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Abstract. The usefulness of P systems with membrane creation for
solving NP problems has been previously proved (see [2, 3]), but, up
to now, it was an open problem whether such P systems were able to
solve PSPACE-complete problems in polynomial time. In this paper
we give an answer to this question by presenting a uniform family of
P system with membrane creation which solves the QSAT-problem in
linear time.

1 Introduction

The power of P systems as a tool for efficiently solving NP problems has been 
widely proved. Many examples have been proposed in the framework of P sys-
tems with active membranes (with polarizations) and in the framework of P 
systems with membrane creation.

The complexity class of NP problems deals with the time needed to solve 
a problem, i.e., NP is the class of problems which can be solved by a non-
deterministic one-tape Turing machine program where the number of steps is 
polynomially bounded (see [1]). The key of solving such problems in polyno-
mial time by means of P systems is the creation of an exponential amount of 
workspace (membranes) in polynomial time.

When we consider the resources needed in a computation, we obviously have to 
consider the time, i.e., the number of steps of our device, but in practice, we also 
need to consider the amount of memory or storage required by the computation. 
If we consider a Turing machine computation, the space is the number of distinct 
tape squares visited by the write-read head of the machine. Since the number of 
visited squares cannot be greater than the number of steps in the computation, 
we have that, if the number of steps is polynomially bounded, then the number 
of visited squares is also polynomially bounded. Therefore, any problem solvable 
in polynomial time is also solvable in polynomial space.

PSPACE (respectively, NPSPACE) is the class of decision problems that 
are solvable by a deterministic (respectively, non–deterministic) Turing machine 
using a polynomial amount of space. These complexity classes are closed under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132458563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


polynomial time reduction. Savitch’s theorem says that each non–deterministic
Turing machine using f(n) space can be simulated by a deterministic Turing
machine using only f(n)2 space (for time complexity, such a simulation seems to
require an exponential increase in time). Bearing in mind that a Turing machine
running in f(n) ≥ n time can use at most f(n) space we have P ⊆ PSPACE and
NP ⊆ NPSPACE. So, P ⊆ NP ⊆ NPSPACE = PSPACE. It is unknown
whether any of these containments are strict.

A decision problem in PSPACE such that every problem in PSPACE is
polynomial time reducible to it, is called PSPACE–complete. If a PSPACE–
complete problem belongs to P (respectively, NP), then P = PSPACE (re-
spectively, NP = PSPACE).

In this paper, we present the first polynomial time solution to the QSAT

problem, a well known PSPACE-complete problem (see L.J. Stockmeyer and
A.R. Meyer in [14]) using a family of recognizer P systems with membrane
creation. Taking into account that the class of all decision problems solvable
in polynomial time by a family of such P systems is closed under polynomial–
time reduction, this result shows that all PSPACE problems can be solved in
polynomial time by P systems with membrane creation.

The paper is organized as follows. In the next section, recognizer P systems
are briefly described. In Section 3 the variant of P systems with membrane cre-
ation are recalled with a short discussion about their semantics. A linear–time
solution to the QSAT problem is presented in the following section, with a
short overview of the computation. Finally, some conclusions are given in the
last section.

2 Recognizer P Systems

Recognizer P systems were introduced in [13] and are the natural framework
to study and solve decision problems, since deciding whether an instance of a
problem has an affirmative or negative answer is equivalent to deciding if a string
belongs or not to the language associated with the problem.

In the literature, recognizer P systems are associated with P systems with
input in a natural way. The data related to an instance of the decision prob-
lem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an in-
put membrane. The output of the computation (yes or no) is sent to the en-
vironment. In this way, P systems with input and external output are devices
which can be seen as black boxes, in which the user provides the data before
the computation starts and the P system sends to the environment the out-
put in the last step of the computation. Another important feature of P sys-
tems is the non-determinism. The design of a family of recognizer P system
has to consider it, because all possibilities in the non-deterministic computa-
tions must produce the same answer. This can be summarized in the following
definitions.



Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with input
m is (µ, w1, . . . , wiΠ ∪ m, . . . , wp).

Definition 2. A recognizer P system is a P system with input, (Π, Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All computations halt.
3. If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

We say that C is an accepting computation (respectively, rejecting computation)
if the object yes (respectively, no) appears in the environment associated with
the corresponding halting configuration of C.

Definition 3. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N in
polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction and
complement (see [13]). In this paper we will deal with the class MC of recognizer
P systems with membrane creation.



3 P Systems with Membrane Creation

In this section we recall the description of cellular devices (P systems) with
membrane creation.

Basically, a P system1 consists of a hierarchical membrane structure where
each membrane has associated a multiset of objects and a set of rules express-
ing how these objects can evolve. The membrane structure of a P system is a
hierarchical arrangement of membranes embedded in a skin membrane, which
separates the system from its environment. A membrane without any membrane
inside is called elementary. Each membrane determines a region (the space en-
closed between the membrane and the membranes immediately inside it), which
can contain a multiset of objects. Associated with the regions there are rules that
can transform and move those objects.

There are two ways of producing new membranes in living cells: mitosis (mem-
brane division) and autopoiesis (membrane creation, see [5]). Both ways of gener-
ating new membranes have given rise to different variants of P systems: P systems
with active membranes, where the new workspace is generated by membrane di-
vision, and P systems with membrane creation, where the new membranes are
created from objects. Both models have been proved to be universal, but up
to now there is no theoretical result proving that these models simulate each
other in polynomial time. P systems with active membranes have been success-
fully used to design solutions to NP-complete problems, as SAT [13], Subset
Sum [10], Knapsack [11], Bin Packing [12], and Partition [4], but as Gh. Păun
pointed out in [9] “membrane division was much more carefully investigated than
membrane creation as a way to obtain tractable solutions to hard problems”. The
first results in this way have recently appeared, showing that NP problems can
also be solved in this framework (see [2, 3]).

Recall that a P system with membrane creation is a construct of the form
Π = (O, H, µ, w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not necessar-
ily in a one-to-one manner) with elements of H and w1, . . . , wm are strings
over O, describing the multisets of objects placed in the m regions of µ;

3. R is a finite set of rules, of the following forms:
(a) [a → v]h where h ∈ H , a ∈ O, and v is a string over O describing

a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

(b) a[ ]h → [b]h where h ∈ H , a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane, possibly modified.

(c) [a]h → [ ]h b where h ∈ H , a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane, possibly modified.

1 A layman-oriented introduction can be found in [8], a comprehensive monograph in
[7], and the latest information about P systems is available at [15].



(d) [a]h → b where h ∈ H , a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in
the rule can be modified.

(e) [a → [v]h2 ]h1 where h1, h2 ∈ H , a ∈ O, and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

Rules are applied according to the following principles:

– Rules from (a) to (d) are used as usual in the framework of membrane
computing, that is, in a maximally parallel way. In one step, each object in a
membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can evolve by a rule of
any form must do it (with the restrictions indicated below).

– Rules of type (e) are used also in a maximally parallel way. Each object a
in a membrane labelled with h1 produces a new membrane with label h2
placing in it the multiset of objects described by the string v.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the rules of type (d) since a membrane can
be dissolved only once.

We denote by MC the class of recognizer P systems with membrane creation.

4 Solving QSAT in Linear Time

In this section we design a family of recognizer P systems with membrane cre-
ation (and using dissolution rules) which solves the QSAT problem (the quan-
tified satisfiability problem).

Given a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with
Boolean variables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn)
(where Qn is ∃ if n is odd, and Qn is ∀, otherwise) is said to be the (existential)
fully quantified formula associated with ϕ(x1, . . . , xn).

We say that ϕ∗ is satisfiable if there exists a truth assignment, σ, over {i |
1 ≤ i ≤ n ∧ i odd} such that each extension, σ∗, of σ over {1, . . . , n} verify
σ∗(ϕ(x1, . . . , xn)) = 1.



The QSAT problem is the following one: Given a Boolean formula
ϕ(x1, . . . , xn) in conjunctive normal form, determine whether or not the (ex-
istential) fully quantified formula ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn) is satisfi-
able.

It is well known that QSAT is a PSPACE–complete problem [6].
Next, we provide a polynomial time solution of QSAT by a family of recog-

nizer P systems with membrane creation and using dissolution rules, according
to Definition 3. We will address the resolution via a brute force algorithm, in
the framework of recognizer P systems with membrane creation, which consists
in the following phases:

– Generation and Evaluation Stage: Using membrane creation we will generate
all possible truth assignments associated with the formula and evaluate it on
each one. Specifically, we construct a binary complete tree where the leaves
encode all possible truth assignment associated with the formula, and the
nodes whose level is even (respectively, odd) are codified by an OR gate (re-
spectively, AND gate). In this stage, the values of the formula corresponding
to each truth assignment is obtained in the leaves.

– Checking Stage: In each membrane we check whether or not the formula
evaluates true on the truth assignment associated with it. Specifically, we
proceed to compute the output of that Boolean circuit (that only have gates
AND, OR) from the inputs obtained in the leaves by propagating values
along the wires and computing the respective gates until the output gate
(the root of the tree) has assigned a value.

– Output Stage: The system sends out to the environment the right answer
according to the result of the previous stage.

Let us consider the pair function 〈 , 〉 defined by 〈n, m〉 = ((n + m)(n + m +
1)/2)+n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given Boolean formula, ϕ(x1, . . . , xn) =
C1 ∧ · · · ∧ Cm, in conjunctive normal form, with n variables and m clauses,
we construct a P system Π(〈n, m〉) processing the (existential) fully quantified
formula ϕ∗ associated with ϕ (when an appropriate input is supplied). The family
presented here is:

Π = {(Π(〈n, m〉), Σ(〈n, m〉), i(〈n, m〉)) | (n, m) ∈ N
2}.

For each element of the family, the input alphabet is

Σ(〈n, m〉) = {xi,j , xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n, m〉) = t, and the P system

Π(〈n, m〉) = (Γ (〈n, m〉), H(〈n, m〉), µ, ws, w<t,∨>, R(〈n, m〉))

is defined as follows:



• Working alphabet:

Γ (〈n, m〉) = Σ(〈n, m〉)
∪ {zj,c | j ∈ {0, . . . n}, c ∈ {∧, ∨} }
∪ {zj,c,l | j ∈ {0, . . . , n − 1}, c ∈ {∧, ∨} l ∈ {t, f}}
∪ {xi,j,l, xi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . , m}, l ∈ {t, f}}
∪ {xi,j | j ∈ {1, . . . , n}, i ∈ {1, . . . , m}}
∪ {ri, ri,t, ri,f | i ∈ {1, . . . , m}}
∪ {d1, . . . , dm, q, t0, . . . , t4, ans0, . . . , ans5, yes, no}
∪ {yes∨, yes∗, no∨, no∨, yes∧, no∧, no∗, yes∧, yes∧, no∨, no∧}
∪ {Y ES, NO}.

• The set of labels, H(〈n, m〉), is

{< l, c >| l ∈ {t, f}, c ∈ {∧, ∨}} ∪ {a, s, 1, . . . , m}.

• Initial membrane structure: µ = [ [ ]<t,∨> ]s.
• Initial multiset: ws = ∅, w<t,∨> = {z0,∧,t z0,∧,f}.
• Input membrane: i(〈n, m〉 =< t, ∨ >.
• The set of evolution rules, R(〈n, m〉), consists of the following rules (recall that

λ denotes the empty string and if c is ∧ then c is ∨ and if c is ∨ then c is ∧):

1. [zj,c → zj,c,t, zj,c,f ]<l,c>

[zj,c,l → [zj+1,c]<l,c>]<l′,c>

}
for l, l′ ∈ {t, f}, c ∈ {∨, ∧},

j ∈ {0, . . . , n − 1}.

The goal of these rules is to create one membrane for each truth assignment
to the variables of the formula. Firstly, the object zj,c evolves to two objects, one
for the assignment true (the object zj,c,t), and a second one for the assignment
false (the object zj,c,f). In a second step these objects will create two membranes.
The new membrane with t in its label represents the assignment xj+1 = true; on
the other hand, the new membrane with f in its label represents the assignment
xj+1 = false.

2. [xi,j → xi,j,txi,j,f ]<l,c>

[xi,j → xi,j,txi,j,f ]<l,c>

[ri → ri,tri,f ]<l,c>

⎫⎪⎬
⎪⎭ for l ∈ {t, f} i ∈ {1, . . . , m},

c ∈ {∨, ∧} j ∈ {1, . . . , n}.

These rules duplicate the objects representing the formula so it can be eval-
uated on the two possible assignments, xj = true (xi,j,t, xi,j,t) and xj = false
(xi,j,f , xi,j,f ). The objects ri are also duplicated (ri,t, ri,f ) in order to keep track
of the clauses that evaluate true on the previous assignments to the variables.

3. xi,1,t[ ]<t,c> → [ri]<t,c>

xi,1,t[ ]<t,c> → [λ]<t,c>

xi,1,f [ ]<f,c> → [λ]<f,c>

xi,1,f [ ]<f,c> → [ri]<f,c>

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for
i ∈ {1, . . . , m},
c ∈ {∨, ∧}.



According to these rules the formula is evaluated in the two possible truth
assignments for the variable that is being analyzed. The objects xi,1,t (resp.
xi,1,f ) get into the membrane with t in its label (resp. f) being transformed
into the objects ri representing that the clause number i evaluates true on the
assignment xj+1 = true (resp. xj+1 = false). On the other hand, the objects
xi,1,t (resp. xi,1,t) get into the membrane with f in its label (resp. t) producing
no objects. This represents that these objects do not make the clause true in the
assignment xj+1 = true (resp. xj+1 = false).

4. xi,j,l[ ]<l,c> → [xi,j−1]<l,c>

xi,j,t[ ]<l,c> → [xi,j−1]<l,c>

ri,t[ ]<l,c> → [ri]<l,c>

⎫⎪⎬
⎪⎭ for

l ∈ {t, f}, i ∈ {1, . . . , m},
c ∈ {∨, ∧}, j ∈ {2, . . . , n}.

In order to analyze the next variable the second subscript of the objects xi,j,l and
xi,j,l are decreased when they are sent into the corresponding membrane labelled
with l.Moreover, following the last rule, the objects ri,l get into the newmembranes
to keep track of the clauses that evaluate true on the previous truth assignments.

5. [zn,c → d1 . . . dmq]<l,c>

}
for l ∈ {t, f} and c ∈ {∨, ∧}.

At the end of the generation stage the object zn will produce the objects
d1, . . . , dm and yes0, which will take part in the checking stage.

6. [di → [t0]i]<l,c>

ri,t[ ]i → [ri]i [ri]i → λ

[ts → ts+1]i [t2]i → t3

⎫⎪⎬
⎪⎭ for i ∈ {1, . . . , m},

s ∈ {0, 1}, c ∈ {∨, ∧}.

Following these rules each object di creates a new membrane with label i
where the object t0 is placed; this object will act as a counter. The object ri gets
into the membrane labelled with i and dissolves it preventing the counter, ti,
from reaching the object t2. The fact that the object t2 appears in a membrane
with label i means that there is no object ri, that is, the clause number i does not
evaluate true on the truth assignment associated with the membrane; therefore
neither does the formula evaluate true on the associated truth assignment.

7. [q → [ans0]a]<l,c>

t3[ ]a → [t4]a [t4]a → λ

[ansh → ansh+1]a, [ans5]a → yes

[ans5 → no]<l,c>

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for l ∈ {t, f} c ∈ {∨, ∧},
h = 0, . . . , 4.

The object q creates a membrane with label a where the object ans0 is placed.
The object ansh evolves to the object ansh+1; at the same time the objects t3
can get into the membrane labelled with a and dissolve it preventing the object
yes from being sent out from this membrane.



8. [yes]<l,c> → yesc [no]<l,c> → noc

[yes∨]<l,∨> → yes∗ [no∨ → no∨]<l,∨>

[yes∗ → yes∧]<l,∧> [no∨]<l,∨> → no∧
[no∨ → λ]<l,∧> [yes∨ → λ]<l,∧>

[no∧]<l,∧> → no∗ [yes∧ → yes∧]<l,∧>

[no∗ → no∨]<l,∨> [yes∧]<l,∧> → yes∨
[no∧ → λ]<l,∨> [yes∧ → λ]<l,∨>

[yes∗]s → yes [ ]s [no∧]s → no [ ]s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for l ∈ {t, f}.

This set of rules controls the output stage. After the evaluation stage, from
each working membrane we obtain an object yes or no depending on whether
the truth assignment associated with this membrane satisfies or not the formula.
On the contrary to the SAT problem, in QSAT it is not enough that one truth
assignment satisfies the formula, but the final answer is YES if an appropri-
ate combination of truth assignments according to the quantifiers ∃ and ∀ are
founded.

4.1 An Overview of the Computation

First of all we define a polynomial encoding of the QSAT problem in the family
Π constructed in the previous section. Given a Boolean formula in conjunctive
normal form, ϕ = C1 ∧ · · · ∧Cm such that V ar(ϕ) = {x1, . . . , xn}, and being ϕ∗

the (existential) fully quantified formula associated with it, we define s(ϕ∗) =
〈n, m〉 (recall the bijection mentioned in the previous section) and cod(ϕ∗) =
{xi,j | xj ∈ Ci} ∪ {xi,j | ¬xi,j ∈ Ci}.

Next we describe informally how the recognizer P system with membrane
creation Π(s(ϕ∗)) with input cod(ϕ∗) works.

In the initial configuration we have the input multiset cod(ϕ) and the ob-
jects z0,∧,t and z0,∧,f placed in the input membrane (membrane labelled with
< t, ∨ >). In the first step of the computation the object z0,∧,t creates a new
membrane with label < t, ∨ > which represents the assignment x1 = true and
the object z0,∧,f creates a new membrane with label < f, ∨ > which represents
the assignment x1 = false. The second component of the labels, i.e., ∧ and ∨
will be used in the output stage.

In these two new membranes the object z1,∨ is placed. At the same time the
input multiset representing the formula ϕ is duplicated following the two first
rules in group 2. In the next step, according to the rules in group 3, the formula
is evaluated on the two possible truth assignments for x1. In the same step the
rules in group 4 decrease the second subscript of the objects representing the
formula (xi,j,l, xi,j,l with j ≥ 2) in order to analyze the next variable. Moreover,
at the same time, the object z1,c produces the object z1,c,t and z1,c,f (c ∈ {∧, ∨})
and the system is ready to analyze the next variable. In this way, the generation
and evaluation stages go until all the possible assignments to the variables are
generated and the formula is evaluated on each one of them. Observe that it takes



two steps to generate the possible assignments for a variable and to evaluate the
formula on them; therefore the generation and evaluation stages take 2n steps.

The checking stage starts when the object zn,c produces the objects d1, . . . , dm

and the object q. In the first step of the checking stage each object di, for i =
1, . . . , m, creates a new membrane labelled with i where the object t0 is placed,
and the object q creates a new membrane with label a placing the object yes0 in it.

The objects ri,t, which indicate that the clause number i evaluates true on the
truth assignment associated with the membrane, are sent into the membranes by
the last rule in group 4 so the system keeps track of the clauses that are true. The
objects ri,t get into the membrane with label i and dissolves it in the following two
steps preventing the counter t2 from dissolving the membrane and producing the
object t3 according to the last rule in group 6. If for some i there is no object ri (this
means that the clause i does not evaluate true on the associated assignment) the
object t2 will dissolve the membrane labelled with i producing the object t3 that
will get into the membrane with label a where the object ansh evolves following
the rules in 7. The object t4 dissolves the membrane with label a preventing the
production of the object ans5. Therefore the checking stage takes 6 steps.

Finally the output stage takes place according to the rules in group 8. If some
object ans5 is present in anymembrane with label < l, c >, (l ∈ {t, f}, c ∈ {∧, ∨}),
this means that there exists at least one clauses not satisfied by the truth assign-
ment associated with the membrane, and by the last rule in group 7, we obtain no
in this membrane. Otherwise, the object ans5 will be inside the membrane with
label a, it will dissolve the membrane, and send yes to the working membrane.

At this point, in each of the 2n working membranes we have an object yes or
no depending on if the associated truth assignment satisfies or not the formula
ϕ. In the last steps we control the flow of the objects yes and no from the
working membranes to the environment. Basically, the process is the following.
If there are one object yes inside a membrane with ∨ in its label, this object
dissolves the membrane and sends out another yes. If this does not happen, i.e.,
if two objects no are inside a membrane with label ∨, the membrane is dissolved
and no is sent out. Analogously, if there are one object no inside a membrane
with ∧ in its label, this object dissolves the membrane and sends out another no.
Otherwise, if two objects yes are inside a membrane with label ∨, the membrane
is dissolved and yes is sent out.

Consequently, the family Π of recognizer P systems with membrane creation
using dissolution rules solves in polynomial time QSAT according to Definition
3. Hence, we have:

Theorem 1. QSAT ∈ PMCMC

From this theorem we deduce the following result:

Corollary 1. PSPACE ⊆ PMCMC

Proof. It suffices to make the following remarks: the QSAT problem is
PSPACE–complete, QSAT ∈ PMCMC , and the complexity class PMCMC
is closed under polynomial time reduction. ��



5 Conclusions and Future Work

P systems are computational devices whose power has to be studied in a deeper
extent. In the last time, several paper have explored this power, both in the
framework of P systems with active membranes and P systems with membrane
creation. These papers have shown that NP-complete problems are solvable (in
polynomial time) by families of recognizer of P systems of these types, according
to Definition 3. In this paper we have shown that PSPACE–complete problems
can also be solved (in polynomial time) by families of recognizer P systems with
membrane creation, in a uniform way.

Both models (active membranes and membrane creation) have been proved to
be universal, but up to now there is no theoretical result proving that these mod-
els simulate each other in polynomial time. The specific techniques for designing
solutions to concrete problems (generation, evaluation, checking, and output
stages) are quite different, so the simulation of one model in the other one is not
a trivial question. This seems an interesting open problem to be considered in
the future.
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8. Gh. Păun, M.J. Pérez-Jiménez: Recent computing models inspired from biology:

DNA and membrane computing, Theoria, 18, 46 (2003), 72–84.
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