Climate models have become an important tool in the study of climate and
climate change, and ensemble experiments consisting of multiple climate-model
runs are used in studying and quantifying the uncertainty in climate-model
output. However, there are often only a limited number of model runs available
for a particular experiment, and one of the statistical challenges is to
characterize the distribution of the model output. To that end, we have
developed a multivariate hierarchical approach, at the heart of which is a new
representation of a multivariate Markov random field. This approach allows for
flexible modeling of the multivariate spatial dependencies, including the
cross-dependencies between variables. We demonstrate this statistical model on
an ensemble arising from a regional-climate-model experiment over the western
United States, and we focus on the projected change in seasonal temperature and
precipitation over the next 50 years.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS369 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org