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P systems are computing devices based on sets of rules that dictate how they work. 
While some of these rules can change the objects within the system, other rules can even 
change the own structure, like creation rules. They have been used in cell-like membrane 
systems with active membranes to efficiently solve NP-complete problems. In this work, 
we improve a previous result where a uniform family of P systems with evolutional 
communication rules whose left-hand side (respectively, right-hand side) have most 2 
objects (resp., 2 objects) and membrane creation solved SAT efficiently, and we obtain 
an efficient solution to solve QBF-SAT or QSAT (a PSPACE-complete problem) having at 
most 1 object (respectively, 1 object) in their left-hand side (resp., right-hand side) and not 
making use of the environment.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In 1998, Membrane Computing was introduced as a model of computation inspired by the structure and behaviour of 
living cells [1], abstracting the inner organelles as internal regions and chemical elements as objects of the system. The 
devices generated in this framework are called membrane systems or P systems. The type of region depends on the exact 
living model selected: On the one hand, a single cell with its inner compartments is abstracted as a cell-like membrane 
system (or P system) [1], where these membranes are semi-permeable walls that have control over the objects that can 
pass through it. The structure of these systems can be represented as a graph arranged as a rooted tree, where the root 
node is the outermost membrane, called skin membrane. On the other hand, several cells communicating among them can 
be found in nature forming a tissue. We can find two main abstractions of this phenomenon: tissue-like membrane systems, 
or tissue P systems [2,3], where cells can interchange objects with other cells or even with the environment, and spiking 
neural P systems [4], where the flow of communication through electrical impulses between neurons is abstracted through 
a directed graph.

Cell-like membrane systems use a membrane structure that can be either static or dynamic. In the first case, objects 
can move through the different membranes in each step of computation. P systems with symport/antiport rules [5] make 
an abstraction of the symport/antiport mechanism of the organelles of a cell that allow only some objects to pass, or 
can interchange chemical elements from two adjoining compartments. In transition P systems and P systems with active 
membranes [1,6], the membrane structure could be changed, by dissolving the membranes or, in the latter, by duplicating 
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a membrane and its contents by using division rules. Another method for duplicating a membrane is by using membrane 
separation rules [7], where the contents of the original membrane are distributed among the two new membranes. Another 
method to increase the number of membranes of the system is by means of membrane creation rules [8], where a single 
object creates a new membrane. It could be seen as the chemical element taking some of the substrate of the membrane 
where it is and using it to create a new membrane. This kind of structure-changing mechanisms makes P systems capable 
of efficiently solving computationally hard problems. More precisely, NP-complete or even PSPACE-complete problems have 
been solved by means of families of P systems that use one of these kinds of rules [9–17].

In [18], a new variant of tissue P systems was introduced, where symport/antiport rules allow objects to evolve in 
the process of the communication from a region to another region. Some relevant results have been obtained in [19–22], 
where some frontiers of efficiency have been obtained. In the framework of cell-like membrane systems, creation rules 
have been used lately besides evolutional communication rules in [23] to solve the SAT problem by means of a family 
of recognizer P systems with evolutional communication rules and creation rules. In [24], an efficient solution to QSAT is 
given by means of a family of recognizer polarizationless P systems with active membranes and membrane creation. In 
this work, we replicate the results of the latter paper; that is, we provide an efficient solution to the QSAT problem, in 
this case by means of a uniform family of recognizer P systems with evolutional symport rules with a minimal amount of 
objects per communication rule. This is an important improvement in terms of the transport of objects, since, in this case, 
no cooperation between objects is needed in the left-hand side to obtain presumed efficiency. For an overview of the state 
of the art in the area, we refer the reader to [25].

The rest of the work is organized as follows: Section 2 is devoted to introduce some concepts used later through the 
paper. In Section 3, the definition of recognizer P systems with evolutional communication rules and membrane creation is 
given. In the following section, a polynomial-time and uniform solution to QSAT is given by means of a family of recognizer 
P systems with evolutional symport/antiport rules of length at most (1, 1) and membrane creation, and an overview of 
the computations and the formal verification of the design are specified. Finally, some remarks and open research lines are 
indicated.

2. Preliminaries

Some basic notions of formal languages, set theory and other terms used throughout the paper are recalled in this 
section. For a deeper explanation on formal languages and membrane computing, we refer the reader to [26,27].

An alphabet � is a non-empty and finite set, and its elements are called symbols. A string u over � is a finite sequence of 
symbols from �. The number of occurrences of a symbol a in u is denoted by |u|a . The length of u, denoted |u| is 

∑
a∈u |u|a .

A multiset m over � is a pair (�, fm) where fm : � → N is a mapping from � to the set of natural numbers N . Let 
m1, m2 two multisets over �. The union of m1 and m2, denoted by m1 + m2 or m1 ∪ m2 is defined as (m1 + m2)(x) =
fm1(x) + fm2(x), ∀x ∈ �. The relative complement of m2 in m1, denoted by m1 \ m2, is the defined as

(m1 \ m2)(x) =
{

fm1(x) − fm2(x) if fm1(x) ≥ fm2(x)
0 if fm1(x) < fm2(x)

The empty multiset (the multiset with no elements) is denoted by ∅, and the set of all finite multisets over � is denoted 
by M f (�).

The Cantor pairing function 〈·, ·〉 over N2 is a bijective function defined as 〈a, b〉 = (a+b+1)(a+b)
2 + b.

A decision problem X over the alphabet � is a pair (I X , θX ) such that I X ∈ �∗ is the set of instances of X and θX is a 
Boolean function over I X . Let R a class of recognizer P systems.

3. Recognizer P systems with evolutional communication rules and creation rules

In this section, a definition of recognizer P systems with evolutional communication rules and creation rules is given, 
and both the syntax and semantics are recalled. It must be taken into account that, in recognizer P systems, the output 
region is the environment, marked as env .

Definition 1. A recognizer P system with evolutional communication rules and membrane creation of degree q ≥ 1 is a tuple

� = (�,�,E, H,μ,M1, . . . ,Mq,R, iin, iout)

where:

1. � is a finite alphabet of objects (the working alphabet), and �, E ⊆ �, � ∩ E = ∅ (being � the input alphabet and E the 
environment alphabet);

2. H is a finite set of labels;
3. μ is a membrane structure whose elements are bijectively labelled by elements of H ;
4. Mi, 1 ≤ i ≤ q are finite multisets over � \ (� ∪ E);
5. R is a set of rules of the following forms:
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• Evolutional symport rules:

– Between membranes:

∗ [ u [ ]i ] j → [ [ u′ ]i ] j , where i, j ∈ H, i �= j, u, u′ ∈ M f (�), |u| > 0;
∗ [ [ u ]i ] j → [ u′ [ ]i ] j , where i, j ∈ H, i �= j, u, u′ ∈ M f (�), |u| > 0;

– Between the environment and the skin membrane:

∗ [ u [ ]i ]env → [ [ u′ ]i ]env , where i ∈ H , being i the label of the skin membrane, u, u′ ∈ M f (�), |u| > 0, 
there exists at least one a ∈ u such that a ∈ � \ E (otherwise, since there exists an arbitrary number of 
objects from E in the environment, that rule could be applied an infinite number of times);

∗ [ [ u ]i ]env → [ u′[ ]i ]env , where i ∈ H , being i the label of the skin membrane, u, u′ ∈ M f (�), |u| > 0;

• Evolutional antiport rules: [ u [ v ]i ] j → [ v ′ [ u′ ]i ] j , where i ∈ H, j ∈ H ∪ {env}, u, v, u′, v ′ ∈ M f (�), |u|, |v| > 0;
• Creation rules: [ a → [ u ]i ] j , where i, j ∈ H, i �∈ {skin}, where skin is the label of the skin membrane, a ∈ �, u ∈

M f (�);

6. iin ∈ H ;
7. iout = env .

A configuration Ct of a P system with evolutional communication rules and creation rules is described by the membrane 
structure at the moment t and the multisets of objects over � of each membrane, and the multiset of objects over � \ E of 
the environment. Objects from the environment do not appear, in the initial configuration, within the P system. Therefore, 
E ∩ Mi = ∅, 1 ≤ i ≤ q. Besides, objects from � are exclusively introduced to the corresponding input membrane encoding 
the instance of the problem. If E = ∅, it is usually omitted in the tuple of the system.

The initial configuration of such a P system is defined as (M1, . . . , Miin + m, . . . , Mq; ∅), begin m the input multiset 
and the last element being the multiset of objects from � \ E in the environment. We use the term region i to refer to 
a membrane if i ∈ H and to the environment if i = env . μ is a tree-like structure representing the initial structure of 
the P system, where parent and children regions/membranes are defined in a natural way. The parent node of the skin
membrane is the environment (with label env). In this sense, env is an artificial label to the environment, since it usually 
does not have any label. In this type of systems, due to the definition of the rules, this artificial label must be given to the 
environment.

An evolutional symport rule [ u [ ]i ] j → [ [ u′ ]i ] j , called evolutional send-in rule, can be applied to a configuration Ct if 
there exists a membrane labelled by i whose parent region is labelled by j, and this region j contains a multiset of objects 
u. When applying such a rule, the multiset of objects u is consumed from the region j and a multiset of objects u′ is 
produced in the membrane i in the next configuration.

An evolutional symport rule [ [ u ]i ] j → [ u′ [ ]i ] j , called evolutional send-out rule, can be applied to a configuration Ct
if there exists a membrane labelled by i that contains a multiset of objects u, and whose parent region is labelled by j. 
When applying such a rule, the multiset of objects u is consumed from the membrane i and a multiset of objects u′ is 
produced in the region j in the next configuration.

An evolutional antiport rule [ u [ v ]i ] j → [ v ′ [ u′ ]i ] j can be applied to a configuration Ct if there exists a membrane 
labelled by i that contains a multiset of objects v , and whose parent region is labelled by j and contains a multiset of 
objects u. When applying such a rule, the multisets of objects v and u are consumed from the membrane i and the region 
j, respectively, and multisets u′ and v ′ are produced in the membrane i and the region j, respectively.

A creation rule [ a → [ u ]i ] j can be applied to a configuration Ct if there exists a membrane labelled by j that contains 
an object a. When applying such a rule, object a is consumed from membrane j and a new membrane labelled by i and 
containing the multiset of objects u appears as a child membrane of j.

A recognizer P system with evolutional communication rules and creation rules that does not send objects from the 
environment to the system is said to be a P system with evolutional communication rules and creation rules without 
environment (or with passive environment). In this case, the set of objects of the environment E is usually not defined in 
the tuple.

A transition of a P system � is defined as a computational step of �, passing from one configuration to the next one, 
and denoted by Ct ⇒� Ct+1. A computation of a P system is a sequence of configurations such that a configuration Ct+1 is 
always obtained from Ct by applying a computation step. C0 is the initial configuration of �.

A family of recognizer P systems with evolutional communication rules and creation rules solving a decision problem 
X = (I X , θX ) is a sequence � = {�(n) | n ∈N} such that �(n) solves every instance of length n. For this purpose, a pair of 
two polynomial-time computable functions (cod, s) must be provided, such that cod(u), for u ∈ I X is a multiset of objects 
from � representing the particular instance u of the problem X , and s(u) is the length of the instance. As recognizer 
membrane systems, {yes, no} ⊆ �, representing the solution for each instance, and either an object yes or an object no
(but not both) must appear in the environment only in the last step of computation.
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In [28,29], the semantics applied are maximalist in the following sense: In each membrane, an arbitrary number of cre-
ation rules can be applied, and they do not interfere with the application of other types of rules. In [24,23], more restrictive 
semantics were introduced. When a creation rule is applied in a membrane h, no other rules can be applied in the same 
computational step. In the case of P systems with evolutional symport/antiport rules, either evolutional communication 
rules in a maximal parallel way or a single creation rule can be applied in a membrane in a transition, but not both at the 
same time. As a recognizer membrane system, all the computation of a recognizer P system with evolutional communication 
rules and creation rules halt and either an object yes or an object no (but not both) is sent to the environment at the last 
step of the computation.

The class of all recognizer P systems with evolutional symport/antiport rules (respectively, symport rules) and membrane 
creation is denoted by CCEC(k1, k2) (resp., CCES(k1, k2)), where k1 represents the maximal number of objects in the LHS 
of an evolutional communication rule (resp., evolutional symport rule) and k2 represents the maximal number of objects in 
the RHS of an evolutional communication rule (resp., evolutional symport rule). The class of recognizer membrane systems 
of this type when environment plays a passive role is denoted by ̂CCEC(k1, k2) (resp., ̂CCES(k1, k2)). Besides, CCEC(k) (re-
spectively, ̂CCEC(k)) represents the class of recognizer P systems with evolutional communication rules with rules of length 
at most k and membrane creation (resp., without environment), where the length of evolutional communication rules in this 
case is the sum of the number of objects of both the LHS and the RHS of the rule. In the same way, CCES(k) (respectively, 
̂CCES(k)) represent the evolutional symport-only counterparts of the previously described classes of P systems.

Then PMCR is the set of decision problems solvable by a uniform family of recognizer P systems from R. The term 
uniform is used as in circuit complexity; instead of using one P system for each instance (non-uniform solutions), a P 
system is able to solve all the instances of the same length.

A more comprehensive introduction to the concepts of decision problems and the class of decision problems that can be 
solved by means of a family of membrane systems from CCES(k1, k2), as well as from the other classes mentioned above, 
can be extracted from [23,26,30]. The class of problems that can be solved in polynomial time by means of a uniform family 
of recognizer P systems with evolutional communication rules of length at most (k1, k2) (i.e., k1 objects in the LHS of the 
rules, k2 objects in the RHS of the rules) (respectively, (k)) and membrane creation is denoted by PMCCCES(k1,k2) (resp., 
PMCCCES(k)), and the corresponding complexity class for membrane systems without environment is PMC

̂CCES(k1,k2)
(resp., 

PMC
̂CCES(k)

).

4. An efficient solution to QSAT in ̂CCES(1, 1)

In this section, an efficient solution to QSAT problem by means of a uniform family of P systems � from ̂CCES(1, 1)

with evolutional communication rules and creation rules. Each P system �(〈n, p〉) from � solves all instances from QSAT
with n variables and p clauses.

Let ϕ∗ = ∃x1∀x2 . . . Q nxnϕ(x1, . . . , xn) be an existential fully quantified formula associated with a Boolean formula 
ϕ(x1, . . . , xn) ≡ C1 ∧ . . .∧C p in CNF, where each clause C j = l j,1 ∨ . . .∨l j,r j , V ar(ϕ) = {x1, . . . , xn} and l j,k ∈ {xi, ¬xi | 1 ≤ i ≤ n}
for all j and all k. Without loss of generality, we assume that existential and universal quantifiers are alternated. The prob-
lem QSAT can be described as follows: given a existential fully quantified formula ϕ∗ , determine if it is true or false.

For each pair n, p ∈ N , we consider a recognizer P system with evolutional communication rules of length (1, 1) and 
creation rules

�(〈n, p〉) = (�,�, H,μ,Mskin,M<0,#>,R, iin, iout)

that will solve all instances with n variables and p clauses, where the input multiset is defined as

cod(ϕ) = {xi, j|xi ∈ C j} ∪ {xi, j|¬xi ∈ C j}
s(ϕ) =< n, p >

1. The working alphabet is defined as follows:
� = � ∪ {yes,no,d′,d′

t ,d′
f ,d′′}∪

{αi |0 ≤ i ≤ n2 · p + 5n + 2p + 3} ∪ {α′
i |0 ≤ i ≤ n2 · p + 5n + 2p + 4}∪

{ci, j,r |1 ≤ i ≤ n,1 ≤ j ≤ p, r ∈ {t, f }}∪
{di,r |0 ≤ i ≤ n, r ∈ {t, f }} ∪ {zi, zi,t , zi, f |1 ≤ i ≤ n}∪
{xi′,i, j,t, xi′,i, j, f |1 ≤ i, i′ ≤ n,1 ≤ j ≤ p}

.

2. The input alphabet � = {xi, j, xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
3. H = {skin,1, . . . , p, yes,no,#} ∪ {< i, r > |0 ≤ i ≤ n, r ∈ {t, f }}∪

{< i, Q , r, r′ > |0 ≤ i ≤ n, Q ∈ {∃,∀}, r, r′ ∈ {t, f }}∪
{< i,# > |0 ≤ i ≤ n2 · p + 5n + 2p + 4}

.

4. μ = [ [ ]<0,#> ]skin .
5. Mskin = {z1,t, z1, f }, M<0,#> = {α0, α′

0}.
6. The set of rules R:
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6.1 Rules for the counter of the elements of < 0, # >
[αi → [αi+1 ]<i+1,#> ]<i,#> for 0 ≤ i ≤ n2 · p + 5n + 2p + 2
[α′

i → [α′
i+1 ]<i+1,#> ]<i,#> for 0 ≤ i ≤ n2 · p + 5n + 2p + 3

[ [αn2·p+5n+2p+3 ]<i,#> ]<i−1,#> → [αn2+5n+2p+3 [ ]<i,#> ]<i−1,#>

for 0 ≤ i ≤ n2 · p + 5n + 2p + 3
[ [α′

n2·p+5n+2p+4
]<i,#> ]<i−1,#> → [α′

n2+5n+2p+4
[ ]<i,#> ]<i−1,#>

for 1 ≤ i ≤ n2 · p + 5n + 2p + 4
[ [αn2+5n+2p+3 ]<0,#> ]skin → [αn2+5n+2p+3 [ ]<0,#> ]skin

[ [α′
n2+5n+2p+4

]<0,#> ]skin → [α′
n2+5n+2p+4

[ ]<0,#> ]skin

6.2 Rules to return a positive answer
[αn2+5n+2p+3 [ ]yes]skin → [[αn2+5n+2p+3 ]yes ]skin

[αn2+5n+2p+3 → [yes ]# ]yes

[ [yes ]# ]yes → [yes [ ]# ]yes

[ [yes ]yes ]skin → [yes [ ]yes ]skin
[ [yes ]skin ]env → [yes [ ]skin ]env

6.3 Rules to return a negative answer
[α′

n2+5n+2p+4
→ [ ]no ]skin

[αn2+5n+2p+3 [ ]no ]skin → [[αn2+5n+2p+3 ]no ]skin

[αn2+5n+2p+3 → [no ]# ]no

[ [no ]# ]no → [no [ ]# ]no

[ [no ]no ]skin → [no [ ]no ]skin
[ [no ]skin ]env → [no [ ]skin]env

6.4 Rules to generate the membrane structure
[ z1,r → [ z1 d′′ ]<1,r> ]skin for r ∈ {t, f }
[ zi,r → [ zi d′ ]<i,r> ]<i−1,r′> for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[ zi,r → [ zi d′′ ]<i,r> ]<i−1,r′> for 2 ≤ i ≤ n, i even, r, r′ ∈ {t, f }
[ zi → [ zi+1,t zi+1, f ]# ]<i,r> for 1 ≤ i < n, r ∈ {t, f }
[ [ zi,r ]# ]<i,r> → [ zi,r[ ]# ]<i,r> for 1 ≤ i ≤ n, r ∈ {t, f }

6.5 Rules to check which clauses are satisfied
[ xi, j → [ x1,i, j,t x1,i, j, f ]# ]skin for 1 ≤ i ≤ n,1 ≤ j ≤ p
[ xi′,i, j,r → [ xi′+1,i, j,t xi′+1,i, j, f ]# ]<i′+1,r>
for 1 ≤ i < i′ ≤ n,1 ≤ j ≤ m, r ∈ {t, f }
[ xi′+1,i, j,r[ ]<i′+1,r> ]<i′,r′> → [[ xi′+1,i, j,r ]<i′+1,r> ]<i′,r′>
for 1 ≤ i < i′ ≤ n,1 ≤ j ≤ p, r, r′ ∈ {t, f }
[ xi,i, j,t → [ ci, j,t ci, j, f ]# ]<i,t> for 1 ≤ i < n,1 ≤ j ≤ p
[ xi,i, j, f → [ ci, j,t ci, j, f ]# ]<i, f > for 1 ≤ i < n,1 ≤ j ≤ p
[ xn,n, j,t → [ cn, j,t ]# ]<n,t> for 1 ≤ j ≤ p
[ xn,n, j, f → [ cn, j, f ]# ]<n, f > for 1 ≤ j ≤ p

[ [ ci, j,r ]# ]<i,r′> → [ ci, j,r [ ]# ]<i,r′>
for 1 ≤ i ≤ n,1 ≤ j ≤ p, r, r′ ∈ {t, f }
[ ci, j,r [ ]<i+1,r> ]<i,r> → [[ ci, j,r ]<i+1,r> ]<i,r>
for 1 ≤ i < n,1 ≤ j ≤ p, r ∈ {t, f }
[ ci, j,r → [ ci+1, j,t ci+1, j, f ]#]<i′,r>
for 1 ≤ i′ ≤ i < n,1 ≤ j ≤ p, r ∈ {t, f }

6.6 Rules to check if all clauses are satisfied
[ zn → [d0]# ]<n,r> for r ∈ {t, f }
[ cn, j,r → [ ] j ]<n,r′> for 1 ≤ j ≤ p, r, r′ ∈ {t, f }
[d j [ ] j+1 ]<n,r> → [[d j] j+1 ]<n,r> for 0 ≤ j < p, r ∈ {t, f }
[ cn, j,r → [ ] j ]<n,r> for 1 ≤ j ≤ p, r ∈ {t, f }
[d j → [d j+1 ]# ]i+1 for 0 ≤ j < p
[ [d j ]# ] j → [d j [ ]# ] j for 0 ≤ j ≤ p, r ∈ {t, f }
[ [d j ] j ]<n,r> → [d j [ ] j ]<n,r>for 0 ≤ j ≤ p, r ∈ {t, f }
[dp → [dn,r ]# ]<n,r> for r ∈ {t, f }
[ [dn,r ]# ]<n,r> → [dn,r [ ]# ]<n,r> for r ∈ {t, f }

6.7 Rules to check if quantifiers are satisfied
[ [di,r ]<i,r> ]<i−1,r′> → [di,r [ ]<i,r> ]<i−1,r′>
for 1 ≤ i ≤ n, r, r′ ∈ {t, f }
[di+1,r → [ ]<i,∃,r,r′> ]<i,r′> for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[di+1,r → [ ]<i,∀,r,r′> ]<i,r′> for 2 ≤ i ≤ n, i even, r, r′ ∈ {t, f }
60



D. Orellana-Martín, L. Valencia-Cabrera and M.J. Pérez-Jiménez Theoretical Computer Science 908 (2022) 56–63
[d′ [ ]<i,∃,r,r′> ]<i,r′> → [[d′ ]<i,∃,r,r′> ]<i,r′>
for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[d′ → [di,r′ ]#]<i,∃,r,r′> for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[ [d<i,r′> ]# ]<i,∃,r,r′> → [d<i,r′> [ ]# ]<i,∃,r,r′>
for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[ [d<i,r′> ]<i,∃,r,r′> ]<i,r′> → [d<i,r′> [ ]<i,∃,r,r′> ]<i,r′>
for 1 ≤ i ≤ n, i odd, r, r′ ∈ {t, f }
[d′′ [ ]<i,∀,r,r′> ]<i,r′> → [[d′′ ]<i,∀,r,r′> ]<i,r′>
for 2 ≤ i ≤ n, i even, r, r′ ∈ {t, f }
[d′′ → [d′

r ]#]<i,∀,r,r′> for 2 ≤ i ≤ n, i even, r, r′ ∈ {t, f }
[ [d′

r ]# ]<i,∀,r,r′> → [d′
r [ ]# ]<i,∀,r,r′> for 1 ≤ i ≤ n, r, r′ ∈ {t, f }

[ [d′
r ]<i,∀,r,r′> ]<i,r′> → [d′

r [ ]<i,∀,r,r′> ]<i,r′>
for 1 ≤ i ≤ n − 1, r, r′ ∈ {t, f }
[d′

r′′ [ ]<i,∀,r,r′> ]<i,r′> → [[d′ ]<i,∀,r,r′> ]<i,r′>
for 2 ≤ i ≤ n, i even, r, r′, r′′ ∈ {t, f }, r �= r′′
[d′

r′′ → [di,r′ ]#]<i,∀,r,r′> for 2 ≤ i ≤ n, i even, r, r′, r′′ ∈ {t, f }, r �= r′′
[ [di,r′ ]# ]<i,∀,r,r′> → [di,r′ [ ]# ]<i,∀,r,r′> for1 ≤ i ≤ n, r, r′ ∈ {t, f }
[ [di,r′ ]<i,Q ,r,r′> ]<i,r′> → [di,r′ [ ]<i,Q ,r,r′> ]<i,r′>
for 1 ≤ i ≤ n − 1, r, r′ ∈ {t, f }, Q ∈ {∃,∀}
[d1,r → [ ]yes ]skin for r ∈ {t, f }

7. iin = skin.
8. iout = env .

4.1. An overview of the computation

Let ϕ∗ with n ≥ 2 variables and p ≥ 2 clauses be an instance of QSAT as defined before. Let us suppose that the number 
of variables, n, and the number of clauses, p, is at least 2. We consider a polynomial encoding (cod, s) from QSAT in 
� as follows: for each formula ϕ associated to an existential fully quantified formula ϕ∗ with n variables and p clauses, 
s(ϕ) = 〈n, p〉 and cod(ϕ) = {xi, j | xi ∈ C j} ∪ {xi, j | ¬xi ∈ C j}.

The proposed solution follows a brute force scheme of recognizer P systems with evolutional communication rules and 
membrane creation without environment, and it consists of the following stages.

4.1.1. Generation and first checking stage
By applying rules from 6.4, a membrane structure is generated. In some sense, it reminds a binary tree, but having some 

“auxiliary” membranes, labelled by #, used to generate the objects zi+1,t and zi+1, f . The truth assignment of each branch 
is determined by the labels of the membranes forming that branch. Besides, using rules from 6.5, objects from cod(ϕ) will 
be passed throughout the membrane structure in such a way that in the level i, the i-th variable will be checked and, if 
the corresponding truth assignment makes true a literal in a clause j, then objects ci, j,t and ci, j, f will appear, that will be 
passed by the membranes up to a membrane labelled by < n, r >, for r ∈ {t, f }. In this stage, the minimalist creation rules 
semantics take special importance. Since two creation rules cannot be applied at the same time in the same membrane, the 
system has to make the objects wait the correct amount of time in order to go up to the different “levels” of the system at 
the same time. This protocol makes the system slower than it would if maximalist semantics are chosen. On the other hand, 
the selected semantics make it easier to control that, in each computational step t + 1, at most 2 · m new membranes can 
be created, where m is the number of membranes present in the configuration Ct . This stage takes 2n2 · 2p steps.

4.1.2. Second checking stage
Rules from 6.6 are in charge of checking whether all the clauses are satisfied in a truth assignment. For that, if there 

exists an object cn, j,r in a membrane labelled by < n, r >, it means that the corresponding truth assignment makes true 
the clause j. Therefore, a membrane labelled by j is created within such a membrane < n, r >. Object d0 will go through 
all membranes within the membrane < n, r >, creating a “auxiliary” membrane within them and passing to the next one, 
possibly arriving to membrane p. In that case, object dp creates a new auxiliary membrane with an object dn,r , that will be 
useful in the next stage. This stage takes 3p + 5 steps.

4.1.3. Quantifier checking stage
If an object di,r (r ∈ {t, f }) appears in a membrane, then the quantifier in this level is checked. Depending on the parity of 

the level, either a universal or an existential quantifier is checked. In the generation stage, objects d′ and d′′ were created for 
this purpose. On the one hand, when an existential quantifier is being checked, an object d′ will exist in such a membrane, 
and will change into an object di−1,r if and only if there is at least one object di,r that has created a membrane < i, ∃, r, r′ >. 
On the other hand, when a universal quantifier is to be checked, an object d′′ will be present in such a membrane, and 
will change into an object di−1,r if and only if there are two objects di,r that have created two membranes labelled by 
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< i, ∀, r, r′ >. These objects will reach the skin membrane giving way to the last stage. This whole stage is computed by the 
application of rules from 6.6. This stage takes 8n − 6 steps if n is even and 8n steps if n is odd.

4.1.4. Output stage
Counters α and α′ are used in this stage in order to know if an object d1,r has reached the skin membrane. In such 

a case, a membrane labelled by yes will be created, and when object αn2·p+5n+2p+3 reaches the skin membrane, it will 
go into membrane yes and will change into an object yes that will be sent to the environment. In the case that object 
d1,r does not appear in the skin membrane, object α′

n2·p+5n+2p+4
will generate a membrane labelled by no, that will make 

the counter αn2·p+5n+2p+3 change into an object no, that will be sent to the environment. Rules from 6.2 and 6.3 are the 
responsible of this stage, that takes p + 8 steps if n is even and p + 9 steps if n is odd.

4.2. Formal verification

Next, we prove that � provides a polynomial time and uniform solution to QSAT.

Theorem 1. QSAT ∈ PMCCCES(1,1)

The family of P systems � verifies the following:

• Every system of the family � is polynomially uniform by Turing machines because, for each n, p ∈ N , the rules of 
�(〈n, p〉) of the family are recursively defined from n, p ∈ N and the amount of resources needed to build an element 
of the family is of a polynomial order in n and p.

• The pair (cod, s) of polynomial-time computable functions defined fulfill the following: for each formula ϕ∗ of QSAT, 
s(ϕ∗) is a natural number, cod(ϕ∗) is an input multiset of the system �(s(ϕ∗)) and for each ϕ ∈ I Q S AT , s−1(ϕ∗) is a 
finite set.

• The family � is polynomially bounded: for each input formula ϕ∗ of QSAT, the P system �(〈n, p〉) with input cod(ϕ∗)
takes k steps, with k ≤ 2n2 + 10n + 4p + 12 steps, being n the number of variables and p the number of clauses of ϕ∗ .

• The family � is sound with regard to (X, cod, s): for each formula ϕ∗ , if the computation of �(s(ϕ∗)) + cod(ϕ∗) is an 
accepting computation, then ϕ∗ is true.

• The family � is complete with regard to (X, cod, s): for each input formula ϕ∗ such that it is satisfiable, the computation 
of �(s(ϕ∗)) + cod(ϕ∗) is an accepting computation.

Corollary 1. PSPACE ⊆ PMC
̂CCES(1,1)

Proof. It suffices to know that QSAT is a PSPACE-complete problem, QSAT ∈ PMC
̂CCES(1,1)

and the class PMC
̂CCES(1,1)

(in 
general, PMCR) is closed under polynomial-time reduction and under complementation [30].

Corollary 2. PSPACE ⊆ PMC
̂CCES(2)

Proof. It suffices to see that, in the family � the maximum amount of objects in an evolutional communication rule is 2.

5. Conclusions and future work

In this work, a previous result has been improved, passing from being able to solve a NP-complete problem (SAT) by 
means of a family of membrane systems from CCEC(2, 2) to solving a PSPACE-complete problem (QSAT) by means of a 
family of membrane systems from ̂CCES(1, 1). This is a demonstration of the power of creation rules, showing that rules 
with a minimal number of objects both in the LHS and in the RHS are enough to reach presumed efficiency; that is, to solve 
problems supposed not to be solvable in polynomial time by a Turing machine. The use of division rules and separation rules 
with this length of evolutional symport/antiport rules give tissue P systems the power to efficiently solve only problems 
from P [18,19]. An interesting research work would be to investigate the same result for tissue-like membrane systems.

From the beginning, creation rules have been only used in cell P systems, because of the biological inspiration of the use 
of parts of a membrane to create a new membrane within it, but using creation rules in tissue P systems, where new cells 
would be created in the environment, and not in the cell itself, would be an interesting research line.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
62



D. Orellana-Martín, L. Valencia-Cabrera and M.J. Pérez-Jiménez Theoretical Computer Science 908 (2022) 56–63
Acknowledgements

This work was supported by “FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación/ _Proyecto 
(TIN2017-89842-P)” - MABICAP. D. Orellana-Martín also acknowledges Contratación de Personal Investigador Doctor. (Con-
vocatoria 2019) 43 Contratos Capital Humano Línea 2. Paidi 2020, supported by the European Social Fund and Junta de 
Andalucía.

References
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[5] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Gener. Comput. 20 (3) (2002) 295–305.
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[26] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing, Oxford University Press, Inc., USA, 2010.
[27] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages. 3 vols., Springer-Verlag, Berlin, Heidelberg, 1997.
[28] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero, A linear solution of subset sum problem by using membrane creation, in: J. Mira, J.R. 

Álvarez (Eds.), Mechanisms, Symbols, and Models Underlying Cognition, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 258–267.
[29] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero, A linear solution for QSAT with membrane creation, in: R. Freund, G. Păun, G. 
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