16,331 research outputs found

    A Quantitative Clustering Approach to Ultrametricity in Spin Glasses

    Get PDF
    We discuss the problem of ultrametricity in mean field spin glasses by means of a hierarchical clustering algorithm. We complement the clustering approach with quantitative testing: we discuss both in some detail. We show that the elimination of the (in this context accidental) spin flip symmetry plays a crucial role in the analysis, since the symmetry hides the real nature of the data. We are able to use in the analysis disorder averaged quantities. We are able to exhibit a number of features of the low TT phase of the mean field theory, and to claim that the full hierarchical structure can be observed without ambiguities only on very large lattice volumes, not currently accessible by numerical simulations.Comment: 15 pages with color figure

    The Haar Wavelet Transform of a Dendrogram: Additional Notes

    Get PDF
    We consider the wavelet transform of a finite, rooted, node-ranked, pp-way tree, focusing on the case of binary (p=2p = 2) trees. We study a Haar wavelet transform on this tree. Wavelet transforms allow for multiresolution analysis through translation and dilation of a wavelet function. We explore how this works in our tree context.Comment: 37 pp, 1 fig. Supplementary material to "The Haar Wavelet Transform of a Dendrogram", http://arxiv.org/abs/cs.IR/060810

    A spatial analysis of multivariate output from regional climate models

    Get PDF
    Climate models have become an important tool in the study of climate and climate change, and ensemble experiments consisting of multiple climate-model runs are used in studying and quantifying the uncertainty in climate-model output. However, there are often only a limited number of model runs available for a particular experiment, and one of the statistical challenges is to characterize the distribution of the model output. To that end, we have developed a multivariate hierarchical approach, at the heart of which is a new representation of a multivariate Markov random field. This approach allows for flexible modeling of the multivariate spatial dependencies, including the cross-dependencies between variables. We demonstrate this statistical model on an ensemble arising from a regional-climate-model experiment over the western United States, and we focus on the projected change in seasonal temperature and precipitation over the next 50 years.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS369 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    Combining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures

    Full text link
    Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Different quality measures were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good quality measure remains a challenging task for a user. Given a quality measures evaluation matrix according to semantic properties, this paper describes how FCA can highlight quality measures with similar behavior in order to help the user during his choice. The aim of this article is the discovery of Interestingness Measures "IM" clusters, able to validate those found due to the hierarchical and partitioning clustering methods "AHC" and "k-means". Then, based on the theoretical study of sixty one interestingness measures according to nineteen properties, proposed in a recent study, "FCA" describes several groups of measures.Comment: 13 pages, 2 figure

    Hierarchical growing cell structures: TreeGCS

    Get PDF
    We propose a hierarchical clustering algorithm (TreeGCS) based upon the Growing Cell Structure (GCS) neural network of Fritzke. Our algorithm refines and builds upon the GCS base, overcoming an inconsistency in the original GCS algorithm, where the network topology is susceptible to the ordering of the input vectors. Our algorithm is unsupervised, flexible, and dynamic and we have imposed no additional parameters on the underlying GCS algorithm. Our ultimate aim is a hierarchical clustering neural network that is both consistent and stable and identifies the innate hierarchical structure present in vector-based data. We demonstrate improved stability of the GCS foundation and evaluate our algorithm against the hierarchy generated by an ascendant hierarchical clustering dendogram. Our approach emulates the hierarchical clustering of the dendogram. It demonstrates the importance of the parameter settings for GCS and how they affect the stability of the clustering
    • …
    corecore