequency of insular occupation is particularly evident in the Indo-Australian Zosteropidae, 

where the majority have insular distributions (Mees 1969), in comparison to the African 

Zosteropidae (Moreau 1967). 

 

Within the region shown in Figure 2.1, white-eyes form a replicated natural system of 

ecologically and subtly morphologically variable forms, where multiple invasions have 
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resulted in numerous cases of sympatric and allopatric distributions. One of the curiosities of 

the family Zosteropidae is that mainland forms are usually allopatric whereas it is common to 

find two or even three sympatric congenerics on even quite small islands (Lack 1971). In the 

south west Pacific, sympatric Zosterops distributions have frequently arisen following 

colonization by a member of the Z. lateralis species complex to an island where a congener 

was already present, while in other cases the origins of sympatry and dynamics of 

colonization are not clear (Mees 1969). Cases of sympatric species e.g. Z. tenuirostris and 

Z. albogularis on Norfolk Island, continue to be presented as potential instances of sympatric 

speciation (Emerson 2008), a possibility considered unlikely by Coyne and Price (Coyne & 

Price 2000) in their comparative study of sympatric island birds. An alternative explanation 

for sympatric congenerics is that the Zosteropidae are frequent and early colonists on 

islands and are able to adapt quickly to local conditions allowing successive colonisations to 

occupy niches that would be closed to them on the mainland (Mayr 1963). The fast 

speciation rates (Moyle et al. 2009) and excellent dispersal abilities (Higgins et al. 2006; 

Mees 1969; North 1904) of the Zosteropidae are consistent with this alternative. 

 

Here I generate a phylogeny of the Zosteropidae of the south west Pacific using 

mitochondrial and nuclear DNA and building on previous work on Z. lateralis subspecies 

(Phillimore 2006) and Z. flavifrons from Vanuatu (Phillimore et al. 2008b). Moyle et al. (2009) 

investigated the expansion of the white-eyes on a hemispheric scale using an approach that 

included most currently recognised species but did not address intra-specific, inter-island 

relationships. Most other previous phylogeographic work on this family has focused on small 

geographic portions of the clades overall distribution, covering the Indian Ocean (Warren et 

al. 2006), Micronesia (Slikas et al. 2000a), Australia (Degnan & Moritz 1992; Degnan et al. 

1999 ) and Pacific Ocean islands (Clegg et al. 2002a; Clegg et al. 2002b; Estoup & Clegg 

2003). This is the largest phylogeographic study to date, combining a greater breadth of 

species sampled with intensive intraspecific sampling of populations from different islands.  
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This phylogeny will enable me to use the Zosteropidae to test a number of questions about 

insular biogeography. First I investigate if the predominant direction and incidence of 

colonisation; specifically whether the origins of island species are continental or insular, 

whether there is evidence for upstream versus downstream colonisation and if this occurred 

in multiple colonisation waves. If Zosterops diversity in the south west Pacific is mostly due 

to colonisation waves from mainland Australia, rather than separate insular radiations, then a 

phylogeographic signal of distinct but geographically overlapping clades would be expected. 

If the origins of the Zosteropidae of the region are continental and descendents of the 

ancestral form survived in the original location, then Australian taxa should be basal. If the 

origins are insular the pattern will be more complex. If migration waves spread from west to 

east (downstream) then more easterly distributed species should generally be younger. If 

there was more than one colonisation wave, this pattern should appear in successive layers, 

each with older taxa in the west and younger in the east.  

 

Second I will examine more complex colonisation scenarios. I test the prevalence of intra-

archipelago speciation and its role in generating regional biodiversity through the secondary 

colonisation of other areas. Intra-archipelago speciation would be supported by the 

occurrence of sister species within the same archipelago. If these species groups have not 

been the source for new species in other areas, then the sister-species within the 

archipelago will form a monophyletic group. If new species on neighbouring islands are 

sourced from an archipelago, the new species should be more closely related to the 

archipelago group than to the mainland or other groups. In particular, upstream dispersal 

has occurred, some young species whose sister species are on eastern islands should 

appear on western islands or on the mainland. I then investigate if endemic species have 

arisen from a subset (or subspecies) of a widespread species. If endemic species have 

arisen from within widespread species then clades of widespread species should be 

paraphyletic and include lineages recognised as distinct species. 
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Third I will test whether there is support for sympatric speciation as an explanation for 

sympatric forms of the Zosteropidae. If sympatric speciation has occurred then sympatric 

taxa on single islands should form monophyletic clades.  

 

In addition to the main questions I will also examine whether island populations of the 

widespread Z. lateralis show phylogenetic structure. If described subspecies form 

monophyletic clades this would be suggestive of a reduction in dispersal propensity in some 

populations. Finally, I test if phenotypic classification of species and subspecies agree with 

phylogenetic clades. If phenotypes describe phylogenetic clades then the topography of the 

molecular phylogeny should correspond to traditional morphological taxonomy. In particular I 

focus on Z. flavifrons from the Vanuatu Archipelago to examine the congruence between 

phylogeny and plumage types and subspecies (Mayr 1942; Murphy 1929). 

 

2.3 Methods 

2.3.1 Taxon sampling  

My overall sampling strategy was to obtain samples from as many species and subspecies 

as possible of the Zosteropidae (following the classification of Mees 1969) of a core region 

bounded by Australia to the west, Chatham Island and Fiji to the east, the Santa Cruz 

Islands to the north and Tasmania and New Zealand to the south (Figure 2.1). This region 

was selected as the range of the widespread Z. lateralis species complex, which provided a 

comparison with insular endemics. 

 

Particular attention was paid to sampling Z. lateralis, which has been the subject of several 

previous studies (Clegg et al. 2002a; Clegg et al. 2002b; Clegg & Phillimore). According to 

Mees (1969) the Z. lateralis species complex consists of 18 morphological types, including 

five distinct species, distributed in Australia and the south west Pacific. All species within this 

complex, including two probably extinct forms (Z. strenuus and Z. albogularis), were 

sampled. In addition thirteen of the fourteen subspecies of Z. lateralis recognised by Mees  
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Figure 2.1. The study region of interest in the South West Pacific.  Australia (Red) and New Guinea (Orange) are traditionally considered to be likely sources of the regions 

avifauna.  The Bismarks and the Solomons (Yellow) are potentially important in west to east migration.  The Santa Cruz Islands (Light Green), Vanuatu (Dark Green), New 

Caledonia (Blue), Norfolk Island (Purple), Fiji (Brown), Lord Howe Island (Pink) and New Zealand (Dark Grey) are the principal islands in the study.  The insert names 

individual islands in the New Caledonian, Vanuatu and Solomon archipelagos. 
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(1969) were sampled. The omitted subspecies Z. l. valuensis is found only on Mota Lava in 

Vanuatu and is considered by Mees (1969) to have diverged peripatrically and recently from 

nearby Z. l. tropica populations. Z. l. tephropleurus is sometimes regarded as a distinct 

species (Clements 2000; Hindwood 1940; Sibley & Monroe 1990) but here retain it as a 

subspecies. Note that the abbreviation Z. l. always refers to Zosterops lateralis. Potentially 

confusing species, such as Z. luteus, are written in full.  Field sampling was supplemented 

with museum material provided by the Natural History Museum at Tring (hereafter referred to 

as Tring), to produce a virtually complete representation of the forms of Zosteropidae in the 

region. This enabled me to add to the phylogeny species that are either extremely difficult or, 

in the case of the two extinct species, impossible to collect by means of fieldwork. Sampling 

covered an extensive geographic area including mainland Australia, Australian islands, New 

Zealand, New Caledonia, Vanuatu and Fiji (Table 2.1). 

 

Live specimens were caught in mist-nets during field trips I made to New Caledonia and 

Vanuatu covering a total duration of eight months. Blood samples were collected by 

exposing the brachial vein of each bird and piercing it with a fine gauge needle (26 G, 0.45 x 

10 mm). The resulting blood droplet was drawn up with a capillary tube and transferred to a 

microfuge tube containing EDTA buffer or 90% ethanol (Clegg et al. 2002b; Clegg & 

Phillimore 2010; Phillimore et al. 2008b). For a subset of samples a drop of blood was also 

absorbed on a filter paper which had been prepared with a drop of 0.5 M EDTA (Clegg & 

Phillimore; Petren 1998). My samples were combined with those collected by other field 

workers during previous trips. 

 

As multiple individuals are required if relationships between closely related species are to be 

accurately recovered (Melnick et al. 1993; Ruano et al. 1992), I obtained toe-pad samples 

from four museum specimens where possible. However small numbers of voucher 

specimens meant that in some cases it was only possible to obtain two. In addition, because 

the DNA of some of these specimens was old and therefore degraded, it proved impossible  
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Table 2.1.The species and subspecies sampled, their origin and the number of mitochondrial and nuclear regions 

sequenced. Collectors were Dr. Sonya Clegg (SMC), Dr. Albert Phillimore (ABP) and Richard Black (RAB). Z. 

rennellianus was kindly provided by C. Smith (Burke Museum).  Abbreviations are New Caledonia (N.C.), north 

(N), south (S), east (E) west (W) and central (C). 

 

Part A: Modern blood samples

Genus species subspecies Location Date Initials CB1 ND3 ATPase TGFB2

Zosterops flavifrons brevicauda Santo 2004/06 APB/SMC 5 5 3 5

Zosterops flavifrons efatensis Efate 2004/06 APB/SMC 5 5 2 5

Zosterops flavifrons efatensis Erromango 2004 ABP 4 4 1 4

Zosterops flavifrons flavifrons Tanna 2004 ABP 5 5 1 5

Zosterops flavifrons gauensis Gaua 2004 ABP 5 5 2 4

Zosterops flavifrons macgilivrayi Malekula 2004 ABP 5 5 3 5

Zosterops flavifrons majuscula Aneityum 2004 ABP 5 5 2 5

Zosterops flavifrons perplexa Ambae 2006 SMC 5 5 5 5

Zosterops flavifrons perplexa Ambrym 2006 SMC 5 5 4 5

Zosterops flavifrons perplexa Epi 2004 ABP 4 4 1 4

Zosterops flavifrons perplexa Maewo 2006 SMC 5 5 5 5

Zosterops flavifrons perplexa Pentecost 2006 SMC 5 5 2 5

Zosterops flavifrons perplexa Vanua Lava 2004 ABP 4 4 1 4

Zosterops inornatus  - Lifou 2006 RAB 5 5 3 5

Zosterops lateralis chlorocephalus Heron 1996/97 SMC 5 4 0 1

Zosterops lateralis familiaris Brisbane 1996 SMC 4 4 0 2

Zosterops lateralis griseonatus North N.C. 2006 RAB 5 4 5 5

Zosterops lateralis griseonatus South N.C. 2006 RAB 5 4 5 5

Zosterops lateralis lateralis New Zealand 1997 SMC 2 2 1 2

Zosterops lateralis lateralis Norfolk 1998 SMC 2 2 1 1

Zosterops lateralis lateralis Tasmania 1996/97 SMC 3 4 0 0

Zosterops lateralis melanops Lifou 2006 RAB 5 4 4 5

Zosterops lateralis nigrescens Mare 2006 RAB 5 5 5 5

Zosterops lateralis tropica Ambae 2006 SMC 3 3 3 3

Zosterops lateralis tropica Gaua 2004 ABP 3 2 1 3

Zosterops lateralis tropica Pentecost 2006 SMC 5 5 5 5

Zosterops lateralis tropica Santo 2004/06 ABP/SMC 6 7 4 8

Zosterops lateralis tropica Vanua Lava 2004/06 ABP/SMC 3 4 2 4

Zosterops lateralis vatensis Ambrym 2004 ABP 5 5 5 5

Zosterops lateralis vatensis Efate 2004/06 ABP/SMC 5 5 3 5

Zosterops lateralis vatensis Epi 2004 ABP 4 4 1 4

Zosterops lateralis vatensis Erromango 2004 ABP 3 4 1 4

Zosterops lateralis vatensis Malekula 2004 ABP 5 5 1 5

Zosterops lateralis vatensis Tanna 2004 ABP 5 4 2 5

Zosterops minutus  - Lifou 2006 RAB 5 5 4 4

Zosterops rennelianus  - Rennell C.Smith 1 1 1 0

Zosterops tenuirostris  - Norfolk 1998 SMC 2 2 1 2

Zosterops tephropleurus  - Lord Howe 1998 SMC 2 2 1 2

Zosterops xanthochrous  - Mare 2006 RAB 5 5 5 5

Zosterops xanthochrous  - North N.C. 2006 RAB 5 5 5 5

Zosterops xanthochrous  - South N.C. 2006 RAB 5 5 5 4

Part B: Museum toepad samples

Genus species subspecies Location Date Museum CB1 ND3 ATPase TGF-B

Woodfordia superciliosa  - Rennell 1954 Tring 2 2 0 0

Zosterops albogularis  - Norfolk 1939 Tring 4 4 0 0

Zosterops explorator  - Fiji 1898/1966 Tring 2 2 0 0

Zosterops gibbsi  - Vanikolo 1997 Tring 1 1 0 0

Zosterops lateralis flaviceps Fiji 1888/98 Tring 4 2 0 0

Zosterops lateralis gouldi CS Australia 1965/66 Tring 4 4 0 0

Zosterops lateralis halmaturinus E,SE Australia 1965 Tring 2 2 0 0

Zosterops lateralis ramsayi Australia 1964 Tring 4 4 0 0

Zosterops luteus balstoni W Australia 1966/69 Tring 3 3 0 0

Zosterops luteus luteus N Australia 1964/69 Tring 5 5 0 0

Zosterops strenuus  - Lord Howe 1919 Tring 4 4 0 0

Taxon Collection details No. Of samples sequenced

Taxon Collection details No. Of samples sequenced
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to extract usable sequences from them. Consequently for some species I was only able to 

use sequence from one or two individuals in the phylogeny. The Tring samples used and the 

regions they were sequenced at are summarised in table 2.1 (Part B) and full details of all 

the individuals sequenced can be found in Appendix 2.1 (Appendix Table 2.1.A).  

 

The phylogeny was supplemented with sequences obtained from GenBank (accession 

numbers given in Appendix 2.1, Appendix Table 2.2.B) to place the south Pacific Zosterops 

into a wider geographic context of species relationships. These included African Zosterops 

sequenced at the cyt-b, ND3 and ATPase regions (Warren et al. 2006), and Asian Zosterops 

sequenced at the ND3 region (Moyle et al. 2009). 

 

2.3.2 DNA extraction 

DNA extraction from fresh blood (modern) samples followed an ammonium acetate 

precipitation method (Nicholls et al. 2000). All ancient DNA work was performed within an 

Ultraviolet (UV) cabinet in a laboratory free of PCR product. All work surfaces and plastics, 

including pipettes, were cleaned with bleach and sterilised with UV radiation daily. Double 

distilled water was autoclaved and also sterilised with UV-radiation. DNA was extracted from 

the museum toe pad samples using an adapted Qiagen DNeasy Kit (Qiagen Ltd., Crawley, 

UK). The toe pad sample was finely sliced to aid digestion, placed in a microcentrifuge tube 

with 180µl Buffer ATL, 20µl 1M DTT and 20µl of Proteinase K, vortexed and incubated at 

56⁰C for twelve hours. I followed standard protocol for ancient DNA extraction described by 

Qiagen, except that where the protocol calls for a 3 minute centrifuge at  

14000rpm I centrifuged at 13000rpm for 3 minutes and 30 seconds and the amount of buffer 

was reduced from 75µl to 50µl in the in the final stage of the process. 

 

Quantification of DNA was performed using a Nanodrop 8000 (Thermo Fisher Scientific, 

2009). Extractions were diluted with Siegen Buffer AE to 20ng/ul for blood sample 

extractions and 10ng/ul for toe-pad sample extractions. 
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2.3.3 DNA amplification 

Three mitochondrial regions and one nuclear DNA region were amplified via polymerase 

chain reaction (PCR). These regions were selected to complement published Zosterops 

sequences (Moyle et al. 2009; Phillimore 2006; Phillimore et al. 2008b; Warren et al. 

2006).The three mitochondrial regions were: a 308 base pair (bp) fragment of cytochrome b 

(primers CB1 and CB2, (Palumbi 1996)); a 393 bp fragment of the ND3 gene (primers 

L10755 and H11151, (Chesser 1999)); and a 951 bp fragment of ATPase 6 and 8 (primers 

CO2GQL and CO3HMH, (Phillimore 2006)). The nuclear DNA region was a 582 bp fragment 

of Introns 5 and 6 of the TGFB2 gene (primers TGF5 and TGF6, (Primmer et al. 2002)).   

 

Modern DNA samples were amplified at all mitochondrial and nuclear regions. Amplifications 

were performed in 20µl volumes. Each PCR included 20ng of template DNA, 0.5µM of each 

primer, 0.25µM dNTPs, 1x reaction buffer (Bioline), 2mM MgCl2, 0.1 units of Taq 

Polymerase and was made to volume with water. A drop of oil was added to the well. The 

thermal cycling reactions were performed in a PCR machine (MJ Research DNA engine 

Tetrad) with the hot lid off. 

 

Restrictions on the amount of material and difficulties with sequencing meant that ancient 

DNA samples were amplified at the cytochrome b and ND3 regions only. Due to the 

degraded nature of DNA sourced from museum samples, additional primers were designed 

to amplify each region as two smaller sized fragments. I designed new primers (Table 2.2) to 

be used in combination with the standard forward and reverse primers (Table 2.3). Ancient 

DNA samples were amplified using a Qiagen multiplex kit (Qiagen Ltd., Crawley, UK). A 

primer mix of forward and reverse primers (each at 5uM final concentration) and double 

distilled autoclaved water was prepared in the ratio 1:1:23. An equal volume of the Qiagen 

master mix was added to the primer mix to create the final master mix. Each reaction 

contained 10ng DNA template (evaporated in each well) and 15 µl of the final mastermix 

was then added to each well. The reaction plate was sealed with a silicon lid that had been 



43 

 

cleaned with bleach, dried and UV-sterilized. Thermal cycling was performed with a heated 

lid to minimise evaporation. 

 

Table 2.2. New primers designed to amplify smaller sections of the cyt-b and ND3 regions. The primers were 

paired with the forward and reverse already available for CB1 (Palumbi 1996) and ND3 (Chesser 1999). 

 

Name Sequence 

Annealing Temp  
(°C) 

Used 

with 

CB1strR GCAGATGAAGAAGAATGAAG 52.55 CB1 

CB1endF ACCTAGCCTTTGCTTCAG 53.09 CB2 

ND3strR ATGGGAGTGGAAGGAGTAG 54.63 L10755 

ND3endR TTTCTTCCTAGTAGCAATCC 51.43 H11151 

 

 

Thermocycling conditions varied for different primer sets (see Table 2.3 for variations). An 

initial denaturation of 94⁰C for 180 seconds was followed by 35 or 40 cycles of: 94⁰C for 30 

seconds, annealing temperature and duration as specified, 72⁰C for 35 to 45 seconds, 

followed by a final incubation at 72⁰C for 600 seconds 

 

The quantity of PCR product was determined by comparison against a standardized 100 bp 

ladder (Bioline) on a 1.5% agarose gel, stained with SYBR® Safe (Invitrogen Corporation). 

Products were diluted for sequencing to approximately 3.3ng per 100bp of PCR fragment. 

PCR products were cleaned prior to sequencing using the ExoSAP (USB Corporation) 

protocol, where 2µl of ExoSAP was mixed with 5µl of each PCR product and incubated in a 

sealed plate on a PCR thermocycler at 37⁰C for 15 minutes then 80⁰C for 15 minutes. 

 

Cycle sequencing reactions were conducted in 10 µl total volumes, comprising 1.0µl 

BigDyeTerminator mix (v3.1 was used for ATpase 6 & 8 and v1.1 for all other sequences), 
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1.5µl of sequencing dilution buffer, 1.6µl of Primer (0.5µM), 4.9µl of ddH2O and 1.0µl of the 

cleaned DNA template. A control plasmid (pGEM-3Zf(+)) and forward primer (-21 M13) were 

included on each plate as a positive control.  The cycle sequencing profile included an initial 

denaturation of 96⁰C for 60 seconds, followed by 30 cycles of 94⁰C for 10 seconds, 50⁰C for 

5 seconds and 60⁰C for 240 seconds. The PCR machine hot-lid was set to on. 

 

Table 2.3.  PCR thermal cycling conditions for the primers. † denotes the temperature and duration of annealing. 

‡ denotes the duration of the elongation step. The total number of cycles used is also given for each primer. ¥ 

denotes the primers used to split the cyt-b and ND3 regions into smaller sections. The newly designed primers 

were paired with the forwards and reverses already designed for CB1 (Palumbi 1996) and ND3 (Chesser 1999). 

 

Primer Pair 

(⁰C) (Seconds) (Seconds) # of cycles

L10755 & H11151 54 30 35 35

CB1 & CB2 52 30 40 40

C02GQL & C03HMH 56 30 45 35

TGFB2 64 30 45 35
CB1 & CB1strR¥

55 45 40 40

CB1endF & CB2¥ 55 45 40 40

L10755 & ND3strR¥ 54 30 35 35

ND3endF &H11151¥ 54 30 35 35

Annealing† Elongation duration‡

 

 

 

Cycle sequencing products were precipitated using a standard ethanol precipitation. Briefly, 

2µl of 125mM EDTA, 2µl 3M sodium acetate (pH 5.2), 10µl ddH2O and 52.5µl 95% ethanol 

were added to the 10µl sequencing reaction. Following a 15 minute incubation period in dark 

conditions, the samples were centrifuged for 15 minutes at 3220g, the liquid removed and 

then centrifuged upside down for 30 seconds at 190g. The DNA pellets were washed by 

adding 70% ethanol, centrifuging for 5 minutes at 3220g and removing the liquid as 

described earlier. The plate was allowed to dry for two minutes before 10µl Formamide was 

added to each well and mixed. The plate was then sealed with a clean rubber Septa and 
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placed on a PCR block at 95⁰C for three minutes to denature the DNA. The products were 

then run on an ABI 3730 sequencer (Applied Biosystems). 

 

Bases were scored using the program Codon Code Aligner version 3.7.0 (CodonCode 

Corporation, USA). Sequences were aligned by Clustal Analysis, using the default 

parameters, and by eye using the program BioEdit version 7.0.9 (Hall 1999). 

 

2.3.4 Model Testing 

The best model (lowest AIC) of sequence evolution for a given gene was determined using 

jModeltest v. 0.1.1 (Guindon & Gascuel 2003; Posada 2008). Trees were constructed using 

neighbour joining and model choice was based on minimisation of the Akaike Information 

Critera. Each of the three mitochondrial genes was tested separately and the models used 

both for the individual trees and within the partitioned multi-gene trees. As not all of the 

models tested were available as standard in the BEAST program that I  used for 

phylogenetic reconstruction (Drummond & Rambaut 2007), I selected the available model 

with the lowest AIC score (Sullivan & Joyce 2005). 

 

2.3.5 Phylogenetic construction 

In order to generate as complete a tree as possible, sequence from all three genes was 

considered together in an analysis that included all taxa for which there was sequence for at 

least one gene. Hereafter this tree is referred to as the ‘All Evidence Tree’. For aIl trees, if 

multiple individuals shared the same haplotype only a single representative was included.  

 

Additionally phylogenetic trees were reconstructed separately for each gene individually. 

Partitioned analyses were also conducted by combining information from the cyt-b and ND3 

genes, hereafter referred to as the ‘Two Gene Tree’, and from the cyt-b, ND3 and ATPase 6 

& 8 genes, hereafter referred to as  the ‘Three Gene Tree’. In the partitioned analyses 
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parameters were allowed to vary between the different genes and only samples with 

sequence for all the genes in question were used. 

 

Using substitution models identified in jModeltest, a Bayesian relaxed clock inference 

approach (Drummond et al. 2006) was implemented in BEAST v. 1.4.8 (Drummond & 

Rambaut 2007) and UPGMA was used to construct a starting tree and a birth-death prior 

was placed on branching times (Gernhard 2008). A relaxed clock approach was used 

because it allows the tree to be rooted without an outgroup (Drummond et al. 2006). I used a 

lognormal distribution to model rate variation across adjacent branches. Substitution was 

assumed to occur at a rate of 1% per lineage per million years (Weir 2006; Weir & Schluter 

2008). For each analysis four independent chains were run for 20 million generations. The 

four runs generated log and tree files which were combined using LogCombiner v1.4.8 

(Drummond & Rambaut 2007). Two million generations were removed from each chain as 

burn-in. Tracer v. 1.4.1 was used to assess convergence and whether the four chains were 

sampling from the posterior distribution. In all cases the chains converged and the combined 

results for the four independent chains had an estimated sample size (ESS) of greater than 

200 for all parameters. TreeAnnotator v. 1.4.8 (Drummond & Rambaut 2007) was used to 

estimate the maximum clade credibility tree across the posterior distribution of 14400 trees. 

 

2.3.6 Predictions and tests 

The Predictions of this study are therefore as follows: 

• If the Zosterops of the south west Pacific are the result of a single ancient 

colonisation, they should form a single monophyletic clade in the phylogeny. 

• If the origins of the Zosteropidae of the region are continental and descendents of the 

ancestral form survived in the original location, then Australian taxa should be basal. 

If the origins are insular the pattern will be more complex.  
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• If migration waves came from west to east then more easterly species should 

generally be younger. If there was more than one wave this pattern should appear in 

successive layers, each with older taxa in the west and younger in the east. In the 

extreme version of this scenario, where each species originates in Australia and then 

colonises an island, Australian taxa would appear to be recent and the tree would 

appear unbalanced. 

• If intra-archipelago speciation is prevalent then all the species in an archipelago 

should fall within the same clade. If there is back stream migration some young 

species whose sister species are on eastern islands should appear on western 

islands or on the mainland. 

• If endemic species have arisen from within widespread species then clades of 

widespread species should be paraphyletic and include lineages recognised as 

distinct species. 

• If sympatric speciation has occurred then sympatric species endemic to a single 

island should be sisters. 

• If recent colonists diverge rapidly at the mitochondrial DNA level then described 

subspecies of Zosterops lateralis should form monophyletic clades within the 

phylogenetic tree. 

• If phenotypes describe phylogenetic clades then the topography of the molecular 

phylogeny should correspond to traditional morphological taxonomy. 

 

2.4 Results 

I obtained sequence data from a region of cyt-b that ranged in size from 287 to 308 bp, a 

region of ND3 that ranged in size from 195 to 393 bp, a region of ATPase 6 & 8 that ranged 

in size from 573 to 951 bp and a region of TGFB2 that ranged in size from 560 to 958 bp 

(See attached CD for sequence files). 
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For cyt-b 217 sites (70%) were invariable and 76 sites (25%) were parsimony-informative. 

For ND3 the corresponding figures were 223 (57%) and 212 (34%) and for ATPase 6 & 8 

they were 544 (56%) and 247 (34%). The nuclear gene, introns 5 and 6 of the TGFB2 gene, 

despite the fact that it evolves relatively quickly for an avian intron (Primmer et al. 2002) 

unfortunately proved to have no useful variation in the Zosteropidae. Neither subspecies or 

species group together on the tree, as shown by the phylogeny in Appendix 2.3., and no 

nodes have a posterior support of greater than 0.2. This is not surprising given that the 

sequences were almost all identical and the variation was not species specific. 

 

2.4.1 The phylogeny of the Zosteropidae – Origins o f the main clades  

The three single gene trees for cyt-b (Appendix Figure 2.2.A), ND3 (Appendix Figure 2.2.B) 

and ATPase 6 & 8 (Appendix Figure 2.2.C) show broad structural agreement with one 

another although in the single gene trees relatively few nodes have strong Baysian posterior 

support (>90%). Well supported nodes are consistent across trees. Some individual samples 

do appear in slightly different places in different trees, particularly in the single gene genes 

however these always have poor Bayesian support and I do not attempt to draw major 

conclusions from them. In the results and discussion presented below, I generally focus on 

the ‘All Evidence Tree’ (Figure 2.2) to interpret phylogenetic relationships with support from 

the ‘Two Gene Tree’ (Appendix Figure 2.2.D) and the ‘Three Gene Tree’ (Appendix Figure 

2.2.E) due to the higher Bayesian support in these trees. 

 

The African Zosteropidae have reasonable Bayesian support as monophyletic in the All 

Evidence Tree (Bayes support = 0.85) and this deep split with the rest of the family was 

evident in all phylogenies. The positions of the Asian and Indian Ocean Zosterops groups 

are less consistent across trees, however both groups show deep divergence from the south 

west Pacific Zosteropidae. The All Evidence Tree has strong Baysian support for the Asian 

group as the sister group south west Pacific Zosteropidae. These two groups have strong 

support together as a monophyly (Bayes support = 0.93) and both groups are themselves 
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strongly supported as monophyletic. Where a monophyletic clade has high support and 

consists of two further highly supported nodes these two lower clades can be considered 

sister groups. Bayes posterior support is 1 for the Asian group and 0.96 for the south west 

Pacific.  

 

2.4.2 Origins of the south west Pacific Zosteropida e – Insular or continental affinities 

None of the phylogenetic reconstructions indicate that mainland Australian forms are basal 

to the south west Pacific Zosterops species, as would be expected if the origins of that clade 

were continental. The south west Pacific clade itself is composed of three distinct clades. 

The first of these, which contains the New Caledonian endemics, I will term the ‘New 

Caledonian Clade’. I will term the second the ‘Zosterops lateralis Clade’ because it contains 

the many forms of that species. The third I will term the ‘Vanuatu Clade’ because it contains 

the majority of forms of the Vanuatu endemic Zosterops flavifrons. The exception is Z. f. 

majuscula and the All Evidence Tree supports the suggestion of Phillimore et al. (2008b) that 

this a cryptic species and evidently not part of the Z. flavifrons clade. Phillimore et al. 

(2008b) suggested that the affinities of the Aneityum Zosterops lie with Z. lateralis, although 

the weak support for this affinity was acknowledged. The ‘New Caledonian Clade’ is well 

supported as a monophyly in the All Evidence Tree (Bayes support = 1) as is the main part 

of the ‘Vanuatu Clade’ (Bayes support = 1). The partitioned trees both show strong support 

for the monophyly of Zosterops lateralis (Bayes support > 0.9). However the relationships 

between the clades are unclear as are the true positions of particular species, notably 

Zosterops explorator, Zosterops luteus and Z. f. majuscula.  

 

2.4.3 Waves of colonisation West to East 

The lack of support for a continental origin is not consistent with a single wave of 

colonisation from the mainland from west to east. However there is some phylogenetic 

signature of downstream colonisation from west to east and north to south. Two species 

from islands upstream, that is north and west, of Vanuatu are sisters to the two colour clades 
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of Z. flavifrons clade. Z. gibbsi, from Santa Cruz, is basal to the dark clade and Woodfordia 

superciliosa, from the Solomon island of Rennell, is sister to the yellow clade. Both 

relationships are well supported in the All Evidence tree. In the larger ND3 gene (Appendix 

2.2.B) there is support that Solomon island species from further west again, Z. metcalfi, from 

Choisel and Z. stresemanni, from Malita are part of a monophyly that includes the Vanuatu 

clade (Bayes support = 0.92). The All Evidence Tree suggests, with strong posterior support, 

that this whole south Pacific group is the sister group of Asian species from further west 

again. This would seem to be consistent with a pattern of west to east migration.  

 

Nevertheless, overall the patterns are too complex to conform to a simple west to east model 

of colonisation. For example Z. rennellianus from Rennell in the Solomons appears as the 

sister species of Z. xanthochrous from New Caledonia. Since these species are separated 

by several archipelagos and numerous other species this a pattern inconsistent with a single 

simple east west dispersal event. The ND3 gene in isolation suggests that Z. explorator and 

Z. luteus balstoni may be within a group of Asian species that also includes the majority of 

Solomon Island white-eyes and Z. olegineus from Yap and Z. cinerus from Palau Island 

(Appendix 2.2.B). If so this would add to the general pattern of different phylogenetic clades 

having geographically overlapping distributions, a pattern that suggests several separate 

waves of colonisation. On a smaller geographic scale Phillimore et al. (2008b) concluded 

that the genetic structure of Z. flavifrons suggests that this morphospecies is the perhaps 

result of three or perhaps even four separate migrations into the archipelago. Certainly it is 

clear from the phylogeny that it does not form a single superspecies with Z. xanthochrous, Z. 

minutus and Z. explorator as suggested by Mayr (1967). These four species are well 

separated on the tree with only Z. xanthochrous and Z. minutus found in the same clade and 

even then these two are not sister species as, unexpectedly, Z. rennellianus from the 

Solomon Islands is well supported as the sister species to Z. xanthochrous in the Three 

Gene Tree (posterior support = 0.91). This New Caledonian clade, distinct from those 
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previously described (Mees 1969), may represent further evidence for multiple waves of 

colonisation. 

 

2.4.5 Intra-archipelago speciation and upstream mig ration 

Evidence for intra-archipelago speciation requires the occurrence of species from the same 

island groups to appear together within well supported clades. Although two archipelagos 

might appear to match this criterion they are clearly not true examples of intra-archipelago 

speciation. The dark and yellow clades of Z. flavifrons from Vanuatu are found in the same 

clade and the New Caledonian species Z. xanthochrous, Z. inornatus and Z. minutus are 

also in a single clade. However, these clades also contain birds from islands outside these 

archipelagos and the species from the same archipelago are often not sisters. The Vanuatu 

clade that encompasses three of the four Z. flavifrons subclades, also includes Z. gibbsi from 

the geographically adjacent Santa Cruz Islands and W. superciliosa, from Rennell Island. 

The more basal position of these latter two species within the clade does not support a 

scenario of recolonisation out from Vanuatu. Similarly, although all of the New Caledonian 

endemics occur within the same, well supported, clade, there are, again, birds from other 

islands within the clade. The Three Gene Tree shows Z. inornatus, from Lifou, strongly 

supported as being the sister group to a clade containing both Z. minutus, also from Lifou, 

and Z. xanthochrous the other New Caledonian endemic. There appears to be little 

phylogenetic structure within Z. xanthochrous itself with populations from different parts of 

the main island and from Mare being paraphyletic. However this clade also includes Z. 

albogularis and Z. tenuirostris from Norfolk Island, Z. strenuus from Lord Howe and Z. 

rennellianus from Rennell Island in the Solomons. The phylogenetic relationships among this 

set of species show that their distribution has arisen out of a complex series of colonisation 

and recolonisation events. In particular, it appears that the species on the isolated islands of 

Lord Howe and Norfolk have contributed to the fauna of New Caledonia, providing an 

example of upstream migration. 
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2.4.6 Sympatric speciation 

Two of the four criteria for sympatric speciation as defined by Coyne and Orr (2004) are that 

the two species must be largely sympatric and that they must be sister species. The 

phylogenetic reconstruction provides no evidence of sympatric speciation. In no case are 

sympatrically distributed species (Z. strenuus and Z. l. tephropleurus on Lord Howe Island; 

Z. albogularis, Z. tenuirostris and Z. lateralis on Norfolk Island; Z. inornatus, Z. minutus and 

Z. lateralis on Lifou, New Caledonia; Z. xanthochrous and Z. lateralis on New Caledonia; Z. 

flavifrons and Z. lateralis on Vanuatu; Z. explorator and Z. lateralis on Fiji) found to be sister 

species in the All Evidence Tree (Figures 2.2), nor indeed in any of the single-gene or other 

combined trees (Appendix 2.2.A, 2.2.B, 2.2.C, 2.2.D, 2.2.E). Instead sympatric species are 

always from relatively more distantly related clades. 

 

2.4.7 Phylogenetic structure in recent colonists 

Both the Three Gene and Two Gene trees show a strongly supported monophyletic clade 

containing the majority of the south Pacific Z. lateralis and the majority of the Australian Z. 

lateralis (Bayes support >0.92 in both trees, Appendix Figures 2.2.D and 2.2.E). The same 

clade appears in the All Evidence Tree, albeit with low support. The age of this clade, based 

on the molecular clock, suggests that the spread of Z. lateralis into the Pacific began just 

under one million years ago. However there is very little phylogenetic structure evident in the 

Pacific Z. lateralis clade itself, with even very different looking forms, such as the strikingly 

dark-headed Lifou form (Z. l. melanops) proving to be non-monophyletic. An older 

monophyly (Bayes support = 0.9 on the Two Gene Tree) suggests a deeper split between 

some individuals from the Australian Z. lateralis subspecies gouldi (south west Australia), 

ramsayi (northern Queensland) and halmaturina (south eastern Australia) and the rest of the 

clade. This split is clearly driven by the ND3 gene as this is seen in the ND3 gene tree but 

not the cyt-b gene tree (Appendix Figure 2.2.B). The All Evidence Tree also shows this split 

but most Z. lateralis nodes have poor Bayesian posterior support and subspecies from 
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Australia, Norfolk Island, Lord Howe Island and New Caledonia are interspersed among the 

Vanuatu Zosterops. 

 

The Z. lateralis picture is complicated by a relatively small number of Z. lateralis haplotypes, 

including Z. l. cornwalli from Queensland and Z. l. tropica from Espiritu Santo, in Vanuatu, 

which appear as basal to the main Z. lateralis clade. Although this has poor support in the All 

Evidence Tree some of the same individuals  from these same Vanuatu islands are strongly 

supported as being distinct from the rest of the Z. lateralis clade in the Three Gene Tree 

(Bayes support = 0.92). Additionally, in all the trees , one Z. luteus subspecies, Z. luteus 

luteus from Queensland and Northern Territory is contained within the Z. lateralis clade. 

 

 2.4.8 The evolution of endemic species from widesp read subspecies 

One of the curiosities of the phylogeny shown in Figure 2.3 is that it does not follow expected 

relationships predicted by taxonomies based on patterns of phenotypic similarity (Lack 1971; 

Mayr 1945; Mees 1969). This is particularly true of some of the large-bodied endemic 

species. Based on plumage similarities Mees (1969) concluded that Z. strenuus, Z. 

tenuirostris and Z. l. tephropleurus evolved not simply from Z. lateralis but specifically from 

the cornwalli subspecies. Similarly Mees (1969) concluded that Z. albogularis evolved from 

the Z. l. lateralis subspecies. Lack (1971) likewise suggested that Z. inornatus of New 

Caledonia evolved from the widespread Z. l. lateralis based on its similar colouring. Were 

this the case we would expect those species to come out within the Z. lateralis group and 

moreover to be sister species to the Z. lateralis subspecies named. Instead, these species 

are all found within the New Caledonia clade and appear to be quite distinct from Z. lateralis. 

Only Z. l. tephropleurus resides within the lateralis clade and, counter to the prediction, it 

does not emerge as the sister group to from the cornwalli subspecies. 
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2.4.9 The correlation of phenotypes and phylogeneti c clades in the Zosteropidae 

The traditional divisions of Zosterops on the basis of morphological similarity (Mees 1969) 

are not well supported by mtDNA gene trees. This is most clearly illustrated in the paraphyly 

of the Z. flavifrons clade. Mayr (1945) identified a split, based on plumage colour between 

“Yellow” and “Dark” forms of Z. flavifrons. The uniqueness of the cryptic species Z. flavifrons 

majuscula has already been demonstrated. Z. f. majuscula was thought by Mees (1969) to 

be part of the Yellow clade, this is not supported here. With the exception of this form 

however, the split on the basis of plumage colour holds true in all the trees and is very well 

supported in the most comprehensive tree, the All Evidence Tree. Bayes support is 1 for the 

monophyly of the Yellow clade and 0.91 for the monophyly of the dark clade. There is, 

however, reason to question the current subspecies designations. The Yellow clade, found 

mainly in the more southerly islands and Gaua in the north, consists of the subspecies 

efatensis, gauensis and flavifrons. Z. f. flavifrons appears to be coherent and monophyletic 

but Z. f. efatensis and Z. f. gauensis are paraphyletic. The Erromango population of Z. f. 

efatensis is monophyletic and the sister group of Z. f. flavifrons. However the Z. flavifrons 

white-eyes from Efate and Gaua are phylogenetically indistinguishable in the All Evidence 

Tree. This is interesting given that Gaua is in the northern part of the archipelago and the 

only island north of Efate that contains a member of the Yellow clade.  The Dark clade is 

mainly found in the north including all the islands between Efate and Gaua. There is a similar 

pattern in the Yellow clade, where Z. f. brevicauda from Espiritu Santo is monophyletic but 

the other two subspecies are paraphyletic. However within that paraphyly the population 

from Epi is well supported on the All Evidence Tree as monophyletic (Bayes support = 1). In 

addition there is strong support for a deep split within the Dark clade with the Z. flavifrons 

populations from Espiritu Santo and Vanua Lava shown to be a monophyletic clade separate 

from the other Dark forms (posterior support = 1 on the All Evidence Tree). As noted by 

Phillimore et al. (2008b) this splits the subspecies Z. f. perplexa. So while some of the 

morphologically based assumptions hold up in the phylogeny there are also notable 

departures from orthodox taxonomy. 
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Interestingly, and perhaps significantly, the All Evidence Tree strongly suggests that the two 

main Z. flavifrons clades are not even sister groups. Z. gibbsi, a recently described species 

from Santa Cruz (Dutson 2008), is strongly supported as the sister group to the northern 

Dark clade (Posterior = 0.99) and Woodfordia superciliosa is almost as strongly supported 

(posterior 0.87) as the sister group for the Yellow clade. The latter finding agrees with the 

results of Moyle et al. (2009) who, working with a different, but partially overlapping, set of 

markers, found that W. superciliosa was the sister group to their Z. flavifrons specimen.  W. 

superciliosa looks so different to other Zosteropidae that it has been placed in a different 

genus but there seems, on a phylogenetic basis, very little justification for this. However it is 

important to note that, due to the difficulty of obtaining specimens we were unable to include 

W. lacertosa, of the Santa Cruz group, in any of our gene trees. It would be instructive to 

learn if this is, as commonly supposed (Mees 1969) the sister species to W. superciliosa or 

whether it might reasonably be considered to fall outside the genus Zosterops. 

 

The grouping of the Z. lateralis species complex identified by Mees (1969) based on 

morphological similarities is likewise also only partially supported by the phylogeny. As noted 

above, while the subspecies of Z. lateralis itself form a coherent group, the other species 

named in the complex, Z. strenuus, Z. tenuirostris, Z. albogularis and Z. inornatus, do not 

appear to be particularly closely related to Z. lateralis. 

 

Taken together, the non-validity of so many of the morphologically based taxonomic 

assumptions must call into question the validity of making higher level assumptions on the 

basis of morphology within the Zosteropidae.

Figure 2.2. (Overleaf) The All Evidence Tree. A maximum clade credibility tree of the Zosteropidae of the south 

west Pacific based on sequence from all three genes considered together in an analysis that includes all taxa 

for which there is sequence for at least one gene.  Up to 393 bp of ND3, 308 bp of cyt b and 958 bp of ATPase 

are combined. Numbers adjacent to nodes represent Bayesian branching support. Numbers in curled 

parentheses indicate voucher numbers. Monophyletic island clades were collapsed. Coloured branches indicate 

the geographic location of different taxa using the same colour code as Figure 2.1. Grey branches indicate 

extant species from the African and Asian clades. For details of the collapsed African and Indian Ocean clades 

see Warren et al. (2006). For details of the Z. flavifrons groups see Phillimore et al. (2008b). 
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Z. albogularis (Norfolk Island) {All 4 samples}

Z. inornatus (Lifou) {All 5 samples}

Z. stenuus (Lord Howe) {All 4 samples}

Z. rennelianus (Rennell) {Z.rn1}

Z. xanthochrous (N.C.) {All 15 samples}

Z. minutus (Lifou) {All 5 samples}

Z. tenuirostris (Norfolk Island) {N125}

Z. l. gouldi (Australia) {1965.43.993}

Z. l. halmaturina (Australia) {1965.43.990, 1965.43.991}

Z. l. ramsayi (Australia) {1964.60.1014}

Z. l. gouldi (Australia) {1965.43.992}

Z. l. gouldi (Australia) { }1966.21.269

Z. l. ramsayi (Australia) {1964.60.1012}

Z. luteus luteus (Australia) {All 4 samples}

Z. l. lateralis (Tasmania) {TAS15}

Z. l. lateralis (Norfolk Island) {N103, N120}

Z. lateralis { }See table 2.3.i

Z. l. gouldi (Australia) {1966.21.270}

Z. l. cornwalli (Queensland) {B77}

Z. lateralis {See table 2.3.ii}

Z. l. ramsayi (Australia) {1964.60.999}

Z. l. tropica (Pentecost) {PEN08}

Z. l. cornwalli (Queensland) {B74}

Z. l. cornwalli (Queensland) {B83}

Z. l. tropica (Santo) {245}

Z. l. griseonatus (N.C.) {N091, S015, S020}

Z. l. melanops (Lifou) {L122}

Z. l. melanops (Lifou) {L002}

Z. l. nigrescens (Mare) {M071}

Z. l. melanops (Lifou) {L031, L088, L102}

Z. l. nigrescens (Mare) {M001, M027, M044, M089}

Z. l. vatensis (Tanna) {109}

Z. l. griseonatus (N.C.) {See table 2.3.iii}

Z. tephropleurus (Lord Howe) {Both samples}

Z. l. flaviceps (Fiji) {1898.9.30.186}

Z. l. flaviceps (Fiji) {1888.9.1.781}

Z. l. vatensis (Efate) {EF44}

Z. l. vatensis (Ambrym) {ABY07}

Z. l. vatensis (Efate) {155}

Z. l. vatensis (Ambrym) {ABY39}

Z. lateralis {See table 2.3.iv}

Z. l. vatensis (Ambrym) {ABY25}

Z. l. tropica (Santo) {222}

Z. l. vatensis (Malekula) {215}

Z. l. tropica (Pentecost) {PEN03}

Z. l. vatensis (Malekula) {178}

Z. l. vatensis (Epi) {415}

Z. l. vatensis (Efate) {153}

Z. l. vatensis (Efate) {174}

Z. l. tropica (Santo) {SAN7}

Z. l. cornwalli (Queensland) {B82}

Z. l. cornwalli (Queensland) {B76}

Z. l. tropica (Santo) {SAN2}

Z. l. vatensis (Ambrym) {ABY36}

Z. f. majuscula (Aneityum, Vanuatu) {All 5 samples}

W. superciliosa (Rennell ) {Both samples}

Z. flavifrons (‘Yellow Clade’ Vanuatu) {See table 2.3.v}

Z. gibbsi (Vanikolo ) {Z.gi1}

Z. flavifrons (‘Eastern Dark Clade’ Vanuatu) { }See table 2.3.vi

Z. flavifrons (‘Western Dark Clade’ Vanuatu) { }See table 2.3.vii

Z. explorator (Fiji) {Both samples}

Z. luteus balstoni (Australia) {All samples}

Z. montanus whiteheadi {ZMUC.O2662}

Z. japonicus {LSUMZ.B20880}

Z. at. atricapillus {LSUMZ.B36434}

Z. erythropleurus {ZMUC.O2776

Ancient Indian Ocean white-eyes

African and maderaspatanus white-eyes

1

1

0.85

0.86

1

0.6

1

1

1

1

1
1

1

1

0.91

0.99

0.87

0.87 0.99

0.93

1

1

0.96

0.86

1

1

1

1

1
1

1

1

1

0.76

0.93

0.98
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Table 2.4. Voucher numbers of specimens included in tips representing more than one individual in Figure 2.2. 

2.3.i

Genus Species Subspecies Location Sample numbers

Zosterops lateralis cornwalli Queensland B79, C132

Zosterops lateralis gouldi Australia 1966.21.270

Zosterops lateralis lateralis New Zealand D3, C132

Zosterops lateralis lateralis Tasmania TAS01, TAS04, TAS06

Zosterops lateralis ramsayi Queensland 1964.60.1001

2.3.ii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis chlorocephalus Heron Island H1568, H1613, 9010, 9601

Zosterops lateralis cornwalli Queensland B71, 77

2.3.iii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis griseonatus N.C. N018, N024, N036, N109, S014, S030, S035

2.3.iv

Genus Species Subspecies Location Sample numbers

Zosterops lateralis tropica Ambae AMB55, AMB56, AMB57

Zosterops lateralis tropica Espiritu Santo 233, SAN9

Zosterops lateralis tropica Gaua 251, 261, 267

Zosterops lateralis tropica Pentecost PEN16, PEN18, PEN33

Zosterops lateralis tropica Vanua Lava 317, 319, VAN46

Zosterops lateralis vatensis Ambrym ABY26

Zosterops lateralis vatensis Epi 412, 418, 423

Zosterops lateralis vatensis Erromango 371, 373, 380

Zosterops lateralis vatensis Malekula 176, 183, 199

2.3.v

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons efatensis Efate 18, 25, 40

Zosterops flavifrons efatensis Erromango 378, 385, 392, 405

Zosterops flavifrons flavifrons Tanna 73, 110

Zosterops flavifrons gauensis Gaua 269, 271, 285, 294

2.3.vi

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons macgilivrayi Malekula 185, 193, 201, 211

Zosterops flavifrons perplexa Ambae AMB3, AMB4, AMB5, AMB7

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY12, ABY13

Zosterops flavifrons perplexa Epi 420, 421, 427

Zosterops flavifrons perplexa Maewo MW03, MW06, MW07

Zosterops flavifrons perplexa Pentecost PEN17, PEN69, PEN70

2.3.vii

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons brevicauda Espirtu Santo 227, 229, SAN6, D

Zosterops flavifrons perplexa Vanua Lava 311, 320, 329  
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2.5 Discussion 

The new phylogenies presented suggest that the origins and diversification of the 

Zosteropidae of the south west Pacific are more complex than traditionally assumed (Lack 

1971; Mayr 1942; 1967; Mees 1957; 1961; 1969). For instance, the simplistic model of a 

single colonisation wave from west to east spreading in a linear pattern from continents to 

islands does not fit with the phylogenetic data. Instead, I find evidence consistent with 

multiple waves of colonisation and extinction. In addition there are a number of unexpected 

relationships between geographically distant or morphologically dissimilar species, which are 

inconsistent with the simple model and require more complex models of colonisation 

dynamics. There is possible evidence of upstream colonisation but no convincing evidence 

of intra-archipelago speciation. There is no evidence consistent with sympatric speciation. A 

widespread recent colonist Zosterops lateralis is shown to have little phylogenetic structure 

and is ruled out as the source species for many of the endemics of the region. Linked to this 

is the clear implication that traditional taxonomy based on phenotypes is a poor predictor of 

underlying phylogenetic relationships. Results must be approached with a certain degree of 

caution as factors such as incomplete lineage sorting and ancient hybridisations can cause 

errors in a mtDNA gene tree reconstruction (Funk & Omland 2003). 

 

Australia has been suggested as the original source for the Zosteropidae of the south west 

Pacific, potentially via New Guinea (Mayr 1941; Mees 1969). For this to be the case, 

Australian taxa would be expected to be basal in the tree, assuming descendents of the 

ancestral form have survived in Australia. This prediction is not supported in my analyses 

with the basal clade suggesting an Asian origin for the south west Pacific white-eyes. The 

ND3 gene tree, which includes the most Asian species, suggests that Z. luteus may actually 

be within the Asian clade and, therefore, a candidate for the ancestor of the south Pacific 

radiation. However, in the All Evidence Tree both Australian forms (Z. luteus and Z. lateralis) 

appear to be within the general south Pacific clade. Of course, as in any phylogeographic 
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study based on extant species, the possibility that an earlier, now extinct, Australian form 

was the ancestral species cannot be excluded. 

 

 

 

Figure 2.3. Three possible colonisation scenarios for island colonisation. The large dark green oval represents a 

continent and the smaller green circles represent archipelagos or islands of different sizes and at different 

distances from the continent. Red numbers indicate the order of the colonisation events.  In scenario i) 

colonisation is in a single wave in one direction with intra-archipelago or possibly sympatric speciation. In 

Scenario ii) there are colonisation events between archipelagos in several directions and over large distances. In 

scenario three several waves of colonisation and extinction result in the same pattern. Importantly scenarios ii) 

and iii) are difficult to distinguish from their phylogenies without information on extinct species (greyed out in the 

trees). 

 

Whatever the ultimate origin of the south west Pacific white-eyes there are three possible 

scenarios that might explain the colonisation pattern of the region, as shown in Figure 2.3. 

Scenario i) is the classic model of a single uni-directional colonisation wave with intra-

archipelago speciation. In the mosaic model, scenario ii), there may be intra-archipelago 
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speciation but crucially colonisation events take place in all directions and over large 

distances, often jumping over island groups. In scenario iii) the multiple wave and extinction 

model colonisation is also essentially unidirectional but occurs in several waves with 

extinctions leaving niches for forms in subsequent waves to exploit or subsequent waves 

causing extinctions. 

 

The traditional model, (Scenario i in Figure 2.3), is clearly too simplistic as it predicts that the 

whole clade should be monophyletic with Australian taxa basal. The ND3 phylogeny 

suggests that the south Pacific Zosteropidae are not monophyletic and we have seen that 

the Australian taxa are not basal. This model would also predict that sister groups will be 

found on adjacent islands. Sister groups do not usually appear on nearby islands and cases 

where this does happen, such as the eastern and western groups of the Dark clade of Z. 

flavifrons, are the exception rather than the rule. Finally it would predict that old species 

should only be found close to the continent and that younger species should be on the more 

easterly and isolated islands. This is clearly not the case. There is no evidence that the 

eastern isolate Z. f. majuscula is a young species. Similarly the young Z. lateralis species is 

found on islands all over the region irrespective of distance from the mainland. 

 

In the mosaic of colonisation model, (Scenario ii in Figure 2.3), there is an initial seeding of 

the region from a mainland source but the archipelagos themselves then act as drivers of 

speciation. Speciation takes place readily within archipelagos, possibly even sympatrically, 

and, crucially, the island groups then provide migrants to colonise other, often distant, 

islands within the region. Darwin’s finches (Geospizidae) are a classic example of adaptive 

radiation and evolved by intra-archipelago speciation. That is that islands within the 

archipelago were sufficiently easy to reach so that they could be colonised but sufficiently 

difficult to make colonisation events rare, allowing adaptation to local conditions and 

subsequent speciation (Grant & Grant 2008b; Lack 1971).  
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Mayr and Diamond (2001) suggest that significant barriers to movement between 

archipelagos mean that speciation is expected to occur within them. If this is the case we 

would expect species within archipelagos, especially ones that are large and remote, to form 

a clade. The ‘Vanuatu’ Clade and the ‘New Caledonia’ Clade both contain several species 

from the same archipelago, hence the clade names. However because both clades contain 

taxa that are found on islands outside those archipelagos they cannot be true examples of 

intra-archipelago speciation unless those outside taxa are the result of colonisation from the 

archipelago. I consider this unlikely because it would mean large dispersal jumps being 

made by endemic, and presumably sedentary, species but it cannot be completely 

discounted as a possibility. If it were true, this would represent a departure from the 

accepted orthodoxy of an essentially west to east Colonisation pattern and suggest that 

recolonisation events of islands of the mainland from more remote islands or archipelagos 

are not as rare as supposed. This would account for the patchy pattern seen within the 

region.  In the absence of human interference the natural rate of vertebrate extinction on 

oceanic islands is thought to be very low (Steadman 1991; Steadman 2006). Scenario ii has 

the advantage that it would require relatively few extinction events within the time frame. 

Pockets of extinction would create vacant niches that might be colonised from islands from 

almost anywhere within the south Pacific, such as Norfolk Island being colonised by birds 

from Lifou and Rennell being colonised by birds from Vanuatu. Stattersfield et al. (1998) 

consider that high rates of ecological and allopatric speciation account for high levels of 

endemic species richness. The islands of the south west Pacific provide plenty of opportunity 

for both so that there may be no need to postulate colonisations from a species rich 

continent to explain diversity. With this interpretation the data would seem to support the 

hypothesis that, far from being an evolutionary dead end, islands do form a valuable source 

for speciation and colonisation (Bellemain & Ricklefs 2008). It has been suggested (Lack 

1971) that white-eyes are among the first species of birds to colonise new islands in the 

Indo-Australian region. If this is so then islands are valuable sources for recolonisation and 
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speciation and small island populations may be more valuable in evolutionary terms than 

often thought. 

 

The third model is one of waves of extinction and colonisation (Scenario iii in Figure 2.3). 

Wilson (1959; 1961) described a cycle of colonisation with three stages. In stage I species 

have a large taxonomic range and little or no endemism, as Z. lateralis does now. In stage II 

endemic species evolve in the region but the group is still centred on the source region. In 

stage III the colonists evolve into endemic groups. During this cycle species undergo range 

contractions and local extinctions leave a scattered distribution. This leaves niche space for 

a newly evolving stage I species to occupy. Wilson (1961) based his ideas on the ant 

species of Northern Melanesia but Mayr and Diamond (2001) suggested that a similar 

process might be occurring in birds. It is certainly possible that Z. lateralis is a stage I 

species in an ongoing taxon cycle in the region. 

 

Under scenario iii geographically distant relatives are the result of wide-spread colonisation 

followed by uneven extinction resulting in a patchwork distribution. For example the sister 

species Z. albogularis and Z. inornatus might represent a very early colonisation wave that 

left survivors on only more remote islands. Other islands were occupied by a new wave that 

resulted in the rest of the New Caledonian endemics as well as Z. rennellianus, Z. 

tenuirostris and Z. strenuus. This scenario would also typically result in very old taxa being 

found on remote islands, as is the case with Z. f. majuscula. The theory of taxon cycles 

would also predict the presence of a young and widespread form. Here, Zosterops lateralis a 

candidate for a stage I taxon cycle species. It has spread widely across the region and 

shows local adaptation in phenotype, for example the large Z. l. chlorocephalus on Heron 

and the black-headed Z. l. melanops and Z. l. nigrescens in the Loyalty Islands, but as yet 

shows little underlying phylogenetic variation (although it shows considerable population 

genetic structure, Clegg & Phillimore 2010).  The genetic structure that there is, for example 

the monophyletic Tanna population, could be considered as the product of earlier but still 
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recent waves, perhaps within the last 10,000 years. On this interpretation, this study 

suggests Z. lateralis as the most recent colonisation wave and, probably, three previous 

major colonisation waves. One very ancient wave, represented by Z. f. majuscula, and two 

others, represented by the New Caledonian and Vanuatu clades. There is also evidence of 

minor waves of colonisation within the larger waves, for example the multiple invasions of 

Vanuatu by Z. flavifrons detailed in Phillimore et al. (2008b). The difficulty with this 

interpretation is that, if it is true that for a new colonisation to take place an extinction of a 

previous species is required then it is questionable if there was sufficient time for the level of 

extinction and replacement required in this model.  Our phylogeny estimates the split of the 

south west Pacific clade at about four million years. Ricklefs and Bermingham (2007) 

working in the Lesser Antilles, estimate that the ‘average life span’ of a population of an 

endemic form with a restricted distribution is about two million years. This is half the time 

estimated in our phylogeny and it might seem that this would mean that there would be too 

little time for so many waves of extinction and colonisation even for such a rapidly 

diversifying lineage as the Zosteropidae. However there is evidence that a new colonist can 

invade even where a previous congeneric already exists, as Z. lateralis has done on multiple 

occasions. It may even be that a new invader might contribute to the extinction of an 

endemic especially if its arrival coincides with some unusual environmental change such as 

a hurricane or invasion by a destructive mammal. The decline of Z. albogularis on Norfolk 

island is thought to have been caused by the introduction of black rats (Rattus rattus) in the 

1940’s combined with competition from Z. l. lateralis, which self introduced in 1904 (BirdLife 

International 2009). However Z. lateralis reached there shortly before the rats arrived and it 

may have outcompeted Z. albogularis under the new conditions. Z. lateralis is a relatively 

recent coloniser on many islands in the region and it may be that it is currently in direct 

competition with more specialised endemic Zosterops. It may be significant that Z. lateralis is 

more commonly found in disturbed areas of human habitation on many of these islands. 

Change is an on-going process and, whatever the cause or effect, new colonists may prove 

better competitors in such times than specialist endemics. Potentially, the coexistence of Z. 
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lateralis with other white-eye forms may not be an evolutionary stable state. Stage I species, 

by definition, are likely to be both competitive and vagile. Thus, colonisation by such species 

seems more plausible than extensive colonisation by island endemics which are known to 

have reduced dispersal ability. Taken together, it seems more likely therefore that a wave of 

colonisation and extinction (Scenario III) would leave closely related species on distant 

islands than that an island endemic would spontaneously cross a thousand kilometres of sea 

to colonise a remote island (Scenario II). 

 

The Z. lateralis picture is complicated because of the deep split that occurs in the tree which 

suggests that certain lineages have been isolated for a long time. However this cannot be 

the case as other individuals from the same populations appear in the main Z. lateralis 

group. The most plausible explanation for this is that there was a period of isolation when 

there was little gene flow between populations and that, although gene flow has now 

resumed not enough time has passed to allow a complete homogenisation. An alternative 

explanation is that Zosterops lateralis picked up mitochondrial DNA through introgression 

with an earlier inhabitant of the area. Introgression is likely to be the explanation of the fact 

that Zosterops luteus luteus, actually appears within the main Z. lateralis clade. Degnan & 

Moritz (1992) found a similar result and concluded that this is a result of introgression 

between Z. lateralis and Z. luteus luteus where they meet in northern Australia. This is the 

most likely explanation despite the fact that Z. luteus luteus is not most closely associated on 

the phylogenetic trees with, the partially sympatric, Z. lateralis ramsayi. The pattern is, 

perhaps, consistent with an ancient introgression event, although this cannot be confirmed 

with the available data. 

 

The main processes of avian speciation on oceanic islands are a matter of debate and 

sympatric speciation is especially controversial. Part of the problem of identifying sympatric 

speciation is that it is very difficult to prove that contemporary sympatrics did not have an 

allopatric origin (Coyne & Orr 2004) but the minimum evidence required is for two species 
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with sympatric distributions to be sister species. I find no evidence for this occurring in the 

Zosteropidae of the south west Pacific. Indeed even the sympatric endemics Z. albogularis 

and Z. tenuirostris, which Coyne & Price (2000) conceded could be an example of sympatric 

speciation, are shown not to be sister species in the phylogenies presented here. I conclude 

then that speciation on the same island does not readily occur in white-eyes even where 

there is very divergent habitat, such as on Grande Terre in New Caledonia where there is 

both wet and dry forest at all elevations from sea level to 1628m yet there is only one 

endemic species. Many assumptions about speciation within the Zosteropidae have been 

made based on taxonomy. Woodfordia superciliosa is one of many white-eyes taxonomically 

assigned on the basis of plumage colour, in this case to a separate genus. My data seems to 

show conclusively that this species nested well within the Zosteropidae and should not be 

assigned its own genus. Woodfordia superciliosa is an extreme example of what would 

appear to be a general rule within the Zosteropidae, that morphological analysis and 

especially colour is likely to be a poor predictor of underlying relationships within the 

Zosteropidae. 

 

It seems probable that the complex pattern of colonisation in the south west Pacific is the 

result of a concatenation of causes. Multiple waves of colonisation are the most likely cause 

of the major clades in the south west Pacific. Within that larger framework, however, the 

phylogenetic structure has included smaller, inter-archipelago colonisation waves, intra-

archipelago speciation and, perhaps, some upstream dispersal events. 
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Chapter 3 

 

Tempo and mode of an explosive diversification: 

The white-eyes of the south west Pacific 

 

3.1 Abstract 

Rates of diversification often vary through time and theory predicts that the pattern of this 

variation may provide information on the underlying macroevolutionary processes. Species-

level molecular phylogenies contain information regarding these temporal dynamics, 

expressed as the accumulation of lineage diversity through time. Here I quantify the rate of 

diversification of a rapidly diverging, predominantly island-dwelling group of birds, the 

Zosteropidae of the south west Pacific. I find an average rate of diversification of between 

0.69 to 0.91 taxa per million years, which greatly exceeds the average rate found across 

avian lineages. I also find strong evidence for a slowdown in the rate of diversification 

through time and this result is robust with respect to the details of the underlying 

phylogenetic hypothesis. However, phylogenetic lineage-through-time plots reveal a pattern 

of repeated bursts of accelerated speciation, consistent with a model of repeated waves of 

island colonisation and insular taxon cycles. Finally, I show that Zosterops have diversified 

considerably faster in the south west Pacific than in the Indian Ocean, and suggest that the 

most likely explanation relates to the extensive availability of islands in the south west Pacific 

region. Taken together, these results suggest that temporal and geographical variation in the 

rate of diversification in this group is linked to waves of colonisation associated with 

extensive island and niche availability. 
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3.2 Introduction 

The extent to which species diversification rates vary over time, and the processes that 

cause such patterns, are central questions in evolutionary biology (Barraclough & Nee 2001; 

Eldredge & Gould 1972; Gingerich 1983; Nee et al. 1992; Rabosky & Lovette 2008b; 

Ricklefs 2007; Simpson 1944). Island systems have often been used as models for 

understanding questions of lineage diversification with respect to both geographic and 

temporal variation (Clark et al. 2008; Lomolino 2000). The accepted view is that speciation in 

oceanic island lineages arises due to selection, either natural or sexual or possibly both 

(Coyne & Orr 2004; Price 2008; Uy et al. 2009). In birds, the conventional view is that 

divergence happens predominantly in allopatry or possibly parapatry, and is driven largely by 

selection, with the contribution of neutral processes, such as  founder effects (Clegg et al. 

2002b) or and drift (Gavrilets 2004; Merilä 1997), of lower consequence. Recently there has 

been a shift in emphasis from a focus on processes operating in allopatry to the importance 

of dispersal as a mechanism to increase ecological opportunity and subsequently speciation 

rates (de Queiroz 2005; Sanmartín et al. 2008). Certainly there is evidence for very high 

speciation rates in association with new ecological opportunities, for instance radiations of 

Darwin’s finches (Geospizinae)  on the Galapagos, honeycreepers (Fringillidae: 

Drepanidinae) in Hawaii and cichlids (Cichlidae) in the Great Lakes of Africa (Grant & Grant 

2008b; Lovette et al. 2002; Seehausen 2006). Dispersal to new areas is one way that 

organisms may find opportunities to increase or shift their ecological niche space and 

expand into novel niches. 

 

The tempo and mode of evolutionary diversification can be studied using time-calibrated 

molecular phylogenies (Nee et al. 1994a; Nee et al. 1994b; Ricklefs 2007). The information 

contained in these phylogenies can be represented by lineage through time plot which 

shows the known accumulation of lineages towards the present (Harvey et al. 1994). One 

approach for inferring the temporal pattern in diversification rates is the γ-statistic of Pybus 

and Harvey (2000), which utilises information on the interval between successive 
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reconstructed speciation events on a phylogeny. Under a Yule process, where every species 

has an equal chance of speciating at any moment in time and there is no extinction (Yule 

1925), the log number of lineages in the reconstructed tree is expected to increase linearly 

through time and the γ-statistic will follow a normal distribution centred on zero. If speciation 

rates have declined through time, then speciation events will tend to be clustered more 

densely in the early history of a clade and the lineage through time plot would show a 

downturn with the γ-statistic will tending to be negative. This pattern has often been reported 

for time-calibrated molecular phylogenies (Harmon et al. 2003; McPeek 2008; Phillimore & 

Price 2008; Weir 2006) and fits with theories of adaptive radiation; where speciation rates 

are high as lineages diversify to take advantage of multiple available niches but slow down 

later as niche space is filled ( Schluter 2000b; Simpson 1953; but see McPeek 2008). 

Rabosky and Lovette (2008b) show that slowdown is highly unlikely under a birth-death 

model where extinction increases through time, or under a birth-death model where 

extinction rates are high. 

 

There are a number of caveats to be kept in mind when inferring diversification rates using a 

lineage through time approach. Phylogenetic studies typically rely on extant or very recently 

extinct species because genetic material for ancient species is usually unavailable 

(Steadman 1995). In poorly fossilising groups, such as birds, there is often no evidence for 

pre-historical extinct species even where their existence can be inferred (Steadman 2006). 

This means that the number of reconstructed lineages will be an underestimate of the true 

numbers of lineages (Harvey et al. 1994; Nee et al. 1994a; Nee et al. 1994b; Nee et al. 

1992). Another issue is the danger of mis-recording the number of taxa present in a lineage. 

Species are usually considered the basic units of biological organisation but their delineation 

is often problematic (Mallet 1995; Mallet & Willmott 2003). In particular, the rise in the 

popularity of variants on the phylogenetic species concept (Cracraft 1989), has led to an 

increased amount of taxonomic ‘splitting’ (Isaac et al. 2004) and the subsequent increase in 

apparent species numbers also has consequences for estimated rates of diversification. In 
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the context of quantifying diversification rates and temporal patterns in diversification, Purvis 

et al. (2009) suggested that there is a risk that lineages that may in the future go on to 

become full species are excluded from macroevolutionary studies. Thus, given the potential 

effect of species definition on analyses of the temporal dynamics of phylogenetic 

diversification, it is prudent to employ a range of species definitions, ranging from 

conservative species concepts based on reciprocal monophyly to less conservative “incipient 

species” lineages.  

 

The two principal aims of this study are to use the phylogenetic hypotheses for the 

Zosterops of the south west Pacific developed in Chapter 2 to: (i) investigate the temporal 

dynamics of the speciation process and determine which model best fits the data, and (ii) 

determine, given that the speciation of the group in the Pacific has been suggested to be 

exceptional, what stage of the speciation process departs most from that found elsewhere. 

 

Zosteropidae are particularly suitable for the study of temporal patterns of phylogenetic 

diversification because the per-lineage diversification rate estimated for the Zosterops has 

been estimated to be 1.95-2.63 species per million years, (Moyle et al. 2009), which is 

considerably higher than has been reported for any other bird genus (Price 2008). Indeed, 

the highest reported rate for birds outside the Zosteropidae, which was for Dendroica 

warblers, was of the order 0.5 species per million years (Lovette & Bermingham 1999; Moyle 

et al. 2009). Using the standard 2% divergence to convert genetic distance into time, Wier 

and Schluter (2007) estimated that divergence times for sister species averaged about two 

million years in the tropics and other studies have suggested even slower rates (Gill et al. 

2005; Marks et al. 2002). The entire radiation of the Zosteropidae is only two million years 

according to Moyle et al. (2009) estimate and, while I estimate an older age for the clade of 

4.7 (Chapter 2, Figure 2.3), this still represents a very recent radiation. The reasons for this 

rapid diversification are yet to be verified making this an interesting study group for the 

investigation of diversification rates. Moyle et al. (2009) suggest a prominent role for taxon 



70 

 

specific characteristics interacting with the geography and earth history experienced by the 

group. The taxon specific characteristics cited by Moyle et al. (2009) were sociality, rapid 

morphological speciation, short generation time, ecological generalism and plasticity in 

dispersal behaviour. 

 

In order to examine why the speciation of the Zosteropidae has been so rapid and to 

understand temporal dynamics in diversification rates it is helpful to consider Mayr’s (1947) 

stages in speciation. Phillimore and Price (2009) note that three of the stages identified by 

Mayr may be the limiting step in species formation and therefore ecological and 

nonecological factors that hinder any of these steps may thereby cause speciation rates to 

decline. In stage one, the frequency of barriers or dispersal events sets the stage for 

population divergence to begin. In stage two, traits diverge in response to natural selection, 

sexual selection or drift (Coyne & Orr 2004; Gavrilets 2004). Crucially, however, ecological 

models of speciation are expected to be faster than non-ecological models (Clegg et al. 

2002b; Price et al. 2009; Rundell & Price 2009). In stage three, range expansion increases 

the opportunity for renewed speciation, although for species to expand their ranges they 

should be sufficiently divergent from other species, including congenerics, such that the two 

can coexist in sympatry. In the absence of range expansion, opportunities for speciation are 

expected to decay through time because ecological opportunities are limited by space, 

hence range expansion is the third rate-limiting step. 

 

Zosterops are also interesting for the study of diversification because they show relatively 

high rates of insular sympatry (Lack 1971). In many groups, closely related species show 

limited overlap with respect to their geographical distributions, with the ranges of sister-

species often either abutting or overlapping relatively narrowly (Allen 1907; Jordan 1905; 

Phillimore et al. 2008a). One factor that is thought to limit sympatry among closely related 

taxa is ecological competition (Hardin 1960; Lack 1944; Price 2008). This would appear to 

be the case for continental Zosterops, such as Z. senegalensis and Z. poliogaster on the 



71 

 

African mainland, which usually have allopatric distributions. However, many of the South 

Pacific islands have two or even three species of Zosterops each (Lack 1971; Mees 1961; 

1969). Species rich avian families tend to be those with the strongest dispersive abilities 

(Phillimore et al. 2006) and this might be expected to apply to the Zosteropidae, which are 

one of the most speciose bird families in the world (94 species according to (Clements 

2007)) with the Zosterops genus itself one of the two most species-rich genera.  

 

The first stage of my analysis is to test if there has been slowdown in the lineage through 

time plots for the Zosteropidae that would be consistent with patterns for bird phylogenies in 

general (Phillimore & Price 2008). A pattern of slow-down in time calibrated molecular 

phylogenies is expected if as islands are colonised the available niches become filled 

(McKenna & Farrell 2006; Nee et al. 1992; Price 2008; Weir 2006). I will examine temporal 

dynamics of lineage diversification employing three interpretations of the number of 

Zosterops lineages, in order of decreasing stringency: (i) using only allospecies that are 

widely-held to be reproductively isolated, (ii) using Zosterops forms that are reciprocally 

monophyletic on the combined Four Gene Tree (see Methods) and (iii) using all populations 

that might be considered incipient species based on evidence from mitochondrial trees, 

microsatellite analysis, subspecies studies and known isolation from conspecific populations. 

I will use these three trees to test not only for slowdown in the rate of diversification but also 

for phylogenetic imbalance, where some lineages are more prone to speciate than others 

(Purvis & Agapow 2002). If diversification proceeds via a single source species colonising 

new islands and undergoing peripatric speciation, then I would predict that the resulting 

phylogenetic tree should be highly imbalanced and that the number of lineages in the 

reconstructed phylogeny should accumulate in a linear rather than exponential fashion. 

 

In the second part of my analysis I will test competing theories on the mechanisms that may 

lead to high rates of diversification, focusing on the roles of geographic isolation, allopatry 

and sympatry that relate to the three stages of species formation in Mayr’s model (1947). To 
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determine the role of geographic isolation, I make a comparison of the number of available 

islands in different size and distance classes (Newton 2003) to see if there are significant 

differences between the Pacific region and another area of Zosterops speciation on Indian 

Ocean islands. Second, I estimate how allopatry influences divergence rates by estimating 

the ‘time to allopatry’ and the average duration required to produce an endemic taxon. A 

minimum estimate of time to allopatry can be obtained by measuring the age distribution of 

allospecies and then determining if it is shorter in areas with slower speciation rates (Weir & 

Schluter 2007). I will also look at the average duration required to produce an endemic 

taxon. It has been hypothesised that tropical birds often speciate over very small distances 

and if this is the case in the Zosteropidae then sister species in the tree should often be 

found on geographically adjacent islands (Mayr & Diamond 2001). The third step that limits 

the rate at which species form is range expansion and I will use age differences between 

sympatric species as a measure of the time required for species to expand their ranges post-

speciation. If little time is required then sympatric species should be closely related but if a 

long time is required then sympatric species will tend to be connected by long branch 

lengths and be far apart on the phylogenetic tree. 

 

3.3 Methods 

3.3.1 Model Testing 

The program jModeltest v. 0.1.1 (Guindon & Gascuel 2003, Posada 2008) was used to 

examine the best model of sequence evolution for the given data. The tree was constructed 

using neighbour joining and model choice was based on minimisation of the Akaike 

Information Critera. Not all of the models tested were available as standard in the BEAST 

program so I selected the available model with the lowest AIC score (Sullivan and Joyce, 

2005). 
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3.3.2 Phylogenetic construction of The Four Gene Tr ee 

In Chapter 2 of this thesis I was concerned with reconstructing the phylogenetic relationships 

of Zosterops species in my study region of the south west Pacific. In this chapter, however, it 

also important to include, not only species from my study area, but from the entire clade 

because I need to estimate overall rates of diversification. Moyle et al. (2009) demonstrated 

that the clade containing the south west Pacific Zosterops also included species from the 

Solomons and further afield. Since a study of diversification through time requires as 

complete a tree as possible (Doyle & Donoghue 1993; Ricklefs 2007) and sequence data 

was available for these species I constructed phylogenetic tree for the wider clade. A new 

phylogenetic tree was constructed by combining information from the cyt-b, ND2, ND3 and 

ATPase 6 & 8 genes.  

 

Representatives of lineages were selected based on the gene tree in chapter 2 which used 

the cyt-b, ND2, ND3 and ATPase 6 & 8 genes and the gene tree of Moyle et al. (2009) which 

used ND2, ND3 and TGFB genes, with the latter sequences taken from GenBank. Although 

many of the same species were sequenced in these two trees, the individuals in all but one 

case were different. Where there was overlap in species sequenced in the two datasets, a 

sequence from each dataset was included to ensure that the two datasets gave the same 

result, i.e. the two individuals were sister species on the tree. The package APE (Paradis et 

al. 2004) in the statistical program R was used to alter trees and drop extra individuals so 

that only single representative of each taxon was included in the final tree. Sequence from 

all genes was considered together in an unpartitioned analysis. Using substitution models 

identified in jModeltest, a Bayesian relaxed clock inference method (Drummond et al. 2006) 

was implemented in BEAST v. 1.4.8 (Drummond & Rambaut 2007). The advantage of using 

a relaxed clock approach is a tree can be rooted without an outgroup (Drummond et al. 

2006). UPGMA was used to construct a starting tree and a birth-death prior on branching 

times was applied (Gernhard 2008). I used a lognormal distribution to model rate variation 

across adjacent branches assuming a substitution rate of 1% per lineage per million years 
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(Weir 2006; Weir & Schluter 2008). For each analysis four independent chains were run for 

20 million generations. The four runs generated log and tree files which were combined 

using LogCombiner v. 1.4.8 (Drummond & Rambaut 2007). Two million generations were 

removed from each chain as burn-in. Tracer v. 1.4.1 was used to assess convergence and 

whether the four chains were sampling from the posterior distribution. In all cases the 

combined results for the four independent chains had an estimated sample size (ESS) of 

greater than 200 for all parameters. TreeAnnotator v. 1.4.8 (Drummond & Rambaut 2007) 

was used to estimate the maximum clade credibility tree across the posterior distribution of 

14400 trees. This methodology was repeated for each of the lineage datasets allospecies, 

reciprocally monophyletic groups and potentially incipient species. 

 

3.3.3 Data selection 

Moyle et al. (2009) showed that all the Zosteropidae species in the South Pacific region 

(Chapter 2, Figure 1) are contained with a single monophyletic clade, making the group 

amenable to the study of lineage diversification rates. Data selection for the different parts of 

this analysis is crucial. The region of the south west Pacific that seems to have high 

speciation rates stretches in an arc from the Solomons Islands down through the Santa Cruz 

Islands, Vanuatu and New Caledonia to New Zealand and adjacent islands. Included in this 

region are two of the superspecies as described by Mees (1961; 1969), namely Z. 

griseotinctus and Z. lateralis. Molecular studies now suggest that these two named 

superspecies groups do not, in fact, form natural clades (Chapter 2, Moyle et al. 2009) but 

nevertheless together they represent a group of unusually high species diversity. The Four 

Gene Tree shows that all the species in this core region fall within a monophyletic clade that 

also includes a number of forms from outside the region (see Appendix 3.1). I have at least 

one representative of every named species within the region except Z. santaecrucis and W. 

lacertosa, both of which are from the Santa Cruz Islands. 
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Analyses were performed on three interpretations of the Four Gene Tree. These were 

pruned to different criteria as follows: 

 

(i) ‘Conservative’ species tree 

The first tree employed was a conservative tree based on species that are generally 

accepted to be true species and reproductively isolated (Chapter 2, Figure 2.2).  This tree is 

shown in Appendix 3.1.A. 

 

(ii) ‘Reciprocally Monophyletic’ tree 

The second tree is made up of Zosterops forms that represent monophyletic tips in the tree. 

This tree includes some forms referred to as subspecies that are highly likely to be true 

species but which, because they are not yet in sympatry with congeners cannot be shown to 

be so. There are four unsampled taxa that potentially could be included in the tree. However, 

due to the difficulty in classifying Zosterops based on morphological characteristics (Chapter 

2), I did not attempt to fit these four taxa into the tree. It is therefore possible that the 

speciation rates are under-estimated. This tree is shown in Appendix 3.1.B. 

 

(iii) ‘Incipient species’ tree 

In the third tree I attempt to include, not only currently recognised species, but also potential 

incipient species. As far as possible I have attempted to deduce these incipient species from 

the molecular information. Subspecies that appear to be isolated based on molecular 

evidence are included as tips on the tree. For example, where monophyletic Z. flavifrons 

clades are coincident with island distributions I have designated them as incipient species, 

resulting in this species being divided into eight actual or potential species. Likewise, Z. 

lateralis of Vanuatu are divided into three distinct groups based on microsatellite DNA 

variation: the form on Tanna, the form on Efate and Erromango and the birds on all 

remaining islands (Clegg & Phillimore 2010), thereby adding three tips to the tree. Inevitably, 

gaps in genetic sampling below the species level introduce potential error to the tree, 
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producing an underestimate of the number of species. Therefore, as far as is reasonably 

possible, I have followed the conclusions of Mayr (1967) and Mees (1957; 1961; 1969) in 

identifying morphological species and their likely relationships and included these as 

incipient species. For example one unsampled Z. lateralis subspecies, Z. l. valuensis form 

Mota Lava in northern Vanuatu was positioned as a sister taxa to Z .l. tropica following Mees 

(1969). Likewise, for Solomon Island taxa, I have included each named morphological 

subspecies in the tree. I also extrapolate from the relationships deduced by Mees (1969) to 

include species that occur within the clade of interest but outside the core geographical area 

of the study. Notably, there are four full species missing from the tree. These are two 

species from the genus Rukia, R. ruki and R. longirostra, and one from the genus 

Woodfordia, W. lacetosa. Molecular phylogenies (Moyle et al. 2009; Slikas et al. 2000b) 

show that both these genera are nested within the Zosterops clade and there is a case for 

both genera to be subsumed within the genus Zosterops. However, for the purpose of 

maximising the number of tree tips, I assumed that the current genus names reflect a close 

relationship between the species and add them into the tree accordingly. The only species 

within the region that I do not attempt to add to the tree is Z. santacrucis as its true position 

in the tree is ambiguous. Murphy and Mathews (1929) favoured a relationship with Z. 

samoensis from Samoa but this was rejected by Mees (1969). 

 

Where sequence data was not available additional tips were built into the incipient species 

tree using the online program Phylowidget (Jordan & Peil 2008). The incipient species tree is 

shown in Appendix 3.1.C.   

 

3.3.4 Lineages through time 

Lineage through time plots and γ-statistics (Pybus & Harvey 2000) for the three phylogenetic 

trees were performed using the APE package (Paradis et al. 2004) in the statistical program 

R (R Development Core Team). The lineage through time plot showed how lineages 

accumulate over time and a negative value of the γ-statistic indicated a slowdown in the rate 
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of speciation. The lineage axis in these plots is usually logged because an exponential 

increase in lineages is expected if there is an equal chance of each branch splitting. The 

statistical significance of the γ-statistics was tested in R under a one-tailed test. 

 

3.3.5 Tree imbalance 

Tree imbalance was tested using the package apTreeshape in R (Bortolussi et al. 2006). An 

Aldous graphical test was used to see if the data was a better fit for a Yule or a PDA 

(Proportional to Distinguishable Arrangements) model (Aldous 1996; Aldous). The shape of 

each phylogenetic tree was quantified using a Colless statistic (Kirkpatrick & Slatkin 1993). 

The larger the value of the Colless statistic the more unbalanced the tree (Blum et al. 2006). 

 

3.3.6 Geographic isolation and species diversificat ion rates 

I calculated species net diversification rates (McCune 1997) as:  

 

Rate = (ln(number of extant species) –ln(initial species diversity)/ time  

  

Three estimates of per-lineage diversification rate were obtained, one for each of the 

interpretations of the Four Gene Tree. Species numbers were therefore based both on 

taxonomic divisions (Mees 1957; 1961; 1969; Sibley & Monroe 1990) and on mitochondrial 

data. I used crown group age for the time of diversification, which was in millions of years 

and was taken from the Four Gene tree. As crown group age was used initial species 

diversity was taken as being two (Klak et al. 2004; Magallón & Sanderson 2001). I also 

obtained three estimates of diversification rate from African and Indian Ocean taxa using the 

same sets of principles to select taxa. Species numbers were based on Sibley and Monroe 

(1990) and on the gene tree of Warren et al. (2006). Crown ages for the African and Indian 

Ocean Clade were taken from the Partitioned Three Gene Tree (Chapter 2, Figure 2.3). 
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3.3.7 Rates of divergence in allopatry and time sca les to speciation 

The node ages generated from the calibrated molecular tree were used for the ages of 

individual species. Species age was taken to be the age of divergence from the sister 

species. It is possible that this produced an overestimate of species age if the true sister 

species was an unknown extinct species. Where posterior support values were lower than 

estimates from previous trees, better supported ages from those trees were used (Chapter 2 

and Warren et al. 2006). A list of the ages used is in Appendix 3.2. These ages were used to 

compare the times to allopatry between Zosteropidae from the south west Pacific and the 

Indian Oceans. Time to allopatry is used here as a measure of the second rate limiting step 

in Mayr’s (1947) model, divergence under selection. I used Student’s t-test to test if the 

values from the two regions were significantly different. 

 

3.3.8 Sympatric species and time to range expansion  

Since it is assumed that species cannot come into sympatry until they can ecologically 

coexist, time to sympatry is used as a surrogate for the average time required until range 

expansion. To test if sympatric species are less closely related to each other than expected 

by chance, I noted the age of all the ancestral node of all the sympatric pairs in the tree and 

calculated a mean value. For each of the three trees in turn, I generated random pairs of 

taxa for each island that contains sympatric species. Random pairs were generated in two 

ways: first by fixing one of the species as one that actually occupies the island concerned 

and then randomly selecting a second species; and second by allowing both species of the 

sympatric pairs to be selected randomly. I then obtained one- and two-tailed p-values to test 

if the observed mean age of sympatric species was significantly different from that expected 

under these two random scenarios.  
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3.4 Results 

3.4.1 Lineages through time 

The lineage through time plots for all three phylogenetic trees and the corresponding γ-

statistics and p-values are shown in Figure 3.1. All three figures show a slowdown in 

diversification rate, a pattern supported by the negative γ-statistics, although the slowdown 

in the Incipient Species Tree is not statistically significant. The slowdown is statistically 

significant for the other trees, however. 

 

3.4.2 Tree Imbalance 

The Aldous plots (Figure 3.2) suggest that the Yule model is a better fit for the data than the 

PDA model, as there is a closer match between the line predicted from the Yule model and 

the green line, the median regression line, that predicted from the PDA model. All the trees 

are balanced as shown by low Colless statistics (negative in all three cases). 

 

3.4.3 Speciation Rates 

Estimated rates of diversification in taxa per million years for the whole Pacific clade were: i) 

0.76 for the conservative tree, ii) 0.80 for the monophyletic tips tree and iii) 0.98 for the 

incipient species tree. Rates for particular clades on the incipient species tree were even 

faster, such as the Pacific Z. lateralis clade which had a rate of 3.70 taxa per million years. 

Rates for the African and Indian Ocean species were noticeably slower. 

 



80 

 

 

Figure 3.1. Lineage through time plots based on logged (a, c and e) and linear (b, d and f) data for the three 

phylogenetic trees: a) and b) are plots for the Conservative tree, c) and d) for the Reciprocally Monophyletic tree 

and e) and f) for the Incipient species tree. The γ- statistics for the three trees are: Conservative tree =  -5.24 (p-

value = 0.001);  Reciprocally Monophyletic tree =  -4.96 (p-value = 0.001);  ; Incipient species tree = -1.47 (p-

value = 0.07);  
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Figure 3.2. Aldous plots for the three phylogenetic trees: a) the Conservative tree, b) the Reciprocally 

Monophyletic tree and c) the Incipient species tree. The green line represents the median regression estimated 

from the tree data. The diagonal solid line represents the Yule model and the horizontal solid line represents the 

PDA model. The Colless statistics for the three trees: a) Conservative tree  = -0.350, b) Reciprocally 

Monophyletic tree  = -0.497  and c) Incipient species tree  = -0.68 show that the trees are balanced in all cases. 

 

Table 3.1 Estimated diversification rates for the Pacific clade and various subclades within it. Confidence 

intervals (CI) are also shown. *CI not available due to low confidence at the node. **The African and Indian 

Ocean islands clade (AIO) was aged on the Partitioned Three Gene Tree (Chapter 2, Figure 2.3). 

 

Clade Name No. taxa Rate (CI) No. taxa Rate (CI) No. tax a Rate (CI)
Pacific 31 0.77 (0.66 - 0.87) 35 0.80 (0.69 - 0.91) 66 0.98 (0.84 - 1.12)

Vanuatu* 20 0.70 (-) 22 0.73 (-) 37 0.89 (-)
New Caledonia 9 0.55 (0.46 - 0.67) 9 0.54 (0.46 - 0.67) 12 0.65 (0.55 - 0.80)

Lateralis 1 - 3 0.72 (0.48 - 0.83) 16 1.14 (0.90 - 1.85)
Pacific Lateralis 1 - 1 - 15 3.70 (2.48 - 5.71)
African Clade** 18 0.16 (0.13 - 0.20) 21 0.56 (0.45 - 0.69) 26 0.61 (0.49 - 0.75)

Conservative Species Tree Monophyletic Tree Incipient species Tree
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3.4.4 Geographic isolation and island comparison 

Table 3.2 shows a comparison between two oceanic regions inhabited by the Zosteropidae. 

The south west Pacific has many more Zosterops species than the Indian Ocean. Total 

island area and average island area are both inflated by very large islands, Madagascar in 

the Indian Ocean and New Zealand in the south west Pacific. The UN isolation index is 

similar for both regions but the components comprising that differences are different. On 

average, Indian Ocean islands are twice as far from the nearest similar sized island as 

Pacific Ocean islands but twice as near to a large land mass. In particular, there are about 

five times as many islands in the south west Pacific. 

 

Table 3.2. A comparison of the number of insular Zosterops species in two oceanic regions and the 

characteristics of the islands in the region in particular relating to the number, size and isolation of islands 

available for colonisation. 

 

Region SW Pacific Indian Ocean

Number of islands of 5 km
2
 or larger 126 24

Number of Zosterops species in the region 26 10

Number of endemic Zosterops species 25 10

Total island area in the region 346545.18 594792.7

Average island area 3039.87 23791.708

Average distance to nearest island of the same or larger size 76.42 137.64

Average  distance to the next island group 581.67 577.2

Average distance to the nearest continent 1831.75 934.4

Average isolation index for the region 69.83 62.88

Average sea depth between the island and the nearest land 1501.22 2680  

 

3.4.5 Rates of divergence in allopatry and time sca les to speciation 

The time taken to reach allopatry was marginally not significantly different between the 

African and Indian island Zosterops and those from the south west Pacific, although there 

was a trend towards a more rapid rate to allopatry in the Pacific region (Welch two sample t-

test: t = 3.08, df = 14.7, p = 0.08). Similarly, rates of rate expansion, as represented by the 

time required to come into sympatry were not significantly different between the two regions 

(Welch two sample t-test: t = 0.81, df = 28.8, p = 0.42). 
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3.4.6 Sympatric species and of range expansion 

The observed and expected ages for sympatric pairs of taxa for the three different trees are 

shown in Table 3.2. For the first two trees the age of sympatric species in no greater than 

would be expected by chance (two-tailed P-value >0.05 in all cases). However, the incipient 

species tree suggests that sympatric species are significantly more distantly related than 

would be expected by chance alone (two-tailed P-value = 0.002 for both the fixed and free 

randomisation types). 

 

Table 3.3. The observed and expected ages for sympatric pairs of taxa for the three different trees. For each tree 

the mean and minimum observed and expected values are shown both for when the randomised species pair is 

‘fixed’ to contain one of the actual species on the island and when it is ‘free’ to select all the sympatrics at 

random. Age is given in million years (my). 

Tree type

Randomisation type

age type mean min mean min mean min mean min mean min mean

observed age (my) 3.3 2 3.3 2 3.3 2 3.3 2 3.57 3.57 3.57

mean expected age (my) 3.27 2.02 3.24 1.98 3.25 1.86 3.23 1.91 3.01 0.99 3.15

median expected age (my) 3.29 2 3.25 2 3.27 1.83 3.25 1.91 3.04 0.54 3.13

one tailed P-value 0.458 0.543 0.397 0.516 0.418 0.444 0.378 0.492 0.001 0.001 0.001

two tailed P-value 0.916 1 0.794 1 0.836 0.888 0.756 0.984 0.002 0.002 0.002

conservative monophyly incipient species

fixed free fixed free fixed free

 

 

3.5 Discussion 

My results show that the Zosteropidae of the south west Pacific show the early-burst of 

phylogenetic diversification followed by a significant slowdown. Phylogenetic diversification 

rates were extremely rapid compared to other vertebrate groups (Johnson & Cicero 2002; 

Lovette et al. 2002; Roy 1997) but the pattern of phylogenetic branching was balanced 

suggesting that the result is not biased by particular speciose clades.  In comparison to 

Indian Ocean island populations, the times required for range expansion or for allopatric 

species to develop was not significantly more rapid and nor did the average age of sympatric 

species depart significantly from that expected at random. Overall these findings are 

consistent with what would be expected under an adaptive radiation model, and the 

availability of island niches seems the most probable reason for the explosive diversification 

of the Zosteropidae of the south west Pacific.  
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3.5.1 Lineages through time and the mode of phyloge netic evolution 

The lineage through time plots indicate a dramatic slowdown in the Zosterops of the south 

west Pacific. This agrees with the finding of Moyle et al (2009) that the whole Zosterops 

clade shows a rapid slowdown in lineage rates. However, although there is an overall 

slowdown across the tree, it is not clear that the rate of slowdown remains constant across 

the constituent sub-clades of that tree.  

 

As expected from previous studies of white-eyes (Moyle et al. 2009), lineage through time 

plots show an initial burst of speciation irrespective of the precise phylogenetic hypotheses 

underpinning the analyses. Presumably this corresponds to the early rapid diversification of 

the group as they expanded into a new area. Following this initial expansion there is an 

asymptote in the log plot and diversification rates slow. Interestingly in all three lineage 

through time plots seem to show a second burst of rapid speciation at about two million 

years before the present is indicated. In fact, the log plots for the first two trees show two 

consecutive burst of speciation followed by slowdowns. There are two possible explanations 

for this. The first is that this burst of speciation relates directly to the formation of new land 

masses. Many of the islands of the region, particularly the islands of Vanuatu, the Loyalty 

group of New Caledonia and the New Georgia group of the Solomons, are of late Pliocene 

or early Quaternary volcanic origin. It is plausible therefore that a significant number of new 

island habitats were emerging at around the two million year mark. The second possible 

explanation, consistent with the phylogenetic pattern seen in the Zosterops of the region, is 

that it is the result of waves of colonisation, that are part of a taxon cycle as described by 

Wilson (1961). Taxon cycles are sequential expansions and contractions in the range of 

species (Ricklefs & Bermingham 2002; Wilson 1961). The two bursts of speciation, each 

followed by a slowdown, may represent two subsequent waves of colonisation by the Z. 

flavifrons clade and the New Caledonian clade respectively (Chapter 2).  This idea is by no 

means incompatible with the idea of new island emergence but the timings of the second 

speciation burst do not seem to fit particularly well with known island emergence times.  
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The slowdown in lineage diversification shown by the Incipient Species Tree is not as 

extreme as found for phylogenies where more stringent species definitions were applied. 

Again, there appears to be a second speed up in the diversification rates at about the two 

million year mark but, in addition, there is a distinct suggestion of a third speed up of 

diversification rates as the plot reaches the present. This increase towards the present is 

expected in lineage through time plots because it represents lineage birth without lineage 

extinction whereas the flatter section in the middle of the plots represents birth minus 

extinction, as extinct species are not sampled in this part of the plot (Nee 2001; Nee et al. 

1994a; Nee et al. 1994b). However, the apparent speeding up of speciation rates in the 

incipient species tree may represent the latest wave in a taxon cycle, in this case due to the 

relatively recent expansion of the Z. lateralis clade across the south west Pacific. Given that 

this is the least conservative tree, an alternative explanation for the observed pattern is that I 

overestimated the number of potential incipient species. 

 

3.5.2 Lineage diversification rates  

Per-lineage diversification rates estimated from the Zosterops in this study were faster than 

most bird genera examined to date (Price 2008; Slikas 1997; Voelker 1999) and comparable 

to some of the fastest diversifying groups from other taxa (Bell & Donoghue 2005; Hodges & 

Arnold 1994; McCune 1997). The complete clade rates were, however, less than half the 

rate estimated for the same species group by Moyle et al. (2009), who estimated a rate of 

1.95 to 2.63 species per million years. This difference can be attributed to different 

calibration methods. Moyle et al. (2009) used a clock calibrated by geological evidence 

whereas I based my times on a molecular clock with a base substitution rate of 2% per 

million years (Weir & Schluter 2008). Both methods make assumptions and the ages on the 

molecular clock are subject to a certain amount of error. However, there are also reasons to 

be cautious about dating based on island emergence as it assumes that the emergence of 

the island is co-incident with the speciation event. A species may in fact be older than the 

island it currently inhabits if it evolved on a different island and dispersed to a newly 
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available island before going extinct. A species may also be younger than the island it 

inhabits if it arrived and or diverged on the island long after the island formed. The fact that 

the younger Z. rendovae allospecies group is found on comparatively old islands is 

suggestive of the latter possibility. Ideally the problem would be solved by calibrating the 

clock with fossil evidence but unfortunately the fossil record for white-eyes is extremely poor 

(Steadman 2006). 

 

The Pacific clade of Z. lateralis is very young with a crown age of only 0.55 million years. 

Despite the young age of the clade, ten island forms of Z. lateralis (lateralis, chlorocephalus, 

tephropleurus, griseonatus, nigrescens, melanops, vatensis, tropica, valuensis and 

flaviceps) are recognised on traditional taxonomic methods, translating to a lineage 

diversification rate of 4.23 taxa per million years. In comparison, there are only four mainland 

forms (gouldi, halmaturina, cornwalli and ramsayi) giving a diversification rate of 0.74 taxa 

per million years. The disparity in lineage diversification rates is even more distinct using the 

lineages identified from the incipient species tree rather than the morphological designations, 

with fifteen monophyletic island lineages compared to only two distinct mainland lineages. 

This translates to lineage diversification rates of 3.70 taxa per million years in insular Z. 

lateralis and 0.38 taxa per million years for mainland lineages. These later figures are upper 

estimates of lineage diversification rather than speciation as many of the groups are unlikely 

to be reproductively isolated as yet. Taking the average time to allospecies of 1.91 million 

years, calculated from the allospecies data for the south west Pacific as the divergence time 

to full species status, gives a rate of 1.38 taxa per million years for speciation in Z. lateralis. 

This is slightly faster than speciation rates on islands for the south Pacific clade as a whole. 

Again this is to be expected because there is, as yet, no extinction in this part of the tree so 

diversification rates represent an upper estimate for the net rate of differentiation. 
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3.5.3 Tree imbalance 

Although there appear to be faster speciation rates in different lineages, the overall shape of 

the all versions of the tree are balanced. This is because the three distinct clades within the 

tree are balanced so even though there may be some imbalance within each clade the 

overall shape of the tree remains balanced. The Yule model has a constant per lineage 

probability of speciation which results in a relationship between parent clade size and 

daughter clade size. The average node age of the three different clades differ, with node 

ages from the ‘Vanuatu’ clade being the oldest on average and from the ‘Z. lateralis’ clade 

being the youngest. This suggests that the three clades are of different ages which would 

support the theory of successive waves of Zosterops colonisation. 

 

3.5.4 Stages of speciation: geography, allopatry an d sympatry 

Speciation rates have been shown to be much faster on the islands of the South Pacific than 

they are on the mainland, but speciation rates are also noticeably faster in the south west 

Pacific, than they are in the Indian Ocean, (0.99 taxa per million years versus 0.63 taxa per 

million years). Here I ask why the Zosterops have speciated so quickly and why are there 

different diversification rates in different geographic regions. 

 

The first rate limiting step in species formation is the frequency of barriers or dispersal 

events (Mayr 1947; Phillimore & Price 2009). The advantage of an oceanic setting is that 

islands provide an opportunity for both colonisation and isolation. Here, it seems that the 

differences in speciation rates is not due to within clade characteristics but due to the 

number of opportunities for population divergence. In this case a greater number of islands 

in the south west Pacific seems to account for a greater number of species. Islands are 

closer together on average which potentially means more opportunity for a stepping stone 

pattern of dispersal and speciation. However, with only a single comparison between the 

south west Pacific and the Indian Ocean, it is not possible to indentify causes beyond the 

association between a high rate of speciation and a large number of islands. 
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The second rate limiting step in species formation is the divergence of traits in response to 

selection or drift (Mayr 1947; Phillimore & Price 2009). The emergence of taxonomically 

distinguishable species is likely to correlate with the time required for divergence in allopatry. 

However, the time that is required for allopatric species to develop does not seem to differ 

significantly between the two regions suggesting that ecological or sexual divergence 

happens at a constant rate and does not limit the rate of speciation. It should be noted that, 

because the species from the same region were in the same clades, many of the estimated 

ages passed through the same nodes and the analysis could be considered to contain 

pseudoreplication. Again, therefore, these results need to be interpreted cautiously until a 

larger phylogeny is available. 

 

Randomisations of sympatric species pairs showed that, for the both the conservative tree 

and the reciprocally monophyletic tree, sympatric species were no more distantly related 

than expected by chance. This result is surprising because sympatric congeners are not 

expected to be able to coexist unless they occupy different niches and closely related 

species will ordinarily have similar niches (Darwin 1859). There are two possible 

explanations for this result. The first is that Zosterops species are not excluded by 

congenerics occupying a similar niche and so competition does not limit range expansion or, 

consequently, the rate of speciation. Moyle et al. (2009) suggested that rapid evolutionary 

change in dispersal ability is the driver of diversification and that this is more likely to be 

important than ecological speciation because there is little morphological or ecological 

variation in the Zosteropidae. Certainly there is little that could be described as spectacular 

morphological variation among the Zosteropidae, but it is not clear that that means that there 

is no ecological speciation going on. Indeed some islands have sympatric species that 

appear to have been in an ecologically stable state for thousands of years. To coexist in 

sympatry species must have niche differences and in some cases they are known to do so 

with, for example, Z. murphyi and Z. kulambangrae separating by altitude on Kulambangrae 

(Mayr & Diamond 2001). One possibility is that character displacement takes place, at least 
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partly, after sympatry is achieved. Another possibility is that character displacement occurs 

in allopatry and this takes a substantial time to complete. This is supported by the significant 

age differences between sympatric pairs in the incipient species tree. This result is at least 

partly driven by the addition of multiple Z. lateralis at the tips of the tree. This unusual 

species has only recently colonised the region and so all its forms are extant and only 

recently diverged. It may be the most recent wave of a taxon cycle that occurs repeatedly 

across the region. If colonisation happens in waves then the age structure would also be 

layered with the set of species from the oldest wave being the oldest in the region and 

successive waves being younger. In general, sympatric species would consist of forms from 

different waves and this might mask any signal of sympatrics having to have diverged by a 

minimum amount. 

 

3.5.5 Summary 

Rabosky and Lovette (2008b) showed that a decline in diversification rates through time, as 

evidenced by lineage through time plots and identified in this study, is more likely to be the 

result of declining speciation rates rather than increasing extinction rates. This strongly 

suggests that as availability of islands can be evoked as a reason for rapid speciation in the 

Zosteropidae, so saturation of islands might be the reason for the subsequent slowdown. 

Interestingly there is a strong suggestion that a tree based on extant lineages (Chapter 2) is 

not the whole story. The scenario of multiple waves and extinction implies that there are a 

number of extinct species missing from this tree.  Many clades appear to undergo rapid 

diversification in their history because speciation but not extinction rates have changed over 

the histories of those groups (Nee et al. 1994a). Interestingly, there is evidence of separate 

colonisation waves on the Indian Ocean islands again with sympatric species coming from 

different clades.  For example, Zosterops mouroniensis from Grande Cormore is part of the 

‘Ancient Indian Ocean’ white-eye clade and the sympatric Zosterops maderaspatanus kirki 

being part of the more recent ‘Maderaspatanus’ clade (clade names taken from Warren et al. 

2005).  
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Although an overall slowdown in speciation rate is clearly detectable in the Zosteropidae of 

the south west Pacific, the rate of slowdown is not constant and potentially shows repeated 

periods of accelerated speciation. Taken together these results suggest that the fast 

speciation rates are associated with extensive island and niche availability in the south west 

Pacific and that variations in the diversification rate across the lineage through time plots are 

consistent with a model of a taxon cycle with repeated waves of colonisation. 
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Chapter 4 

 

Morphological evolution in an insular radiation of 

passerine birds 

 

4.1 Abstract 

Studies of island systems have been instrumental in the formation of many of the theories of 

trait evolution. Molecular phylogenies for insular taxa now offer the potential for the 

phenotypic evolution of insular populations to be studied in a historical context. Here I 

combine morphological data and molecular phylogenetic trees to investigate the mode of 

evolution, character displacement among sympatric species and influence of biogeography 

on morphological evolution in south west Pacific white-eyes. This group is of particular 

interest because it has been shown to have undergone rapid recent phylogenetic divergence 

and has been invoked to support theories on ecological speciation. I find no evidence for 

either an early-burst of morphological evolution or for morphological evolution accompanying 

speciation events. Instead, across most traits there is no significant departure from a 

Brownian motion null model. Similarly, I find little general evidence for character 

displacement among sympatric species, although there is some evidence for particular traits 

in a small number of individual island cases. Finally, although I find no correlation between 

wing length and indices of dispersal, I do find a significant association between large body 

size and dwelling on small islands. This last finding is consistent with the ‘Island Rule’ in 

passerine birds and indicates a role for community ecology in morphological evolution in this 

group. However, taken together, my results do not support many of the predictions regarding 

ecological speciation. I suggest that this is because ongoing waves of colonisation and 

extinction mean that this avian radiation has not reached a stable equilibrium in terms of its 

morphological evolution, and the dynamic nature of the system means that at any one 
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moment it is unlikely to be at such an equilibrium. Under this scenario, rapid species 

turnover in island communities will tend to obscure underlying ecological mechanisms, such 

as character displacement and habitat filtering. 

 

4.2 Introduction 

What drives the exceptional morphological diversification of many island species? Islands 

typically support fewer species of animals and plants than an equivalent area of the 

mainland, yet insular clades are often thought to be unusually diverse in form (Grant 1968; 

MacArthur & Wilson 1967). Consequently, island taxa have been instrumental in the 

development of ideas about trait evolution including the roles of founder effects (Barton & 

Charlesworth 1984; Carson & Templeton 1984; Grant 2001; Lande 1980; Mayr 1954; 

Templeton 1980), character displacement (Grant & Grant 1994; 2006; Schluter 2000a) and 

adaptive radiation (Grant & Grant 2008b; Lovette et al. 2002) and trait-mediated competition 

in community assembly (e.g. Connor & Simberloff 1979; Diamond 1975). In reaching an 

understanding of the influences of these processes on trait evolution, morphological 

differences should be studied in the light of both their ecological setting and the evolutionary 

relationships among the taxa concerned (Harvey & Pagel 1991; Webb et al. 2002). The 

existence of closely related species on islands, in combination with the apparent ecological 

simplicity of such systems, means that evolutionary ecology can be more easily studied for 

island species than their mainland counterparts (Darwin 1859; Wallace 1891). Here, I use 

south west Pacific white-eyes, Zosteropidae, a classic system in the study of island evolution 

(Diamond 1970; Lack 1971; Mayr 1940), to test how evolutionary history, ecology and 

biogeography have influenced the tempo and mode of morphological diversification. 

 

4.2.1 Trait evolution 

Phenotypic differences among island populations may potentially arise due to neutral 

processes, or as a result of selection, or as a combination of the two. There are two neutral 

processes whereby island populations may diverge from each other: drift and founder 
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effects. These are both mechanisms by which trait divergence occurs due to the stochastic 

process involved when successive generations are a subsample of preceding generations, 

or founding populations are a subsample of a source population (Lande 1980). Random 

genetic drift is expected to act slowly but, especially in small populations, could lead to trait 

divergence in allopatric populations (Dobzhansky 1951; Wright 1931). Founder effects 

models describe a the process whereby a founding population carries only a small fraction of 

the genes that are present in the parent population, thereby leading to unusually high 

frequencies for previously rare genes and unusual gene combinations (Huxley 1938; 

Kaneshiro 1989). Theoretically, therefore, founder effects could lead to rapid evolutionary 

change. In his original formulation of founder effects theory, Mayr (1954) proposed his 

‘genetic revolution’ model to explain greater phenotypic differences among island 

populations than among taxa on a continent. There have since been other variants on this 

founder-induced model (Carson 1968; Templeton 1981) but empirical evidence in support of 

founder effects from naturally-founded, wild insular populations remains scarce and, if they 

occur at all, they appear to only play a minor role (Coyne & Orr 2004; Price 2008; Rice & 

Hostert 1993). 

 

Selection also has the potential to cause rapid trait divergence, especially when it is 

directional in nature. This can be the result of natural selection where survival in a novel 

environment can select for phenotypic change and can result in repeated patterns in similar 

environments, for example the frequent evolution of large size and flightlessness in island 

birds (Losos & Ricklefs 2009a). It can also be the result of sexual selection either due to 

male competition (Liker & Barta 2009; Wilson 1992) or female choice (Anderson 1994; Hill 

1994; Senar et al. 2005). Or it can be a combination of the two types of selection. For 

example, the divergence of song types can be driven by female choice (Nowicki et al. 2000) 

or by the requirements for sound to travel in a novel environment (Slabbekoorn & Peet 2003; 

Slabbekoorn & Smith 2002). 
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Adaptive radiation is one type of selection-based model where trait evolution is initially fast 

as new forms occupy vacant ecological niches but then slows down as niches become filled 

(Schluter 2000b). Darwin’s finches (Geospizinae) are a classic example of the first phase of 

an adaptive radiation (Grant & Grant 2008a; Lack 1945; 1947). The first stage is ecological 

divergence, typically with associated morphological specialisations and often followed by the 

establishment of congeneric sympatrics (Grant & Grant 2008a). Usually the first phase is 

characterised by pre-mating rather than post-mating reproductive isolation (Grant 2001; 

Grant & Grant 1997). Subsequent phases that lead to complete isolation may be, at least 

partially, driven by morphological differences but full reproductive divergence may take a 

considerable time. A broad survey of speciation mechanisms in birds by Price and Bouvier 

(2002) found that partial incompatibility was reached, on average, after about 2.5 million 

years and other studies have shown that average hybridisation persistence, the period 

during which viable hybrids can be produced between diverging species, is of the order of 32 

million years in birds (Grant & Grant 2008a; Gray 1958; Prager & Wilson 1975). In the short 

term therefore, character displacement is likely to be particularly important in maintaining 

reproductive barriers in sympatric congenerics (Rolando 1993). 

 

4.2.2 Community structure, sympatric species and ch aracter displacement 

While community composition and change come about partly via repeated colonisation and 

extinction, community structure is also likely to be governed by factors that determine the 

extent to which related species can co-exist (Lack 1971). In particular, competition for limited 

resources, such as food and breeding opportunities, is expected to strongly influence which 

species can and cannot co-occur. Darwin (1859) argued that competition should be most 

severe amongst closely related species. Thus, theory predicts that for a species to colonise 

an area that is occupied by a congener the colonising species should be ecologically 

divergent from the incumbent (Mees 1969). Reproductive isolation, particularly in birds, is 

generally thought to evolve in allopatry or perhaps parapatry (Coyne & Price 2000; 

Phillimore et al. 2008a). Consequently, congeners may be able to coexist due to 
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morphological divergence that has previously arisen while in allopatry, or as a result of 

character displacement on secondary sympatry. Schluter (2000b) concluded that character 

displacement occurs frequently and plays an important role in the evolution of diversity. 

Stable sympatric pairs are expected to compete very little with each other in the present 

because past competition drove them to separate into different niches (Macarthur & Levins 

1967). This is often referred to as the ‘ghost of competition past’ (Connell 1980; Schluter 

2000a).  

 

Sympatric species are expected to differ in traits associated with the ecological differences 

between them, which in the case of birds are typically thought to be size (Losos 1990) and 

bill shape (Grant 1966; Yamagishi & Eguchi 1996). Hutchinson (1959) deduced that 

competing species might differ in size by a constant ratio and concluded that a mean ratio of 

1:3 was needed to co-exist at the same trophic level (Losos et al. 1989; Roth 1981; 

Simberloff 1983). There are many examples in birds of congeners in a single location 

differing in size and shape leading to separation in feeding behaviour (Ashmole 1968; Lack 

1971; Newton 1967; Vaurie 1951). This has often been interpreted as the result of character 

displacement, although it is very difficult to prove (Lack 1971). Even when they occupy a 

single island, congenerics may diverge ecologically along a number of axes that may be 

behavioural or morphological. For example, the sympatric African species Zosterops 

senegalensis and Zosterops mouroniensis separate by altitude on Moheli (Benson 1960). In 

other cases, sympatric species might be found in the same habitat but differ either in which 

part of the habitat they occupy or the size or type of food that they take (Baldwin 1953; Betts 

1955; Bowman 1961; Grant 1968). While it is possible to detect ecological differences 

between sympatric species, it remains a major challenge to determine if their origin and 

maintenance are due to the role of interspecific competition (Law & Watkinson 1989). 
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4.2.3 Biogeography: dispersal and endemism 

In MacArthur and Wilson’s (1963; 1967) theory of island biogeography, the arrival of new 

species are expected to balance extinctions of incumbents in a dynamic equilibrium. Under 

these conditions, isolated islands that have a low rate of immigration are also expected to 

have a low natural rate of extinction (Diamond 1984; Steadman 2006). This may afford more 

time for isolated insular faunas to diverge resulting in high levels of endemism on islands 

(Diamond 1980; Price 2008). Although biased towards species with strong dispersal ability 

there will be an element of stochasticity in the sample and order of species that arrive on 

isolated islands. Newly formed oceanic islands can provide highly novel environments for 

evolution with potentially extensive vacant niche space. Early colonists will therefore have an 

opportunity to adapt to new ecological niches, which either did not exist in their area of origin 

or were occupied by other species (Barton 1989; Cox & Ricklefs 1977; Lack 1969). Hence, 

the direction of evolution and adaptation is likely to depend not only on the physical 

characteristics of the island (e.g., area, elevation, location and prevailing weather conditions) 

but also the particular assemblage of species that find their way to the island and the order 

in which they arrive (Robinson & Dickerson 1987). 

 

One of the paradoxes of island evolution in birds is that many endemic species that occur on 

very isolated islands are poor dispersers or even flightless (Diamond et al. 1976). Complete 

flightlessness is known from eleven bird families, most of which are islands dwelling species 

(McCall et al. 1998). In addition, many island forms that retain the power of flight have very 

limited distributions, commonly being endemic to single islands despite the close proximity of 

other islands (Mayr & Diamond 2001). It has been suggested that dispersive ability might be 

a disadvantage on islands (Roff 1997). Strong dispersers in many groups of birds have long 

wings relative to body size (Lockwood et al. 1998). Since island endemic birds often exhibit 

some decline in dispersal ability, I suggest that morphological diversification along axes of 

relative wing length will be influenced by the degree of geographic and temporal isolation of 

a given island from its neighbouring landmasses. 
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The ‘Island Rule’ predicts that, on islands, large-bodied forms evolve to become smaller  

whereas small-bodied forms evolve to become larger (Brown et al. 1993; Forster 1964; 

Heaney 1978; Lawlor 1982; Lomolino 1985; Lomolino 2005; van Valen 1973; Williamson 

1981). The Island Rule remains controversial (Meiri et al. 2004), especially in birds (Blondel 

2000), but a comprehensive comparative analysis found that birds did obey the island rule 

with the cut-off point between large- and small-bodied species being approximately 100g 

(Clegg & Owens 2002). I therefore test the expectation that Zosterops species, as small 

passerines of substantially less than 100g in mass, should evolve towards larger body size 

on small islands.  A related prediction is that relative bill size should also increase in insular 

bird species (Grant 1965; Lack 1947), a trend that is thought to be a result of niche 

expansion in feeding ecology on islands (Blondel 2000; Clegg & Owens 2002). I therefore 

also investigate if this prediction holds true for the Zosteropidae of the south west Pacific. 

 

4.2.4 Trait evolution in the Zosteropidae 

The Zosteropidae of the south west Pacific are an ideal system for exploring ideas of trait 

evolution in an insular context. This group is known to be the result of an explosive radiation 

into an oceanic region of recently emerged islands (Moyle et al. 2009) and is thought to be 

among the earliest colonisers of remote islands and so are expected to have had access to 

novel niches during their radiation (Diamond et al. 1976; Lack 1971). They are therefore 

expected to show both early-burst trait evolution, because of their expansion into sparsely 

occupied areas, and evolution of traits at speciation events.  

 

Island Zosteropidae are also unusual in the high frequency of sympatry they exhibit (Lack 

1971). This phenomenon is very rare on the mainland and therefore island Zosterops are 

expected to exhibit character displacement whereby sympatric species differ more than 

average in morphological traits, allowing them to co-exist in sympatry (Lack 1971). Certainly 

island Zosterops display a wider range of forms than mainland Zosterops with both the 
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largest and smallest members of the family being island forms, as are almost all the unusual 

morphological and colour variants (Lack 1971; Mees 1957; 1961; 1969). 

 

4.3 Methods 

4.3.1 Data selection and Phylogenetic trees 

In order to minimise the risk of bias from obtaining data from different sources, all 

morphological data and species and subspecies definitions were taken from Mees (1957; 

1961; 1969).  I collated data on wing length (maximum chord), tarsus length, tail length and 

culmen length from 34 species, 67 subspecies and 71 total forms of Zosterops from the 

south west Pacific region. The sample sizes and measurements used for the two trees are 

shown in Appendix 4.1, with measurements being combined or used separately as 

necessary to match the taxa as defined in the two different trees outlined below. Data are 

combined across the sexes due to a combination of small sample size in some species, the 

unavailability of separate measurements for males and females for many taxa, and the 

known difficulty of accurately sexing Zosterops specimens (McKean 1965; Mees 1969). 

 

I used two alternative phylogenetic trees based on the Four Gene Tree (Chapter 3): the 

‘Reciprocally Monophyletic Tree’ (Figure 4.1) and the ‘Incipient Species Tree’ (Figure 4.2), 

both of which were previously described in Chapter 3. The ‘Reciprocally Monophyletic’ Tree 

consists of full species for which mitochondrial and microsatellite data is available (Chapter 3 

and Clegg & Phillimore 2010; Moyle et al. 2009; Phillimore et al. 2008b). Where species 

were missing from the ‘Reciprocally Monophyletic’ Tree due to the unavailability of sequence 

data, they were inserted into the tree based on the taxonomic treatment of Mees (1957; 

1961; 1969) and Mayr (1967) using PhyloWidget (Jordan & Peil 2008). 

 

The Incipient Species Tree is an extension of the Four Gene Tree based on the evolutionary 

relations deduced by Mees (1957; 1961; 1969) and Mayr (1967). In the Incipient Species 

Tree the individual species were split up into subgroups. These groups were mainly based 
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around subspecies but in cases where designations indicated by the phylogeny differed from 

traditional subspecies classifications the phylogenetic designations were generally followed. 

For instance, Z. palpebrosus unica was located outside of the south west Pacific clade as 

the sister group to Z. citrinellus and for this analysis, I treat this relationship as real. This 

subspecies along with Z. p. melanura have been grouped as the Indonesian “yellow-bellied” 

forms of Z. palbebrosus and considered distinct from other Z. palpebrosus subspecies 

(Mees 1957). Therefore I refer to the subspecies pair of Z. p. unica and Z. p. melanura as 

Zosterops parvula, a now disused specific name that has previously been applied to both 

subspecies. I include the combined measurements from these two species in the trait 

analysis based on the Reciprocally Monophyletic Tree and the measurements from each 

subspecies separately in the trait analysis based on the Incipient Species Tree. In one case, 

that of Z. flavifrons perplexa from Vanuatu, the traditional morphological classification was 

followed rather than the phylogeny.  Genetic analyses by Phillimore et al. (2008b) suggest 

that Z. flavifrons perplexa is not a monophyletic taxon. Instead the population of this 

subspecies from Vanua Lava in the north of Vanuatu is more closely related to Zosterops 

flavifrons brevicauda from Espiritu Santo than the rest of the subspecies (see also Chapter 

2). As the morphological data from Mees (1969) lumps measurements from different islands 

within subspecies, the genetic distinction of Z. f. perplexa was ignored. The clade of the 

Zosteropidae that includes all the species in the south west Pacific also includes a number of 

species from outside the region. For completeness these species are included in the 

analyses. Despite the assumptions involved in compiling the larger tree, it has value 

because it allows use of a far greater range of morphological data and finer grained analysis 

of morphological divergence. 
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Z. lateralis (e Australia)

Z. lateralis (Pacific)

Z. lateralis (s & w Australia)

Z. f. majuscula

Z. inornatus

Z. albogularis

Z. tenuirostris

Z. minutus

Z. rennellianus

Z. xanthochrous

Z. strenuus

Z. griseotinctus (All)

Z. murphyi

Z. flavifrons (Yellow Clade)

W. superciliosa

Z. flavifrons (Eastern Dark Clade)

Z. flavifrons (We )stern Dark Clade

Z. gibbsi

Z. stresemanni

Z. metcalfi (All)

Z. explorator

Z. oleagineus

Z. cinereus (All)

Z. fuscicapillus (All)

Z. luteus (All)

Z. citrinellus (All)

Z. u. hamlini

Z. kulambangrae

Z. tetiparius

Z. rendovae

Z. splendidus 

Z. luteirostris

Z. vellalavella

Z. u. ugiensis/oblitus

Z. palpebrosus

4 taxa

9 taxa

7 taxa

4 taxa

5 taxa

6 taxa

 

Figure 4.1. The Reciprocally Monophyletic Tree, including all those species for which mitochondrial data was 

available. Subspecies are not considered as separate entities but are deemed to be included within the species. 

The different clades considered in the analysis are indicated by the different coloured branches. The 

geographical locations of individual species are indicated by the coloured boxes at the end of each branch: 

Australia (Red), New Guinea (Orange), the Bismarks and the Solomons (Yellow), the Santa Cruz Islands (Light 

Green), Vanuatu (Dark Green), New Caledonia (Blue), Norfolk Island (Purple), Fiji (Brown), Lord Howe Island 

(Pink) and New Zealand (Dark Grey).
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Z. l. lateralis (Tasmania)

Z. l. lateralis (New Zealand)

Z. l. lateralis (Norfolk Island)

Z. l. cornwalli
Z. l. chlorocephalus

Z. l. tropicus

Z. l. vatensis
Z. l. valuensis

Z. l. tephropleurus
Z. l. flaviceps
Z. l. griseonotus
Z. l. nigrescens
Z. l. melanops

Z. lateralis (s & w Australia)
Z. f. majuscula
Z. inornatus

Z. albogularis
Z. tenuirostris
Z. minutus
Z. rennellianus
Z. xanthochrous
Z. strenuus
Z. g. eichhorni
Z. g. longirostris
Z. g. griseotinctus
Z. g. pallidipes
Z. murphyi
Z. f. gauensis
Z. f. efatensis
Z. f. flavifrons
W. lacertosa

W. superciliosa
Z. f. brevicauda
Z. f. perplexa
Z. f. macgillivrayi
Z. gibbsi

Z. stresemanni
Z. m. exigua

Z. m. metcalfi
Z. m. floridana

Z. cinereus cinereus
Z. explorator

Z. cinereus ponapensis
Z. cinereus finschii
R. ruki

R. longirostra
Z. oleagineus

Z. fu. crookshanki
Z. fu. fuscicapillus

Z. citrinellus citrinellus
Z. luteus (All)

Z. citrinellus harterti
Z. citrinellus albiventris

Z. palpebrosus melanura
Z. palpebrosus unica
Z. u. oblitus
Z. u. ugiensis
Z. u. hamlini
Z. kulambangrae
Z. tetiparius
Z. rendovae
Z. splendidus 
Z. luteirostris
Z. vellalavella

15 taxa

12 taxa

13 taxa

9 taxa

9 taxa

6 taxa

 

Figure 4.2. The Incipient Species Tree, including all subspecies plus species for which mitochondrial data was 

not available. The tree is based on mitochondrial data and deductions of the probable positions of those species 

or subspecies where mitochondrial data was not available or inconclusive using the relationships inferred by 

Mees (1957; 1961; 1969). The different clades considered in the analysis are indicated by the different coloured 

branches. The geographical locations of individual species are indicated by the coloured boxes at the end of 

each branch: Australia (Red), New Guinea (Orange), the Bismarks and the Solomons (Yellow), the Santa Cruz 

Islands (Light Green), Vanuatu (Dark Green), New Caledonia (Blue), Norfolk Island (Purple), Fiji (Brown), Lord 

Howe Island (Pink) and New Zealand (Dark Grey).  
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4.3.2 Principal Component Analysis 

In order to reduce the dimensionality of the morphological data for some analyses, principal 

component analysis (PCA) based on trait covariances was performed on log-transformed 

wing length (maximum chord), tarsus length, tail length and entire culmen length. These 

analyses yielded principal component axes, trait loadings and the proportion of the variance 

each component. 

 

4.3.3 Modelling trait evolution 

I tested for departure from the neutral Brownian model using a range of alternative models. 

First, I tested whether trait diversification is concentrated early in the radiation of a species 

group: referred to as ‘early-burst’ trait evolution. I also tested whether trait diversification is 

concentrated at speciation events themselves, this later model is referred to as punctuated 

or speciational evolution (Pagel 1999). Finally, I tested whether trait variation may be non-

random but also non-phylogenetic. For example, I tested whether there is a tendency for 

traits to evolve around a fixed optimum meaning they can be modelled by the Ornstein-

Uhlenbeck model of stabilising selection  (Butler & King 2004). 

 

Brownian motion is the simplest model of trait evolution and describes the random walk of a 

trait through time, such that variance increases through time but the expected mean is 

always equal to the ancestral mean (Felsenstein 1985). This model corresponds to the 

expectation under random genetic drift or fluctuating selection. However, it is not an 

appropriate model where trait change is not proportional to time, such as persistent 

directional selection or where different lineages are under the same selection (Felsenstein 

1985; Martins & Hansen 1996). I used Pagel’s λ as a simple test for departure from the 

Brownian model (Pagel 1997; 1999). It tests the degree to which trait evolution is 

independent of the phylogeny by altering the internal branch lengths. Internal branches are 

multiplied by the scaler λ (0 – 1) and the value of λ that makes the data most likely is 

optimised, with λ = 1 consistent with a Brownian model, λ = 0 suggests that trait values are 
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independent of phylogeny and 0< λ < 1 indicating intermediate phylogenetic signal.  Λ 

values that are significantly lower than one suggest non-Brownian trait evolution but do not 

provide information on the processes that may have caused departure from the null. I 

therefore used three additional models to test for alternative non-Brownian modes of trait 

evolution. I used the Ornstein-Uhlenbeck (OU) model to test for stabilizing selection. The OU 

model includes the parameters α, which measures the strength of selection (in the special 

case α being zero results in Brownian motion) and θ which is the optimum trait value. If the 

phenotype moves away from the optimum or the optimum changes then selection toward the 

optimum occurs (Butler & King 2004).  

  

I tested for evidence of speciational trait change using Pagel’s (1997) kappa. The kappa 

speciational model is similar to lambda but rather than using a simple scalar to transform 

internal branch lengths it raises all branch lengths to a power ranging from 0-1. Where 

kappa=0 trait change is inferred to occur only at speciation events; kappa=1 is equivalent to 

the Brownian motion model; and 0< kappa >1 suggests that trait change may be 

concentrated at speciation events but not limited to them.  Finally, I tested for evidence of 

rapid early trait change followed by a slow down (akin to diversity dependence in adaptive 

radiations) using the Early-burst model (Harmon et al. 2008). The support for different 

statistical models of trait evolution was assessed using the Geiger package (Harmon et al. 

2008). I used the fitContinuous function to test the fit of the data to the following models: 

Brownian Motion (BM), Lambda (λ), Ornstein-Uhlenbeck (OU), Kappa (κ), and Early-burst 

(EB). I used delta AICc scores with trait and phylogeny data to investigate which model of 

trait evolution receives most support. 

 

4.3.4 Trait differences between sympatric congeners  

In order to test whether the phenotypic diversification between sympatric species has been 

faster than expected under a constant Brownian motion I applied a simulation approach 

(Martins & Garland 1991). One difficulty that needs to be taken into account here is that 
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phenotypic measurements cannot be considered as independent observations because the 

species involved are part of a structured phylogeny (Felsenstein 1985; Harvey & Pagel 

1991; but see also Ricklefs & Starck 1996). Independent contrasts were therefore calculated 

as the difference in trait values between pairs of taxa at adjacent tips of the phylogeny, 

which can be considered independent under a Brownian model (Ricklefs & Starck 1996). 

These contrasts were then scaled by dividing each raw contrast value by its standard 

variation (Felsenstein 1985).  

 

In analyses based on the Reciprocally Monophyletic Tree species were used as the tips of 

the phylogeny as described above. However, in analyses based on the Incipient Species 

Tree, I had to estimate the phylogenetic position of some subspecies that were missing from 

the phylogeny. This potentially introduced two sorts of error into the analysis. Firstly, the 

estimated branch lengths for these inserted taxa may be incorrect. It has been shown, 

however, that this type of error weakens the method but should not lead to spurious patterns  

(Grafen 1989; Martins & Garland 1991). The second type of error, which is potentially more 

serious, was that the assignment of pairs of sister taxa may not be accurate (Purvis & 

Garland 1993). The impact of this problem should be small for the key analyses because all 

of the sympatric taxa were fixed in the tree by sequence data so contrasts taken between 

them should be accurate. Additionally, most of the estimated taxa were subspecies whose 

relationships are thought to be relatively well known (Mees 1957; 1961; 1969). Nevertheless, 

given the known existence of cryptic Zosterops species (Phillimore et al. 2008b), the results 

from the Incipient Species Tree simulation should be considered with a degree of caution.  

 

To calculate the degree of divergence among sympatric species, I obtained the observed 

absolute standardized contrasts for sympatric pairs and triplets on each island in turn by 

dropping all other tips from the phylogeny first. Each island was therefore represented only 

once by its mean standardized contrast. I then calculated the mean absolute standardized 

contrast across the entire tree. Dividing the mean contrast of sympatric taxa by the mean 
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calculated across the entire tree gives an indication of whether sympatric species have 

diverged faster (ratio >1) or slower (ratio <1) than expected. To examine whether mean 

values across all islands departed from the null expectation I simulated random trait values 

at the tips under Brownian motion. For each simulated set of trait values I then calculated the 

statistics described above. This was repeated 10,000 times and observed values were 

compared with the values generated under Brownian motion using two-tailed tests. This test 

makes no assumption regarding the Brownian rate parameter and was conducted for both 

the Reciprocally Monophyletic Tree and the Incipient Species Tree for each trait individually 

and the first two principal components. Subsequently, I also repeated these calculations for 

each island in turn to test whether there any island-trait combinations showed significant 

departure from the simulated null expectation. In addition, I also repeated all analyses with 

Z. lateralis excluded. This was because Z. lateralis is known to have been a recent radiation 

across the islands of the South Pacific (Chapter 2) so if competition after first contact is 

important, these sympatric pairs may not yet demonstrate character displacement. 

 

I also tested the prediction that a certain minimum difference in multivariate morphological 

space might be necessary for two species to coexist on a single island. To achieve this I 

measured the Euclidian distance in two-dimensional morphospace between the position of 

each species-pair according to the co-ordinates on PC1 and PC2 (see lines between 

sympatric species in Figure 4.4). The minimum distances across all islands were taken as 

the observed values. Expected values were generated as the mean minimum distance 

across 10000 trees simulated in a Brownian motion model. I then tested for a difference 

between this observed distribution and the simulated distribution. Again these analyses were 

subsequently repeated for both phylogenetic trees, for each individual island as well as 

across all islands, and with and without Z. lateralis. I also repeated all analyses using mean 

rather than minimum distance between sympatric pairs. 
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A step by step description of the simulations together with the R code used to perform them 

are included in Appendix 4.2. 

 

4.3.5 Biogeographic analyses 

I tested for a relationship between morphology and dispersal behaviour using phylogenetic 

generalised least squares. To quantify variation in dispersal behaviour I used three indices: 

the number of islands occupied by each species; the area of the largest island occupied by 

each species; and a maximum distance based on how far each taxa was likely to have 

dispersed in its current form. Island data was taken from the United Nations Environmental 

Programme’s Island Directory Tables (UNEP).  In some cases the maximum distance 

travelled is known, such as for Z. l. lateralis which self-colonised New Zealand from 

Tasmania in 1830 (Falla et al. 1966; North 1904). Where there is no such record it is 

considered to be the distance to the nearest archipelago for species that occupy more than 

one island. For endemic species the maximum distance travelled is taken to be zero since it 

is assumed the species evolved on the island concerned and has not travelled between 

islands in its current form. Finally the age of each species, as estimated from the Four Gene 

tree (Chapter 3), is included. 

 

The trait measures considered were the first two axes from the principal component 

analyses, as well as average wing length, average entire culmen length and average tarsus 

length. Weight measurements were not available for most species but in a regression of 

specimens where both weight and tarsus length were known, the two were highly correlated 

(N = 301, adjusted R2 = 0.55, p-value = <0.001). All the measurements except the two PCA 

axes and species age were log10 transformed in the models. Wing length and entire culmen 

length are both modelled as a function of all these potential measures of dispersal ability. 

Tarsus is also included in both these models to account for overall body size. Finally, I also 

constructed models for the first two PCA axes based on the potential measures of dispersal 

ability. 
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Comparisons across species are potentially confounded by statistical non-independence of 

data due to shared evolutionary history (Felsenstein 1985; Harvey & Pagel 1991). To 

account for this I used phylogenetic general linear models implemented in the CAIC package 

for the statistical program R (Sourceforge). The lambda parameter described above was 

fitted simultaneously with the regression model to account for the appropriate degree of 

phylogenetic signal in the model residuals (Pagel 1999). 

 

All statistical analyses were conducted in the R programming environment (R Development 

Core Team 2009). 

 

4.4 Results 

4.4.1 Principal Component Analysis 

The PCA loadings for the South Pacific Clade of the Zosteropidae are shown in Table 4.1. In 

both datasets of Zosterops from the Reciprocally Monophyletic Tree and the Incipient 

Species Tree, the first principal component (PC1) is a general body size measure that 

explains 81% of the trait variance for each tree dataset. Principal component two (PC2), 

explaining 12 per cent of the data in the Reciprocally Monophyletic Tree (Table 2a) and 13 

per cent of the data in the Incipient Species Tree (Table 2b), is a measure of relative bill 

length, contrasting bill length with tail and to a lesser extent wing and tarsus. Larger values 

of PC2 correspond to a relatively longer bill compared with other body traits. The third 

principal component (PC3) contrasted bill and tail length against wing and tarsus length and 

accounted for five per cent or less of the data. PC3 and subsequent components are not 

considered further. The PC values for each species are shown in Appendix 4.1. 
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Table 4.1. Loadings from principal component analyses for the South Pacific Zosterops based on four size 

measures per species: average maximum wing chord, average tarsus length, average tail length and average 

culmen length (from bill tip to skull). a) scores based on the dataset from the Reciprocally Monophyletic Tree and 

b) scores from the Incipient Species Tree. 

 

a) The species tree b) the subspecies tree

Loadings: PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

log (average wing length) 0.383 -0.177 0.902 0.355 -0.195 -0.135 0.904

log (average tarsus length) 0.4 -0.333 -0.792 -0.319 0.388 -0.198 -0.841 -0.32

log (average tail length) 0.404 -0.665 0.58 -0.241 0.319 -0.812 0.428 -0.236

log (average bill length) 0.728 0.645 0.164 -0.165 0.789 0.513 0.301 -0.154

Proportion of Variance 0.81 0.12 0.05 0.02 0.81 0.13 0.04 0.01   

 

The relationships of different species in morpho-space as defined by PC1 and PC2 are 

shown in Figures 4.3 to 4.5. In Figure 4.3 the species are coloured by archipelago matching 

the colours used in Figure 4.1 and 4.2. Grouping by archipelago does not produce a clear 

clustering pattern of species in morpho-space (Figure 4.3), suggesting that the archipelago 

itself is not particularly important in the development of species traits. Grouping by clade 

produces noticeable clusters, with the possible exception of the blue New Caledonian clade, 

which appears to be more geographically widespread (Figure 4.4). 

 

Figure 4.5 shows that, while sympatric species differ in morphology these differences are not 

always along the same axis. For example, Z. explorator and Z. lateralis flaviceps from Fiji 

(Figure 4.5b, brown braches) are differentiated by relative bill length but not overall size. In 

contrast the relative bill lengths of Z. minutus and Z. inornatus on Lifou (Figure 4.5b, purple 

branches) are very similar but they are differentiated strongly on the general size axis. The 

third species in this triplet, Z. lateralis melanops, is almost exactly mid-way between the two 

on the general size axis but is differentiated on axis two relating to beak length, having a 

particularly short thick bill in comparison to its sympatric congeners. 
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Figure 4.3. Zosterops taxa plotted in morphospace for datasets drawn from a) the Reciprocally Monophyletic 

Tree and b) the Incipient Species Tree. Colours represent taxa from the same archipelago or island matching 

those in Chapter 2: Figure 2.1. and in Figure 4.1 and 4.2. In both cases, principal component 1 is an index of 

overall body size while principal component 2 is an index of relative culmen length. 

 

Figure 4.4. Zosterops taxa plotted in morphospace for datasets drawn from a) the Reciprocally Monophyletic 

Tree and b) the Incipient Species Tree. Colours represent taxa from the same clade, as shown in Figures 4.1 and 

4.2. In both cases, principal component 1 is an index of overall body size while principal component 2 is an index 

of relative culmen length. 
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Figure 4.5. Sympatric Zosterops taxa plotted in morphospace for datasets drawn from a) the Reciprocally 

Monophyletic Tree and b) the Incipient Species Tree. Colours represent taxa from the same archipelago with 

different shades representing different islands. Lines join sympatric pairs or trios. In both cases, principal 

component 1 is an index of overall body size while principal component 2 is an index of relative culmen length. 

  

 

4.4.2 Model testing 

In all cases using the Reciprocally Monophyletic Tree, the Brownian motion model had the 

lowest ∆AICc score (Table 4.2), For the Incipient Species Tree, the Brownian model either 

has the lowest AICc score, or ∆AICc between the Brownian model and the best-fitting model 

was < 2, in all but two cases. The two exceptions are PC2, (relative bill length), and average 

tail length. The analysis suggests that these data are best explained by a lambda model (for 

relative bill length) and kappa model (for tail length) of trait evolution, however in neither 

case is the one model significantly different from the other. The parameter estimates are 

shown in Table 4.3. The Brownian model is the best fit for all the traits. It is noteworthy that 

in no case was the early-burst model preferred to constant rate Brownian motion. 
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Table 4.2. Comparison of models of morphometric evolution for PC1, PC2 and univariate body size measures 

based on Akaike Information Criteria (AICc) for a) the Reciprocally Monophyletic Tree, and b) the Incipient 

Species Tree. The lowest (AICc) score for all models tested is shown and with a Delta AICc of zero indicating the 

model that applies to. Model abbreviations: BM = Brownian motion; OU = Ornstein-Uhlenbeck; EB = Early Burst. 

PC1 is an index of overall body size while PC2 is an index of relative culmen length. 

a) The species tree

Trait Lowest AICc BM ΔAICc OU ΔAICc Lambda ΔAICc Kappa ΔAICc EB ΔAICc

PC1 -9.80 0 0.16 1.62 1.85 2.41

PC2 -93.76 0 1.04 0.73 2.35 2.41

Wing 224.88 0 0.36 2.08 52.38 2.41

Tail 204.91 0 0.53 0.84 1.51 2.41

Tarsus 144.69 0 1.11 0.84 1.97 2.41

Bill length 160.72 0 1.80 2.41 2.32 2.41

b) The subspecies tree

Trait Lowest AICc BM ΔAICc OU ΔAICc Lambda ΔAICc Kappa ΔAICc EB ΔAICc

PC1 -49.65 0.42 1.28 0.67 0 2.63

PC2 -177.72 15.53 4.42 0 1.97 17.73

Wing 383.58 0.42 0.64 0.15 0 2.63

Tail 347.78 11.83 5.48 0.88 0 14.04

Tarsus 234.22 0 1.32 1.57 0.45 2.21

Bill length 267.24 0 1.45 2.20 2.16 2.21   

 

Table 4.3. Parameter estimates for the first two principal components and the various body size measures for a) 

the Reciprocally Monophyletic Tree, and b) the Incipient Species Tree. Model abbreviations: BM = Brownian 

motion; OU = Ornstein-Uhlenbeck; EB = Early Burst. PC1 is an index of overall body size while PC2 is an index 

of relative culmen length. 

a) The species tree

Trait BM beta OU alpha OU theta Lambda Kappa EB

PC1 0.02 0.28 0 0.73 0.62 0

PC2 0.00 0.23 0 0.70 0.86 0

Wing 12.85 0.45 0 0 0.90 0

Tail 7.26 0.28 0 0.61 0.54 0

Tarsus 1.30 0.25 0 0.72 0.70 0

Bill length 2.06 0.19 0 1.00 0.80 0

b) The subspecies tree

Trait BM beta OU alpha OU theta Lambda Kappa EB

PC1 0.02 0.17 0 0.97 0.68 0

PC2 0.00 0.59 0 0.81 0.38 0

Wing 17.71 0.22 0 0.97 0.68 0

Tail 12.10 0.42 0 0.91 0.37 0

Tarsus 1.71 0.13 0 0.98 0.73 0

Bill length 2.86 0.09 0 1.00 0.95 0   



112 

 

4.4.3 Trait differences between sympatric congeners  

For islands with sympatric species, the observed contrasts between those species are 

shown in Tables 4.4 and Table 4.5 for the Reciprocally Monophyletic Tree and the Incipient 

Species Tree, respectively. In each Table, the observed contrasts are taken across each 

island both with sympatric species individually and across all species. In each case an 

observed value of greater than one indicates that trait diversification among sympatrics is 

faster than expected and an observed value of less than one indicates that it is slower than 

expected. The contrasts in the overall variance are also calculated across the whole set of 

islands. Across all islands sympatric species are not significantly more diverse that would be 

expected by chance based on the dataset from either tree. Indeed the only significant value 

in either table for the analysis including all the islands, as opposed to just individual islands, 

is on the Incipient Species Tree (Table 4.5) and indicates that sympatric species have 

diverged in tarsus length less rapidly than would be expected by chance, perhaps indicative 

of habitat filtering. This result appears to be a consequence of including individual island 

data for the different Z. lateralis subspecies as in some cases individual island subspecies of 

Z. lateralis appear to be more similar to their congeneric sympatrics than is the species as a 

whole. There are a few island-trait combinations where the observed contrasts are in the 

expected direction showing that sympatric species are different in overall body size (PC1), 

such as Lifou and Rennell. However in many cases the contrasts are <1, indicating similarity 

of morphologies, and in some cases these trends were significant, for example between Z. 

explorator and Z. l. flaviceps on Fiji. However, although these two species are very similar in 

terms of overall size, they are significantly more dissimilar with respect to PC2 than would be 

expected by chance.  
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Table 4.4. Observed differences across sympatric species on each island and for the islands taken as a whole 

according to the Reciprocally Monophyletic Tree. Part a) shows the results when all species are considered and 

part b) shows the results when Z. lateralis is excluded.  In each case the observed differences between pairs or 

triplets on an island is shown. Values of less than one indicate that sympatric species are more similar than 

expected and values of more than one indicate that sympatrics are less similar than expected based on 

differences across the whole tree. Stars then indicate if this value is significantly more different than expected by 

chance based on a Brownian simulation model as follows: * P<0.05, ** P<0.01. PC1 is an index of overall body 

size while PC2 is an index of relative culmen length. 

 

a) Including Zosterops lateralis

Island PC1 PC2 Wing Tarsus Tail Bill length

North West Vanuatu 0.43 2.46* 0.51 0.02* 1.53 0.04*

North East Vanuatu 0.13 1.92 0.25 0.14 1.04 0.24

South Vanuatu 0.12 1.58 0.03* 0.29 0.67 0.43

Fiji 0.41 2.76* 0.28 0.29 1.60 0.16

Rennell 1.44 0.25 1.62 1.43 1.29 1.53

Australia 0.44 1.20 0.78 0.07* 0.90 0.14

Lifou 1.39 1.45 1.74 0.99 1.16 1.36

Grande Terre 0.049* 0.73 0.39 0.04* 0.31 0.19

Norfolk Island 1.10 1.07 1.17 1.08 0.71 1.22

Lord Howe Island 1.78 2.14 1.02 1.01 0.99 2.97*

Bougainville 1.01 0.87 1.10 1.43 0.99 0.54

Kulambangra 0.49 0.64 0.42 0.33 0.73 0.40

All islands 0.73 1.42 0.78 0.59 0.99 0.77

Overall variance 0.35 0.60 0.31 0.31 0.14* 0.74

b) Excluding Zosterops lateralis

Island PC1 PC2 Wing Tarsus Tail Bill length

Rennell 1.44 0.25 1.62 1.43 1.29 1.53

Lifou 2.63* 0.92 3.06* 1.85 1.86 2.92*

Norfolk Island 0.87 1.34 1.70 1.08 1.31 0.35

Bougainville 1.01 0.88 1.10 1.43 0.99 0.54

Kulambangra 0.49 0.64 0.42 0.33 0.73 0.40

All islands 1.29 0.80 1.58 1.22 1.24 1.15

Overall variance 0.68 0.16 0.95 0.33 0.18 1.22   
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Table 4.5. Observed differences across sympatric species for each island and for the islands taken as a whole 

according to the Incipient Species Tree. Part a) shows the results when all species are considered and part b) 

shows the results when Z. lateralis is excluded. In each case the observed differences between pairs or triplets 

on an island is shown. Values of less than one indicate that sympatric species are more similar than expected 

and values of more than one indicate that sympatrics are less similar than expected based on differences across 

the whole tree. Stars then indicate if this value is significantly more different than expected by chance based on a 

Brownian simulation model as follows: * P<0.05, ** P<0.01. PC1 is an index of overall body size while PC2 is an 

index of relative culmen length. 

 

a) Including Zosterops lateralis

Island PC1 PC2 Wing Tarsus Tail Bill length

Malekula 0.32 1.21 0.47 0.12 0.93 0.02*

Espiritu Santo 0.48 1.36 0.50 0.16 1.16 0.17

North East Vanuatu 0.19 0.90 0.22 0.01* 0.71 0.002*

Gaua 0.14 0.56 0.13 0.32 0.30 0.21

Southern Vanuatu 0.43 1.71 0.80 0.42 1.33 0.10

Tanna 0.12 1.38 0.31 0.04* 0.71 0.59

Fiji 0.02** 1.84 0.02* 0.05* 1.10 0.37

Rennell 1.33 0.39 1.52 1.36 1.12 1.32

Australia 0.15 0.69 0.22 0.18 0.54 0.04*

Lifou 1.29 1.15 1.64 0.95 1.07 1.15

Grande Terre 0.21 0.92 0.31 0.12 0.27 0.50

Norfolk Island 1.52 0.71 1.27 1.67 1.08 1.41

Lord Howe Island 1.61 0.64 1.32 0.95 1.03 2.26

Bougainville 0.92 0.75 1.05 1.31 0.87 0.46

Kulambangra 0.44 0.51 0.39 0.31 0.64 0.34

Ponape 2.64* 1.62 1.64 1.19 1.24 3.85

All islands 0.74 1.02 0.74 0.57* 0.88 0.80

Overall variance 0.55 0.21 0.33 0.32 0.10** 1.06*

b) Excluding Zosterops lateralis

Island PC1 PC2 Wing Tarsus Tail Bill length

Rennell 1.33 0.39 1.52 1.36 1.12 1.32

Lifou 2.45 0.15 2.86* 1.77 1.61 2.52*

Norfolk Island 0.78 1.08 1.59 1.03 1.13 0.30

Bougainville 0.92 0.75 1.05 1.31 0.87 0.46

Kulambangra 0.44 0.51 0.39 0.31 0.64 0.34

Ponape 2.64* 1.62 1.64 1.19 1.24 3.85**

All islands 1.43 0.75 1.51 1.16 1.10 1.47

Overall variance 0.83 0.28 0.66 0.23 0.11 2.09   
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Table 4.6. The observed minimum distance for Euclidian distances between sympatric pairs in the Reciprocally 

Monophyletic Tree, the median of the simulated distribution and the P-value indicating whether the observed 

distances are more different than would be expected by chance. Part a) shows the results when all species are 

considered and part b) shows the results when Z. lateralis is excluded. 

 

a) Including Zosterops lateralis

Island Median of distribution Observed minimum P-value

North West Vanuatu 0.25 0.23 0.93

North East Vanuatu 0.25 0.16 0.57

South Vanuatu 0.25 0.13 0.41

Fiji 0.25 0.25 0.99

Rennell 0.26 0.41 0.50

Australia 0.25 0.16 0.54

Lifou 0.11 0.20 0.33

Grande Terre 0.24 0.06 0.08

Norfolk Island 0.11 0.20 0.33

Lord Howe Island 0.23 0.50 0.25

Bougainville 0.25 0.28 0.88

Kulambangra 0.26 0.15 0.48

All islands 0.0527 0.06 0.93

b) Excluding Zosterops lateralis

Island Median of distribution Observed minimum P-value

Rennell 0.25 0.41 0.43

Lifou 0.19 0.56 0.03

Norfolk Island 0.20 0.20 0.99

Bougainville 0.24 0.28 0.82

Kulambangra 0.24 0.15 0.51

All islands 0.086 0.147 0.34   

The minimum Euclidian distances observed among sympatric species and corresponding 

null expectations from the simulations are shown in Tables 4.6 and 4.7, for the Reciprocally 

Monophyletic Tree and Incipient Species Tree, respectively. Neither tree shows significantly 

greater distance than would be expected by chance. This is also true when the mean 

Euclidian distance rather than the minimum is considered.  P-values for the Reciprocally 

Monophyletic Tree using mean Euclidian distance are: a) with Z. lateralis =  0.74, b) without 

Z. lateralis = 0.23. P-values for the Incipient Species Tree using mean Euclidian distance 

are: a) with Z. lateralis =  0.29, b) without Z. lateralis = 0.38. The only significant result is for 

the difference between Z. minutus, the smallest Zosterops in the region and Z. inornatus, 

one of the largest, on Lifou (Table 4.7) and this only appears when Z. lateralis is taken out of 

the analysis.
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Table 4.7. The observed minimum distance for Euclidian distances between sympatric pairs in the Incipient 

Species Tree is shown as is the simulated median of the distribution and whether the observed distances are 

more different than would be expected by chance. Part a) shows the results when all species are considered and 

part b) shows the results when Z. lateralis is excluded. 

 

a) Including Zosterops lateralis

Island Median of distribution Observed minimum P-value

Malekula 0.31 0.17 0.41

Espiritu Santo 0.30 0.22 0.67

North East Vanuatu 0.31 0.12 0.22

Gaua 0.32 0.08 0.09

Southern Vanuatu 0.30 0.24 0.70

Tanna 0.31 0.17 0.42

Fiji 0.31 0.22 0.63

Rennell 0.31 0.41 0.69

Australia 0.30 0.09 0.12

Lifou 0.15 0.22 0.53

Grande Terre 0.28 0.12 0.22

Norfolk Island 0.15 0.20 0.54

Lord Howe Island 0.28 0.46 0.40

Bougainville 0.31 0.28 0.90

Kulambangra 0.31 0.15 0.32

Ponape 0.23 0.59 0.08

All islands 0.0636 0.0788 0.70

b) Excluding Zosterops lateralis

Island Median of distribution Observed minimum P-value

Rennell 0.32 0.41 0.69

Lifou 0.24 0.56 0.11

Norfolk Island 0.23 0.20 0.82

Bougainville 0.31 0.28 0.88

Kulambangra 0.31 0.15 0.33

Ponape 0.23 0.59 0.07

All islands 0.0981 0.147 0.50   

 

4.4.4 Biogeographic model testing 

Wing length was highly significantly correlated to tarsus size (Table 4.8) and this was also 

true of entire culmen length (Appendix 4.3). However neither trait showed any significant 

correlation with measures of dispersal ability. Table 4.9 and Table 4.10 show two different 

measures of body size modelled as a function of the measures of dispersal ability. In both 
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these models there is a significant effect of island size, with larger birds being found on 

smaller islands. These models explained 18-35% of the data in different versions of the 

model of the effect of body size. 

 

 

Table 4.8. Models estimates for wing length modelled as a function of various factors indicating dispersal ability 

for a) Reciprocally Monophyletic Tree and b) Incipient Species Tree.  

a) The species tree b) the subspecies tree

Term    Estimate  Std Err  T-value P-value Estimate  Std Err  T-value P-value

(Intercept)     0.852 0.128 6.682 2.50E-07 0.883 0.100 8.796 3.33E-12

log10 (tarsus average)       0.761 0.096 7.949 9.12E-09 0.724 0.077 9.378 3.74E-13

log10 (number of islands)       -0.016 0.011 -1.404 0.17 0.008 0.004 1.858 0.07

log10 ( largest island area)     -0.002 0.003 -0.613 0.54 -0.001 0.001 -1.512 0.14

log10 (maximum distance)  -0.003 0.004 -0.721 0.48 -0.004 0.002 -1.743 0.09

Species age -0.004 0.006 -0.670 0.51 -0.001 0.005 -0.197 0.84

Lambda statistic 1.00 1.00

Adjusted R
2

0.74 0.71

F statistic 20.37 31.55

P model 1.08E-08 3.00E-15   

 

 

Table 4.9. Models estimates for principal component one, an index of general body size for a) Reciprocally 

Monophyletic Tree and b) Incipient Species Tree. 

a) The species tree b) the subspecies tree

Term    Estimate  Std Err  T-value P-value Estimate  Std Err  T-value P-value

(Intercept)     0.290 0.106 2.740 0.010 0.055 0.096 0.570 0.571

log10 (number of islands)       0.023 0.095 0.244 0.809 0.131 0.031 4.182 9.80E-05

log10 ( largest island area)     -0.084 0.021 -3.951 0.0004 -0.030 0.006 -5.259 2.19E-06

log10 (maximum distance)  -0.039 0.036 -1.101 0.279 -0.048 0.016 -2.960 0.004

Species age 0.016 0.043 0.371 0.713 0.034 0.041 0.848 0.400

Lambda statistic 0.28 1.00

Adjusted R
2

0.35 0.32

F statistic 5.61 8.20

P model 0.002 2.61E-05  
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Table 4.10. Models estimates for principal component two, an index of relative bill length for a)  the Reciprocally 

Monophyletic Tree and b) the Incipient Species Tree. 

a) The species tree b) the subspecies tree

Term    Estimate  Std Err  T-value P-value Estimate  Std Err  T-value P-value

(Intercept)     0.054 0.041 1.326 0.195 0.006 0.032 0.200 0.843

log10 (number of islands)       -0.020 0.034 -0.576 0.569 -0.048 0.023 -2.076 0.042

log10 ( largest island area)     -0.015 0.008 -1.994 0.055 0.000 0.004 -0.037 0.971

log10 (maximum distance)  0.010 0.013 0.817 0.420 0.021 0.010 2.039 0.046

Species age -0.002 0.016 -0.145 0.886 0.006 0.014 0.394 0.695

Lambda statistic 0.43 0.83

Adjusted R
2

0.04 0.02

F statistic 1.35 1.24

P model 0.28 0.30  

 

4.5 Discussion 

My analyses showed that the two main axes of phenotypic variation among island Zosterops 

were overall body size followed by relative bill length. I found no evidence for an early-burst 

of morphological divergence with respect to either of these axes and little support for 

morphological evolution being specifically associated with speciation events since the 

Brownian motion null model was not rejected in most cases. Whilst I found that sympatric 

species do differ phenotypically, sympatric species were typically not more phenotypically 

different than expected by chance alone. In fact, for many islands the Zosterops inhabiting 

that island were more similar than expected by chance, although there were a handful of 

island-trait combinations that did show some evidence for character displacement. There 

was also some evidence for biogeographic effects since, while the predicted correlation 

between dispersal ability and wing length did not emerge, there was evidence for increasing 

body size on smaller islands, which agrees with the ‘small island effect’ of Mees (1969). This 

final result is consistent with the island rule for passerine birds and indicates a potential role 

for and effect of community ecology in morphological evolution in this group. 
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4.5.1 Modes of trait evolution 

Although the Zosterops are known to have speciated rapidly, particularly early in their 

evolutionary history (Chapter 3 and Moyle et al. 2009), I found no evidence for a similar 

early-burst in terms of morphological diversification. This is perhaps surprising, given that 

they are known to have recently colonised and expanded to a series of islands and 

archipelagos where novel ecological opportunities might be expected to occur. Analysis of 

modes of evolution using the Incipient Species Tree suggest that certain traits might have 

been subject to speciational evolution, specifically relative bill and tail length. The latter result 

is unexpected and difficult to explain because tail length is not thought to be of very great 

adaptive significance in the Zosteropidae (Mees 1969). However, the fact that this occurs 

only in the Incipient Species Tree may indicate that it reflects competitive displacement of Z. 

lateralis subspecies that have recently arrived on islands with similar sized sympatrics.  The 

bill length result may also reflect competitive displacement as on many of the islands the Z. 

lateralis population appears to have a relatively shorter and thicker bill than their sympatric 

congeners (RAB pers. obs.). It is possible that this represents the beginnings of character 

displacement and trait divergence. Overall, however, these results do not suggest that 

speciation leads to an increased rate of morphological evolution (Harmon & Gibson 2006). 

 

4.5.2 Character displacement and lineage sorting 

Differences in bill length between sympatric island birds are frequently greater than 

equivalent differences on the mainland, which suggests that the requirements for co-

existence are more stringent on islands (Grant 1968). Additionally, since species of the 

same genus tend to be phenotypically similar, competition between them is expected to be 

more severe (Bagenal 1951; Lack 1965; Williams 1964). The resource partitioning model 

predicts that adjacent species need to be separated by a critical minimum space to survive 

and if they are too close one will go extinct (Schoener 1986). It has been shown that size 

changes resulting from niche shifts driven by character displacements can happen quickly in 

birds.  For example, two co-existing Myzomela honeyeaters on the Long Islands are known 
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to have been in sympatry for less than 300 years but are significantly more different in bill 

length from each other than birds in the allopatric source populations (Diamond et al. 1989). 

Other known examples of rapid bill size changes in birds are found in Laysan finches, 

Telespyza cantans, introduced to novel habitats (Conant 1988) and Darwin’s finches 

responding to drought conditions on Daphne Major (Grant & Grant 1989). 

 

Sympatric species may therefore be ecologically distinct before they come into contact or 

they may be reproductively isolated and diverge subsequently in morphological traits as a 

result of character displacement. Often it is likely to be a combination of the two forces that 

are at work, an initial difference reinforced by character displacement (Grant & Grant 2006). 

However, the signal of these processes may potentially be masked by non-genetic 

environmental factors related to particular times or islands (Webb et al. 2002). Sympatric 

species may be constrained in the degree to which they can diverge by environmental 

factors. For example, the largest seed size available may place an upper limit on the size to 

which a seed eating bird can usefully grow. Selection will not favour the evolution of a larger 

beak which results in a reduction of the range of successfully strategies, or limits the 

morphological space that a species can occupy (Cornwell et al. 2006; Keddy 1992). This will 

obviously also limit the degree to which two sympatric congenerics can exhibit character 

displacement. It should be noted however that sexual selection can be a confounding factor 

as mate choice can drive selection in a direction that is non-adaptive from a niche point of 

view (Buchanan & Evans 2000; Rowe et al. 2001; Zahavi 1975). 

 

Nevertheless it is surprising that I found little evidence to suggest that the survival of 

congenerics in sympatry depends on them being any more different from each other than is 

typical among Zosterops species. Across all the islands there was no significant tendency for 

sympatric species to have diverged more rapidly from each other than expected under a 

Brownian model. Perhaps more surprisingly, in many traits sympatric species appeared to 

have diverged less rapidly than expected by chance. For example the two Fiji forms, Z. 
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explorator and Z. lateralis flaviceps were almost identical on the general body size axis 

(PC1, Figure 4.5). On the relative bill size axis, however, the two species were very different 

and the trend was in the expected direction. In fact, in most cases sympatric species are 

noticeably different from each other in at least one of these two components. This suggests 

that there might be character displacement between sympatric species but that the important 

traits are different on each island, making it difficult to detect except on a case by case basis. 

This suggestion is, perhaps, made more plausible by the fact that two exceptions to the rule 

of differing in the expected direction on at least one axis are species pairs that segregate by 

altitude on their respective islands (Mayr & Diamond 2001). These are the Solomons islands 

pairs Z. murphyi and Z. kulambangrae from Kulambangra and Z. ugiensis and Z. metcalfi 

from Bougainville. The other exception is Z. xanthochrous and Z. l. griseotinctus on Grande 

Terre, New Caledonia. In this case, although the former species is more common in the 

mountains and the latter on the coasts (RAB pers. obs.), their ranges show extensive 

overlap and the ecological differences between them are, as yet, unclear. 

 

This potential instance of competition, inferred from an overlap in size and habitat, suggests 

another possible explanation, which is that the inclusion of Z. lateralis is a confounding 

factor. Without Z. lateralis included, the other sympatrics were still not significantly more 

different but the differences were in the expected direction in most traits except relative bill 

length. These pairs and triplets that become pairs without Z. lateralis are older and therefore 

have had more time in sympatry. The body size axis appears to be important in certain older 

sympatrics, such as Z. minutus and Z. inornatus on Lifou, which are significantly more 

different than expected by chance with respect to overall body size. The older pair of 

sympatric species from Norfolk Island, Z. albogularis and Z. tenuirostris, are more similar 

than expected with respect to overall body size but show a trend towards being more 

different than expected with respect to bill length. The latter trend is not statistically 

significant but Grant (1972a) determined that the important difference in the bill between 

these species is not in length but in depth and width. Thus, he concluded that in sympatric 
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double-invasions, species pairs of insular birds differ in at least one bill dimension by 15% or 

more. In the same study, Grant also noted an apparent example of character displacement 

evolving, or at least re-enforcing in sympatry. Specimens of Z. l. lateralis collected in 1926 

had narrower bills than those collected in 1912 and 1913, although sample size were 

admittedly small for the later date. This change does not appear in the other two species 

making differences in measurement accuracy or the effects of fluctuating selection unlikely 

as explanations. It seems at least possible that this is evidence of divergence due to 

selection since the later specimens are more different from Z. tenuirostruis than the earlier 

specimens.   

 

I found no evidence to support the theory that congenerics can only coexist in sympatry if 

sufficient time has passed to allow them to be already ecologically completely separate from 

each other (Lack 1971). Were this the case the sympatric species should be less close 

phylogenetic relatives than expected by chance and this is not the case (Chapter 3). 

Sympatric species are found in different parts of Zosterops morphospace but they are not 

always at the extremes and indeed they do not appear to be obviously more separate than 

any two random species. It appears, therefore, that the range of niches occupied by 

sympatric species is a subset of the overall range of the family. This suggests that almost 

any two random species coming into sympatry would be far enough apart to survive, at least 

in the short term. Following establishment in sympatry competition would either lead to 

character displacement or the eventual exclusion of one species. 

 

One possible interpretation of my results is that character displacement is important in 

sympatric Zosteropidae but that the form of character displacement is not consistent. In 

some cases there is a size difference, such as between Z. minutus and Z. inornatus on 

Lifou, or between Z. cinera ponapensis and Rukia ruki on Ponape. In other cases, however, 

there is little difference in size but there are important differences in bill length or other 

morphological characteristics that are less easy to measure, such as tongue morphology or 
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wing formula (Mees 1957). However because differences are dictated by the particular 

circumstances on each island overall there are no strong trends in the overall data. Linked to 

this is the possibility that, as recent colonists, the Z. lateralis species group has, in many 

cases not yet, achieved a stable sympatric state and that these pairing represent not the 

ghost of competition past but of active competition in the present. 

 

4.5.3 Biogeography 

A combination of theory and observation suggests that species with longer wings would be 

better dispersers and therefore that more widespread species should have longer wings 

(Mees 1969). However, I found no evidence that this is the case based on the data analysed 

here. It seems logical to conclude, therefore, that Zosterops species are not limited by 

dispersal ability to be endemics or confined to small groups of islands. Differences in 

dispersal ability are likely to be a result of behavioural rather than physical limitations 

(Diamond 1981). 

 

I did find a significant effect of island size on overall body size, with a significant tendency for 

large-bodied taxa being found on smaller islands, as predicted by the Island Rule (Clegg & 

Owens 2002; Lomolino 2000; van Valen 1973; Welch 2009). The classic scenario is that the 

first Zosterops species to arrive gets larger, particularly in bill morphology as bigger beaked 

birds can handle a wider range of food (Lack 1971). Under this scenario species on smaller 

islands with few competitor species should evolve to become larger. Later arriving, more 

normally sized, conspecifics may get have a tendency to evolve larger size too but are 

constrained by character displacement competition with the resident species. Of the two 

islands populated by three species, the molecular clock indicates that the largest birds on 

both Lifou and Norfolk island are the oldest. However the latest arrival is the smallest 

species in one case (Norfolk Island) but the middle species in the other case (Lifou), where 

the subspecies present (Z. l. melanops) is larger than the subspecies on nearby islands with 

only two Zosterops species. This may indicate that even within the general framework of 
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selection for increased the specific circumstances of individual islands are of huge 

importance. 

 

4.5.4 Conclusions 

Taken together these results diverge in important ways from the usual interpretation of 

Zosterops colonisation of the islands which is a rapid west to east colonisation of the islands 

with associated rapid trait evolution. Typically, the first colonisers on each island are 

expected to increase in size with later arrivals fitting in at lower sizes on a character 

displacement basis. However in many cases, in particular Z. lateralis griseonatus and Z. 

xanthrochrous on the main island of New Caledonia and Z. flavifrons and Z. lateralis in 

Vanuatu, the later arriving species is the larger species. It has been predicted that there is a 

large element of stochasticity in evolutionary processes and that chance will result in very 

different outcomes even when conditions are similar (Lenormand & Rousset 2009; Losos et 

al. 1998; Travisano et al. 1995). However it has been shown in Anolis lizards that adaptive 

radiation in similar environments often leads to convergent evolution (Losos et al. 1998). 

Here I show that the effect of phylogeny is more important than selection for trait evolution. It 

may be significant that species from the New Caledonian clade are more often sympatric 

with each other than other clades. Clade specific factors can be very important different taxa 

respond in different ways so by extension taxa from the same clade respond in the same 

way (Harvey & Pagel 1991).   

 

In some cases failure to find agreement with long-standing ecological predictions may be 

due to a lack of data. For example (Grant 1972a), showed that the crucial bill differences 

between Z. albogularis and Z. tenuirostris are in bill width and depth rather than bill length so 

they are not, as at first appeared an exception to the rule that sympatric species bills must 

differ by at least 15% (Grant 1968; Lack 1944). My data set only includes one bill measure 

and it would certainly be a useful next step to repeat the analysis with depth and width 

measures included. Another factor to consider is that it is not always obvious which trait 
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characteristics reflect resource use.  For example Carothers (1982) found that tongue 

morphology was important in the foraging rates of three Hawaiian honeycreepers 

(Fringillidae: Drepanidinae). Competition may also not be only, or even mainly, between 

congeneric sympatrics and we have not considered competition with other bird families or 

more distantly related taxa. For example, Schluter (1986) demonstrated character 

displacement between Darwin’s finches and carpenter bees (Xylocopa darwini). However it 

still remains true that if the classic scenario were true I would expect to find evidence of 

overall trends in bill and body size with the data that we have and I do not. 

 

I suggest that, in general, my results are more consistent with an extreme non-equilibrium 

scenario of insular colonisation and evolution. Under this model the islands of the south west 

Pacific are a dynamic system in a permanent state of flux. The classic forces of character 

displacement and habitat filtering are operating but at any one moment the effects are 

obscured by new invasions and turnover. The special cases provide information about the 

forces that are acting but don’t give much predictive power because only the most extreme 

differences in size difference show a significant effect in the models. For example, Figure 4.6 

shows the huge difference in size between Z. minutus and Z. inornatus and my analyses 

show that it is this is the sort of morphological size difference that is needed to show 

significance in the model. Even so, when Z. l. melanops is included in the model the 

significance is obscured although the size difference must have evolved before Z. l. 

melanops arrived on Lifou. It is highly probable that much more subtle differences between 

species than these can create important differences in the use of niche space.  

 

Grant (1968) notes that individual islands vary hugely in physical conditions and so broad 

conclusions cannot be drawn from single island studies. For example, endemic subspecies 

on Rennell Island show a marked tendency towards reduction in size (Murphy 1938).  The 

classic pattern of segregation by size among sympatric Zosterops may be true in some 

cases but not across all islands being correct only in carefully selected cameos. Older pairs 
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show evidence of character displacement whereas younger pairs, including Z. lateralis 

subspecies, do not. This suggests that ecological differences might be developing in 

sympatry rather than having to be in place before sympatry occurs. That sympatric pairs are 

not significantly older than would be expected on average is supporting evidence for this 

(Chapter 3). 

 

 

Figure 4.6. The size differences between the three Zosterops species found on the island of Lifou. Z. minutus, on 

the left, has an average weight of 9.3 grams (N=51), Z. lateralis melanops, in the middle, has an average weight 

of 14 grams (N=30) and Z. inornatus, on the right has an average weight of 21.4 grams (N=14) (RAB unpublished 

data) (Photograph: S. Clegg). 

 

Neither the expected early-burst nor speciational modes of trait evolution are supported by 

my results. One possible explanation for this is that colonisation of these islands is not a 

simple west-to-east stepping stone colonisation as expected by long-standing predictions.  

Instead, it proceeds in a series of waves, some large ones emanating from the continental 
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source and other smaller ones happening between, or even within archipelagos. The forms 

of Zosterops emerging on each island depends heavily on chance events of habitat and 

species composition as well as colonisation and extinction events (Grant 2001; Price 2008). 

Classic processes may be in operation but on any given island at any one moment the 

Zosterops species present may be at any stage of the speciation and trait evolution process. 

The overall picture therefore is a product or snapshot of the time and the pattern only a few 

thousand years in the past or into the future may be very different. 
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Chapter 5 

 

General Discussion 

 

In the General Introduction (Chapter 1) I addressed three principal themes of speciation. 

Here I reassess those themes in the light of the analyses presented in this thesis and draw 

together the findings that are relevant to each of these main themes. The Zosteropidae of 

the south west Pacific is a remarkable system for the study of diversification in the wild and 

the combination of repeated bouts of dispersal and colonisation with a diversity of island 

settings has resulted in an enormous amount of speciation in a very short time. It is therefore 

hoped that the insights gleaned from studying this unusual group will prove to be applicable 

to broader scale questions in evolutionary biology. 

 

5.1 Themes of evolution 

5.1.1 Modes of Speciation 

The lineage through time plots presented in Chapter 3 indicate that speciation happened fast 

and early in the Zosteropidae of the south west Pacific. The white-eyes were already known 

to represent an unusually rapid radiation and Moyle et al. (2009) estimated a diversification 

rate of approximately 2.24 taxa per million years using a geologically calibrated tree. My tree 

was calibrated on a molecular clock and although I estimated a slower overall rate of 0.80 

(CI 0.69 – 0.91) taxa per million years this is still fast compared to most bird groups (Price 

2008). The fast rate of speciation in the Zosterops of the south west Pacific appears to be 

concentrated early in the radiation with a significant slowdown in speciation rate over time 

(Chapter 3). The observed pattern of phylogenetic diversification matches predictions of an 

evolutionary radiation spreading into archipelagos composed largely of recently emerged 

islands (Newton 2003; Whittaker & Fernández-Palacios 2007). Under this scenario, there 
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are initially there are many available niches but stochastic variations among islands leads to 

some islands becoming ecologically ‘full’ more rapidly than others.  As niches fill and 

ecological opportunities close, the speciation rate gradually slows down (Hallam 1977; 

Harvey & Rambaut 2000; Nee et al. 1992; Simpson 1953). 

 

 Although my analyses suggested that, phylogenetically speaking, the Zosterops 

diversification happened fast and early, I did not find evidence for fast and early - or “early-

burst” - evolution with respect to morphology (Chapter 4). Nor did I find evidence for 

speciational evolution with respect to morphology or “punctuated trait early evolution”, where 

trait evolution is concentrated around speciation events (Chapter 4). The early-burst model 

predicts that the rate of trait evolution should reflect the rate of speciation because it is the 

availability of opportunities for novel ecological evolution that causes rapid, early speciation 

(Gavrilets & Vose 2005; Schluter 2000a). In the south Pacific Zosteropidae, speciation is 

linked with the colonisation of new islands which is in turn expected to be linked to 

morphological change. Indeed it is thought that rapid speciation is most likely when either 

natural or sexual selection is strong and that in the absence of selection divergence is a slow 

process (Coyne & Orr 2004; Gavrilets 2004). There is little positive evidence for strong 

sexual selection in the Zosteropidae as there is little sexual dimorphism, with males being 

only slightly larger and more colourful in some species and very little evidence for sexual 

selection through extra-pair paternity (Frentiu et al. 2008; Mees 1957; 1961; 1969; 

Robertson et al. 2001). In fact, the Capricorn silvereye Z. lateralis chlorocephalus is one of 

relatively few passerines species that has been found to be genetically monogamous even 

when using hyper-variable genetic markers (Robertson et al. 2001). Thus, although it is 

impossible to rule out a role for sexual selection, especially as there is currently rather little 

known about the evolution of song in this group (Diamond 1998; Kikkawa 1963), it is likely 

that ecological speciation via divergent natural selection is a more powerful mechanism for 

diversification in this family (Clegg et al. 2002b). A consequence of this is that speciation 
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events are expected to coincide with phenotypic changes, especially with trait changes 

related to shifts in ecological niche space.  

 

Given the expectation that ecologically relevant traits, such as body size and relative bill 

length, should be closely associated with the process of speciation, it is therefore surprising 

that I was unable to reject a Brownian null model of trait evolution which implies that 

changes in morphological traits may have been random with respect to speciation (Chapter 

4). However a comparison of the number of ecological niches, as represented by the number 

of islands, appears to be correlated with the number of species in a given region (Chapter 3). 

The lineage through time plots suggest three bouts of increased speciation rates that could 

be explained by three main invasions waves of Zosterops to the region: an initial colonisation 

wave across the region, a second represented by the increase in speciation rates in the 

middle of the phylogeny, and a third ‘incipient’ speciation wave dominated by Z. lateralis 

subspecies (Chapter 3). These rounds of colonisation, along with sympatry and extinction, 

hint that taxon cycles - sequential expansions and contractions in the range of species 

(Ricklefs & Bermingham 2002; Wilson 1961) - may be partly responsible for the distribution 

of Zosterops species of vastly different ages in the region. This scenario differs from the 

suggestions of Mees (1969) who grouped all Z. lateralis plus several endemic Zosterops 

species into a species complex. However, the phylogeny (Chapter 2) shows that the Z. 

lateralis radiation contains only the Z. lateralis subspecies and not all the species grouped by 

Mees (1969) into the larger species complex.   

 

5.1.2 The Origin and Consequences of Sympatry 

The phylogenetic hypothesis for the Zosterops of the south west Pacific that I presented in 

Chapter 2 provided no support for sympatric speciation as a cause of sympatric congeners, 

supporting the consensus that this mode of speciation is very rare in birds (Coyne & Orr 

2004; Coyne & Price 2000; Newton 2003; Phillimore et al. 2008a; Price 2008). The co-

occurrence of congenerics on small islands therefore must be the result of multiple 
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invasions. Island speciation is typically expected to lead to a decline in dispersal ability 

(Diamond 1981). Speciation and particularly the development of endemism on nearby 

islands implies a reluctance or inability to cross water bodies so that gene flow is reduced to 

zero (Diamond et al. 1976). In the south west Pacific there are many examples of endemic 

species separated by very narrow stretches of water, such as the Solomons species Z. 

vellalavella and Z. splendidus, which are separated by only 8km (Mayr 1967; Mayr & 

Diamond 2001). Therefore poorly dispersing endemic species are unlikely candidates for the 

range expansions required to produce conspecific sympatrics. I suggest that the colonisation 

events resulting in sympatric species in general represent large scale events involving the 

rapid spread and subsequent speciation of a vagile species emanating from a continental 

population source. 

 

I also found that sympatric pairs of Zosterops show no tendency to be more distantly related 

to each other than expected by chance (Chapter 3) Similarly, in general I found that 

sympatric species are no more dissimilar to one another with respect to their morphology 

than expected by chance, although the morphological tests did reveal a handful of island-

trait combinations where there was significant divergence (Chapter 4).  The factor that 

produces differing Zosterops forms therefore would not seem to be the time available for 

divergence but the availability of novel niche opportunities. Significantly most of the 

Zosteropidae that are unusual in size and/or colour are island forms, such as the large, 

brown Woodfordia species of Rennell and the Santa Cruz Islands (Mees 1969) and the very 

small pygmy white-eye, Oculocincta squamifrons of Borneo (Lack 1971).  The key then for 

Zosterops to come into sympatry is for the endemic on an island to have diverged sufficiently 

for a later arriving more ‘typical’ form to be able to occupy a different niche. The available 

evidence suggests that it does not take long for quite dramatic morphological change to 

happen in the Zosteropidae. For example Z. l. chlorocephalus from the southern Great 

Barrier Reef Islands, has increased in size by between 2.8 to 7 standard deviation units, 

depending on which trait is considered, compared to the nearby mainland subspecies 
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(Frentiu et al. 2007; Kikkawa & Wilson 1983; Mees 1969). Clegg et al. (2008) showed that 

this shift is likely to have occurred in less than 500 generations following colonisation and 

that the phenotype has since hovered around an optimum size. It is therefore not surprising 

to find that sympatric Zosteropidae are not more distantly related than you would expect by 

chance (Chapter 3). More perplexing is the lack of evidence that there needs to be some 

minimum phenotypic distance between Zosterops species for sympatry to occur (Chapter 4). 

Hence, rather than shedding light on factors that allow sympatry of Zosterops species, 

phylogenetic information has introduced further complexities than were apparent prior to the 

use of phylogenetic methods (Stern & Grant 1996). 

 

There are at least three possible scenarios that may explain the failure to find significant 

phylogenetic or phenotypic divergence between sympatric congeners (Chapter 4). The first 

possibility is that Zosterops species simply do not have to be phenotypically, or even 

ecologically, very different in order to co-exist. This is what would be predicted by Hubbell’s 

unified neutral theory of biodiversity and biogeography which considers that differences 

between species are neutral as regards their competitive abilities (Hubbell 2001; Hubbell & 

Borda-de-Agua 2004). However this does not seem very probable for the Zosteropidae 

because many of the older sympatric species do show marked differences in traits and 

ecology. For instance, on several of the other islands where there is more than one 

Zosterops species, various authors have suggested ecological niche differentiation on the 

basis of major ecological factors, including altitude, habitat use and foraging behaviour (Lack 

1971; Mayr & Diamond 2001). A good example of this occurs on Lifou where Z. inornatus 

averages more than three times the weight of Z. minutus (Chapter 4) and appears to feed 

higher in the canopy than the smaller species (RAB pers. obs.). 

 

A second possibility is that the character displacement, while real, is very difficult to detect, 

and that even in this speciose region there is simply not enough statistical power to be able 

to reliably detect such subtle patterns of variation. In support of this is the fact that, although 
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the phenotypic differences between sympatric species are not significantly greater than 

expected by chance, in individual cases they are often in the expected direction (Chapter 4). 

Part of the problem in detecting significance in this overall trend may be that the exact form 

of character displacement shown by any particular set of sympatric species is idiosyncratic 

and, rather than following general rules, depends on the particular circumstances of each 

individual case. In some cases differences in overall size may be important, for example 

between Z. rennellianus and W. superciliosa on Rennell (Mayr & Diamond 2001), but in 

other cases it might be bill dimensions for example between Z. albogularis and Z. tenuirostris 

on Norfolk Island (Grant 1972a). It is noticeable that most of the sympatric species are very 

different from one another in either body size or relative bill length, but rarely different in both 

aspects (Chapter 3). This has also been noticed in sympatric Zosterops in other parts of the 

world (Gill 1971; Grant 1968) and, although I attempted to test for multidimensional 

divergence by calculating Euclidian distances, the unpredictability of individual island effects 

is exemplified in the case of Lifou. Lifou is a small, low lying island that, in comparison with 

many other islands of the region, has an almost entirely homogenous forest habitat and yet it 

supports three very distinct Zosterops species. This suggests that, while ecological 

differences may exist among sympatric Zosterops they are very hard to check except on a 

case by case basis, such that it is extremely challenging to derive generalities. 

 

A third explanation is that the overall effect of character displacement may be masked by 

recurrent invasion of new forms and, in particular, the recent invasion of Z. lateralis. When 

viewing island populations of this species cohabiting an island with an earlier colonist, we 

may be viewing competition in progress rather than “the ghost of competition past” and 

coexistence (Connell 1980). On Grande Terre of New Caledonia, for example, Z. 

xanthochrous and Z. l. griseonatus are often observed feeding in the same way on the same 

foods (RAB pers. obs.). This competition may result in character displacement and eventual 

sympatry or in one species going extinct. Many of the islands with stable sympatric pairs or 

with single species may be a result of previous iterations of this process. In support of this 
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when Z. lateralis was excluded from the morphological tests the remaining species showed 

evidence in the direction of character displacement. I will return to this idea of recurrent 

invasions and the effect it has on detecting general ecological patterns later in this General 

Discussion. 

 

5.1.3 Biogeographical Effects on divergence 

The phylogenetic hypotheses I present here indicate that the Zosterops of the south west 

Pacific are not a monophyletic group and so cannot represent a single colonisation wave 

from the mainland (Chapter 2). Instead the Zosteropidae of the south west Pacific consists of 

three distinct clades which I have termed the Vanuatu Clade, the New Caledonia clade and 

the Zosterops lateralis clade (Chapter 2) and the origins of all three clades appear to be 

Asian rather than Australian. Neither do endemic taxa seem to have arisen from currently 

widespread species. Nor does a pattern of colonisation from west to east hold true for the 

family as a whole. However in the three different clades there is a strong suggestion that 

easterly species tend to be younger (Chapter 2). A stepping stone colonisation model 

predicts that species on more remote islands, easterly in this case, should be younger as it 

takes longer to reach those islands. This again supports recurrent waves of colonisation 

across the region. 

 

Phylogeography does appear to be important in the speciation of the Zosteropidae. The 

sheer number of available islands in the south west Pacific, as compared to other regions, 

appears to be the reason that speciation in the region is particularly fast and the recent 

nature of many of them is the reason for signatures of early-burst of speciation and a 

subsequent slow down (Chapter 3). However this is hard to test beyond a simple 

comparison of island and species numbers. 

 

My analyses of the link between morphology and biogeography produced mixed results 

(Chapter 4). I did not find any evidence of reduced wing length relative to body size in less 
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widely dispersed taxa which supports the conclusion of Diamond (1981) that loss of 

dispersal in the Zosteropidae is due to psychological rather than physiological changes. 

However I was only able to look at relative wing length and it would be valuable to repeat the 

analysis with some measure of wing shape as this is also likely to be important in 

determining dispersal ability (Mees 1969). I did, however, find that the island rule did holds 

for the Zosteropidae, i.e. that there was a tendency for them to evolve large body size on 

small islands (Chapter 3). Clegg and Owens (2002) suggested that in small birds this trend 

is an adaptation to high population densities and intense intraspecific competition on 

islands(Blondel et al. 1988; MacArthur et al. 1972; Wright 1980). This seems to support the 

theory that the first Zosterops to arrive on an island diverges from the norm, typically in the 

direction of increased size, which allows a more typical Zosterops to invade subsequently 

(Gill 1971; Lack 1971). 

 

5.2 Speciation scenario for insular Zosterops 

In my analysis of the phylogenetic relationships in Chapter 2 I discussed three possible 

scenarios of diversification in the Zosterops of the south west Pacific. I rejected the simple 

model of a single wave of west to east colonisation (Scenario i) as being unable to explain 

the observed pattern once phylogenetic relationships were taken into consideration. 

However it proved harder to determine which of the other two scenarios, the mosaic of 

colonisation Scenario ii) and waves of colonisation (Scenario iii) was more likely to be 

correct. Based on the evidence from the analyses presented in the subsequent Chapters, I 

consider that the scenario of waves of colonisation seems to be more probable and here I 

draw together the relevant evidence. 

 

There are five lines of evidence to support a scenario of large scale colonisation waves as 

the predominant dispersal pattern throughout the region. First, within each of the three 

distinct clades in the phylogeny there is some signal of west to east migration suggesting 

that they may represent three different colonisation waves (Chapter 2). Second, there are 
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examples of old isolated species on remote islands, for example Z. f. majuscula on 

Aneityum. These are more convincingly explained as remnants of ancient colonisation 

waves rather than as single species dispersals over huge distances due to the improbability 

of a sedentary island endemic making a single large dispersal jump (Chapter 2). Third, the 

existence of sympatric Zosterops despite the lack of evidence for sympatric speciation 

(Chapter 2) suggests multiple colonisation events. Again this is more parsimoniously 

explained by colonisations of widely dispersed vagile species than by range expansions by 

island endemics that must, almost by definition, be poor dispersers. Fourth, there is a 

suggestion of repeated increases in speciation rates followed by slowdown through time and 

this may indicate repeated colonisation waves (Chapter 3). Fifth, a species that is probably 

still in the process of spreading across the region, Z. lateralis, possibly represents the latest 

phase of a taxon cycle (Chapters 3 and 4). It is reasonable to conclude that a phenomenon 

that is occurring in the present might have also occurred in the past. Individually none of 

these strands of evidence could be considered convincing but taken together they suggest 

that repeated waves of colonisation is the most likely scenario. 

 

5.3 Future Research 

My work suggests strongly the existence of recurrent waves of colonisation of Pacific islands 

by white-eyes but several questions remain unanswered. If periodic waves of colonisation 

from mainland sources are responsible for the current species complex, what is the root 

cause of these expansions? What determines which species are involved and when 

expansions occur? Answers to these questions must be sought among the mainland source 

populations. One possible hypothesis is that these dispersal events are linked to climatic 

changes. Another is that they are essentially stochastic events linked to chance dispersal, 

particularly in partially migratory taxa such as Z. l. lateralis (Higgins et al. 2006). 

 

I have not demonstrated significant character displacement among the Zosterops of the 

south west Pacific, yet evidence from some islands suggests that sympatrics may tend to be 
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more different from each other than random pairs, at least for some traits. Here I have used 

the morphological data available to examine trait differences in the Zosteropidae. It is 

possible that additional traits that I did not include will prove to be important. For example bill 

shape as well as bill length is thought to be important in the Zosteropidae (Grant 1972a; 

Robinson-Wolrath & Owens 2003; Scott et al. 2003). It would certainly be valuable to repeat 

the analyses in Chapter 3 including measures of bill width and bill depth. Another step 

towards the elucidation of this question would be to establish what the ecological differences 

in sympatric pairs actually are, especially in terms of feeding niche. The best way to do this 

convincingly would be a detailed feeding study of multiple sympatric pairs.  

 

Although I have assumed that sexual selection is not an important mechanism in Zosterops 

this has not been thoroughly tested. In some bird species sexual dimorphism is cryptic from 

a human point of view for example the ultraviolet colour of the throat in male bluethroats, 

Luscinia svecica (Andersson & Amundsen 1997). Moreover lack of sexual dimorphism does 

not necessarily mean there is no sexual selection, for example females could be choosing 

large males and high genetic covariance between the sexes could pull the females in the 

same direction. Further study is warranted to investigate possible sexual selection in the 

Zosteropidae. Perhaps most crucially for a passerine bird species, however I have not 

considered evolution of vocal communication in this group and, in particular the character 

displacement with respect to song (Irwin 2000; Irwin et al. 2001; Payne et al. 2000; ten Cate 

2000). Typically in morphologically uniform bird groups, vocalisations, especially song, are 

important in conspecific recognition. A comparison of song in the Zosteropidae would be an 

important next step. Here the prediction would be that if song is important in character 

displacement then song divergence will be greater among species that show a sympatric 

geographic than those which are allopatric (Noor 1999). The alternative hypothesis is that it 

is the acoustic environment that is important and differences in song structure among 

closely-related species are associated with interspecific variation in habitat use 
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5.4 Conclusions 

One of the reasons for selecting Zosterops as the study group for this work is that cameo 

examples from this group have frequently been invoked to support classical theories 

regarding dispersal, ecological niche differentiation, founder events and sympatric speciation 

(e.g. Emerson 2008; Grant 1972b; Lack 1947; Lack 1971; Mayr 1941; Mayr 1954). In 

general, however, my larger scale comparative analyses of Zosterops have tended not to 

support these theories. For instance, only in a handful of cases do the classic predictions of 

niche divergence with body size (Lack 1971; Mees 1957; 1961; 1969) appear to be true. 

Similarly, I find no evidence to support sympatric speciation, stepping stone models of 

biogeographic dispersal or speciational trait evolution. Instead, it appears that a major driver 

of speciation in the region is recurrent waves of colonisation emanating from the population 

sources. It is these waves that produce the patterns of sympatry on multiple islands. Nor 

does it seem at all clear that these pairs, when they come into sympatry, are always 

occupying different niches. The surviving species on certain islands may have outcompeted 

earlier congeneric inhabitants of the islands or have themselves outcompeted later arriving 

competitors. In species pairs involving the most recent colonist, Z. lateralis, this competition 

may still be going on. This suggests that the make up of the Zosteropidae of the south west 

Pacific may not stable but in a constant state of flux. I believe that the processes of 

ecological speciation and character displacement are likely to be important in defining the 

characteristics of each individual species or the differences between sympatric pairs, but the 

signal of these mechanisms is swamped by the dynamic equilibrium of past and present 

colonisation. 

 

There is a natural tendency to look for the trace of competition past to explain current 

patterns of species diversity. However speciation is a constant process and competition in 

the present may often be just as important. The field of historical biogeography should 

perhaps be the field of historical and current biogeography. Overall, the Zosteropidae of the 

south west Pacific reflect a general truth: that speciation is a constant process and that the 
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potential for change always underlies apparent stability. The unusual situation of this 

particular family in these particular islands makes the effects of this process more obvious. 



140 

 

Appendices 

Appendix 2.1 

Appendix Table 2.1.A. Individual Zosterops and Woodfordia samples sequenced as part of this study, showing 

geographic origin, sample number, collector and the genes for which sequence was obtained: “y” indicates that 

the gene has been sequenced for that individual and “n” indicates that it has not. The table is divided into four 

parts: i) Z. lateralis from Vanuatu, ii) other Z. lateralis, iii) Z. flavifrons, and iv) other Zosterops and Woodfordia 

species. Sequences used from GenBank are listed separately in Table 2.1.B. 

Genus species subspecies island Sample number Collection CB1 ND3 ATPase TGFB2

Zosterops lateralis tropica Ambae AMB55 SMC y y y y

Zosterops lateralis tropica Ambae AMB56 SMC y y y y

Zosterops lateralis tropica Ambae AMB57 SMC y y y y

Zosterops lateralis tropica gaua 255 ABP y n y y

Zosterops lateralis tropica gaua 261 ABP y y n y

Zosterops lateralis tropica gaua 267 ABP y y n y

Zosterops lateralis tropica gaua 296 ABP n y n n

Zosterops lateralis tropica Pentecost PEN03 SMC y y y y

Zosterops lateralis tropica Pentecost PEN08 SMC y y y y

Zosterops lateralis tropica Pentecost PEN16 SMC y y y y

Zosterops lateralis tropica Pentecost PEN18 SMC y y y y

Zosterops lateralis tropica Pentecost PEN33 SMC y y y y

Zosterops lateralis tropica santo 222 ABP y y y y

Zosterops lateralis tropica santo 233 ABP y y n y

Zosterops lateralis tropica santo ABP245 ABP y y n y

Zosterops lateralis tropica santo 345 ABP y y n y

Zosterops lateralis tropica santo 353 ABP y y n y

Zosterops lateralis tropica santo SAN2 SMC y y y y

Zosterops lateralis tropica santo SAN7 SMC y y y y

Zosterops lateralis tropica santo SAN9 SMC y y y y

Zosterops lateralis tropica vanua lava 317 ABP y y n y

Zosterops lateralis tropica vanua lava 319 ABP y y y y

Zosterops lateralis tropica vanua lava 322 ABP y y n y

Zosterops lateralis tropica vanua lava VAN46 SMC y y y y

Zosterops lateralis vatensis Ambrym ABY07 SMC y y y y

Zosterops lateralis vatensis Ambrym ABY25 SMC y y y y

Zosterops lateralis vatensis Ambrym ABY26 SMC y y y y

Zosterops lateralis vatensis Ambrym ABY36 SMC y y y y

Zosterops lateralis vatensis Ambrym ABY39 SMC y y y y

Zosterops lateralis vatensis efate EF44 SMC y y y y

Zosterops lateralis vatensis efate 153 ABP y y y y

Zosterops lateralis vatensis efate 155 ABP y y n y

Zosterops lateralis vatensis efate 164 ABP y y n y

Zosterops lateralis vatensis efate 174 ABP y y y y

Zosterops lateralis vatensis epi 412 ABP y y n y

Zosterops lateralis vatensis epi 415 ABP y y y y

Zosterops lateralis vatensis epi 418 ABP y y n y

Zosterops lateralis vatensis epi 423 ABP y y n y

Zosterops lateralis vatensis erromango 371 ABP y y n y

Zosterops lateralis vatensis erromango 373 ABP y y y y

Zosterops lateralis vatensis erromango 380 ABP y y n y

Zosterops lateralis vatensis erromango 389 ABP y y n y

Zosterops lateralis vatensis malekula 176 ABP y y n y

Zosterops lateralis vatensis malekula ABP178 Rich y y n y

Zosterops lateralis vatensis malekula 183 ABP y y n y

Zosterops lateralis vatensis malekula 199 ABP y y n y

Zosterops lateralis vatensis malekula 215 ABP y y y y

Zosterops lateralis vatensis tanna 77 ABP n n n y

Zosterops lateralis vatensis tanna ABP082 ABP y y y y

Zosterops lateralis vatensis tanna 85 ABP y y n y

Zosterops lateralis vatensis tanna 90 ABP y y n y

Zosterops lateralis vatensis tanna 109 ABP y y y y

Part i) Zosterops lateralis  samples from Vanuatu

Taxon Collection details Sequencing details
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Genus species subspecies island Sample number Collection CB1 ND3 ATPase TGFB2

Zosterops lateralis chlorocephalus Heron H1404 SMC y n n y

Zosterops lateralis chlorocephalus Heron H1568 SMC y y n n

Zosterops lateralis chlorocephalus Heron H1613 SMC y y n n

Zosterops lateralis chlorocephalus Heron 9010 SMC y y n n

Zosterops lateralis chlorocephalus Heron 9601 SMC y y n n

Zosterops lateralis cornwalli Queensland B74(Z1) SMC y y y y

Zosterops lateralis cornwalli Queensland B83(Z2) SMC y y n y

Zosterops lateralis cornwalli Queensland B71 SMC y y n n

Zosterops lateralis cornwalli Queensland B79 SMC y y n n

Zosterops lateralis cornwalli Queensland B82 SMC y y n n

Zosterops lateralis flaviceps Fiji 1988.9.1.781 Tring y y n n

Zosterops lateralis flaviceps Fiji 1998.9.30.186 Tring y y n n

Zosterops lateralis flaviceps Fiji 1998.9.30.187 Tring y n n n

Zosterops lateralis flaviceps Fiji 1998.9.30.188 Tring y n n n

Zosterops lateralis gouldi Australia 1965.43.992 Tring y y n n

Zosterops lateralis gouldi Australia 1965.43.993 Tring y y n n

Zosterops lateralis gouldi Australia 1966.21.269 Tring y y n n

Zosterops lateralis gouldi Australia 1966.21.270 Tring y y n n

Zosterops lateralis griseonatus Northern GT N018 Rich y y n y

Zosterops lateralis griseonatus Northern GT N024 Rich y y y y

Zosterops lateralis griseonatus Northern GT N037 Rich y y n y

Zosterops lateralis griseonatus Northern GT N091 Rich y y y y

Zosterops lateralis griseonatus Northern GT N109 Rich y y n y

Zosterops lateralis griseonatus Southern GT S014 Rich y y y y

Zosterops lateralis griseonatus Southern GT S015 Rich y y n y

Zosterops lateralis griseonatus Southern GT S020 Rich y y n y

Zosterops lateralis griseonatus Southern GT S030 Rich y y y y

Zosterops lateralis griseonatus Southern GT S035 Rich y y y y

Zosterops lateralis halmaturina Australia 1965.43.990 Tring y y n n

Zosterops lateralis halmaturina Australia 1965.43.990 Tring y y n n

Zosterops lateralis lateralis new zealand C132 SMC y y y y

Zosterops lateralis lateralis new zealand D3 SMC y y n y

Zosterops lateralis lateralis norfolk N103 SMC y y y n

Zosterops lateralis lateralis norfolk N120 SMC y y n y

Zosterops lateralis lateralis Tasmania TAS01 SMC y y n n

Zosterops lateralis lateralis Tasmania TAS15 SMC y y n n

Zosterops lateralis lateralis Tasmania TAS06 SMC y y n n

Zosterops lateralis lateralis Tasmania TAS04 SMC y y n n

Zosterops lateralis melanops Lifou L002 Rich y y n y

Zosterops lateralis melanops Lifou L031 Rich y y n y

Zosterops lateralis melanops Lifou L088 Rich y y n y

Zosterops lateralis melanops Lifou L102 Rich y y n y

Zosterops lateralis melanops Lifou L122 Rich y y y y

Zosterops lateralis nigrescens Mare M001 Rich y y y y

Zosterops lateralis nigrescens Mare M027 Rich y y y y

Zosterops lateralis nigrescens Mare M044 Rich y y y y

Zosterops lateralis nigrescens Mare M071 Rich y y y y

Zosterops lateralis nigrescens Mare M089 Rich y y y y

Zosterops lateralis ramsayi Australia 1964.60.999 Tring y y n n

Zosterops lateralis ramsayi Australia 1964.60.1001 Tring y y n n

Zosterops lateralis ramsayi Australia 1964.60.1012 Tring y y n n

Zosterops lateralis ramsayi Australia 1964.60.1014 Tring y y n n

Taxon Collection details Sequencing details

Part ii) Remaining Zosterops lateralis  samples
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Genus species subspecies island Sample number Collection CB1 ND3 ATPase TGFB2

Zosterops flavifrons brevicauda Santo SAN6 SMC y y y y

Zosterops flavifrons brevicauda santo 227 ABP AM946044 y n y

Zosterops flavifrons brevicauda santo 229 ABP AM946045 y n y

Zosterops flavifrons brevicauda santo D J. Kirchman AM946068 y y y

Zosterops flavifrons brevicauda santo K J. Kirchman AM946069 y y y

Zosterops flavifrons efatensis efate 18 ABP AM946040 y n y

Zosterops flavifrons efatensis efate 25 ABP AM946046 y y y

Zosterops flavifrons efatensis efate 40 ABP AM946059 y n y

Zosterops flavifrons efatensis efate 59 ABP AM946064 y n y

Zosterops flavifrons efatensis efate EF50 SMC y y y y

Zosterops flavifrons efatensis erromango 378 ABP AM946055 y n y

Zosterops flavifrons efatensis erromango 385 ABP AM946056 y n y

Zosterops flavifrons efatensis erromango 392 ABP AM946057 y n y

Zosterops flavifrons efatensis erromango 405 ABP AM946058 y y y

Zosterops flavifrons flavifrons tanna 73 ABP AM946065 y n y

Zosterops flavifrons flavifrons tanna ABP075 ABP y y n y

Zosterops flavifrons flavifrons tanna 84 ABP AM946066 y n y

Zosterops flavifrons flavifrons tanna 94 ABP AM946067 y n y

Zosterops flavifrons flavifrons tanna 110 ABP AM946034 y y y

Zosterops flavifrons gauensis gaua ABP251 ABP n y n n

Zosterops flavifrons gauensis gaua 269 ABP AM946047 y y y

Zosterops flavifrons gauensis gaua 271 ABP AM946048 y n y

Zosterops flavifrons gauensis gaua 285 ABP AM946049 y n y

Zosterops flavifrons gauensis gaua 294 ABP AM946050 y y y

Zosterops flavifrons macgilivrayi malekula ABP181 ABP y y y y

Zosterops flavifrons macgilivrayi malekula 185 ABP AM946039 y n y

Zosterops flavifrons macgilivrayi malekula 193 ABP AM946041 y n y

Zosterops flavifrons macgilivrayi malekula 201 ABP AM946042 y y y

Zosterops flavifrons macgilivrayi malekula 211 ABP AM946043 y y y

Zosterops flavifrons majuscula aneityum 124 ABP AM946035 y n y

Zosterops flavifrons majuscula aneityum 130 ABP AM946036 y n y

Zosterops flavifrons majuscula aneityum 132 ABP AM946037 y y y

Zosterops flavifrons majuscula aneityum 139 ABP AM946038 y n y

Zosterops flavifrons majuscula aneityum ABP131 ABP y y y y

Zosterops flavifrons perplexa Ambae AMB3 SMC AM946081 y y y

Zosterops flavifrons perplexa Ambae AMB4 SMC AM946082 y y y

Zosterops flavifrons perplexa Ambae AMB5 SMC AM946083 y n y

Zosterops flavifrons perplexa Ambae AMB7 SMC AM946084 y y y

Zosterops flavifrons perplexa Ambae AMB8 SMC AM946085 y n y

Zosterops flavifrons perplexa Ambrym ABY09 SMC AM946086 y y y

Zosterops flavifrons perplexa Ambrym ABY10 SMC AM946087 n y y

Zosterops flavifrons perplexa Ambrym ABY11 SMC AM946088 y n y

Zosterops flavifrons perplexa Ambrym ABY12 SMC AM946089 y y y

Zosterops flavifrons perplexa Ambrym ABY13 SMC AM946090 y y y

Zosterops flavifrons perplexa epi 420 ABP AM946060 y n y

Zosterops flavifrons perplexa epi 421 ABP AM946061 y n y

Zosterops flavifrons perplexa epi 426 ABP AM946062 y n y

Zosterops flavifrons perplexa epi 427 ABP AM946063 y y y

Zosterops flavifrons perplexa Maewo MW02 SMC AM946071 y y y

Zosterops flavifrons perplexa Maewo MW03 SMC AM946072 y n y

Zosterops flavifrons perplexa Maewo MW04 SMC AM946073 y n y

Zosterops flavifrons perplexa Maewo MW06 SMC AM946074 y y y

Zosterops flavifrons perplexa Maewo MW07 SMC AM946075 y y y

Zosterops flavifrons perplexa Pentecost PEN17 SMC AM946076 y n y

Zosterops flavifrons perplexa Pentecost PEN37 SMC AM946077 y n y

Zosterops flavifrons perplexa Pentecost PEN54 SMC AM946078 y y y

Zosterops flavifrons perplexa Pentecost PEN69 SMC AM946079 y y y

Zosterops flavifrons perplexa Pentecost PEN70 SMC AM946080 y n y

Zosterops flavifrons perplexa vanua lava 311 ABP AM946051 y n y

Zosterops flavifrons perplexa vanua lava 320 ABP AM946052 y n y

Zosterops flavifrons perplexa vanua lava 329 ABP AM946053 y y y

Zosterops flavifrons perplexa vanua lava 338 ABP AM946054 y n y

Taxon Collection details Sequencing details

Part iii) Zosterops flavifrons  samples
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Genus species subspecies island Sample number Collection CB1 ND3 ATPase TGFB2

Woodfordia superciliosa Rennell 1954.51.61 Tring y y n n

Woodfordia superciliosa Rennell 1954.51.65 Tring y y n n

Zosterops albogularis Norfolk 1939.12.9.2306 Tring y y n n

Zosterops albogularis Norfolk 1939.12.9.2307 Tring y y n n

Zosterops albogularis Norfolk 1939.12.9.2310 Tring y y n n

Zosterops albogularis Norfolk 1939.12.9.2311 Tring y y n n

Zosterops explorator Fiji 1898.9.30.206 Tring n n n n

Zosterops explorator Fiji 1898.9.30.207 Tring y y n n

Zosterops explorator Fiji 1903.12.30.94 Tring n n n n

Zosterops explorator Fiji 1966.8.9 Tring y y n n

Zosterops gibbsi Vanikolo Z.gi1 Tring y y n n

Zosterops inornatus Lifou L070 Rich y y y y

Zosterops inornatus Lifou L094 Rich y y y y

Zosterops inornatus Lifou L097 Rich y y n y

Zosterops inornatus Lifou L106 Rich y y y y

Zosterops inornatus Lifou L128 Rich y y y y

Zosterops luteus balstoni Australia 1966.21.271 Tring y y n n

Zosterops luteus balstoni Australia 1966.21.274 Tring y y n n

Zosterops luteus balstoni Australia 1969.4.695 Tring y y n n

Zosterops luteus balstoni Australia 1969.4.695 Tring y y n n

Zosterops luteus luteus Australia 1964.60.1041 Tring y y n n

Zosterops luteus luteus Australia 1964.60.1044 Tring y y n n

Zosterops luteus luteus Australia 1964.60.1045 Tring y y n n

Zosterops luteus luteus Australia 1964.60.1046 Tring y y n n

Zosterops minutus Lifou L001 Rich y y y y

Zosterops minutus Lifou L004 Rich y y y y

Zosterops minutus Lifou L009 Rich y y y y

Zosterops minutus Lifou L074 Rich y y y y

Zosterops minutus Lifou L087 Rich y y y n

Zosterops rennelianus Rennell Z.rn1 C. Smith y y y n

Zosterops strenuus Lord Howe 1919.7.15.160) Tring y y n n

Zosterops strenuus Lord Howe 1919.7.15.161 Tring y y n n

Zosterops strenuus Lord Howe 1919.7.15.162 Tring y y n n

Zosterops strenuus Lord Howe 1919.7.15.164 Tring y y n n

Zosterops tenuirostris norfolk N125 SMC y y y y

Zosterops tenuirostris norfolk N141 SMC y y n y

Zosterops tephropleurus lord howe LH106 SMC y y y y

Zosterops tephropleurus lord howe LH140 SMC y y n y

Zosterops xanthochrous Mare M002 Rich y y y y

Zosterops xanthochrous Mare M013 Rich y y y y

Zosterops xanthochrous Mare M034 Rich y y y y

Zosterops xanthochrous Mare M057 Rich y y y y

Zosterops xanthochrous Mare M074 Rich y y y y

Zosterops xanthochrous Northern GT N030 Rich y y y y

Zosterops xanthochrous Northern GT N038 Rich y y y y

Zosterops xanthochrous Northern GT N087 Rich y y y y

Zosterops xanthochrous Northern GT N111 Rich y y y y

Zosterops xanthochrous Northern GT N127 Rich y y y y

Zosterops xanthochrous Southern GT S002 Rich y y y y

Zosterops xanthochrous Southern GT S003 Rich y y y y

Zosterops xanthochrous Southern GT S005 Rich y y y y

Zosterops xanthochrous Southern GT S016 Rich y y n n

Zosterops xanthochrous Southern GT S039 Rich y y y y

Taxon Collection details Sequencing details

Part iv) Remaining Zosterops  and Woodfordia  samples
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Appendix Table 2.1.B. The GenBank numbers of sequences used in this study, showing taxonomy, geographical 

location and voucher code.  Sequences were taken for four mitochondrial regions ATPase 6 and 8 (ATP), 

cytochrome b (CB1), ND2 and ND3 gene fragments. 

 

Genus Species subspecies Location Voucher Code ATP CB1 ND2 ND3
Chlorocharis emiliae not given LSUMNS B51361 FJ460796 FJ460864
Speirops lugubris Sao Tome & Principe MM2 DQ328434 DQ328403 DQ328503
Speirops brunneus not given AMNH 706105 FJ460821                 FJ460889
Speirops melanocephalus not given AMNH 461540 FJ460822                 FJ460890
Woodfordia superciliosa not given UWBM 58818 FJ460934 FJ460865
Zosterops abyssinicus not given LSUMNS B20825 FJ460867
Zosterops abyssinicus flavilateralis Kenya RB3 DQ328339 DQ328439
Zosterops abyssinicus flavilateralis Tanzania ZMUC O7570 DQ328341 DQ328441
Zosterops abyssinicus socotranus Yemen: Socotra BW293 DQ328400 DQ328500
Zosterops abyssinicus socotranus Yemen: Socotra BW292 DQ328432 DQ328401 DQ328501
Zosterops atricapillus atricapillus Malaysia LSUMZ B36444 DQ328398 DQ328498
Zosterops atricapillus atricapillus Malaysia LSUMNS B36444 FJ460870
Zosterops atricapillus atricapillus Malaysia LSUMZ B36434 DQ328431 DQ328399 DQ328499
Zosterops atrifrons not given AMNH DOT12620 FJ460809                FJ460877
Zosterops borbonicus borbonicus Reunion BWM54 DQ328430 DQ328395 DQ328495
Zosterops borbonicus borbonicus Reunion BWM47 DQ328396 DQ328496
Zosterops borbonicus borbonicus Reunion BWM46 DQ328397 DQ328497
Zosterops borbonicus mauritianus Mauritius BWM25 DQ328364 DQ328464
Zosterops borbonicus mauritianus Mauritius BWM24 DQ328417 DQ328365 DQ328465
Zosterops borbonicus mauritianus Mauritius BWM17 DQ328366 DQ328466
Zosterops chloris not given AMNH DOT12558 FJ460798                FJ460866
Zosterops cinerea not given AMNH 332201 FJ460823                 FJ460891

Zosterops citrinellus not given WAM 23542 FJ460815                FJ460883
Zosterops erythropleurus from captivity ZMUC O2776 DQ328427 DQ328391 DQ328491
Zosterops erythropleurus China ZMUC O2653 DQ328428 DQ328392 DQ328492
Zosterops erythropleurus not given LSUMNS B20626 FJ460800                FJ460868
Zosterops flavifrons not given LSUMNS B45805 FJ460805                FJ460873
Zosterops flavifrons brevicauda Santo flavsantoD AM946068 AM946118
Zosterops flavifrons brevicauda Santo flavsantoK AM946069 AM946119
Zosterops flavifrons brevicauda Santo flavsanto227 AM946044 AM946116
Zosterops flavifrons brevicauda Santo flavsanto229 AM946045 AM946117
Zosterops flavifrons efatensis Efate flavefate18 AM946040 AM946096
Zosterops flavifrons efatensis Efate flavefate25 AM946046 AM946097
Zosterops flavifrons efatensis Efate flavefate40 AM946059 AM946098
Zosterops flavifrons efatensis Efate flavefate59 AM946064 AM946099
Zosterops flavifrons efatensis Erromango flaverro378 AM946055 AM946104
Zosterops flavifrons efatensis Erromango flaverro385 AM946056 AM946105
Zosterops flavifrons efatensis Erromango flaverro392 AM946057 AM946106
Zosterops flavifrons efatensis Erromango flaverro405 AM946058 AM946107
Zosterops flavifrons flavifrons Tanna flavtanna73 AM946065 AM946121
Zosterops flavifrons flavifrons Tanna flavtanna84 AM946066 AM946122
Zosterops flavifrons flavifrons Tanna flavtanna94 AM946067 AM946123
Zosterops flavifrons flavifrons Tanna flavtanna110 AM946034 AM946120
Zosterops flavifrons gauensis Gaua flavgaua269 AM946047 AM946108
Zosterops flavifrons gauensis Gaua flavgaua271 AM946048 AM946109
Zosterops flavifrons gauensis Gaua flavgaua285 AM946049 AM946110
Zosterops flavifrons gauensis Gaua flavgaua294 AM946050 AM946111
Zosterops flavifrons macgillivrayi Male Kula flavmalekula185 AM946039 AM946112
Zosterops flavifrons macgillivrayi Male Kula flavmalekula193 AM946041 AM946113
Zosterops flavifrons macgillivrayi Male Kula flavmalekula201 AM946042 AM946114
Zosterops flavifrons macgillivrayi Male Kula flavmalekula211 AM946043 AM946115
Zosterops flavifrons majuscula Aneityum flavaneityum124 AM946035 AM946092
Zosterops flavifrons majuscula Aneityum flavaneityum130 AM946036 AM946093
Zosterops flavifrons majuscula Aneityum flavaneityum132 AM946037 AM946094
Zosterops flavifrons majuscula Aneityum flavaneityum139 AM946038 AM946095

Taxon Collection details GenBank Accession Numbers
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Genus Species subspecies Location Voucher Code ATP CB1 ND2 ND3
Zosterops flavifrons perplexa Vanua Lava flavvanua329 AM946053 AM946126
Zosterops flavifrons perplexa Ambae flavamba3 AM946081 AM946130
Zosterops flavifrons perplexa Ambae flavamba4 AM946082 AM946131
Zosterops flavifrons perplexa Ambae flavamba5 AM946083 AM946132
Zosterops flavifrons perplexa Ambae flavamba7 AM946084 AM946133
Zosterops flavifrons perplexa Ambae flavamba8 AM946085 AM946134
Zosterops flavifrons perplexa Ambrym flavambr9 AM946086 AM946135
Zosterops flavifrons perplexa Ambrym flavambr10 AM946087 AM946136
Zosterops flavifrons perplexa Ambrym flavambr11 AM946088 AM946137
Zosterops flavifrons perplexa Ambrym flavambr12 AM946089 AM946138
Zosterops flavifrons perplexa Ambrym flavambr13 AM946090 AM946139
Zosterops flavifrons perplexa Epi flavepi420 AM946060 AM946100
Zosterops flavifrons perplexa Epi flavepi421 AM946061 AM946101
Zosterops flavifrons perplexa Epi flavepi426 AM946062 AM946102
Zosterops flavifrons perplexa Epi flavepi427 AM946063 AM946103
Zosterops flavifrons perplexa Maewo flavmaewo02 AM946071 AM946140
Zosterops flavifrons perplexa Maewo flavmaewo03 AM946072 AM946141
Zosterops flavifrons perplexa Maewo flavmaewo04 AM946073 AM946142
Zosterops flavifrons perplexa Maewo flavmaewo06 AM946074 AM946143
Zosterops flavifrons perplexa Maewo flavmaewo07 AM946075 AM946144
Zosterops flavifrons perplexa Pentecost flavpen17 AM946076 AM946145
Zosterops flavifrons perplexa Pentecost flavpen37 AM946077 AM946146
Zosterops flavifrons perplexa Pentecost flavpen54 AM946078 AM946147
Zosterops flavifrons perplexa Pentecost flavpen69 AM946079 AM946148
Zosterops flavifrons perplexa Pentecost flavpen70 AM946080
Zosterops flavifrons perplexa Vanua Lava flavvanua311 AM946051 AM946124
Zosterops flavifrons perplexa Vanua Lava flavvanua320 AM946052 AM946125

Zosterops flavifrons perplexa Vanua Lava flavvanua338 AM946054 AM946127
Zosterops fuscicapilla not given NMNH 2003062 FJ460829                FJ460896
Zosterops griseotinctus not given NMNH 2003067 FJ460820                FJ460888
Zosterops inornatus not given AMNH 337461 FJ460827                 FJ460894
Zosterops japonicus from captivity LSUMZ B20880 DQ328426 DQ328390 DQ328490
Zosterops japonicus not given AMNH DOT10981 FJ460801                FJ460869
Zosterops kikuyuensis Kenya ZMUC O8425 DQ328408 DQ328340 DQ328440
Zosterops kikuyuensis Kenya ZMUC O8447 DQ328344 DQ328444
Zosterops kikuyuensis Kenya RB2 DQ328409 DQ328347 DQ328447
Zosterops kulambangrae not given UWBM 76278 FJ460831                FJ460898
Zosterops lateralis not given LSUMNS B45835 FJ460804                FJ460872
Zosterops lateralis not given KUNHM 6094 FJ460814                FJ460882
Zosterops lateralis familiaris Australia SCB77 DQ328425 DQ328388 DQ328488
Zosterops lateralis familiaris Australia SCB76 DQ328389 DQ328489
Zosterops luteirostris not given AMNH DOT113 FJ460834                FJ460901
Zosterops luteus not given KUNHM 8904 FJ460812                FJ460880
Zosterops maderaspatanus not given FMNH 345980 FJ460813                FJ460881
Zosterops maderaspatanus aldabrensis Seychelles BW303 DQ328386 DQ328486
Zosterops maderaspatanus aldabrensis Seychelles BW301 DQ328424 DQ328387 DQ328487
Zosterops maderaspatanus anjuanensis Comoros BW255 DQ328380 DQ328480
Zosterops maderaspatanus anjuanensis Comoros BW253 DQ328423 DQ328381 DQ328481
Zosterops maderaspatanus anjuanensis Comoros BW252 DQ328382 DQ328482
Zosterops maderaspatanus comorensis Comoros BW169 DQ328377 DQ328477
Zosterops maderaspatanus comorensis Comoros BW127 DQ328422 DQ328378 DQ328478
Zosterops maderaspatanus comorensis Comoros BW121 DQ328379 DQ328479
Zosterops maderaspatanus kirki Comoros BW231 DQ328374 DQ328474

Zosterops maderaspatanus kirki Comoros BW147 DQ328375 DQ328475

Zosterops maderaspatanus kirki Comoros BW146 DQ328421 DQ328376 DQ328476

Zosterops maderaspatanus maderaspatanus Madagascar FMNH 393447 DQ328419 DQ328372 DQ328472

Zosterops maderaspatanus maderaspatanus Madagascar FMNH 393446 DQ328420 DQ328373 DQ328473

Zosterops maderaspatanus maderaspatanus Madagascar BW446 DQ328383 DQ328483

Zosterops maderaspatanus maderaspatanus Madagascar BW429 DQ328384 DQ328484

Zosterops maderaspatanus mayottensis Mayotte BW68 DQ328369 DQ328469

Zosterops maderaspatanus mayottensis Mayotte BW67 DQ328418 DQ328370 DQ328470

Zosterops maderaspatanus mayottensis Mayotte BW64 DQ328371 DQ328471

Zosterops maderaspatanus voeltzkowi France: Europa ML30 DQ328367 DQ328467

Zosterops maderaspatanus voeltzkowi France: Europa ML26 DQ328368 DQ328468

Taxon Collection details GenBank Accession Numbers
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Genus Species subspecies Location Voucher Code ATP CB1 ND2 ND3
Zosterops metcalfii not given UWBM 63177 FJ460817                FJ460885

Zosterops modestus Seychelles BW345 DQ328362 DQ328462

Zosterops modestus Seychelles BW344 DQ328416 DQ328363 DQ328463

Zosterops montanus not given AMNH DOT12552 FJ460810                FJ460878

Zosterops montanus whiteheadi Philippines ZMUC O2662 DQ328414 DQ328360 DQ328460

Zosterops montanus whiteheadi Philippines ZMUC O2655 DQ328415 DQ328361 DQ328461

Zosterops mouroniensis Comoros BW141  DQ328357 DQ328457

Zosterops mouroniensis Comoros BW140 DQ328413 DQ328358 DQ328458

Zosterops mouroniensis Comoros BW137  DQ328359 DQ328459

Zosterops murphyi not given AMNH DOT193 FJ460833                FJ460900

Zosterops nigrorum not given FMNH 432997 FJ460808                FJ460876

Zosterops nigrorum aureiloris Philippines ZMUC O3732  DQ328355 DQ328455

Zosterops nigrorum aureiloris Philippines ZMUC O2663 DQ328412 DQ328356 DQ328456

Zosterops oleagineus not given LSUMNS B48626 FJ460825                 FJ460892

Zosterops olivaceus chloronothos Mauritius BWM29 DQ328393 DQ328493

Zosterops olivaceus chloronothos Mauritius BWM28 DQ328429 DQ328394 DQ328494

Zosterops olivaceus olivaceus Reunion BWM55 DQ328353 DQ328453

Zosterops olivaceus olivaceus Reunion BWM49 DQ328411 DQ328354 DQ328454

Zosterops pallidus capensis South Africa RB1 DQ328351 DQ328451

Zosterops pallidus capensis South Africa RB4 DQ328352 DQ328452

Zosterops palpebrosus egregius India BMNH 1964.26.1 DQ328350 DQ328450

Zosterops palpebrosus not given AMNH DOT5746 FJ460806                FJ460874

Zosterops palpebrosus not given WAM 23218 FJ460807                FJ460875

Zosterops palpebrosus palpebrosus Nepal RF2 DQ328348 DQ328448

Zosterops palpebrosus palpebrosus Nepal RF1 DQ328410 DQ328349 DQ328449

Zosterops poliogaster kulalensis Kenya ZMUC O8629 DQ328433 DQ328402 DQ328502

Zosterops poliogaster mbuluensis Tanzania ZMUC O4191 DQ328346 DQ328446

Zosterops poliogaster silvanus Kenya ZMUC O8580 DQ328406 DQ328337 DQ328437

Zosterops poliogaster winifredae Tanzania ZMUC O5899 DQ328336 DQ328436

Zosterops rendovae not given UWBM 76356 FJ460830                FJ460897

Zosterops rendovae not given UWBM 76258 FJ460832                FJ460899

Zosterops rennellianus not given UWBM 69808 FJ460818                FJ460886

Zosterops rennellianus Rennell Z_rennellianus AM946070 AM946129

Zosterops semiflavus Seychelles BMNH 1927.12.18.398 DQ328345 DQ328445

Zosterops senegalensis not given LSUMNS B39250 FJ460803                FJ460871

Zosterops senegalensis senegalensis Ghana LSUMZ B39250 DQ328343 DQ328443

Zosterops senegalensis stierlingi Tanzania ZMUC O8255 DQ328407 DQ328338 DQ328438

Zosterops splendidus not given AMNH DOT171 FJ460835 FJ460902

Zosterops stresemanni not given UWBM 66034 FJ460819                FJ460887

Zosterops ugiensis not given KUNHM 12803 FJ460836 FJ460903

Zosterops ugiensis not given AMNH 222105 FJ460826                 FJ460893

Zosterops vellalavella not given AMNH DOT166 FJ460828                FJ460895

Zosterops virens not given FMNH 390165 FJ460811                FJ460879

Zosterops wallacei not given WAM 22903 FJ460884

Zosterops ugiensis not given KUNHM 12803 FJ460836 FJ460903

Zosterops ugiensis not given AMNH 222105 FJ460826                 FJ460893

Zosterops vellalavella not given AMNH DOT166 FJ460828                FJ460895

Zosterops virens not given FMNH 390165 FJ460811                FJ460879

Zosterops wallacei not given WAM 22903 FJ460884

Taxon Collection details GenBank Accession Numbers
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Z. tenuirostris (Norfolk Island) {N125, N124}

Z. strenuus (Lord Howe Island) {All 4 samples}

Z. inornatus (Lifou, N.C.) {All 5 samples}

Z. rennellianus (Rennell, Solomons) {Z.rn1}

Z. albogularis (Norfolk Island) {All 4 samples}

Z. l. tropica (Espiritu Santo, Vanuatu) {222}

Z. l. vatensis (Malekula, Vanuatu) {ABP178}

Z. l. vatensis (Epi, Vanuatu) {415}

Z. lateralis {See table 2.2.A.i}

Z. l. griseonatus (Grande Terre. N.C.) {S020}

Z. l. flaviceps (Fiji) {1888.9.1.781}

Z. l. tropica (Espiritu Santo, Vanuatu) {ABP245}

Z. l. vatensis (Tanna, Vanuatu) {77, 82, 85, 90, 109}

Z. l. flaviceps (Fiji) {1898.9.30.186}

Z. l. nigrescens (Mare, N.C.) {M071} 

Z. luteus luteus (Northern Territory, Australia) {1964.60.1046}

Z. lateralis {See table 2.2.A.ii}

Z. montanus whiteheadi (Luzon, Phillipines) {Both samples)

Z. lateralis {See table 2.2.A.iii}

Z. l. ramsayi (Queensland, Australia) {1964.60.999, 1964.60.1012}

Z. l. gouldi (Western Australia) {1965.43.992, 1965.43.993, 1966.21.270} 

Z. xanthochrous (N.C.) {See table 2.2.A.iv}

Z. xanthochrous (Grand Terre, New Caledonia) {N038, N111}

Z. atricapillus atricapillus (Borneo) {All 3 samples}

Z. japonicus (captivity) {B20880}

Z. minutus (Lifou, N.C.) {All 5 samples}

Z. erythropleurus (captivity) {O2776}

Z. f. majuscula (Aneityum, Vanuatu) {All 5 samples}

Z. explorator (Fiji) {1898.9.30.207, 1966.8.9}

Z. luteus balstoni (Western Australia) {All 4 samples}

Woodfordia superciliosa (Rennell, Solomons) {All 2 samples}

Z. flavifrons 'Yellow Clade'  {See table 2.2.A.v}

Z. flavifrons 'Eastern Dark Clade’ {See table 2.2.A.vi}

Z. f. perplexa (Epi, Vanuatu) {420, 421}

Z. f. perplexa (Vanua Lava, Vanuatu) {311, 329, 338}

Z. f. perplexa (Vanua Lava, Vanuatu) {320}

Z. f. brevicauda (Espiritu Santo, Vanuatu) {All 5 samples}

Z. gibbsi (Santa Cruz Islands) {Z.gi1}

Z. poliogaster mbuluensis (Tanzania, Africa)

Z. abyssinicus flavilateralis (Kenya, Africa)

Africa-B

Z. palpebrosus palpebrosus (Nepal)

Z. semiflavus (Granitic, Seychelles)

Z. palpebrosus egregius (India)

ancient Indian Ocean white-eyes

Indian Ocean  white-eye clademaderaspatanus

Speirops lugubris (Sao Tome, Gulf of Guinea)

Z. abyssinicus socotranus (Socotra Island, Gulf of Aden)

Africa-A

Z. nigrorum aureiloris (Philippines)
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Appendix Fig 2.2.A. The cyt b 

Tree. A maximum clade 

credibility tree of the 

Zosteropidae of the south west 

Pacific based on 308 bp of cyt b, 

including species from The 

Solomon Islands and New 

Guinea taken from GenBank. 

Numbers adjacent to nodes 

represent Bayesian branching 

support. Numbers in curly 

parentheses indicate sample 

sizes of more than one 

specimen. Monophyletic island 

clades were collapsed. Coloured 

branches indicate the geographic 

location of different taxa using 

the same colour code as Figure 

1. The abbreviation N.C. refers to 

New Caledonia. Grey branches 

indicate extant species from the 

African and Asian Clades. For 

details of the collapsed African 

and Indian Ocean clades see 

Warren et al. (2006). For details 

of the Z. flavifrons groups see 

Phillimore et al. (2008b) 

Appendix 2 .2 
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Table 2.2.A Voucher numbers of specimens included in tips representing more than one individual in Appendix 
Figure 2.2.A. 
 
2.2.A.i

Genus Species Subspecies Location Sample numbers

Zosterops lateralis chlorocephalus Heron Island LH106, LH140

Zosterops lateralis griseonatus Grande Terre N018, N024, N037, N091, N109, S014, S015

Zosterops lateralis tropica Ambae AMB55, AMB56, AMB57

Zosterops lateralis tropica Espiritu Santo SAN2, SAN7, SAN9, 233, 345, 353

Zosterops lateralis tropica Pentecost PEN03, PEN08, PEN 16, PEN 33

Zosterops lateralis tropica Vanua Lava 317, 319, 322, VAN46

Zosterops lateralis vatensis Ambrym ABY07, ABY25, ABY26, ABY36, ABY39

Zosterops lateralis vatensis Efate EF44,  153, 155, 164, 174

Zosterops lateralis vatensis Epi 412, 418, 423

Zosterops lateralis vatensis Erromango 371, 373, 380, 389

Zosterops lateralis vatensis Malekula 176, 183, 199, 215

2.2.A.ii

Genus Species Subspecies Location Sample numbers

Zosterops luteus luteus Australia 1964.60.1041, 1964.60.1044, 1964.60.1045

Zosterops lateralis melanops Lifou L002, L031, L088, L102, L122

Zosterops lateralis nigrescens Mare M001, M027, M044, M089

2.2.A.iii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis cornwalli Australia B74, B79, B82, B83

Zosterops lateralis flaviceps Fiji 1898.9.30.187

Zosterops lateralis gouldi Australia 1966.21.270

Zosterops lateralis lateralis New Zealand C132, D3

Zosterops lateralis lateralis Norfolk Island N103, N120

Zosterops lateralis lateralis Tasmania TAS01, TAS04, TAS06, TAS15

Zosterops lateralis ramsayi Australia 1964.60.1001,1964.60.1014

2.2.A.iv

Genus Species Subspecies Location Sample numbers

Zosterops xanthochrous Grande Terre N030, N087, N127, S002, S005, S016, S039

Zosterops xanthochrous Mare M002, M013, M034, M057, M074

2.2.A.v

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons efatensis Efate 18, 25, 40, 59

Zosterops flavifrons efatensis Erromango 378, 385, 392, 405

Zosterops flavifrons flavifrons Tanna 73, 75, 84, 94, 110

Zosterops flavifrons gauensis Gaua 251, 269, 271, 285, 294

2.2.A.vi

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons macgilivrayi Malekula 181, 185, 193, 201, 211

Zosterops flavifrons perplexa Ambae AMB3, AMB4, AMB5, AMB7

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY11, ABY12, ABY13

Zosterops flavifrons perplexa Maewo MW02, MW03, MW04, MW06, MW07  
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Z. vellalavella (Vellalavella, Solomons) {DOT166}
Z. luteus balstoni (Western Australia) {All 4 samples} 

Z. kulambangrae (Kohingo, Solomons) {76278}
Z. rendovae (Tetepare, Solomans) {76356}
Z. rendovae (Rendova, Solomans) {76358}
Z. cinerea (Palau Island) {332201}
Z. splendidus (Rannonga, Solomons) {DOT171}

Z. luteirostris (Ghizo, Solomans) {DOT113}
Z. montanus whiteheadi  (Luzon, Phillipines) {O2662}
Z. montanus whiteheadi  (Luzon, Phillipines) {O2655}
Z. montanus (Sulawesi, Indonesia) {DOT12552}
Z. metcalfi (Choiseul, Solomans) {63177}

Z. f. gauensis (Gaua, Vanuatu) {294, 271} 

Z. stresemanni (Malaita, Solomons) {66034}

Z. f. efatensis (Efate, Vanuatu) {18, 25, 269} 

Z. f. gauensis (Gaua, Vanuatu) {285, EF50}
Z. f. efatensis (Efate, Vanuatu) {40, 59}
Z. f. efatensis (Erromango, Vanuatu) {392}
Z. f. efatensis (Erromango, Vanuatu) {405}
Z. f. efatensis (Erromango, Vanuatu) {378}

Z. f. efatensis (Erromango, Vanuatu) {385}

Z. f. flavifrons (Tanna, Vanuatu) {73, 75, 84, 94, 110}

Z. f. perplexa (Epi, Vanuatu) {420, 421, 426, 427}
Z. f. macgillivrayi (Malekula, Vanuatu) {181, 193, 201}

Z. f. perplexa (Pentecost, Vanuatu) {PEN17, PEN37, PEN54, PEN69, PEN70}

Z. f. macgillivrayi (Malekula, Vanuatu) {211}
Z. f. perplexa (Ambae, Vanuatu) {AMB3}
Z. f. perplexa (Maewo, Vanuatu) {MW02}
Z. f. perplexa (Maewo, Vanuatu) { 03}MW

Z. f. perplexa (Ambae, Vanuatu) {ABY11}

Z. f. perplexa (Ambae, Vanuatu) {AMB4}

Z. f. perplexa (Ambyrm, Ambae and Maewo) {See table 2.2.B.i}
Z. f. perplexa (Ambrym, Vanuatu) {ABY13}

Z. f. brevicauda (Espiritu Santo, Vanuatu) {227, D, SAN6, B45805}

Z. f. perplexa (Vanua Lava, Vanuatu) {311, 320, 329, 338} 
Z. gibbsi (Santa Cruz Islands) {Z.gi1}
Woodfordia superciliosa (Rennell, Solomons) {1954.51.61, 1954.51.65}
Z. tenuirostris (Norfolk Island) {N125, N141}
Z. minutus (Lifou, N.C.) {All 5 samples}
Z. rennellianus (Rennell, Solomons) {Zrn1, 69808}
Z. xanthochrous (Grande Terre, N.C.) {See table 2.2.B.ii}
Z. xanthochrous (N.C.)  {See table 2.2.B.iii}
Z. strenuus (Lord Howe Island) {All 4 samples}

Z. inornatus (Lifou, New Caledonia) {All 5 samples}
Z. albogularis (Norfolk Island) {All 4 samples}
Z. griseotinctus (Louisiade Archipelago) {2003067}
Z. murphyi (Kolombangara, Solomons) {DOT193}

Z. l. gouldi Z. l. ramsayi &  (Australia) {1965.43.993, 1964.60.1014}
Z. l. halmaturina (South Australia, Australia) {1965.43.990, 1965.43.991}
Z. l. gouldi (Western Australia, Australia) {1965.43.992}
Z. l. gouldi (Western Australia, Australia) {1966.21.269}

Z. luteus luteus (Queensland, Australia) {All 4 samples} 
Z. lateralis {See table 2.2.B.iv}
Z. l. lateralis (Tasmania) {TAS15}
Z. l. ramsayi (Queensland, Australia) {1964.60.999}
Z. l. tropica (Pentecost, Vanuatu) {PEN08}
Z. l. vatensis  (Epi) & (Ambrym) {415, ABY25}
Z. l. griseonatus (Grande Terre. N.C.) {N091}

Z. lateralis {See table 2.2.B.iv}
Z. l. vatensis (Tanna, Vanuatu) {All samples}
Z. l. melanops (Lifou, N.C.) {L031}
Z. l. vatensis (Efate, Vanuatu) {153}

Z. l. tephropleurus (Lord Howe Island) {LH106, LH140}

Z. citrinellus (Roti, Indonesia) {23542}
Z. lateralis {See table 2.2.B.v}
Z. palpebrosus (Flores, Indonesia) {23218}
Z. ugiensis (Bougainville, Solomons) {222105}

Chlorocharis emiliae (Borneo) 
Ancient Indian Ocean white-eyes
Z. nigrorum aureiloris (Luzon, Philippines)
Z. nigrorum (Luzon, Philippines)

Z. atrifrons (Sulawesi, Indonesia)
Z. atricapillus atricapillus (Borneo)
Z. abyssinicus (captivity)
Z. erythropleurus (China)
Z. chloris (Sulawesi, Indonesia)
Z. palpebrosus egregious (India)
Z. japonicas simplex (Vietnam)
Z. palpebrosus palpebrosus (Nepal)

Z. abyssinicus socotranus (Socotra Island, Gulf of Aden)
Africa-B

Speirops brunneus (Equatorial Guinea, Africa)
Speirops melanocephalus (Cameroon, Africa)

Z. poliogaster mbuluensis (Tanzania, Africa)

Z. abyssinicus flaviventris (Tanzania, Africa)
Speirops lugubris (Sao Tome, Gulf of Guinea)

Indian Ocean  white-eye clademaderaspatanus
Africa-A
Z. fuscicapilla (New Guinea) {2003062}
Z. f. majuscula (Aneityum, Vanuatu) {All 5 samples}

Z. oleagineus (Yap) {B48626}
Z. explorator (Fiji) {All 2 samples}
Z. ugiensis (Makira, Solomons) {12803}

1

 

Appendix Fig 2.2.B The ND3 Tree. A 

maximum clade credibility tree of the 

Zosteropidae of the south west Pacific 

based on 393 bp. Numbers adjacent to 

nodes represent Bayesian branching 

support. Numbers in curly parentheses 

indicate sample sizes of more than one 

specimen. Monophyletic island clades 

were collapsed. Coloured branches 

indicate the geographic location of 

different taxa using the same colour 

code as Figure 1. The abbreviation 

N.C. refers to New Caledonia. Grey 

branches indicate extant species from 

the African and Asian Clades. For 

details of the collapsed African and 

Indian Ocean clades see Warren et al. 

(2006). For details of the Z. flavifrons 

groups see Phillimore et al. (2008b). 
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Table 2.2.B Voucher numbers of specimens included in tips representing more than one individual in Appendix 
Figure 2.2.B. 
 

2.2.B.i

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons perplexa Ambae AMB5, AMB7, AMB8

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY12

Zosterops flavifrons perplexa Maewo MW02, MW04, MW06, MW07

2.2.B.ii

Genus Species Subspecies Location Sample numbers

Zosterops xanthochrous Grande Terre N038, N087, N111, N127, S002, S016, S039

2.2.B.iii

Genus Species Subspecies Location Sample numbers

Zosterops xanthochrous Grande Terre N030, S003, S005

Zosterops xanthochrous Mare M002, M0013, M034, M057, M074

2.2.B.iv

Genus Species Subspecies Location Sample numbers

Zosterops lateralis chlorocephalus Heron Island 9010, 9601, H1613, H1568

Zosterops lateralis cornwalli Australia B71, B79

Zosterops lateralis lateralis New Zealand C132, D3

Zosterops lateralis lateralis Norfolk Island N103, N120

Zosterops lateralis lateralis Tasmania TAS01, TAS04, TAS15

Zosterops lateralis gouldi Australia 1966.21.270

Zosterops lateralis ramsayi Australia 1964.60.1001

2.2.B.v

Genus Species Subspecies Location Sample numbers

Zosterops lateralis flaviceps Fiji 1888.9.1.781, 1898.9.30.186

Zosterops lateralis melanops Lifou L002, L088, L102, L122

Zosterops lateralis nigrescens Mare M001, M027, M044, M071, M089

Zosterops lateralis tropica Ambae AMB55, AMB56, AMB57

Zosterops lateralis tropica Espiritu Santo 222, 233, 353, SAN9

Zosterops lateralis tropica Gaua 261, 267

Zosterops lateralis tropica Pentecost PEN03, PEN16, PEN18, PEN33

Zosterops lateralis tropica Vanua Lava 317, 319, VAN46

Zosterops lateralis vatensis Ambrym ABY07, AB26, ABY39

Zosterops lateralis vatensis Efate 155, 174, EF44

Zosterops lateralis vatensis Epi 412, 418, 423

Zosterops lateralis vatensis Erromango 371, 373, 380

Zosterops lateralis vatensis Malekula 176, 178, 183, 199, 215  

 



151 

 

Z. japonicus (captivity) {B20880}

Z. erythropleurus (China) {O2653, O2776} 

Z. atricapillus atricapillus (Borneo) {B36434}

Z. montanus whiteheadi (Luzon, Phillipines) {O2655, O2662}

Z. tenuirostris (Norfolk Island) {N125}

Z. minutus (Lifou, New Caledonia) {L004, L087}

Z. rennellianus (Rennell, Solomons) {Z.rn1}

Z. xanthochrous (Grand Terre, New Caledonia) {S003, S005}

Z. xanthochrous (Grand Terre, New Caledonia) {S002}

Z. xanthochrous (Mare, New Caledonia) {M013, M057}

Z. xanthochrous (Grand Terre, New Caledonia) {N030}

Z. xanthochrous (Grand Terre, New Caledonia) {N087, N111, S016, S039} 

Z. inornatus (Lifou, New Caledonia) {L070, L094}

Z. flavifrons 'Yellow Clade' {25, 110, 294, 405} 

Z. flavifrons 'Eastern Dark Clade' {See table 2.2.C.i} 

Z. flavifrons 'Western Dark Clade' {D, K, 329} 

Z. lateralis cornwalli (Queensland, Australia) {77}

Z. l. lateralis (Norfolk Island & New Zealand) {N103}

Z. l. tephropleurus (Lord Howe Island) {LH106, LH140}

Z. l. griseonatus (Grande Terre, N.C.) {S014}

Z. l. griseonatus (Grande Terre, N.C.) {S030}

Z. l. griseonatus (Grande Terre, N.C.) {N024}

Z. l. griseonatus (Grande Terre, N.C.) {N091}

Z. l. griseonatus (Grande Terre, N.C.) {S035}

Z. l. melanops (Lifou, N.C.) {L122}

Z. l. nigrescens (Mare, N.C.) {M071}

Z. lateralis {See table 2.2.C.ii} 

Z. l. tropica (Pentecost, Vanuatu) {PEN3}

Z. l. tropica (Ambae, Vanuatu) {AMB57}

Z. l. vatensis (Epi) & (Efate) {174, 153, 415}

Z. l. vatensis (Efate, Vanuatu) {EF44}

Z. l. vatensis (Ambrym, Vanuatu) {ABY07}

Z. l. vatensis (Ambrym, Vanuatu) {ABY39}

Z. l. vatensis (Vanua Lava, Vanuatu) {319}

Z. lateralis {See table 2.2.C.iii}

Z. l. tropica (Espiritu Santo, Vanuatu) {222}

Z. l. tropica (Ambae, Vanuatu) {AMB55}

Z. l. tropica (Pentecost, Vanuatu) {PEN8}

Z. l. tropica (Espiritu Santo, Vanuatu) {SAN7}

Z. l. tropica (Espiritu Santo, Vanuatu) {SAN2}

Z. l. vatensis (Ambrym, Vanuatu) {ABY36}

Z. olivaceous olivaceous (Reunion)

Z. f. majuscula (Aneityum, Vanuatu) {130, 132, 139}

Z. borbonicus borbonicus (Reunion) 

Z. borbonicus borbonicus (Reunion)

Z. olivaceous chloronothus (Mauritius)

Z. mouroniensis (Grande Comore, Comoros)

Z. palpebrosus palpebrosus (Nepal)

Z. modestus (Conception, Granite Seychelles)

Z. nigrorum aureiloris (Isabella, Philippines)

Z. abyssinicus socotranus (Socotra Island, Gulf of Aden)

Z. senegalensis stierling (Tanzania, Africa)

Indian Ocean Clademaderaspatanus 

Z. poliogaster silvanus (Kenya, Africa)

Z. poliogaster kikuyuensis (Kenya, Africa)

Z. poliogaster kikuyuensis (Kenya, Africa)

Z. poliogaster kulalensis (Kenya, Africa)

Speirops lugubris (Sao Tome, Gulf of Guinea)

0.5

0.95

0.83

1

1

1

1
1

0.75

1

1

1

1
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0.75
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0.99

0.74
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0.99

0.91

1
1

1

1

1

1

1

1

1

1
1

1

1
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Appendix Fig 2.2.C. The ATPase Tree. A maximum clade credibility tree of the Zosteropidae of the south west 

Pacific based on 393 bp of ND3, 308 bp of cyt b and 958 bp of ATPase combined in a partitioned analysis. 

Numbers adjacent to nodes represent Bayesian branching support. Numbers in curly parentheses indicate 

sample sizes of more than one specimen. Monophyletic island clades were collapsed. Coloured branches 

indicate the geographic location of different taxa using the same colour code as Figure 1. The abbreviation N.C. 

refers to New Caledonia. Grey branches indicate extant species from the African and Asian Clades. For details of 

the collapsed African and Indian Ocean clades see Warren et al.(2006). For details of the Zosterops flavifrons 

groups see Phillimore et al. (2008b). 

 

 

Table 2.2.C Voucher numbers of specimens included in tips representing more than one individual in Appendix 
Figure 2.2.C. 
 

2.2.C.i

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons macgilivrayi Malekula 181, 201, 211

Zosterops flavifrons perplexa Ambae AMB3, AMB4, AMB5, AMB7

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY12, ABY13

Zosterops flavifrons perplexa Epi 427

Zosterops flavifrons perplexa Maewo MW02, MW03, MW06, MW07

Zosterops flavifrons perplexa Pentecost PEN54, PEN69

2.2.C.ii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis nigrescens Mare M001, M044, M89

Zosterops lateralis griseonatus Grande Terre N018, N109

Zosterops lateralis vatensis Tanna 082, 109

2.2.C.iii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis tropica Espiritu Santo SAN9

Zosterops lateralis tropica Gaua 255

Zosterops lateralis tropica Pentecost PEN16, PEN18, PEN33

Zosterops lateralis tropica Vanua Lava VAN46

Zosterops lateralis vatensis Ambrym ABY25, ABY26

Zosterops lateralis vatensis Erromango 373

Zosterops lateralis vatensis Malekula 215  
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Figure 2.2.D. The Two Gene Tree. A 

maximum clade credibility tree of the 

Zosteropidae of the south west Pacific based 

on 393 bp of ND3 and 308 bp of cyt b in a 

partitioned analysis. Numbers adjacent to 

nodes represent Bayesian branching 

support. Numbers in curled parentheses 

indicate sample sizes of more than one 

specimen. Monophyletic island clades were 

collapsed. Coloured Branches indicate the 

geographic location of different taxa using 

the same colour code as Figure 2.1. Grey 

branches indicate species from African and 

Asian clades. For details of the collapsed 

African and Indian Ocean clades see Warren 

et al. (2006). For details of the Z. flavifrons 

groups see Phillimore et al. (2008b). 
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Table 2.2.D Voucher numbers of specimens included in tips representing more than one individual in Appendix 
Figure 2.2.D. 
 
2.2.D.i

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons macgilivrayi Malekula 185, 193, 201, 211

Zosterops flavifrons perplexa Ambae AMB3, AMB4, AMB5, AMB7

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY12, ABY13

Zosterops flavifrons perplexa Epi 420, 421, 427

Zosterops flavifrons perplexa Maewo MW03, MW06, MW07

Zosterops flavifrons perplexa Pentecost PEN17, PEN69, PEN70

2.2.D.ii

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons brevicauda Espirtu Santo 227, 229, SAN6, D

Zosterops flavifrons perplexa Vanua Lava 311, 320, 329

2.2.D.iii

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons efatensis Efate 18, 25, 40

Zosterops flavifrons efatensis Erromango 378, 385, 392, 405

Zosterops flavifrons flavifrons Tanna 73, 110

Zosterops flavifrons gauensis Gaua 269, 271, 285, 294

2.2.D.iv

Genus Species Subspecies Location Sample numbers

Zosterops lateralis gouldi Australia 1965.43.992, 1966.21.269, 1965.43.993

Zosterops lateralis halmaturina Australia 1965.43.990, 1965.43.991

Zosterops lateralis ramsayi Australia 1964.60.1014

2.2.D.v

Genus Species Subspecies Location Sample numbers

Zosterops luteus luteus Queensland 1964.60.1041, 1964.60.1044, 1964.60.1045, 

1964.60.1046

2.2.D.vi

Genus Species Subspecies Location Sample numbers

Zosterops lateralis nigrescens Mare M001, M027, M044, M071, M089

Zosterops lateralis melanops Lifou L002, L031, L088, L102, L122

2.2.D.vii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis tropica Ambae AMB55, AMB56, AMB57

Zosterops lateralis tropica Espiritu Santo 233, SAN9

Zosterops lateralis tropica Gaua 251, 261, 267

Zosterops lateralis tropica Pentecost PEN03, PEN16, PEN18, PEN33

Zosterops lateralis tropica Vanua Lava 317, 319, VAN46

Zosterops lateralis vatensis Ambrym ABY07, ABY26, ABY39

Zosterops lateralis vatensis Efate 155, 174, EF44

Zosterops lateralis vatensis Epi 412, 418, 423

Zosterops lateralis vatensis Erromango 371, 373, 380

Zosterops lateralis vatensis Malekula 176, 183, 199, 215

2.2.D.viii

Genus Species Subspecies Location Sample numbers

Zosterops lateralis chlorocephalus Heron Island H1568, H1613, 9010, 9601

Zosterops lateralis cornwalli Queensland B71, 77

2.2.D.ix

Genus Species Subspecies Location Sample numbers

Zosterops lateralis cornwalli Queensland B79, C132

Zosterops lateralis gouldi Australia 1966.21.270

Zosterops lateralis lateralis New Zealand D3, C132

Zosterops lateralis lateralis Norfolk Island N103, N120

Zosterops lateralis lateralis Tasmania TAS01, TAS04, TAS06

Zosterops lateralis ramsayi Queensland 1964.60.1001  
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Z. palpebrosus palpebrosus (Nepal)
Z. mouroniensis (Grande Comore, Comoros)
Ancient Indian Ocean white-eyes
Z. flavifrons ‘Western Dark Clade’ {See table 2.2.E.i}
Z. flavifrons ‘Eastern Dark Clade’ {See table 2.2.E.ii}
Z. flavifrons ‘Yellow Clade’ {See table 2.2.E.iii}
Z. tenuirostris (Norfolk Island) {N125}
Z. rennellianus (Rennell, Solomons) {Z.rn1}
Z. xanthochrous (Grande Terre, N.C.) {N030, S003, S005}
Z. xanthochrous (Mare, N.C.) {M057}
Z. xanthochrous (N.C.) {N087, N111, S039}  S002, S016, 
Z. minutus (Lifou, N.C.) {L004, L087}

Z. inornatus (Lifou, N.C.) {L070, L094}

Z. l. tropica (Espiritu Santo, Ambrym) {SAN2, SAN7, ABY36}

Z. I. vatensis (Ambrym, Vanuatu) {ABY39}
Z. I. vatensis (Vanua Lava, Vanuatu) {VAN46}

Z. I. vatensis (Ambrym, Vanuatu) {ABY07}
Z. I. vatensis (Ambrym, Vanuatu) {ABY25}
Z. l. tropica (Espiritu Santo, Vanuatu) {222}
Z. lateralis {See table 2.2.E.iv}
Z. I. vatensis (Vanua Lava, Vanuatu) {319}

Z. l. tropica (Ambae, Vanuatu) {AMB55}
Z. I. vatensis (Vanua Lava, Vanuatu) {415}
Z. l. tropica (Ambae, Vanuatu) {AMB57}

Z. I. vatensis (Efate, Vanuatu) {174}
Z. I. vatensis (Efate, Vanuatu) {153}
Z. I. vatensis (Efate, Vanuatu) {EF44}
Z. l. tropica (Pentecost, Vanuatu) {PEN03}
Z. tephropleurus (Lord Howe Island) {LH106}
Z. I. vatensis (Tanna, Vanuatu) {109, 82}    
Z. I. nigrescens (Mare, N.C.) {M071}
Z. I. melanops (Lifou, N.C.) {L122}
Z. I. nigrescens (Mare, N.C.) {M001, M089}
Z. I. griseonatus (N.C.) {N018, N024, S014, S030, S035} 
Z. I. griseonatus (Grande Terre, N.C.) {N091}
Z. I. cornwalli (Queensland, Australia) {77}

Z. l. tropica (Pentecost, Vanuatu) {PEN08}

Z. I. lateralis (Norfolk Island) {N103}
Z. I. cornwalli (Queensland, Australia) {B74}

Z. f. majuscula (Aneityum, Vanuatu) {130, 132}

Z. erythropleurus (China) {O2653, O2776}
Z. japonicus (captivity) {B20880}

Z. atricapillus  (Borneo) {B36434}atricapillus

Z. montanus whiteheadi (Phillipines) {Both samples}
Speirops lugubris (Sao Tome)

Africa-B
Africa-A
Indian Ocean  clademaderaspatanus
Z. abyssinicus socotranus (Socotra)
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Figure 2.2.E. The Three Gene Tree. A maximum clade credibility tree of the Zosteropidae of the south west 

Pacific based on 393 bp of ND3, 308 bp of cyt b and 958 bp of ATPase combined in a partitioned analysis. 

Numbers adjacent to nodes represent Bayesian branching support. Numbers in curled parentheses indicate 

sample sizes of more than one specimen. Monophyletic island clades were collapsed. Coloured branches 

indicate the geographic location of different taxa using the same colour code as Figure 2.1. Grey branches 

indicate extant species from the African and Asian clades. For details of the collapsed African and Indian Ocean 

clades see Warren et al. (2006). For details of the Z. flavifrons groups see Phillimore et al. (2008b). 
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Table 2.2.E Voucher numbers of specimens included in tips representing more than one individual in Appendix 
Figure 2.2.E. 
 
2.2.E.i

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons brevicauda Espirtu Santo D

Zosterops flavifrons perplexa Vanua Lava 329

2.2.E.ii

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons macgilivrayi Malekula 181, 201, 211

Zosterops flavifrons perplexa Ambae AMB3, AMB4, AMB5, AMB7

Zosterops flavifrons perplexa Ambrym ABY09, ABY10, ABY12, ABY13

Zosterops flavifrons perplexa Epi 427

Zosterops flavifrons perplexa Maewo MW03, MW06, MW07

Zosterops flavifrons perplexa Pentecost PEN69

2.2.E.iii

Genus Species Subspecies Location Sample numbers

Zosterops flavifrons efatensis Efate 25

Zosterops flavifrons efatensis Erromango 405

Zosterops flavifrons flavifrons Tanna 110

Zosterops flavifrons gauensis Gaua 294

2.2.E.iv

Genus Species Subspecies Location Sample numbers

Zosterops lateralis tropica Espiritu Santo SAN9

Zosterops lateralis tropica Pentecost PEN16, PEN18, PEN33

Zosterops lateralis tropica Vanua Lava VAN46

Zosterops lateralis vatensis Ambrym ABY26

Zosterops lateralis vatensis Erromango 373

Zosterops lateralis vatensis Malekula 215  
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Appendix 2 .3 

Appendix Figure 2.3. The TGFB2 Tree. 

A maximum clade credibility tree of the 

Zosteropidae of the south west Pacific based 

on 582 base pairs of the TGFB2 nuclear 

gener.  There is not enough variation in the 

gene to resolve any relationships and thus 

this dataset cannot be used to test species 

hypothese.  Bayesian posterior support was 

poor for all nodes (<0.2 in all cases).  Tip 

labels show the taxonomic name of the 

sample followed, in brackets, by the location 

of collection if known and finally by the 

number of the sample.  Abbreviations used in 

the tip labels are as follows: flavifrons (f), 

lateralis (l), New Caledonia (N.C.), Rukia (R), 

Woodfordia (W), Zosterops (Z). 
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Appendix 3.1 

 

Appendix Figure 3.1.A Conservative Species Tree. This is a conservative tree based on taxa that are accepted to 

be true, reproductively isolated species.  There are 31 tips in this tree. 
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Appendix Figure 3.1.B Reciprocally Monophyletic Tree. This tree is made up of Zosterops forms that 

represent monophyletic tips in the tree. It includes some forms referred to as subspecies that are 

highly likely to be true species but which, because they are not yet in sympatry with congeners cannot 

be shown to be so through reproductive isolation. There are 35 tips in this tree. 
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Appendix Figure 3.1.C Incipient Species Tree. This tree includes not only currently recognised species but also 

potential incipient species. Incipient species were deduced from the molecular information where available or 

elsewhere from the treatments of Mayr (1967) and Mees (1957; 1961; 1969).  There are 66 tips in this tree. 
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Appendix 3.2 

Appendix Table 3.2.A Zosterops species from African and Pacific clades judged to be allospecies, their 

corresponding sister group, estimated and the age of divergence.  Divergence times are taken from the 

Partitioned Two Gene Tree. 

 

Superspecies Island Region Species Sister Divergence 
Time (mya)

maderaspatanus Seychelles Africa Z. modestus rest of clade 1.45
Grand Cormore Africa Z. m. kirki Z. m. cormorensis 1.45
Cormoros Africa Z. m. cormorensis Z. m. kirki 1.45
Madagasgar Africa Z. maderaspatanus maderaspatanus/voeltzkowi Z. m. Anjuanensis 1.45
Anjouan Africa Z. m. anjuanensis Z. m. maderaspatanus/voeltzkowi 1.45
Aldabra Africa Z. m. aldabrensis Z. m. mayottensis 1.45
Mayotte Africa Z. m. mayottensis Z. m. aldabrensis 1.45

Africa-A Africa Africa Z. poliogaster silvanus rest of clade 1.8
Africa Africa Z. poliogaster winifredae Z. pallidus/senegalensis 1.8
Africa Africa Z. pallidus capensis Z. s. stierlingi 1.8
Africa Africa Z. s. stierlingi Z. pallidus capensis 1.8

Africa-B extended Africa Africa Z. poliogaster mbuluensis Africa-B 3.03
Africa Z. poliogaster kikuyuensis  (Mount Kenya) rest of Africa-B 3.03
Africa Z. senegalensis senegalensis Z. poliogaster 3.03
Africa Z. poliogaster kikuyuensis  (Aberdares) Z. poliogaster kulalensis 3.03
Africa Z. poliogaster kulalensis Z. poliogaster kikuyuensis  (Aberdares) 3.03

olivaceus Mauritius Africa Z. chloronothus Z. olivaceus 1.08
Reunion Africa Z. olivaceus Z. chloronothus 1.08

borbonicus Mauritius Africa Z. mauritianus Z. borbonicus 1.06
Reunion Africa Z. borbonicus Z. mauritianus 1.06

Flavifrons Vanuatu+ Pacific Yellow Clade Green Clade 3.02
Flavifrons Yellow Clade Vanuatu+ Pacific W. superciliosa Yellow Clade 2.44

Pacific main yellow clade Tanna/Erromango 2.44
Pacific Tanna Erromango 2.44
Pacific Erromango Tanna 2.44

Flavifrons Dark Vanuatu+ Pacific Z. gibbsi Dark Clade 1.95
Dark Clade Vanuatu Pacific Western Dark Eastern Dark 1.61

Pacific Z. f. brevicauda  (Santo) Z. f. perplexa  (Vanua Lava) 1.61
Pacific Z. f. perplexa  (Vanua Lava) Z. f. brevicauda  (Santo) 1.61
Pacific Z. f. perplexa  (Epi) rest of eastern Dark Clade 1.61
Pacific rest of eastern Dark Clade Z. f. perplexa  (Epi) 1.61

lateralis Australasia Pacific Australia group 1 rest of clade 1.89
Australasia Pacific Australia group 2 Pacific lateralis 1.89
New Caledonia Pacific Z. l. griseonatus rest of pacific clade 1.89
Loyalty Islands Pacific Z. l. nigrescens-melanops Z. l. vatensis/tephropleurus 1.89
Vanuatu Pacific Z. vatensis Z. l. tephropleurus 1.89
Vanuatu Pacific Z. l. tropica Z. l. flaviceps 1.89
Lord Howe Island Pacific Z. l. tephropleurus Z. l. vatensis 1.89
Fiji Pacific Z. l. flaviceps Z. l. tropica 1.89  
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Appendix Table 3.2.B Sympatric pairs of species from African and Pacific clades and the estimated age of their 

most recent common ancestor.  This age of most common ancestor is used as a proxy for the time taken for 

range expansion.  Ages are taken from the Four Gene Tree for Pacific clades and from the Partitioned Three 

Gene Tree for African clades. 

 

Island Region Species1 Species2 Age (myr)
Kenya Africa Z. abyssinicus Z. poliogaster 3.27
Reunion Africa Z. olivaceous Z. mauritianus 3.35
Mauritius Africa Z. chloronothus Z. borbonicus 3.35
Grande Cormore Africa Z. mouroniensis Z. kirki 3.67
South Africa Africa Z. pallidus Z. senegalensis 4.21
Ethiopia Africa Z. abyssinicus Z. senegalensis 4.21
Lifou Pacific Z. inornatus Z. minutus 1.76
Norfolk Island Pacific Z. albogularis Z. tenuirostris 1.76
Lifou Pacific Z. inornatus Z. l. melanops 2.58
New Caledonia Pacific Z. xanthochrous Z. lateralis 2.58
Norfolk Island Pacific Z. albogularis Z. l. lateralis 2.58
Lord Howe Island Pacific Z. strennus Z. l. tephropleurus 2.58
Epi Pacific Z. f. perplexa Z. l. vatensis 3.53
Ambae Pacific Z. f. perplaxa/macgillivrayi Z. l. vatensis 3.53
Vanua Lava Pacific Z. f. perplexa Z. l. tropica 3.53
Espiritu Santo Pacific Z. f. brevicauda Z. l. tropica 3.53
Tanna Pacific Z. f. flavifrons Z. l. vatensis 3.53
Erromango Pacific Z. f. efatensis Z. lateralis 3.53
Gaua Pacific Z. f. efatensis/gauaensis Z. l. topica/vatensis 3.53
Rennell Pacific W. superciliosa Z. rennellianus 3.53
Fiji Pacific Z. explorator Z. l. flaviceps 3.95
Australia Pacific Z. luteus Z. l. ramsayi 3.95
Bougainville Pacific Z. rendovae Z. metcalfi 3.95
Kulambangra Pacific Z. kulambangrae Z. murphyi 3.95  

 

 

 

 

 



163 

 

Appendix 4.1 

Appendix Table 4.1.A Morphological data for the species in the Reciprocally Monophyletic Tree gathered from 

Mees (1957; 1961; 1969) and used in the trait analyses.  PC scores from the principal component analysis (see 

Chapter 4) are also included. 

 

Species No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

PC1 PC2 PC3 PC4

Z. lateralis .eastern 153 61.66 149 43.39 121 17.14 146 12.98 -0.18 -0.14 0.02 0.04
Z. lateralis .pacific 244 63.28 244 46.22 236 19.28 228 14.50 -0.01 -0.14 -0.02 0.00
Z. lateralis .south & west 142 57.26 145 41.68 140 16.82 137 12.68 -0.25 -0.12 0.02 -0.01
Z. f.majuscula 12 61.29 12 44.08 11 20.07 12 16.40 0.05 -0.03 -0.02 -0.06
Z. inornatus 31 73.13 30 49.17 31 21.72 30 20.73 0.36 0.01 0.03 -0.01
Z. albogularis 19 77.21 18 53.20 19 23.07 20 18.83 0.38 -0.11 -0.04 0.04
Z. tenuirostris 12 66.92 12 47.08 11 20.95 12 18.00 0.20 -0.03 -0.01 -0.03
Z. minutus 29 54.58 29 40.47 29 18.07 29 13.84 -0.19 -0.05 -0.02 -0.08
Z. rennellianus 3 64.00 3 38.83 3 19.92 3 16.42 0.01 0.08 -0.05 0.01
Z. xanthochrous 8 60.31 8 44.44 8 19.19 8 15.06 -0.03 -0.08 -0.01 -0.05
Z. strenuus 74 71.02 73 52.03 74 21.76 74 23.23 0.46 0.03 0.08 -0.08
Z. griseotinctus .all 44 62.91 44 40.04 43 19.59 44 16.55 0.02 0.06 -0.03 -0.02
Z. murphyi 5 66.30 5 44.30 5 19.40 5 17.80 0.13 0.01 0.04 -0.01
Z. f. yellow clade 41 63.03 41 42.06 39 20.05 37 15.85 0.02 -0.01 -0.05 -0.02
W. superciliosa 22 77.18 22 46.91 22 23.69 20 21.24 0.42 0.06 -0.05 0.03
Z. flavifrons .eastern.dark 51 61.22 51 39.70 47 19.66 46 15.27 -0.05 0.02 -0.06 -0.02
Z. flavifrons .western.dark 9 59.11 9 36.67 8 19.22 7 14.64 -0.14 0.06 -0.08 -0.01
Z. gibbsi 3 67.67 3 42.67 3 19.00 2 17.50 0.10 0.03 0.04 0.03
Z. stresemanni 9 68.72 9 43.56 9 20.42 9 17.44 0.14 0.01 -0.02 0.02
Z. metcalfi .all 30 59.05 30 37.85 30 16.81 29 14.39 -0.19 0.03 0.04 0.01
Z. explorator 17 61.00 16 36.22 17 18.51 16 15.00 -0.13 0.09 -0.04 0.02
Z. oleagineus 3 70.67 3 43.83 3 20.33 3 17.83 0.17 0.02 0.00 0.04
Z. cinereus .all 24 65.38 23 39.28 24 21.09 21 16.26 0.04 0.06 -0.10 0.02
Z. fuscicapillus .all 19 58.82 19 37.38 17 16.41 17 13.19 -0.27 -0.01 0.03 0.03
Z. luteus .all 76 55.36 75 37.78 73 17.32 70 12.53 -0.30 -0.05 -0.04 -0.02
Z. citrinellus .all 73 59.36 73 39.65 70 18.25 71 14.24 -0.14 -0.02 -0.02 -0.01
Z. parvula 57 52.44 13 31.76 12 15.04 13 12.04 -0.49 0.08 0.02 0.01
Z. u. ugiensis & oblitus 26 67.12 26 44.92 25 18.26 18 15.33 0.01 -0.08 0.04 0.05
Z. u. hamlini 2 67.50 2 43.75 2 20.38 2 16.00 0.08 -0.04 -0.05 0.03
Z. kulambangrae 7 62.93 7 39.71 7 18.54 7 16.54 -0.01 0.06 0.02 0.00
Z. tetiparius 5 63.90 5 42.40 5 17.55 5 16.30 -0.01 0.00 0.08 0.01
Z. rendovae 6 65.75 6 43.67 6 18.29 6 17.04 0.06 0.00 0.07 0.01
Z. splendidus 6 61.25 6 40.75 6 17.33 6 16.21 -0.05 0.03 0.08 -0.02
Z. luteirostris 7 60.64 7 36.36 7 17.18 7 15.57 -0.14 0.11 0.04 0.01
Z. vellalavella 9 63.22 9 39.61 9 17.50 9 16.00 -0.06 0.05 0.06 0.02

Tarsus lengthTail lengthWing length PC scoresBill length

 

 

 

 

 

 

 

 

 

 

 



164 

 

Appendix Table 4.1.B Island data for islands inhabited by species in the Reciprocally Monophyletic Tree.  The 

data comes from the UN system-wide Earthwatch website (http://islands.unep.ch/Tiarea.htm).  Species age is the 

branch length calibrated for time in millions of years taken from the Four Gene Tree. Dist. = the maximum 

dispersal distance, based on how far each taxa was likely to have dispersed in its current form.  UN index = UN 

Isolation index: sum of the square roots of the distances to the nearest island of at least equivalent size, the 

nearest island group and the nearest continent.  If one of these three measures is invalid the next highest 

distance is used. 

 

Species Island(s) Island Group Continent
Z. lateralis .eastern eastern Australia 6 0.54 7686850 0 0 72 150 0
Z. lateralis .pacific Pacific Islands 54 0.54 145836 1600 86 50 1800 1600
Z. lateralis .south & west south and west Australia 1 1.83 7686850 0 0 72 150 0
Z. f.majuscula Aneityum 1 2.94 159.2 0 55 63 200 1100
Z. inornatus Lifou 1 1.52 1146.2 0 48 100 75 850
Z. albogularis Norfolk Island 1 1.52 36.8 0 101 1400 670 1400
Z. tenuirostris Norfolk Island 1 1.49 36.8 0 101 1400 670 1400
Z. minutus Lifou 1 1.20 1146.2 0 48 100 75 850
Z. rennellianus Rennell 1 0.96 660.1 0 79 170 700 1550
Z. xanthochrous New Caledonia 3 0.96 16648.4 400 88 1100 400 1200
Z. strenuus Lord Howe Island 1 1.77 14.6 0 73 600 600 600
Z. griseotinctus .all Louisade and Bismarks 12 1.04 202.5 85 54 85 150 1050
Z. murphyi Kulambangrae 1 1.03 2036.7 0 71 60 600 1500
Z. f. yellow clade Vanuatu 5 1.88 899.5 340 62 75 340 1200
W. superciliosa Rennell 1 1.88 660.1 0 79 170 700 1550
Z. flavifrons .eastern.dark Vanuatu 12 1.58 2041.3 440 59 14 440 1200
Z. flavifrons .western.dark Santo and Malo 2 1.58 3955.5 320 56 14 320 1200
Z. gibbsi Vanikoro 1 1.90 173.2 0 66 30 200 2150
Z. stresemanni Malaita 1 1.40 3836.2 0 76 45 700 1800
Z. metcalfi .all North Solomons 7 1.40 2970.7 50 69 50 500 1600
Z. explorator Fiji 6 2.06 10531 800 88 60 800 2700
Z. oleagineus Yap 1 1.80 105.4 0 80 100 400 2500
Z. cinereus .all Caroline and Palau Islands 7 1.80 10531 60 88 60 800 2700
Z. fuscicapillus .all New Guinea and Goodenough 2 2.77 785753 155 37 155 155 155
Z. luteus .all Australia 12 2.44 7686850 0 0 72 150 0
Z. citrinellus .all Australia and Indonesia 23 0.83 10710.7 50 40 50 50 650
Z. parvula Java, Bali, Sumbawa and Flores 4 0.83 138793.6 25 47 25 25 1400
Z. u. ugiensis & oblitus Mak and Gau 2 2.84 3190.5 45 75 45 700 1750
Z. u. hamlini Bouganville 1 2.92 9317.8 0 61 50 220 1500
Z. kulambangrae New Georgia group 4 1.25 2036.7 60 71 60 600 1500
Z. tetiparius Tetepare 1 0.40 118.4 0 72 30 400 2150
Z. rendovae Rendova 1 0.40 411.3 0 66 10 600 1500
Z. splendidus Ranongga 1 1.41 147.9 0 64 10 500 1500
Z. luteirostris Ghizo 1 2.04 35 0 67 15 600 1500
Z. vellalavella Vellalavella and Bagga 2 2.72 628.9 25 66 25 500 1500

Distance to nearest (km)UN 
index

Dist.Area 
(km2)

Species 
Age (myr)

No. 
islands
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Appendix Table 4.1.C Morphological data for the species in the Incipient Species Tree gathered from Mees 

(1957; 1961; 1969) and used in the trait analysis.  PC scores from the principal component analysis (see Chapter 

4) are also included. 

 

Species No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm) PC1 PC2 PC3 PC4

Z. l. lateralis .Tasmania 17 62.09 17 43.65 17 17.62 17 13.09 -0.15 -0.12 0.00 0.03
Z. l. lateralis .Norfolk Island 25 61.73 23 42.72 0 17.44 24 13.13 -0.17 -0.10 0.00 0.03
Z. l. lateralis.New Zealand 36 62.44 35 45.14 33 17.45 33 13.01 -0.15 -0.16 0.01 0.03
Z. l. cornwalli 45 60.54 45 41.57 42 16.62 43 12.84 -0.22 -0.09 0.03 0.04
Z. l. chlorocephalus 2 66.50 2 46.50 2 18.25 2 14.38 -0.02 -0.14 0.02 0.05
Z. l. vatensis 44 68.55 44 50.44 43 20.78 41 15.65 0.14 -0.16 -0.03 0.00
Z. l. valuensis 7 65.07 7 45.93 7 19.97 6 15.00 0.04 -0.10 -0.04 -0.01
Z. l. tropicus 28 63.46 28 45.02 27 19.67 26 15.27 0.03 -0.07 -0.02 -0.02
Z. l. tephropleurus 15 60.33 15 45.10 15 19.32 15 15.52 0.01 -0.06 0.01 -0.07
Z. l. flaviceps 84 61.15 84 44.15 80 18.37 76 13.66 -0.11 -0.11 -0.01 -0.01
Z. l. griseonotus 22 62.80 22 46.27 22 18.89 21 13.36 -0.08 -0.16 -0.04 0.00
Z. l. nigrescens 33 62.71 33 47.03 32 19.27 32 14.62 0.00 -0.13 -0.01 -0.03
Z. l. melanops 11 63.45 11 47.41 10 19.35 11 14.30 -0.01 -0.15 -0.02 -0.02
Z. lateralis. south & west Australia 142 57.26 145 41.68 140 16.82 137 12.68 -0.25 -0.09 0.02 -0.01
Z. f. majuscula 12 61.29 12 44.08 11 20.07 12 16.40 0.06 -0.01 -0.01 -0.07
Z. inornatus 31 73.13 30 49.17 31 21.72 30 20.73 0.37 0.00 0.04 0.00
Z.albogularis 19 77.21 18 53.20 19 23.07 20 18.83 0.39 -0.13 -0.04 0.03
Z. tenuirostris 12 66.92 12 47.08 11 20.95 12 18.00 0.21 -0.03 0.01 -0.04
Z. minutus 29 54.58 29 40.47 29 18.07 29 13.84 -0.18 -0.02 0.00 -0.09
Z. rennellianus 3 64.00 3 38.83 3 19.92 3 16.42 0.03 0.09 -0.04 0.00
Z. xanthochrous 8 60.31 8 44.44 8 19.19 8 15.06 -0.02 -0.06 0.00 -0.06
Z. strenuus 74 71.02 73 52.03 74 21.76 74 23.23 0.47 0.01 0.11 -0.06
Z. g. eichhorni 14 61.69 14 38.32 14 19.86 14 15.82 -0.02 0.09 -0.05 -0.02
Z. g. longirostris 3 63.00 3 39.33 2 19.25 3 17.50 0.06 0.11 0.02 -0.02
Z. g. griseotinctus 14 62.89 14 41.36 14 19.09 14 16.07 0.01 0.03 0.01 -0.01
Z. g. pallidipes 13 64.23 13 40.65 13 19.90 13 17.62 0.10 0.09 0.01 -0.02
Z. murphyi 5 66.30 5 44.30 5 19.40 5 17.80 0.14 0.02 0.05 0.00
Z. f. gauensis 11 64.55 11 42.86 10 20.55 10 16.05 0.07 -0.01 -0.05 -0.02
Z. f. efatensis 24 61.63 24 40.88 23 19.61 23 16.02 0.01 0.04 -0.02 -0.03
Z. f. flavifrons 6 65.83 6 45.33 6 20.88 4 17.81 0.18 0.00 0.00 -0.04
W. lacertosa 15 83.17 15 49.40 15 25.62 15 24.33 0.61 0.06 -0.04 0.03
W. superciliosa 22 77.18 22 46.91 22 23.69 20 21.24 0.43 0.04 -0.04 0.03
Z. f. brevicauda 9 59.11 9 36.67 8 19.22 7 14.64 -0.12 0.09 -0.07 -0.02
Z. f. perplexa 44 61.52 44 39.93 41 19.71 39 15.28 -0.03 0.03 -0.05 -0.02
Z. f. macgillivrayi 7 59.36 7 38.29 6 19.33 7 15.21 -0.07 0.07 -0.04 -0.04

PC scoresWing length Tail length Tarsus length Bill length
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Appendix Table 4.1.C continued 

Species No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm)

No. 
records

Mean 
(mm) PC1 PC2 PC3 PC4

Z. gibbsi 3 67.67 3 42.67 3 19.00 2 17.50 0.11 0.04 0.05 0.03
Z. stresemanni 9 68.72 9 43.56 9 20.42 9 17.44 0.15 0.02 -0.01 0.02
Z. m. exigua 18 58.83 18 37.78 18 16.93 17 14.41 -0.18 0.05 0.04 0.01
Z. m. metcalfi 4 59.38 4 38.38 4 16.75 4 14.00 -0.20 0.02 0.04 0.02
Z. m .floridana 8 59.38 8 37.75 8 16.56 8 14.56 -0.18 0.06 0.06 0.02
Z. explorator 17 61.00 16 36.22 17 18.51 16 15.00 -0.11 0.11 -0.03 0.01
Z. cinereus cinereus 2 63.50 2 34.25 2 20.25 2 15.13 -0.07 0.16 -0.12 0.04
Z. cinereus ponapensis 2 60.50 2 35.75 2 19.38 2 13.25 -0.19 0.06 -0.13 0.02
Z. cinereus finschii 20 66.05 19 40.18 20 21.35 17 16.75 0.10 0.07 -0.08 0.00
R. ruk i 10 81.00 10 48.20 10 23.80 9 20.42 0.44 -0.01 -0.06 0.07
Z. oleagineus 3 70.67 3 43.83 3 20.33 3 17.83 0.18 0.02 0.00 0.04
R. longirostra 21 70.60 20 42.08 21 21.72 18 23.26 0.38 0.19 0.06 -0.02
Z. fu. crookshank i 2 60.50 2 42.25 2 17.25 2 15.00 -0.09 -0.02 0.07 -0.01
Z. fu. fuscicapillus 17 58.62 17 36.81 15 16.30 15 12.95 -0.28 0.02 0.02 0.04
Z. luteus.all 76 55.36 75 37.78 73 17.32 70 12.53 -0.29 -0.01 -0.03 -0.03
Z. citrinellus citrinellus 13 56.88 13 37.40 12 17.10 13 12.75 -0.28 0.00 -0.02 0.00
Z. citrinellus harterti 5 58.20 5 39.50 5 17.25 5 13.25 -0.22 -0.03 0.00 0.00
Z. citrinellus albiventris 55 60.05 55 40.20 53 18.61 53 14.70 -0.09 0.01 -0.01 -0.02
Z. palpebrosus melanura 53 52.45 9 32.38 8 15.03 9 12.14 -0.46 0.11 0.03 0.01
Z. palpebrosus unica 4 52.25 4 30.38 4 15.06 4 11.83 -0.50 0.15 0.00 0.02
Z. u. oblitus 19 66.79 19 45.68 18 17.57 12 15.04 -0.01 -0.10 0.07 0.06
Z. u. ugiensis 7 68.00 7 42.86 7 20.04 6 15.92 0.07 -0.02 -0.04 0.04
Z. u. hamlini 2 67.50 2 43.75 2 20.38 2 16.00 0.09 -0.03 -0.04 0.02
Z. kulambangrae 7 62.93 7 39.71 7 18.54 7 16.54 0.00 0.08 0.03 0.00
Z. tetiparius 5 63.90 5 42.40 5 17.55 5 16.30 0.00 0.01 0.09 0.02
Z. rendovae 6 65.75 6 43.67 6 18.29 6 17.04 0.07 0.00 0.08 0.02
Z. splendidus 6 61.25 6 40.75 6 17.33 6 16.21 -0.04 0.05 0.09 0.00
Z. luteirostris 7 60.64 7 36.36 7 17.18 7 15.57 -0.12 0.12 0.05 0.02
Z. vellalavella 9 63.22 9 39.61 9 17.50 9 16.00 -0.04 0.06 0.07 0.03

Wing length Tail length Tarsus length Bill length PC sc ores
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Appendix Table 4.1.D Island data for islands inhabited by species in the Incipient Species Tree.  The data comes 

from the UN system-wide Earthwatch website (http://islands.unep.ch/Tiarea.htm). Species age is the branch 

length calibrated for time in millions of years taken from the Four Gene Tree. Dist. = the maximum dispersal 

distance, based on how far each taxa was likely to have dispersed in its current form.  UN index = UN Isolation 

index: sum of the square roots of the distances to the nearest island of at least equivalent size, the nearest island 

group and the nearest continent.  If one of these three measures is invalid the next highest distance is used. 

 

Species Island(s) Island Group Continent
Z. l. lateralis .Tasmania Tasmania 0.200 65021.1 200 35 50 200 200
Z. l. lateralis .Norfolk Island Norfolk Island 0.030 36.8 670 101 1400 670 1400
Z. l. lateralis.New Zealand New Zealand 0.030 145836 1800 86 50 1800 1600
Z. l. cornwalli Seaus 0.090 7686850 0 0 72 150 0
Z. l. chlorocephalus Heron Island 0.090 0.16 0 35 72 72 72
Z. l. vatensis Vanuatu 0.200 555 220 54 35 220 1100
Z. l. valuensis Motalava 0.120 24 0 54 14 200 1300
Z. l. tropicus Vanuatu 0.120 3955.5 320 56 14 320 1200
Z. l. tephropleurus Lord Howe Island 0.330 14.6 0 73 600 600 600
Z. l. flaviceps Vanuatu 0.280 10531 800 88 60 800 2700
Z. l. griseonotus Grande Terre 0.170 16648.4 0 88 1100 400 1200
Z. l. nigrescens Mare & Ouvea 0.140 656.6 0 44 40 75 850
Z. l. melanops Lifou 0.140 1146.2 0 48 100 75 850
Z. lateralis. south & west Australia Australia 1.830 7686850 0 0 72 150 0
Z. f. majuscula Aneityum 2.940 159.2 0 55 63 200 1100
Z. inornatus Lifou 1.520 1146.2 0 48 100 75 850
Z.albogularis Norfolk Island 1.520 36.8 0 101 1400 670 1400
Z. tenuirostris Norfolk Island 1.490 36.8 0 101 1400 670 1400
Z. minutus Lifou 1.200 1146.2 0 48 100 75 850
Z. rennellianus Rennell 0.960 660.1 0 79 170 700 1550
Z. xanthochrous Grandterre, Ile de Pins & Mare 0.960 16648.4 0 88 1100 400 1200
Z. strenuus Lord Howe Island 1.770 14.6 0 73 600 600 600
Z. g. eichhorni Nissan, Nauna & Long 0.125 500 50 42 50 50 800
Z. g. longirostris Heath, East Hastings & Alcester 0.125 10 40 51 40 150 1050
Z. g. griseotinctus Misima, Panasesa, Deboyne and Panepompom 0.250 202.5 85 54 85 150 1050
Z. g. pallidipes Rossel 0.500 262.5 0 57 35 335 1070
Z. murphyi Kulambangrae 1.030 687.8 0 65 10 550 1500
Z. f. gauensis Gaua 0.730 328.2 0 58 25 290 1300
Z. f. efatensis Nguna, Efate & Erro 0.270 888.1 35 56 35 270 1100
Z. f. flavifrons Tanna 0.270 555 0 54 35 220 1100

Distance to nearest (km)Subspecies 
Age (myr)

Area 
(km2)

Dist. UN 
index
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Appendix Table 4.1.D continued 

Species Island(s) Island Group Continent

W. lacertosa Ndeni 0.940 505.5 0 70 70 250 2100
W. superciliosa Rennell 0.940 660.1 0 79 170 700 1550
Z. f. brevicauda Santo & Malo 1.580 3955.5 14 56 14 320 1200
Z. f. perplexa Vanuatu 0.660 334.3 25 57 25 240 1300
Z. f. macgillivrayi Malekula 0.660 2041.3 0 59 14 440 1200
Z. gibbsi Vanikoro 1.900 173.2 0 66 30 200 2150
Z. stresemanni Malaita 1.400 3836.2 0 76 45 700 1800
Z. m. exigua Shortland, Choisel, Bougainville & Buka 0.350 9317.8 50 61 50 220 1500
Z. m. metcalfi Ysabel & Sanjorge 0.350 3664.8 0 75 80 600 1700
Z. m .floridana Florida 0.700 386 0 73 25 700 1750
Z. explorator Fiji 2.060 10531 60 88 60 800 2700
Z. cinereus cinereus Kusaie 0.450 110 0 126 250 1500 5100
Z. cinereus ponapensis Ponape 0.450 334 0 108 20 1350 4500
Z. cinereus finschii Peleliu, Garakayo Ngabad, Koror & Babelthuap 0.900 374 2 81 2 850 2500
R. ruki Truk 0.450 8.8 0 95 50 900 3400
Z. oleagineus Yap 0.450 105.4 0 80 100 400 2500
R. longirostra Ponape 0.900 334 0 108 20 1350 4500
Z. fu. crookshank i Goodenough 1.380 686.7 0 36 5 30 820
Z. fu. fuscicapillus New Guinea 1.380 785753 0 37 155 155 155
Z. luteus.all Australia 2.440 7686850 0 0 72 150 0
Z. citrinellus citrinellus Timor, Roti, Sawu & Sumba 0.207 28418.9 30 32 30 30 450
Z. citrinellus harterti Alor 0.207 2119.7 0 32 30 30 450
Z. citrinellus albiventris Goenoengapi, Wetar, Kisser, Roma etc 0.413 3600 56 38 56 56 550
Z. palpebrosus melanura Java & Bali 0.413 138793.6 25 47 25 25 1400
Z. palpebrosus unica Sumbawa & Flores 0.413 14386 15 39 15 25 900
Z. u. oblitus Guadalcanar 1.420 5352.9 0 75 55 700 1700
Z. u. ugiensis Makira 1.420 3190.5 0 75 45 700 1750
Z. u. hamlini Bouganville 2.920 9317.8 0 61 50 220 1500
Z. kulambangrae Kulambangra, Newgeorgia, Vanunga & Gatukai 1.250 2036.7 60 71 60 600 1500
Z. tetiparius Tetepare 0.400 118.4 0 66 10 600 2000
Z. rendovae Rendova 0.400 411.3 0 66 10 600 1500
Z. splendidus Ranongga 1.410 147.9 0 64 10 500 1500
Z. luteirostris Ghizo 2.040 35 0 67 15 600 1500
Z. vellalavella Vellalavella & Bagga 2.720 628.9 25 66 25 500 1500

Distance to nearest (km)Subspecies 
Age (myr)

Area 
(km2)

Dist. UN 
index
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Appendix 4.2 

 

Procedure and R code for testing if trait differences between congeneric sympatrics are significantly 

greater than expected by chance. 

 

 

Appendix 4.2.A Testing character displacement using  absolute standardized 

contrasts 

  

Brownian simulations were performed using both the Reciprocally Monophyletic Tree and the 

Incipient Species Tree, for both trees the simulations were performed with and without Z. lateralis 

included. Trait simulations were performed for the first two principal components as well as for all four 

of the measured morphological traits separately (wing length, tarsus length, tail length and bill length). 

As a worked example, this code demonstrates the process in R for the Reciprocally Monophyletic tree 

and principal component one (PC1). The description of what each piece of code does appears first 

and the code itself is indented. 

 

The CAIC package was read into R 

library(CAIC) 

 

The phylogenetic tree was read into R, into an object called ‘observed’. 

observed<-read.nexus("TRAITspeciestree.nex",tree.names=NULL) 

 

The trait data was read into R, into an object called ‘trait.data’ ensuring that the row names exactly 

matched the tip labels of the phylogenetic tree. 

trait.data<-read.table("TRAIT.species.PCA.txt",header = TRUE) 

 

The trait data required, in this case the column for PC1, was taken from the object ‘trait.data’. 

observed$phenotype<-trait.data$Comp.1 

  

First, observed values had to be calculated for the data. A list was therefore created assigning all the 

sympatric species in the phylogeny to their particular island. For the simulations excluding Z. lateralis 

the islands with two species, including one Z. lateralis, were not included at this point and only the 

endemic were included on islands with three species.  

sympatric.taxa<-list() 

sympatric.taxa[["santo"]]<-c("Z.f.dark.west.part","Z.lateralis.pacific") 

sympatric.taxa[["epi"]]<-c("Z.f.dark.east.plus","Z.lateralis.pacific") 

sympatric.taxa[["tanna"]]<-c("Z.f.yellow","Z.lateralis.pacific") 

sympatric.taxa[["fiji"]]<-c("Z.explorator","Z.lateralis.pacific") 
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sympatric.taxa[["rennell"]]<-c("W.superciliosa","Z.rennellianus") 

sympatric.taxa[["australia"]]<-c("Z.luteus.all","Z.lateralis.east") 

sympatric.taxa[["lifou"]]<-c("Z.inornatus","Z.minutus","Z.lateralis.pacific") 

sympatric.taxa[["gt"]]<-c("Z.xanthochrous","Z.lateralis.pacific") 

sympatric.taxa[["norfolk"]]<-c("Z.albogularis","Z.tenuirostris","Z.lateralis.pacific") 

sympatric.taxa[["lhi"]]<-c("Z.strennuus","Z.lateralis.pacific") 

sympatric.taxa[["bou"]]<-c("Z.u.hamlini","Z.metcalfi") 

sympatric.taxa[["kul"]]<-c("Z.kulambangrae","Z.murphyi") 

 

For each of these islands in turn, the sympatric taxa were selected from the tree and the remaining 

tips dropped. The trait data for the selected tips was then placed in an object called 

‘pruned.tree$phenotype’.  

observed.numerator<-c() 

for(x in 1:12){ 

  wanted.tips<-pmatch(sympatric.taxa[[x]],observed$tip.label) 

  pruned.tree<-drop.tip(observed,observed$tip.label[-wanted.tips]) 

  pruned.tree$phenotype<-observed$phenotype[wanted.tips] 

 

The mean standardized contrast for each island was calculated and stored. 

  observed.numerator[x]<-mean(abs(pic(pruned.tree$phenotype,pruned.tree))) 

  } 

 

The mean of all the individual island contrasts then gave the absolute standardized contrast across all 

the islands with sympatric species. 

observed.numerator.av<-mean(observed.numerator) 

 

The mean across the entire tree was then calculated. 

observed.denominator<-mean(abs(pic(observed$phenotype,observed))) 

 

The observed value is then obtained by dividing the mean contrast of sympatric taxa by the mean 

calculated across the entire tree. The size of this ‘obsval’ gives an indication of whether sympatric 

species have diverged faster (ratio >1) or slower (ratio <1) than expected. 

obsval<-observed.numerator.av/observed.denominator 

  obsval 

 

Values were then calculated for each island and an object was created to store the observed values 

for individual islands. 

island.obs.val<-observed.numerator/observed.denominator 
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Finally, the observed variance across all the islands was calculated to check if that was different to 

what would be expected by chance. 

observed.contrast.var<-var(island.obs.val) 

 

Next random tips were simulated under Brownian motion using ‘evolve.phylo’ in the APE package for 

R (Paradis et al. 2004). 

 

Objects were created to store the average of the expected contrasts and the expected variance 

generated by the simulation. 

store.exp.vals.av<-c() 

store.exp.var<-c() 

 

A matrix was created to store the expected values generated by the simulation. Here there are 12 

different islands (columns), and 10000 simulations (rows). 

store.exp.islevals<-matrix(nrow=10000,ncol=12) 

 

The simulation was repeated 10000 times with trait evolved by Brownian motion each time. The 

process of each simulation was similar to the one described above but with simulated instead of real 

trait data. Each simulation generated an expected trait value for each sympatric island. 

for(nullrep in 1:10000){ 

  expected <- evolve.phylo(observed, 1, 1)$tip.character$V1 

 

  exp.numerator<-c() 

  for(x in 1:12){ 

   wanted.tips<-pmatch(sympatric.taxa[[x]],observed$tip.label) 

   pruned.tree<-drop.tip(observed,observed$tip.label[-wanted.tips]) 

   pruned.tree$phenotype<-expected[wanted.tips] 

 

The mean standardized contrast for each island was calculated and stored. 

exp.numerator[x]<-mean(abs(pic(pruned.tree$phenotype,pruned.tree))) 

   } 

 

The mean of all the individual simulated island contrasts then gave the expected standardized 

contrast across each simulated set of sympatric islands. 

exp.numerator.av<-mean(exp.numerator) 

 

The mean across the entire tree was then calculated for each simulation. 

exp.denominator<-mean(abs(pic(expected,observed))) 
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The mean of the contrasts for all the sympatric islands was then divided by the mean across the 

entire tree for each simulation to give an expected value for each simulation. These were stored in the 

object created earlier. 

store.exp.vals.av[nullrep]<-exp.numerator.av/exp.denominator 

 

 

For individual islands the expected numerator (rather than the average of the expected numerator) 

divided by the expected denominator gave the contrasts for individual islands.  

island.contrasts<-exp.numerator/exp.denominator 

store.exp.islevals[nullrep,]<-island.contrasts 

 

The islands contrasts were used to calculate the expected variance. 

store.exp.var[nullrep]<-var(island.contrasts) 

  

 } 

 

 

Finally,  the p-value was generated to test if the direction of the observed value for sympatric species 

was significantly divergent across the whole tree.  

pval<-min(length(which(store.exp.vals.av<=obsval)), 

length(which(store.exp.vals.av>=obsval)))/10000 

 pval 

 

By selecting individual islands it was possible to look at the significance of individual cases. In the 

code below island 1 is selected but by changing the ‘choose species’ value each island could be 

looked at in turn.  

choose.species<-1 

pval<-min(length(which(store.exp.islevals[,choose.species] 

<=island.obs.val[choose.species])),length(which(store.exp.islevals[,choose.s

pecies]>=island.obs.val[choose.species])))/10000 

  pval 

 

#this tests whether the variance is more or less than across the whole tree 

pval<-min(length(which(store.exp.var<=observed.contrast.var)), 

length(which(store.exp.var>=observed.contrast.var)))/10000 

 pval 
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Appendix 4.2.B Testing character displacement using  minimum Euclidian distance 

 

The CAIC package was read into R 

library(CAIC) 

 

The phylogenetic tree was read into R, into an object called ‘usetree’. 

usetree<-read.nexus("TRAITspeciestree.nex",tree.names=NULL) 

 

The trait data was read into R, into an object called ‘TRAITZostPC’ ensuring that the row names 

exactly matched the tip labels of the phylogenetic tree. 

TRAITZostPC<-read.table("TRAIT.species.PCA.txt",header=T) 

 

The observed distances for PC1 and PC2 were placed in an object. 

observed_1<-TRAITZostPC$Comp.1 

observed_2<-TRAITZostPC$Comp.2 

 

A list was created assigning all the sympatric species in the phylogeny to their particular island. 

sympatric.list<-list() 

sympatric.list[["1"]]<-c("Z.f.dark.west.part","Z.lateralis.pacific") 

sympatric.list[["2"]]<-c("Z.f.dark.east.plus","Z.lateralis.pacific") 

sympatric.list[["3"]]<-c("Z.f.yellow","Z.lateralis.pacific") 

sympatric.list[["4"]]<-c("Z.explorator","Z.lateralis.pacific") 

sympatric.list[["5"]]<-c("W.superciliosa","Z.rennellianus") 

sympatric.list[["6"]]<-c("Z.luteus.all","Z.lateralis.east") 

sympatric.list[["7"]]<-c("Z.inornatus","Z.minutus","Z.lateralis.pacific") 

sympatric.list[["8"]]<-c("Z.xanthochrous","Z.lateralis.pacific") 

sympatric.list[["9"]]<-c("Z.albogularis","Z.tenuirostris","Z.lateralis.pacific") 

sympatric.list[["10"]]<-c("Z.strenuus","Z.lateralis.pacific") 

sympatric.list[["11"]]<-c("Z.u.hamlini","Z.metcalfi") 

sympatric.list[["12"]]<-c("Z.kulambangrae","Z.murphyi") 

 

The minimum Euclidian distance was calculated as the minimum distance between the two species in 

each sympatric pair according to the co-ordinates on PC1 and PC1 (here observed_1 and 

observed_2). 

minEuclids<-c() 

for(symp in 1:length(sympatric.list)){ 

wanted.tips<-pmatch(sympatric.list[[symp]],usetree$tip.label) 

minEuclids[symp]<-min(dist(cbind(observed_1,observed_2)[wanted.tips,])) 

} 
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The observed value is the smallest Euclidian difference because the test is based on determining 

whether there is a minimum difference that species should be apart. 

obsmin<-min(minEuclids) 

obsmin 

 

 

Next, expected values were generated as the mean minimum distance across 10000 trees simulated 

in a Brownian motion model. Again ‘evolve.phylo’ from the APE package for R (Paradis et al. 2004) 

was used to evolve the traits, in this case the two Principal Components. 

 

expmin<-c() 

store.island.mins<-matrix(nrow=10000,ncol=12) 

simvar1<-fitContinuous(usetree,observed_1)$Trait1$beta 

simvar2<-fitContinuous(usetree,observed_2)$Trait1$beta 

 

 

for (rep in 1:10000){ 

 

sim_1<-evolve.phylo(usetree,1,simvar1)$tip.character[,1] 

sim_2<-evolve.phylo(usetree,1,simvar2)$tip.character[,1] 

 

minEuclidsexp<-c() 

for(symp in 1:length(sympatric.list)){ 

 

wanted.tips<-pmatch(sympatric.list[[symp]],usetree$tip.label) 

minEuclidsexp[symp]<-min(dist(cbind(sim_1,sim_2)[wanted.tips,])) 

} 

 

store.island.mins[rep,]<-minEuclidsexp 

 

The expected minimum distance was calculated as the smallest of the simulated minimum Euclidian 

distance.  

expmin[rep]<-min(minEuclidsexp) 

} 

 

pval<-min(c((length(which(expmin>=obsmin))*2)/10000), 

((length(which(expmin<=obsmin))*2)/10000)) 

median(expmin) 

hist(expmin) 

abline(v=obsmin,col=2) 
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pval 

 

Finally, each islands observed value was compared to the expected value.  

selectcol<-4 

median(store.island.mins[,selectcol]) 

hist(store.island.mins[,selectcol]) 

abline(v=minEuclids[selectcol],col=2) 

minEuclids[selectcol] 

pval<-min(c((length(which(store.island.mins[,selectcol] 

>=minEuclids[selectcol]))*2)/10000),((length(which(store.island.mins 

[,selectcol]<=minEuclids[selectcol]))*2)/10000)) 

pval 
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Appendix 4.3 

Appendix Table 4.3.A Loadings from a principal component analysis for the south west Pacific Zosterops based 

on four morphological measures per species: average maximum wing chord, average tarsus length, average tail 

length and culmen length (from bill tip to the anterior of the nostril). Part a) shows scores based on the 

Reciprocally Monophyletic Tree, and part b) those based on the Incipient Species Tree. 

 

a) The s pec ies  tree b) the s ubs pec ies  tree

L oadings : P C 1 P C 2 P C 3 P C 4 P C 1 P C 2 P C 3 P C 4

log  (average wing  length) 0.383 -0.177 0.902 0.355 -0.195 -0.135 0.904

log  (average tarsus length) 0.4 -0.333 -0.792 -0.319 0.388 -0.198 -0.841 -0.32

log  (average tail length) 0.404 -0.665 0.58 -0.241 0.319 -0.812 0.428 -0.236

log  (average bill length) 0.728 0.645 0.164 -0.165 0.789 0.513 0.301 -0.154

P roportion of Variance 0.81 0.12 0.05 0.02 0.81 0.13 0.04 0.01  
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Appendix 4.4 

 
 

Appendix Fig 4.4.A Regression of logged weight against logged tarsus for Zosterops measurements taken in the 

field; N = 301, adjusted R2 = 0.55, p-value = <0.001 (RAB unpublished data). 
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Appendix 5 

Appendix 5 is a CD containing the raw sequence and morphological data for all individuals. 
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