9 research outputs found

    Determination of time-dependent coefficients for a weakly degenerate heat equation

    Get PDF
    In this paper, we consider solving numerically for the first time inverse problems of determining the time-dependent thermal diffusivity coefficient for a weakly degenerate heat equation, which vanishes at the initial moment of time, and/or the convection coefficient along with the temperature for a one-dimensional parabolic equation, from some additional information about the process (the so-called over-determination conditions). Although uniquely solvable these inverse problems are still ill-posed since small changes in the input data can result in enormous changes in the output solution. The finite difference method with the Crank-Nicolson scheme combined with the nonlinear Tikhonov regularization are employed. The resulting minimization problem is computationally solved using the MATLAB toolbox routine lsqnonlin. For both exact and noisy input data, accurate and stable numerical results are obtained

    Robust Discretization of Flow in Fractured Porous Media

    Get PDF
    Flow in fractured porous media represents a challenge for discretization methods due to the disparate scales and complex geometry. Herein we propose a new discretization, based on the mixed finite element method and mortar methods. Our formulation is novel in that it employs the normal fluxes as the mortar variable within the mixed finite element framework, resulting in a formulation that couples the flow in the fractures with the surrounding domain with a strong notion of mass conservation. The proposed discretization handles complex, non-matching grids, and allows for fracture intersections and termination in a natural way, as well as spatially varying apertures. The discretization is applicable to both two and three spatial dimensions. A priori analysis shows the method to be optimally convergent with respect to the chosen mixed finite element spaces, which is sustained by numerical examples

    Mixed methods for degenerate elliptic problems and application to fractional Laplacian

    Get PDF
    We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a∇u) = g, where the coefficient a = a(x) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A2. The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.Fil: Cejas, María Eugenia. Universidad Nacional de La Plata. Departamento de Matemática, Facultad de Ciencias Exactas. Centro de Matemática La Plata ; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin

    Direct and inverse source problems for degenerate parabolic equations

    Get PDF
    Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems
    corecore