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Abstract: P systems have been known to provide efficient polynomial (often linear) deterministic
solutions to hard problems. In particular, cP systems have been shown to provide very crisp and
efficient solutions to such problems, which are typically linear with small coefficients. Building on a
recent result by Henderson et al., which solves SAT in square-root-sublinear time, this paper proposes
an orders-of-magnitude-faster solution, running in logarithmic time, and using a small fixed-sized
alphabet and ruleset (25 rules). To the best of our knowledge, this is the fastest deterministic solution
across all extant P system variants. Like all other cP solutions, it is a complete solution that is not a
member of a uniform family (and thus does not require any preprocessing). Consequently, according
to another reduction result by Henderson et al., cP systems can also solve k-colouring and several
other NP-complete problems in logarithmic time.

Keywords: membrane computing; P systems; cP systems; NP-complete; NP-hard; SAT; logarithmic
time complexity
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1. Introduction

The P-versus-NP problem remains one of the most important unsolved problems in
computational complexity theory. Loosely following Sipser [1] and keeping the discussion
focused on deterministic algorithms—as we do throughout this paper—the class P can be
viewed as the class of decision problems that can be solved “quickly”, whereas NP can be
viewed as the possibly larger class of decision problems with solutions that can be verified
“quickly”, where “quickly” is taken in the theoretical sense, i.e., polynomial time. It is
straightforward to see that P ⊆ NP. However, it is still unknown whether this inclusion is
strict or not, in other words, whether P ( NP or P = NP. In a nutshell, the big theoretical
question is whether every problem of which the solution can be verified in polynomial time
(NP) can also be solved in polynomial time (P).

The current widespread opinion is that P ( NP, as there are quite a few “hard” prob-
lems that can be “quickly” verified, but do not seem to have “quick” solutions, with
their fastest known solutions taking time substantially greater than any polynomial (e.g.,
exponential). Therefore, many studies have investigated different approaches to solve
such hard problems in a reasonable amount of time (e.g., polynomial or even linear time).
Such methods include approximation [2], fixing parameters [3], or the use of alternative
theoretical models, such as P systems [4–9].

P systems—also known as membrane computing—are a family of parallel and dis-
tributed biologically inspired models of computing, proposed by Gheorghe Păun in [10],
first as cell-like P systems, then followed by many variants, such as P systems with active
membranes [11], tissue-like P systems [12], neural-like P systems [13], and P systems with
compound terms (cP systems) [14,15]. These systems have been found to have theoretically
time-efficient solutions to many hard problems, even beyond NP, e.g., in PSPACE [16–21].

Axioms 2022, 11, 66. https://doi.org/10.3390/axioms11020066 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11020066
https://doi.org/10.3390/axioms11020066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2498-1002
https://orcid.org/0000-0001-9977-525X
https://orcid.org/0000-0001-9954-3280
https://orcid.org/0000-0001-9233-5059
https://orcid.org/0000-0002-9296-7408
https://doi.org/10.3390/axioms11020066
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11020066?type=check_update&version=2


Axioms 2022, 11, 66 2 of 19

It may be worthwhile to note that, with the exception of cP systems, most other
P systems solutions are actually uniform families of related solutions, with one custom
solution (e.g., custom alphabet and ruleset) for each problem size n. Here, uniform means
that each custom size n solution is built via an additional preprocessing phase, by means of
an ad-hoc polynomial-time algorithm (typically not described but reasonably evident). In
contrast, cP solutions are given by fixed-size alphabets and rulesets (typically small), while
running with the same theoretical efficiency, or even faster.

In this work, we present a novel deterministic cP solution to SAT, running in logarithmic
time, O(log n). To the best of our knowledge, this represents a significant breakthrough
in membrane computing, being orders-of-magnitude faster than all previous deterministic
solutions. As mentioned, we do not consider here the interesting area of non-deterministic
computations, where there are several interesting results, e.g., using neural-like P sys-
tems [22].

Our novel solution builds upon and substantially improves the already very fast
cP solution to SAT recently proposed by Henderson et al. [4], which runs in square-root
time, O(

√
n). The solution presented here is based on a fast method of creating and

evaluating a complete binary tree of height n, in O(log n) time. When measuring the
number of rule templates, we see that our new solution is comparable to those of previous
P systems studies. However, when counting rules rather than the templates, we see that
other solutions can have an exponential number of rules.

Using the results presented in this paper, reductions such as those presented in Stamm-
Wilbrandt [23] and Henderson et al. [4] will enable more logarithmic time solutions,
O(log n), to quite a few other NP-complete problems, such as k-colouring.

However, to the best of our knowledge, all these efficient solutions are still theoretical
and have not yet been practically implemented. Designing efficient, practical implementa-
tions is a topic of current research.

2. Background

In this section, we briefly recall the well-known Boolean satisfiability problem (SAT)
and we offer a short introduction to cP systems.

2.1. The SAT Problem

SAT is one of the best-known examples of an NP-complete problem and is a relatively
simple but central problem in many areas of computer science (e.g., complexity, artificial
intelligence, cryptography, etc.). Like all other NP-complete problems, it has no known
(worst-case) polynomial solution in the Turing machine model (or related models). In this
paper, we show that cP systems can theoretically solve SAT in sublinear logarithmic time.

SAT determines if the variables of a given Boolean formula can be assigned Boolean
values that evaluate the formula to true. A Boolean formula is an expression involving
Boolean variables and Boolean operations. A Boolean formula is in conjunctive normal
form (CNF) if it is expressed as a conjunction (∧) of clauses. A clause is a disjunction (∨) of
literals. A literal is a variable or its negation (here indicated by overbars).

Basic SAT assumes that the formulae are given in CNF, with implicit existential
quantifiers on all variables. The existential quantifier (∃) results are true if one of the
possible assignments of the variables allows the formula to be true.

Example 1. For example, the following Boolean formula with two variables is in CNF:

(x1 ∨ x2) ∧ (x1 ∨ x2) .

SAT interprets the above formula as the following decision problem:

∃x1∃x2(x1 ∨ x2) ∧ (x1 ∨ x2) .

The size of the problem is given by the number of variables, n, e.g., n = 2, for
the formula of Example 1. There are straightforward bijections between several sets of
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size 2n: (i) candidate solutions (variable allocations) of a CNF formula with n variables,
(ii) (characteristic functions for) subsets of set {1, 2, . . . , n}, (iii) branches (root-to-leaf paths)
of the complete binary tree of height n. For case (iii), a tree path starting from a root can be
naturally labelled as a string of bits, where bits indicates its left/right “choices” (turns) in
the top-down (root-to-leaf) order.

Example 2. Consider the complete binary tree of Figure 1 of height n = 2, with 4 branches, in
left-to-right order:

Branch SectionAllocations Subset
00 x1 = 0, x2 = 0 {} (empty)
01 x1 = 0, x2 = 1 { 2 }
10 x1 = 1, x2 = 0 { 1 }
11 x1 = 1, x2 = 1 { 1, 2 }

Note that branches 01 and 10 correspond to solutions for the formula of Example 1.

λ

0 1

00 01 10 11

x1 = 0

x2 = 0

x1 = 0

x2 = 1

x1 = 1

x2 = 0

x1 = 1

x2 = 1

x1 = 0 x1 = 1

Figure 1. Complete binary tree of height 2. Nodes hold branch labels, and are decorated with
attributes that are explicit corresponding variable allocations. Branches 01 and 10 correspond to
solutions for the formula of Example 1, (x1 ∨ x2) ∧ (x1 ∨ x2).

Our cP solution is based on a parallel construction of complete binary tree branches,
followed by a parallel formula evaluation on these branches.

2.2. cP Systems

In this paper we propose a novel cP solution to a hard problem; to the best of our
knowledge, this is the first P solution running in logarithmic time, which represents an
improvement of orders of magnitude.

P systems, also known as membrane computing, are a framework for designing
computational models inspired by biology. Similarly to many other P systems variants,
such as cell-like and tissue-like P systems, cP systems are based on nested labelled multisets
and offer: (i) unbounded access to resources, such as space and processing power; (ii) top-
level cells, with sub-cells organised into nested tree structures; (iii) graph based networks of
top-level cells; and (iv) evolutions driven by formal multiset rewriting rules, with additional
messaging primitives between top-level cells.

However, distinctively, cP systems’ multiset rewriting rules are generic, with variables
instantiated by one-way unification (pattern matching). In conjunction with nesting, generic
rules provide useful logical and associative capabilities, including good support for emu-
lating arithmetic with natural numbers (base one) and usual data structures (such as lists,
strings, and associative arrays). Recall that instantiations assign values to variables—ground
values in pattern matching—whereas unifications are matching instantiations.

Leveraging their capabilities, most P systems variants, including cP systems, are able
to transform “brute-force” algorithms into theoretically efficient solutions, with typically
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linear or sublinear runtimes. This allows the design of theoretically fast solutions to hard
problems. Moreover, cP systems solutions for hard problems are typically the fastest,
having small runtime coefficients. Additionally, cP systems solutions typically use small
rulesets of fixed sizes, which do not change with the problem size (no uniform families, no
polynomial preprocessing).

In this section, we introduce the basic features of a simplified version of cP systems,
called single-cell cP systems, which have one single top-level cell, with nested sub-cells
(thus there is no place for top-level cell networks and messaging). Listing 1 describes the
basic formal syntax of single-cell cP-systems; for a more comprehensive description and
explanation of cP systems, the reader is referred to [14,15]. This formal description consists
of two BNF-like grammars, presented together, because of their similarities: (1) a top-level
cell, in the sequel called top-cell (for brevity); (2) a multiset rewriting rule. Note that, in this
figure and the sequel, we use the following two common abbreviations: lhs = left-hand-side,
rhs = right-hand-side.

Listing 1. Simplified syntax for single-cell cP systems. Lhs = left-hand-side, rhs = right-hand-side,
var-X = X may contain variables. Braces ({,}) and brackets ([,]) are meta-syntactic constructs followed
by repetition bounds; here, braces generate multisets, whereas brackets generate sequences.

<top-cell> ::= <state> <objects>
<state> ::= <atom>
<objects> ::= {<atom> | <sub-cell>}∞

0
<sub-cell> ::= <functor> ’(’<objects> [’;’ <objects>]∞

0 ’)’
<functor> ::= <atom>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<rule> ::= <lhs>→<mode> <rhs> [’|’ <promoters>]∞
0

<mode> ::= ’1’ | ’+’
<lhs> ::= <state> <var-objects>
<rhs> ::= <state> <var-objects>
<state> ::= <atom>
<promoters> ::= <var-objects>
<var-objects> ::= {<variable> | <atom> | <var-sub-cell>}∞

0
<var-sub-cell> ::= <functor> ’(’<var-objects> [’;’ <var-objects>]∞

0 ’)’
<functor> ::= <atom>

A single-cell cP system consists of one single top-cell, which—following the first
grammar presented in Listing 1—has a state and contains objects, i.e., atoms and recursively
nested sub-cells.

Remark 1. In Prolog terminology, cell objects are terms, sub-cells are compound terms; and all cell
objects are ground, i.e., cannot contain variables. Furthermore, unlike Prolog, cP functors do not
have arities, and just represent multiset labels.

Conventionally, atoms are represented by lowercase letters and variables by uppercase
letters. A dedicated atom 1 is typically used to represent unary natural numbers (more
details below). Anonymous (discard) variables in cP systems are denoted by underscores
( ). The empty multiset is denoted by λ. As usual, multiset elements can be written in
any order, and repetitions can be denoted as powers. Sample ground sub-cells: a(bbc) =
a(b2c) = a(bcb), a(b(cc) d(e f )), n(111) = n(13).

Remark 2. The grammar given in Listing 1 specifies that a sub-cell functor can be followed by a
sequence of multiset arguments, which seems to require an ad hoc ordering concept. Functors with
one single multiset argument are indeed essential in cP systems (similar to terms in Prolog), but
functors with two or more arguments are not, because these could be replaced by one more level
deeper cell nesting. For example, the sub-cell a(bc; de; f g) could be also considered a shorthand for
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a(bc · (de) : ( f g)) (or a(: ( f g) bc · (de)), etc.), where the nested functors (·) and (:) could be
given ad hoc or provided by the system. Briefly, this conceptually redundant ordering appears for
convenience only, and the given grammar could be simplified, and strictly restricted to nested
labelled multisets. Note that alternative definitions of cP systems use additional parentheses
instead of the semicolons used here, e.g., the following two notations describe the same abstract
syntax a(bc; de; f g) ≡ a(bc)(de)( f g).

As mentioned, natural numbers can be emulated using a dedicated unary symbol, such
as 1. By convention, we can also directly use the corresponding numbers, rather than their
lower-level unary representation. For example:

111 = 13 = 3
λ = 10 = 0

A single-cell cP system evolves through a sequence of configurations by changing its
state and contents. These changes are driven by the high-level rewriting rules associated to
its top-cell, which are constructed according to the second grammar presented in Listing 1.
Unlike similar cells in cell-like P systems, cP sub-cells are more restricted, by not having
their own rules. Thus, sub-cells are just data storage facilities, and are acted upon by the
top-cell’s rules only. This restriction seems substantially outweighed by the extra power of
the cP rules. Unlike other P systems variants, rules in cP systems are generic templates, i.e.,
their var-objects may contain variables that must be instantiated before the rule application.

Before a rule can apply:

• Its lhs state must match the current top-cell state.
• Its rhs state must match the already committed next state, if any, as further detailed

below, in the section on weak priority order.
• The rule must be completely instantiated, i.e., all its variables must be replaced by

ground objects, ensuring that its lhs and promoter var-objects match extant top-
cell objects.

Rules are applied in a weak priority order, with rules considered in the given top-down
order. Conventionally, the first lhs state is the state of the initial configuration. Once
an applicable rule has been found, this commits to the next state, with subsequent rules
committing to different states disabled. Rules going to the same state as the applicable rule,
which can also be applied, will be applied in the same step. This state-based weak priority
order supports a straightforward emulation of basic control flow (e.g., goto, conditional
goto, or loop structures). Note that rules can be partitioned by their lhs state, without
altering the semantics, as long as we keep the relative top-down order of rules starting with
the same lhs state.

Essentially, applying a rule:

• Commits to the next state.
• Consumes (deletes) extant top-cell objects matching its lhs. Promoters must also match

extant top-cell objects, but are not consumed by the rule.
• Creates new objects as indicated by its instantiated rhs. Newly created objects are

temporary unavailable and become available after the end of the current step only, as
in traditional P systems.

There are two rule application modes: exactly-once (→1) and max-parallel (→+). An
exactly-once rule will apply for one single matching (non-deterministically chosen). A max-
parallel rule will apply it as many times as possible, conceptually all in the same step, but
following a serialisation semantics, i.e., its effects must be identical to a sequential repetition
of the same rule in the exactly-once mode (sequence non-deterministically chosen). Although,
as just mentioned, the cP semantics allow non-deterministic computations, most of our
work has focused on confluent evolutions, often deterministic; the solution proposed in this
paper is deterministic.
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As with most other P system variants, the runtime of single-cell cP systems is measured
in steps. Generally, a step is indicated by a state change, when a rule commits to a rhs state
that differs from its lhs state. If the last applied rule does not change the state, then the
control resumes at the first rule of that state, and this is also counted as a step. The system
halts if a rule commits to a state with no associated rule; such states are called final. The
system also halts if there are rules for the current state, but none is applicable (†). This last
case, marked by a dagger (†), can be easily avoided by adding an extra catch-all rule, which
will ensure termination in final states only.

As mentioned, like many other P system rules, cP rules have a significant potential for
non-determinism. However, well-designed practical applications are highly deterministic. A
cP system is rule-deterministic if each rule ends with exactly the same results, regardless of
whether it is exactly-once or max-parallel, or how exactly it is instantiated and executed. A
cP system is step-deterministic if each step is locally confluent with a guaranteed join after all
step rules are applied, i.e., the step ends with exactly the same result, regardless of how
its rules are applied. Obviously, rule-determinism is the stronger version, implying the
weaker version, step-determinism. In both cases, we consider only evolutions that start
from an expected initial configuration (not from arbitrary contents).

2.3. Examples

We provide several examples to clarify how cP systems are defined and used.

Example 3. Matching examples, var-object (left) = ground object (right):

• Matching a(b(X) c(1X)) = a(b(12) c(13)) deterministically instantiates one single unifier:
X = 12.

• Matching a(b(X) c(1X)) = a(b(12) c(12)) fails.
• Matching a(XY2) = a(de2 f ) deterministically instantiates one single set of unifiers: X, Y =

d f , e.
• Matching a(XY) = a(d f ) non-deterministically instantiates one of the following four sets of

unifiers: X, Y = λ, d f ; X, Y = d f , λ; X, Y = d, f ; X, Y = f , d.

Example 4. Consider a cell in state s1 that contains two objects a(1), a(11). Depending on the
actual application mode α ∈ {1,+}, the following rule increments one or both a’s by 1:

s1 a(X)→α s2 a(1X)

By unifying the lhs a(X) against the given as, two ground rules are instantiated:

s1 a(1)→1 s2 a(11) (1)
s1 a(11)→1 s2 a(111) (2)

When the application mode of the rule is exactly-once, α = 1, the system non-
deterministically applies one of the above two instantiations, (1) or (2). Thus, the result can
be either a(11), a(11) or a(1), a(111).

However, when the application mode is max-parallel, α = +, both instantiations are
applied, and the result will be a(11), a(111). Here, this transformation is rule-deterministic,
not depending on the application order, (1,2) or (2,1).

Example 5. Consider a cell in state s1 that contains two objects a(13), b(15), which respectively
represent the numbers 3 and 5. The following rule destructively computes their sum, c = a + b:

s1 a(X) b(Y)→1 s2 c(XY)

This rule is instantiated as s1 a(13) b(15) →1 s2 c(18). Its application consumes the
given a(13) and b(15), and creates a new objects c(18), corresponding to the sum 3 + 5.

Alternatively, a non-destructive summing can be performed using the following rule,
where the given a and b appear as promoters:
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s1λ→1 s2 c(XY) | a(X) b(Y)

Example 6. Consider a cell in state s1 that contains two objects a(1) and three objects b(11). The
following max-parallel rule (1) consumes two a(1) and two b(11), creating two objects c(111) and
leaving exactly one b(11); while the following max-parallel rule (2), which uses promoters, creates
six objects c(111), leaving the given as and bs intact:

s1 a(X) b(Y)→+ s2 c(XY) (1)
s1 λ→+ s2 c(XY) | a(X) b(Y) (2)

Rule (1) could be considered rule-deterministic only if special configurations are
guaranteed, such as the one given above; but, more generally, it is highly non-deterministic.
Rule (2) is always rule-deterministic; essentially, it makes a Cartesian product of the given
as and bs, concatenating the contents of all pairs.

Example 7. Consider a cell in state s1 that contains two objects a(1) and three objects a(11). The
following max-parallel rule removes all duplicates, leaving exactly one a(1) and one a(11):

s1 a(X)→+ s2 λ | a(X)

The application of this rule is equivalent to the following sequence of instantiations:

s1 a(1)→1 s2 λ | a(1)
s1 a(11)→1 s2 λ | a(11)
s1 a(11)→1 s2 λ | a(11)

The transformation is confluent, and the results will be the same, not depending on
the relative application order of the above instantiations. After these three applications, no
further unifying instantiations are possible because there are no longer sufficient remaining
as to satisfy both the lhs and the promoter. Thus, this rule is rule-deterministic.

Example 8. Consider a cell in state s1 that contains one a(...) and one b(...), with unspeci-
fied contents. The following two-rule sequence models a non-destructive if-then-else operation,
c = if a ≤ b then 0 else 1, accompanied by a state change (to either s2 or s3):

s1 λ→1 s2 c(0) | a(X) b(X ) (1)
s1 λ→1 s3 c(1) (2)

Rules are applied in weak-priority order. If rule (1) applies, then it commits to the
target state s2, so rule (2) becomes inapplicable. Otherwise, if rule (1) does not apply, the
target state is still undecided, so rule (2) unconditionally applies and commits to target
state s3.

Example 9. Consider a cell in state s1 that contains a multiset of as, with numerical contents, e.g.,
a(5), a(3), a(5), a(9), a(7). The following two max-parallel rules find the minimum in exactly two
steps, regardless of the cardinality of the given multiset:

s1 λ→+ s2 b(X) | a(X) (1)
s2 b(X 1)→+ s3 λ | a(X) (2)

Rule (1) makes temporary working copies of all as as bs. Rule (2) deletes all bs for
which there is a strictly lesser a. At state s3, the cell contains one or more bs, all containing
the same minimum value; in our given sample scenario, there will be one single b(3). Both
rules (1) and (2) are rule-deterministic.
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3. The Logarithmic cP SAT Solution

We gradually develop our single-cell cP solution solution in three main phases. First,
we show how a cP system can efficiently build all branches of a complete binary tree—this
forms the backbone of our SAT solution. Secondly, we refine the building rules to decorate
all these branches with explicit variable allocations; although conceptually redundant,
explicit variable allocations are critical for efficient processing. Thirdly, and finally, we use
these decorated tree branches to evaluate the given CNF formula, for all sets of variable
allocations, which solves the SAT problem.

Leveraging the cP max-parallel mode, the full solution ruleset runs very efficiently, in
O(log n) time. It also has a small fixed size (25 rules) that does not depend on the problem
size n (no uniform family, no polynomial preprocessing).

3.1. Building Trees

In this section we solve a subproblem that will later be incorporated in our SAT
solution. Using a single-cell cP system, we aim to build a complete binary tree of height n, in
deterministic O(log n) time, by building its 2n tree branches as cP objects. For simplicity,
we also assume that n is a power of 2, n = 2k, for some k ≥ 1. If the given n is not a power
of 2, we take n to be the next power of 2; we may thus obtain a bigger tree, which, however,
does not affect our sought results.

The rules are shown in Listing 2. This ruleset has 8 rules, using 5 states, and assumes
that n is given at the start via a namesake functor (e.g., n(4)). If needed, the reader is
advised to crosscheck the appendix for an equivalent pseudocode, cf., Appendix B.

Listing 2. Ruleset for building complete binary trees of size n.

s1 λ→1 s2 h(1) t(λ; 0) t(λ; 1) (1)

s2 h(N )→1 s5 λ | n(N) (2)

s2 λ→+ s3 t′(X; Y) | t(X; Y) (3)

s3 λ→+ s4 t′′(t(X; Y); t(X′; Y′)) | t(X; Y) t′(X′; Y′) (4)
s3 t( ; )→+ s4 λ (5)
s3 t′( ; )→+ s4 λ (6)

s4 t′′(X; Y)→+ s2 t(X; Y) (7)
s4 h(H)→1 s2 h(HH) (8)

Rule (1) creates the starting tree, of height 1, with two branches. The current tree
height is given by a sub-cell with functor h. Our tree branches are sub-cells with functor
t and two arguments (two for consistency with the next branches that will be built via
conceptual concatenation). The initial two branches are encoded as t(λ; 0) and t(λ; 1); by
discarding the functors and parentheses, these encodings map to usual bit string labels,
here 0 and 1, respectively. The cP encoding may seem to be overkill, but is required as
cP systems lack strings, and are essentially based on amorphous multisets, where nesting
is the only facility for structuring objects. For simplicity, in discussions, we will also use t
as the name of the current tree (as the tree is completely defined by its branches).

Next, we repeatedly extend the current tree t, k = log n times (taking the ceiling if n is
not power of 2), by transforming each leaf into the root of a new subtree t′, ad hoc created
as a structurally identical copy of t. Thus, the height of our trees grows exponentially:
1, 2, 4, 8, . . . , 2k = n.

Rules (2–8) form the core loop of our system, starting at state s2 and exiting at state
s5. Rule (2) breaks the loop if the current height h has reached (or exceeded) the given n.
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Otherwise, rule (3) copies the current tree t into a temporary template t′. We note that the
copy t′ is not really needed here, but adds clarity.

Rules (4–6) creates the new higher tree t′′, as the Cartesian product between the
branches of t with the branches of t′, then cleans the no-longer-needed objects t and t′. Each
new branch is a concatenation of two previous branches and is represented as a new object
t with two arguments, one for each component branch. For example, concatenating the
branch z with the branch z′ creates a new branch t(z; z′).

Rules (7–8) rename t′′ as t, double the height h, and restart the loop from state s2.
The following table lists the successively created branches, for n = 4. Anecdotally,

note the relations h = 2k, d = k + 2, where h is the height of the current tree t; k counts the
completed iterations of loop (2–8); and d is the nesting depth of the branches.

k h branches–as bit strings branches–as cP encodings
0 1 0; 1 t(λ, 0); t(λ, 1)
1 2 00; 01; 10; 11 t(t(λ, 0), t(λ, 0)); . . . ; t(t(λ, 1), t(λ, 1))
2 4 0000; 0001; . . . ; 1111 t(t(t(λ, 0), t(λ, 0)), t(t(λ, 0), t(λ, 0))); . . .

Theorem 1. The cP ruleset 2 builds all branches of the complete binary tree of height n, in
O(log n) time.

Proof. The previous discussion of the rules shows that they indeed build a complete binary
tree. Rule (1) takes one step (s1 → s2) and creates the initial complete binary tree of height
h = 1. The loop formed by rules (2–8) takes 3 steps (s2 → s3 → s4 → s2), runs k = log n
times (dlog ne times, if n is not power of 2), each time doubling the tree height h. The
Cartesian product ensures that all created trees are still complete. The final break exit at
rule (2) takes one more step (s2 → s5). The total step count is 1 + 3 log n + 1 = O(log n).
The final height is 2k = n.

Remark 3. Ruleset 2 is rule-deterministic (and therefore also step-deterministic). Regardless of
how it is instantiated and performed, each rule, whether exactly-once or max-parallel, ends with
exactly the same results.

3.2. Decorating Trees with Variable Allocations

In this section we extend the ruleset from the previous Section 3.1, by decorating all
branches t with attributes a, representing explicit variable allocations. Although explicit
allocations are, at first glance, redundant, because allocations can be recovered by parsing
the branch label, they are critical for fast processing.

For example, looking at Figure 1, branch x should be decorated by allocations set a(x),
as follows: (i) for the height 1 tree: a(0) = {x1 = 0}, a(1) = {x1 = 1}; (ii) for the height
2 tree: a(00) = {x1 = 0, x2 = 0}, a(01) = {x1 = 0, x2 = 1}, etc. Furthermore, for a tree
of height 4 = 2 + 2, we should have a(0100) = {x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Note
that a(0100) = a(01) ∪ a′(00), where a′(00) = {x1+2 = 0, x2+2 = 0}, i.e., a′(00) is a(00)
transformed by shifting the indices of its variables by +2.

Recalling that we build trees by means of successive concatenations, our ruleset
formalises this intuition. Formally, the allocation set for branch t(X; Y) is given by all
sub-cells a(X; Y; I; V), where I is a variable index and V its value (0 or 1). These a subsets
are only virtually grouped together, solely by their shared branch label. This will not be a
problem in regard to the logical and associative powers of cP systems. On the contrary, as
we will see in the next Section 3.3, these loose associative collections will enable very fast
evaluations.

The rules are shown in Listing 3. This ruleset has 14 rules, uses 6 states, and assumes
that n is given at the start via a namesake functor (e.g., n(4)). If needed, the reader is advised
to crosscheck the appendix: the sample traces listed in Appendix A and an equivalent
pseudocode in Appendix C.
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Listing 3. Ruleset for decorating trees.

s1 λ→1 s2 h(1) t(λ; 0) t(λ; 1) a(λ; 0; 1; 0) a(λ; 1; 1; 1) (1)

s2 h(N )→1 s6 λ | n(N) (2)

s2 λ→+ s3 t′(X; Y) | t(X; Y) (3)
s2 λ→+ s3 a′(X; Y; IH; V) | h(H) a(X; Y; I; V) (4)

s3 λ→+ s4 t′′(t(X; Y); t(X′; Y′)) | t(X; Y) t′(X′; Y′) (5)
s3 t( ; )→+ s4 λ (6)
s3 t′( ; )→+ s4 λ (7)

s4 λ→+ s5 a′′(t(X; Y); Z; I; V) | t′′(t(X; Y); Z) a(X; Y; I; V) (8)
s4 λ→+ s5 a′′(Z; t(X; Y); I′; V) | t′′(Z; t(X; Y)) a′(X; Y; I′; V) (9)
s4 a( ; ; ; )→+ s5 λ (10)
s4 a′( ; ; ; )→+ s5 λ (11)

s5 t′′(X; Y)→+ s2 t(X; Y) (12)
s5 a′′(X; Y; I; V)→+ s2 a(X; Y; I; V) (13)
s5 h(H)→1 s2 h(HH) (14)

Rule (1) creates the initial height 1 tree t and its allocations a (as mentioned above).
Rules (2–14) form the core loop, starting at state s2 and exiting at state s6. Rule (2)

breaks the loop if h ≥ n. Otherwise, rule (3) copies the current tree t into a temporary
template t′, and rule (4) copies the current allocations a into temporary objects a′, shifting
the variable indices by h.

Rules (5–7) creates the new higher tree t′′, as the Cartesian product between the
branches of t with the branches of t′, then cleans the no-longer-needed objects t and t′.
Rules (8,9) creates the allocations a′′ for the new tree t′′: rule (8) “lifts” the allocations a
belonging to the former tree t, and rule (9) “lifts” the allocations a′ belonging to the former
template tree t′. Rules (10,11) clean the now-unneeded objects a and a′.

Rules (12–14) rename t′′ as t and a′′ as a, double the height h, and restart the loop from
state s2.

Arguments similar to those used in the proof of Theorem (1) lead us to the following
result.

Proposition 1. The cP ruleset 3 builds all branches of the complete binary tree of height n and
decorates these with explicit variable allocations, in O(log n) time.

Remark 4. Like its base, ruleset 2, ruleset 3 is rule-deterministic (and therefore also step-deterministic).
Regardless of how it is instantiated and performed, each rule, whether exactly-once or max-parallel,
ends with exactly the same results.

3.3. Formula Evaluations

Up to this stage, the tree construction has ignored the actual problem, considering
only its size and the number of variables, n. It is now time to introduce the formula that we
actually want to solve. For this, we assume that the formula is given as the multiset of all its
literal objects, r, where each literal object has the format r(k; i; s), where k is a clause index
in [1, m], i is a variable index in [1, n] and s is a sign in {−,+}, which indicates whether the
clause k variable xi is negated (−) or not (+).

For example, the formula of Example 1, (x1 ∨ x2) ∧ (x1 ∨ x2), can be given as the
multiset containing the following four r objects:

r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)
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For fast processing, we use a lookup table that quickly indicates the value of a literal,
based on the variable value, regardless of whether or not the variable is negated. This
lookup table is given by the following set with four w objects:

w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)

where in w(u; s; v), u is a variable value, s is a sign associated with a possible negation, and
v is the literal value after considering s.

The rules are shown in Listing 4. This ruleset has 11 rules, uses 6 states, and assumes:
(i) the r literal objects representing the given formula; (ii) the t and a objects as built by the
ruleset of Listing 3. If needed, the reader is advised to crosscheck the appendix: the sample
traces listed in Appendix A and an equivalent pseudocode in Appendix D.

Listing 4. Ruleset for formula evaluations (continuing from Ruleset 3).

s6 λ→+ s7 f (X; Y; K; I; S) | t(X; Y) r(K; I; S) (15)

s7 f (X; Y; K; I; S)→+ s8 f ′(X; Y; K; W) | a(X; Y; I; V) w(V; S; W) (16)

s8 f ′(X; Y; K; )→+ s9 λ | f ′(X; Y; K; 1) (17)
s8 f ′(X; Y; K; )→+ s9 λ | f ′(X; Y; K; 0) (18)
s8 f ′(X; Y; K; W)→+ s9 f ′′(X; Y; K; W) (19)

s9 f ′′(X; Y; ; )→+ s10 λ | f ′′(X; Y; ; 0) (20)
s9 f ′′(X; Y; ; )→+ s10 λ | f ′′(X; Y; ; 1) (21)
s9 f ′′(X; Y; ; W)→+ s10 f ′′′(X; Y; W) (22)

s10 f ′′′(X; Y; )→+ s11 λ | f ′′′(X; Y; 1) (23)
s10 f ′′′(X; Y; )→+ s11 λ | f ′′′(X; Y; 0) (24)
s10 f ′′′( ; ; W)→1 s11 d(W) (25)

The evaluation ruleset starts from s6, the end state of the ruleset of Listing 3. Rule (15)
makes a Cartesian product of branches and literals, for each branch t and literal r, creating
an object f , which combines the branch t and the literal r.

Rule (16) transforms objects f into objects f ′, by replacing sign positions with actual
literal values, taken from lookup table w. Briefly, these transformed f ′ objects record
evaluated literals, separately for each branch and clause.

For each branch and clause, if there is a literal value 1, then rule (17) keeps this f ′ and
deletes all other f ′ objects. Otherwise, if there still exists a literal value 0 (i.e., if all literal
values were 0), then rule (18) keeps this f ′ and deletes all other f ′ objects (for the same
branch and clause). At this stage, for each branch and clause, there is one single f ′ object
left, indicating the clause value, 1 or 0. Rule (19) transforms these surviving f ′ objects into
f ′′ objects, discarding the now-superfluous variable index. In a nutshell, f ′′ objects record
evaluated clauses, separately for each branch.

Essentially, rules (20–22) repeat the same pattern and create f ′′′ objects, which indicate
formula values, separately for each branch. Now, if there is a branch where the formula
is evaluated to 1, then rule (23) keeps this f ′′′ and deletes all other f ′′′ objects; otherwise,
rule (24) keeps one single f ′′′ that indicates 0 and deletes all other f ′′′ objects.

Finally, there is exactly one f ′′′ object left, which indicates whether or not there is an
allocation that satisfies the formula. Using this sole surviving f ′′′, rule (25) creates a d object
that records the final decision.

Example 10. The following table summarises the essential evaluation steps, in symbolic represen-
tation, for the formula of Example 1, cf. also Figure 1. Each branch has its own copy of formula
literals, clause 1: {x1, x2}, clause 2: {x1, x2}.
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Branch Allocations Eval. literals Eval. clauses Eval. formula
00 x1 = 0, x2 = 0 {0, 0}, {1, 1} 0, 1 0
01 x1 = 0, x2 = 1 {0, 1}, {1, 0} 1, 1 1
10 x1 = 1, x2 = 0 {1, 0}, {0, 1} 1, 1 1
11 x1 = 1, x2 = 1 {1, 1}, {0, 0} 1, 0 0

If required, we could also return the set of all successful allocations, if any, but here we
merely return the sought decision result, d(0) (i.e., no), or d(1) (i.e., yes). In our example
case, there are two successful allocations, for branches 01 and 10, so the final decision is
yes, d(1).

Straightforward arguments show that the formula is exhaustively evaluated, and the
evaluation ruleset takes a constant number of steps (5).

Proposition 2. Given the complete binary tree built and decorated via the ruleset of Listing 3, the
ruleset of Listing 4 solves SAT in O(1) time.

Remark 5. Ruleset 4 is only step-deterministic, not rule-deterministic. Three of its steps have
deterministic step results, but consist of locally confluent fragments: 17–19, 20–22, and 23–25. The
ruleset could be slightly modified to be strictly rule-deterministic, but we prefer the current version,
due to its better readability.

Noting that O(log n) + O(1) = O(log n), the following theorem is a direct conse-
quence of Propositions 1 and 2. We also include a couple of static metrics provided by a
close inspection of the rulesets of our two parts.

Theorem 2. The SAT decision problem can be solved in O(log n) time by means of a cP system
ruleset with 11 states and 25 rules.

3.4. Other NP-Complete Problems

Using the results of Stamm-Wilbrandt [23], Henderson et al. [4] have designed a
cP solution that achieves a constant time reduction, O(1), from another famous NP-complete
problem, k-colouring, to SAT. Combined with their square root SAT solution, O(

√
n), they

conclude that k-colouring and quite a few other NP-complete problems can be solved in
square root time by cP-systems, as O(

√
n) +O(1) = O(

√
n).

Based on the results of this paper, we similarly conclude that k-colouring, and possibly
many other NP-complete problems, can be solved in logarithmic time by means of cP-
systems, as O(log n) +O(1) = O(log n).

Theorem 3. The k-colouring decision problem can be solved in O(log n) time in the cP sys-
tem model.

4. Discussion

This section starts with a rough summary comparison of a few selected, and hopefully
the most relevant, deterministic P systems solutions for the SAT problem. Essentially,
we want to compare the ruleset sizes and the running times. Many of these solutions are
linear, but their runtime often includes both the number of variables, n, and the number
of clauses, m, e.g., O(m + n). See Nagy [6] for a short survey on some of the previous
P system solutions.

There is also a recently proposed cP solution by Henderson et al. [4], which managed
a remarkable breakthrough, being sublinear, O(

√
n). Our new solution, proposed in this

paper, shows that cP systems are able to solve SAT and other NP-complete problems in
a substantially faster sublinear time of O(log n). As seen in Table 1, our novel solution
surpasses all other extant solutions in runtime, and is comparable to the number of template
rules (more about this below).
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This comparison is a difficult problem by itself, as the many P systems variants have
substantial differences, so one should be careful when “comparing apples with oranges”,
and then drawing strong conclusions. First, all P systems measure the runtimes in terms
of steps, which at the first seems to be a uniform measure, but the definition of steps may
differ among variants, and may have different granularity.

Secondly, the rules also have different granularity. Here, we attempt to create a more
level playing-field by following the methods used by Henderson et al. [16]. Thus, we
indicate the ruleset size in two ways: (i) the actual number of rules, and (ii) the number of
rule templates. As defined in [16], rule templates are groupings of similar rules, differing
only by symbol indices, e.g., ai → bi, i = 1, 2, . . . , n, which represents n rules but one
single rule template. This should considerably level the playing field, as such a template is
typically subsumed by one single generic rule in cP systems, e.g., a(I)→ b(I) | c(I).

On the other side, when counting rule templates and rules, we did not consider the
numbers of repeated copies placed in different membranes/neurons. Additionally, non
cP systems solutions are not single solutions, but uniform families of solutions, i.e., a
different solution will be used for each different problem size, typically following the same
templates, but with different alphabet and ruleset sizes. The needed pre-processing time
was roughly estimated from the papers, and presented in a separate column. cP systems
do not have such facilities, as they use a fixed ruleset that must be defined in the top-level
cell only (subcells do not have their own rules). This may seem to create some bias against
cP systems, but we feel that the power of generic rules will finally rebalance the comparison.

Table 1. Ruleset size and runtime for several proposed P system solutions. † = this paper. The
preprocessing time was only estimated by us.

Paper P System Variant #Templates #Rules Runtime Preprocessing

[7] 2006 with active membranes 27 O(mn2) O(m + n) Θ(mn2)

[8] 2016 with proteins on membranes 22 O(mn) O(mn) Θ(mn)

[9] 2017 tissue-like 29 O(mn2) O(m + n) Θ(mn2)

[4] 2021 cP system 19 19 O(
√

n) NA

† 2021 cP system 25 25 O(log n) NA

We conclude this section by noting several research directions that could follow the
current result. (1) Design a shallow solution for this problem. (2) As a combined method of
space and task optimisation, partially evaluate the given formula while building the tree.
This would enable one to prune branches that cannot lead to any solution, because one of
the clauses is already false. This should substantially reduce the actual work, and balance
it better, possibly leading to more efficient practical implementations. (3) Develop a similar
approach for QSAT, a famous related PSPACE-complete problem, which is substantially
more complex and challenging. (4) Investigate the feasibility of similar solutions in other
P system variants.

5. Conclusions

In this work, we have presented a novel cP solution to SAT, a famous NP-complete
(and thus NP-hard) problem. Our solution is deterministic and runs in logarithmic time,
O(log n). To the best of our knowledge, this represents a significant breakthrough in
membrane computing, being orders-of-magnitude faster than all previous deterministic
solutions.

In conjunction with a couple of known reduction results, our solution enables further
logarithmic-time solutions, O(log n), to other NP-complete problems, such as k-colouring.

Our results open the way to several other challenging research problems, such as
extending this method to cover QSAT (which is a substantially harder, PSPACE-complete
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problem); designing a time- and space-optimised version and possibly a shallow version;
and investigating the feasibility of similar solutions in other P system variants.
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Appendix A. Traces for Sections “Decorating Trees with Variable Allocations” and
“Ruleset Evaluations”

This section traces critical configuration fragments for the whole proposed SAT algo-
rithm, i.e., the combined rulesets 3 and 4. The trace is organised by steps, listing essential
configuration contents at the start of each new step. The initial configuration does not
change, so it only appears for state s1. We again consider the formula of Example 1:
(x1 ∨ x2) ∧ (x1 ∨ x2), with n = 2, m = 2.

For readability, the two components of nested cP branch labels, which appear as
arguments for functors t, a, f (possibly primed), are indicated by their corresponding binary
equivalents (cf,. Section 2.1), which are underlined, e.g.,: t(0) = t(λ; 0), t(1) = t(λ; 1),
t(00) = t(t(λ; 0); t(λ; 0)), t(01) = t(t(λ; 0); t(λ; 1)), a(01; 1; 0) = a(t(λ; 0); t(λ; 1); 1; 0),
f (01; 1; 2;+) = f (t(λ; 0); t(λ; 1); 1; 2;+), f ′′(01; 2; 1) = f ′′(t(λ; 0); t(λ; 1); 2; 1), etc.

• Enter state s1, with immutable objects (not further listed unless actually useful):

n(2)
w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)
r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)

• Step s1 → s2, rule (1): Create initial height 1 tree objects, t and a.
• Enter state s2, with:

n(2) h(1)
t(0) t(1) a(0; 1; 0) a(1; 1; 1)

• Step s2 → s3, rules (3-4): Enter the loop, duplicate tree objects t and a, as t′ and a′.
• Enter state s3, with:

h(1)
t(0) t(1) a(0; 1; 0) a(1; 1; 1)
t′(0) t′(1) a′(0; 2; 0) a′(1; 2; 1)

• Step s3 → s4, rules (5-7): Create double height tree t′′ by the Cartesian product of
t and t′.

• Enter state s4, with:

h(1)
t′′(00) t′′(01) t′′(10) t′′(11)
a(0; 1; 0) a(1; 1; 1) a′(0; 2; 0) a′(1; 2; 1)
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• Step s4 → s5, rules (8-11): Create a′′, allocation attributes for t′′.
• Enter state s5, with:

h(1)
t′′(00) t′′(01) t′′(10) t′′(11)
a′′(00; 1; 0) a′′(01; 1; 0) a′′(10; 1; 1) a′′(11; 1; 1)
a′′(00; 2; 0) a′′(10; 2; 0) a′′(01; 2; 1) a′′(11; 2; 1)

• Step s5 → s2, rules (12–14): Double the height and rename temporary tree objects
t′′ and a′′ as t and a.

• Enter state s2, with:

n(2) h(2)
t(00) t(01) t(10) t(11)
a(00; 1; 0) a(00; 2; 0) a(01; 1; 0) a(01; 2; 1)
a(10; 1; 1) a(10; 2; 0) a(11; 1; 1) a(11; 2; 1)

• Step s2 → s6, rule (2): Take loop exit.
• Enter state s6 (end of ruleset 3, and start of 4), with:

r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)
t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

• Step s6 → s7, rule (15): Multiply formula literals, making copies for each branch.
• Enter state s7, with:

w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)
t(00) a(00; 1; 0) a(00; 2; 0) f (00; 1; 1;+) f (00; 1; 2;+) f (00; 2; 1;−) f (00; 2; 2;−)
t(01) a(01; 1; 0) a(01; 2; 0) f (01; 1; 1;+) f (01; 1; 2;+) f (01; 2; 1;−) f (01; 2; 2;−)
t(10) a(10; 1; 0) a(10; 2; 0) f (10; 1; 1;+) f (10; 1; 2;+) f (10; 2; 1;−) f (10; 2; 2;−)
t(11) a(11; 1; 0) a(11; 2; 0) f (11; 1; 1;+) f (11; 1; 2;+) f (11; 2; 1;−) f (11; 2; 2;−)

• Step s7 → s8, rule (16): Evaluate literals.
• Enter state s8, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′(00; 1; 0) f ′(00; 1; 0) f ′(00; 2; 1) f ′(00; 2; 1)
t(01) a(01; 1; 0) a(01; 2; 0) f ′(01; 1; 0) f ′(01; 1; 1) f ′(01; 2; 1) f ′(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0) f ′(10; 1; 1) f ′(10; 1; 0) f ′(10; 2; 0) f ′(10; 2; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′(11; 1; 1) f ′(11; 1; 1) f ′(11; 2; 0) f ′(11; 2; 0)

• Step s8 → s9, rules (17–19): Disjunctions between literals.
• Enter state s9, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′′(00; 1; 0) f ′′(00; 2; 1)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′(01; 1; 1) f ′′(01; 2; 1)
t(10) a(10; 1; 0) a(10; 2; 0) f ′′(10; 1; 1) f ′′(10; 2; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′′(11; 1; 1) f ′′(11; 2; 0)

• Step s9 → s10, rules (20–22): Conjunctions between clauses.
• Enter state s10, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′′′(00; 0)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′′(01; 1)
t(10) a(10; 1; 0) a(10; 2; 0) f ′′′(10; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′′′(11; 0)
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• Step s10 → s11, rules (23–25): Disjunction between branches and final decision.

– Intermediate snapshot after rules (23–24):

t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′′(01; 1)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

• Enter state s11 (end, with success), with:

d(1)
t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

Appendix B. Pseudocode for Section “Building Trees”

The pseudocode is shown in Listing A1. We assume that n is already given as an
initial parameter. Multisets are denoted by capital letters, e.g., T is the multiset (actually
set) of all t objects. Branches are represented by their intuitive bit string notation (not
as cP encodings). At state s3, the Cartesian product (×) is followed by projecting string
concatenations (·) of all pairs, which creates double-length branches.

Listing A1. Pseudocode for the ruleset of Listing 2.

s1:
h← 1; T ← {0, 1} // initial tree height and branches

s2:
if h ≥ n then goto s5 else // alt while h < n do ...

T′ ← T // copy current branches

s3:
T′′ ← {t · t′ | (t, t′) ∈ T × T′} // concatenate all branch pairs
T ← null
T′ ← null

s4:
T ← T′′; T′′ ← null // next tree
h← h + h // next height
goto s2

s5: // end

Appendix C. Pseudocode for Section “Decorating Trees with Variable Allocations”

The pseudocode is shown in Listing A2. We assume that n is already given as an
initial parameter. Multisets are denoted by capital letters, e.g., T is the set of all t objects
(branches), where branches are represented by their intuitive bit string notation (not as
cP encodings).

Variable allocations are given as partial functions [1, n]→ {0, 1}. For example, using a
Python-like notation, the allocation set {x1 = 0, x2 = 1} is represented as the list α = {1 :
0, 2 : 1}; thus α[2] = 1. At state s2, σ is a transformation that shifts the variable indices in
a given allocation set α by a given number h, i.e., σ(α, h) = {i : (v + h) | (i : v) ∈ α}; e.g.,
σ({1 : 0, 2 : 1}, 2) = {3 : 0, 4 : 1}, and, more symbolically, {x3 = 0, x4 = 1}.
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At state s3, the Cartesian product (×) is followed by projecting string concatenations
(·) of all pairs, which creates double-length branches.

Listing A2. Pseudocode for the ruleset of Listing 3.

s1:
h← 1; T ← {0, 1} // initial tree height and branches
A← {(0, {1 : 0}), (1, {1 : 1})} // initial branch variable allocations

s2:
if h ≥ n then goto s6 else // alt while h < n do ...

T′ ← T // copy current branches
A′ ← {(t, σ(α, h)) | (t, α) ∈ A} // copy allocations and shift indices by h

s3:
T′′ ← {t · t′ | (t, t′) ∈ T × T′} // concatenate all branch pairs
T ← null
T′ ← null

s4:
A′′ ← {(t · t′, α) | t · t′ ∈ T′′, |t| = |t′|, (t, α) ∈ A} // lift from A
∪ {(t · t′, α) | t · t′ ∈ T′′, |t| = |t′|, (t′, α) ∈ A′} // lift from A′

A← null
A′ ← null

s5:
T ← T′′; T′′ ← null // next tree
A← A′′; A′′ ← null // next allocations
h← h + h // next height
goto s2

s6: // end (of this phase)

Appendix D. Pseudocode for Section “Ruleset Evaluations”

The pseudocode is shown in Listing A3. We assume that this code follows the code of
the preceding section, given in Listing A2. As before, × denotes the Cartesian product op-
erator.

T is the set of all branches and A is the (conceptually redundant) set of all associated
allocations. as constructed using the preceding pseudocode A2, Rk is the set of all literals
that appear in clause k ∈ [1, m], and R is the set of all possible literals. For example,
assuming that its clauses are indexed in left-to-right order, the previously discussed formula,
(x1 ∨ x2) ∧ (x1 ∨ x2), is given by R1 = {x1, x2}, R2 = {x1, x2}, R = {x1, x2, x1, x2}.

We also assume a function ω : R× A→ {0, 1}, roughly corresponding to our w lookup,
such that ω(r, α) is the Boolean value of literal r for the allocation set α (considering its
possible negation). For example, assume that (in symbolical form): r = x1, r′ = x1; and α =
{x1 = 0, x2 = 1}, i.e., the symbolical form of {1 : 0, 2 : 1}. Then, ω(r, α) = 0, ω(r′, α) = 1.
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Listing A3. Pseudocode for the ruleset of Listing 4.

s6: // attach literal copies to each branch in T
F ← ⋃m

k=1(T × {k} × Rk) // F is (normally) a set

s7: // evaluate literals for branch t and clause k
F′ ← {(t, k, w) | (t, k, r) ∈ F, (t, α) ∈ A, ω(r, α) = w} // take F’ as a multiset!
F ← null

s8: // evaluate each clause for branch t, using disjunctions between literals
F′′ ← {(t, k, 1) | (t, k, 1) ∈ F′} // take F” as a set
∪ {(t, k, 0) | (t, k, 1) 6∈ F′}

F′ ← null

s9: // evaluate formula for branch t, using conjunctions between clauses
F′′′ ← {(t, 0) | ∃k ∈ [1, m], (t, k, 0) ∈ F′′} // take F”’ as a set
∪ {(t, 1) | ∀k ∈ [1, m], (t, k, 0) 6∈ F′′}

F′′ ← null

s10: // the decision is yes, if there is at least one branch evaluating true
d← if ∃t ∈ T, (t, 1) ∈ F′′′ then 1 else 0
F′′′ ← null

s11: // end

References
1. Sipser, M. Introduction to the Theory of Computation; Cengage Learning: Boston, MA, USA, 2012.
2. Baker, B.S. Approximation algorithms for NP-complete problems on planar graphs. J. ACM (JACM) 1994, 41, 153–180. [CrossRef]
3. Downey, R.G.; Fellows, M.R. Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 1995, 24, 873–921.

[CrossRef]
4. Henderson, A.; Nicolescu, R.; Dinneen, M.J. Sublinear P System Solutions to NP-Complete Problems; CDMTCS Report 559; University

of Auckland: Auckland, New Zealand, 2022. Available online: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
researchreports/download.php?selected-id=831 (accessed on 14 January 2022).

5. Manca, V. DNA and membrane algorithms for SAT. Fundam. Inform. 2002, 49, 205–221.
6. Nagy, B. On efficient algorithms for SAT. In International Conference on Membrane Computing; LNCS 7762; Csuhaj-Varjú, E.,

Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 295–310. [CrossRef]
7. Pan, L.; Alhazov, A. Solving HPP and SAT by P systems with active membranes and separation rules. Acta Inform. 2006,

43, 131–145. [CrossRef]
8. Song, B.; Pérez-Jiménez, M.J.; Pan, L. An efficient time-free solution to SAT problem by P systems with proteins on membranes. J.

Comput. Syst. Sci. 2016, 82, 1090–1099. [CrossRef]
9. Song, B.; Zhang, C.; Pan, L. Tissue-like P systems with evolutional symport/antiport rules. Inf. Sci. 2017, 378, 177–193. [CrossRef]
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