8 research outputs found

    A Linear Solution for QSAT with Membrane Creation

    Get PDF
    The usefulness of P systems with membrane creation for solving NP problems has been previously proved (see [2, 3]), but, up to now, it was an open problem whether such P systems were able to solve PSPACE-complete problems in polynomial time. In this paper we give an answer to this question by presenting a uniform family of P system with membrane creation which solves the QSAT-problem in linear time.Ministerio de Ciencia y Tecnolog铆a TIC2002-04220-C03-0

    Obtaining Homology Groups in Binary 2D Images Using P Systems

    Get PDF
    Membrane Computing is a new paradigms inspired from cellular communication. We use in this paper the computational devices called P systems to calculate in a general maximally parallel manner the homology groups of binary 2D images. So, the computational time to calculate this homology information only depends on the thickness of them.Junta de Andaluc铆a FQM-296Ministerio de Educaci贸n y Ciencia TIN2006-13425Junta de Andaluc铆a P08-TIC-04200Ministerio de Educaci贸n y Ciencia MTM2006-03722Junta de Andaluc铆a PO6-TIC-0226

    P systems with evolutional symport and membrane creation rules solving QSAT

    Get PDF
    P systems are computing devices based on sets of rules that dictate how they work. While some of these rules can change the objects within the system, other rules can even change the own structure, like creation rules. They have been used in cell-like membrane systems with active membranes to efficiently solve NP-complete problems. In this work, we improve a previous result where a uniform family of P systems with evolutional communication rules whose left-hand side (respectively, right-hand side) have most 2 objects (resp., 2 objects) and membrane creation solved SAT efficiently, and we obtain an efficient solution to solve QBF-SAT or QSAT (a PSPACE-complete problem) having at most 1 object (respectively, 1 object) in their left-hand side (resp., right-hand side) and not making use of the environmentMinisterio de Ciencia e Innovaci贸n TIN2017-89842-

    Logarithmic SAT Solution with Membrane Computing

    Get PDF
    P systems have been known to provide efficient polynomial (often linear) deterministic solutions to hard problems. In particular, cP systems have been shown to provide very crisp and efficient solutions to such problems, which are typically linear with small coefficients. Building on a recent result by Henderson et al., which solves SAT in square-root-sublinear time, this paper proposes an orders-of-magnitude-faster solution, running in logarithmic time, and using a small fixed-sized alphabet and ruleset (25 rules). To the best of our knowledge, this is the fastest deterministic solution across all extant P system variants. Like all other cP solutions, it is a complete solution that is not a member of a uniform family (and thus does not require any preprocessing). Consequently, according to another reduction result by Henderson et al., cP systems can also solve k-colouring and several other NP-complete problems in logarithmic time

    Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation

    Get PDF
    Tissue P systems is a computing model in the framework of membrane computing inspired from intercellular communication and cooperation between neurons. Many different variants of this model have been proposed. One of the most important models is known as tissue P systems with cell separation. This model has the ability of generating an exponential amount of workspace in linear time, thus it allows us to design cellular solutions to NP-complete problems in polynomial time. In this paper, we present a solution to the Vertex Cover problem via a family of such devices. This is the first solution to this problem in the framework of tissue P systems with cell separation

    Computational complexity of tissue-like P systems

    Get PDF
    Ministerio de Educaci贸n y Ciencia TIN2006-13425Junta de Andaluc铆a P08鈥揟IC-0420

    Communication in membrana Systems with symbol Objects.

    Get PDF
    Esta tesis est谩 dedicada a los sistemas de membranas con objetos-s铆mbolo como marco te贸rico de los sistemas paralelos y distribuidos de procesamiento de multiconjuntos.Una computaci贸n de parada puede aceptar, generar o procesar un n煤mero, un vector o una palabra; por tanto el sistema define globalmente (a trav茅s de los resultados de todas sus computaciones) un conjunto de n煤meros, de vectores, de palabras (es decir, un lenguaje), o bien una funci贸n. En esta tesis estudiamos la capacidad de estos sistemas para resolver problemas particulares, as铆 como su potencia computacional. Por ejemplo, las familias de lenguajes definidas por diversas clases de estos sistemas se comparan con las familias cl谩sicas, esto es, lenguajes regulares, independientes del contexto, generados por sistemas 0L tabulados extendidos, generados por gram谩ticas matriciales sin chequeo de apariciones, recursivamente enumerables, etc. Se prestar谩 especial atenci贸n a la comunicaci贸n de objetos entre regiones y a las distintas formas de cooperaci贸n entre ellos.Se pretende (Secci贸n 3.4) realizar una formalizaci贸n los sistemas de membranas y construir una herramienta tipo software para la variante que usa cooperaci贸n no distribuida, el navegador de configuraciones, es decir, un simulador, en el cual el usuario selecciona la siguiente configuraci贸n entre todas las posibles, estando permitido volver hacia atr谩s. Se considerar谩n diversos modelos distribuidos. En el modelo de evoluci贸n y comunicaci贸n (Cap铆tulo 4) separamos las reglas tipo-reescritura y las reglas de transporte (llamadas symport y antiport). Los sistemas de bombeo de protones (proton pumping, Secciones 4.8, 4.9) constituyen una variante de los sistemas de evoluci贸n y comunicaci贸n con un modo restrictivo de cooperaci贸n. Un modelo especial de computaci贸n con membranas es el modelo puramente comunicativo, en el cual los objetos traspasan juntos una membrana. Estudiamos la potencia computacional de las sistemas de membranas con symport/antiport de 2 o 3 objetos (Cap铆tulo 5) y la potencia computacional de las sistemas de membranas con alfabeto limitado (Cap铆tulo 6).El determinismo (Secciones 4.7, 5.5, etc.) es una caracter铆stica especial (restrictiva) de los sistemas computacionales. Se pondr谩 especial 茅nfasis en analizar si esta restricci贸n reduce o no la potencia computacional de los mismos. Los resultados obtenidos para sistemas de bombeo del protones est谩n transferidos (Secci贸n 7.3) a sistemas con catalizadores bistabiles. Unos ejemplos de aplicaci贸n concreta de los sistemas de membranas (Secciones 7.1, 7.2) son la resoluci贸n de problemas NP-completos en tiempo polinomial y la resoluci贸n de problemas de ordenaci贸n.This thesis deals with membrane systems with symbol objects as a theoretical framework of distributed parallel multiset processing systems.A halting computation can accept, generate or process a number, a vector or a word, so the system globally defines (by the results of all its computations) a set of numbers or a set of vectors or a set of words, (i.e., a language), or a function. The ability of these systems to solve particular problems is investigated, as well as their computational power, e.g., the language families defined by different classes of these systems are compared to the classical ones, i.e., regular, context-free, languages generated by extended tabled 0L systems, languages generated by matrix grammars without appearance checking, recursively enumerable languages, etc. Special attention is paid to communication of objects between the regions and to the ways of cooperation between the objects.An attempt to formalize the membrane systems is made (Section 3.4), and a software tool is constructed for the non-distributed cooperative variant, the configuration browser, i.e., a simulator, where the user chooses the next configuration among the possible ones and can go back. Different distributed models are considered. In the evolution-communication model (Chapter 4) rewriting-like rules are separated from transport rules. Proton pumping systems (Sections 4.8, 4.9) are a variant of the evolution-communication systems with a restricted way of cooperation. A special membrane computing model is a purely communicative one: the objects are moved together through a membrane. We study the computational power of membrane systems with symport/antiport of 2 or 3 objects (Chapter 5) and the computational power of membrane systems with a limited alphabet (Chapter 6).Determinism (Sections 4.7, 5.5, etc.) is a special property of computational systems; the question of whether this restriction reduces the computational power is addressed. The results on proton pumping systems can be carried over (Section 7.3) to the systems with bi-stable catalysts. Some particular examples of membrane systems applications are solving NP-complete problems in polynomial time, and solving the sorting problem

    In Memoriam, Solomon Marcus

    Get PDF
    This book commemorates Solomon Marcus鈥檚 fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus鈥檚 research fields, some of whom have been influenced by his results and/or have collaborated with him
    corecore