119 research outputs found

    Robust multiple frequency multiple power localization schemes in the presence of multiple jamming attacks

    Get PDF
    Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS) is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios

    A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time

    Cooperative Localization on Computationally Constrained Devices

    Get PDF
    Cooperative localization is a useful way for nodes within a network to share location information in order to better arrive at a position estimate. This is handy in GPS contested environments (indoors and urban settings). Most systems exploring cooperative localization rely on special hardware, or extra devices to store the database or do the computations. Research also deals with specific localization techniques such as using Wi-Fi, ultra-wideband signals, or accelerometers independently opposed to fusing multiple sources together. This research brings cooperative localization to the smartphone platform, to take advantage of the multiple sensors that are available. The system is run on Android powered devices, including the wireless hotspot. In order to determine the merit of each sensor, analysis was completed to determine successes and failures. The accelerometer, compass, and received signal strength capability were examined to determine their usefulness in cooperative localization. Experiments at meter intervals show the system detected changes in location at each interval with an average standard deviation of 0.44m. The closest location estimates occurred at 3m, 4m and 6m with average errors of 0.15m, 0.11m, and 0.07m respectively. This indicates that very precise estimates can be achieved with an Android hotspot and mobile nodes

    Evaluation and Analysis of Node Localization Power Cost in Ad-Hoc Wireless Sensor Networks with Mobility

    Get PDF
    One of the key concerns with location-aware Ad-hoc Wireless Sensor Networks (AWSNs) is how sensor nodes determine their position. The inherent power limitations of an AWSN along with the requirement for long network lifetimes makes achieving fast and power-efficient localization vital. This research examines the cost (in terms of power) of network irregularities on communications and localization in an AWSN. The number of data bits transmitted and received are significantly affected by varying levels of mobility, node degree, and network shape. The concurrent localization approach, used by the APS-Euclidean algorithm, has significantly more accurate position estimates with a higher percentage of nodes localized, while requiring 50% less data communications overhead, than the Map-Growing algorithm. Analytical power models capable of estimating the power required to localize are derived. The average amount of data communications required by either of these algorithms in a highly mobile network with a relatively high degree consumes less than 2.0% of the power capacity of an average 560mA-hr battery. This is less than expected and contrary to the common perception that localization algorithms consume a significant amount of a node\u27s power

    Vision Based Calibration and Localization Technique for Video Sensor Networks

    Get PDF
    The recent evolutions in embedded systems have now made the video sensor networks a reality. A video sensor network consists of a large number of low cost camera-sensors that are deployed in random manner. It pervades both the civilian and military fields with huge number of applications in various areas like health-care, environmental monitoring, surveillance and tracking. As most of the applications demand the knowledge of the sensor-locations and the network topology before proceeding with their tasks, especially those based on detecting events and reporting, the problem of localization and calibration assumes a significance far greater than most others in video sensor network. The literature is replete with many localization and calibration algorithms that basically rely on some a-priori chosen nodes, called seeds, with known coordinates to help determine the network topology. Some of these algorithms require additional hardware, like arrays of antenna, while others require having to regularly reacquire synchronization among the seeds so as to calculate the time difference of the received signals. Very few of these localization algorithms use vision based technique. In this work, a vision based technique is proposed for localizing and configuring the camera nodes in video wireless sensor networks. The camera network is assumed randomly deployed. One a-priori selected node chooses to act as the core of the network and starts to locate some other two reference nodes. These three nodes, in turn, participate in locating the entire network using tri-lateration method with some appropriate vision characteristics. In this work, the vision characteristics that are used the relationship between the height of the image in the image plane and the real distance between the sensor node and the camera. Many experiments have been simulated to demonstrate the feasibility of the proposed technique. Apart from this work, experiments are also carried out to locate any other new object in the video sensor network. The experimental results showcase the accuracy of building up one-plane network topology in relative coordinate system and also the robustness of the technique against the accumulated error in configuring the whole network

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    An iteratively Reweighted Least Square algorithm for RSS-based sensor network localization

    Get PDF
    In this article, we give a new algorithm for localization based on RSS measurement. There are many measurement methods for localizing the unknown nodes in a sensor network. RSS is the most popular one due to its simple and cheap hardware requirement. However, accurate algorithm based on RSS is needed to obtain the positions of unknown nodes. Recent algorithms such as MDS(Multi-Dimensional Scaling)-MAP, PDM (Proximity Distance Matrix) cannot give accurate results based on RSS as the RSS signals always have large variations. Besides, recent algorithms on sensor network localization ignore the received signal strength (RSS) and thus get a disappointing accuracy. This is because they are mostly focused on the difference between the estimated distance and the real distance. This paper introduces a target function - signal-based maximum likelihood (SML), which uses the maximum likelihood based on the directly measured RSS signal. Inspired by the SMACOF (Scaling by Majorizing A COmplicated Function) algorithm, an iteration surrogate algorithm named IRLS (Iteratively Reweighted Least Square) is introduced to solve the SML. From the simulation results, the IRLS algorithm can give accurate results for RSS positioning. When compared with other popular algorithms such as MDS-MAP, PDM, and SMACOF, the error (distance between the estimated position and the actual position) calculated by IRLS is less than all the other algorithms. In anisotropic network, IRLS also has good performance. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Mechatronics and Automation (ICMA 2011), Beijing, China, 7-10 August 2011. In Proceedings of ICMA, 2011, p. 1085-109

    Vision Based Calibration and Localization Technique for Video Sensor Networks

    Get PDF
    The recent evolutions in embedded systems have now made the video sensor networks a reality. A video sensor network consists of a large number of low cost camera-sensors that are deployed in random manner. It pervades both the civilian and military fields with huge number of applications in various areas like health-care, environmental monitoring, surveillance and tracking. As most of the applications demand the knowledge of the sensor-locations and the network topology before proceeding with their tasks, especially those based on detecting events and reporting, the problem of localization and calibration assumes a significance far greater than most others in video sensor network. The literature is replete with many localization and calibration algorithms that basically rely on some a-priori chosen nodes, called seeds, with known coordinates to help determine the network topology. Some of these algorithms require additional hardware, like arrays of antenna, while others require having to regularly reacquire synchronization among the seedy so as to calculate the time difference of the received signals. Very few of these localization algorithms use vision based technique. In this work, a vision based technique is proposed for localizing and configuring the camera nodes in video wireless sensor networks. The camera network is assumed randomly deployed. One a-priori selected node chooses to act as the core of the network and starts to locate some other two reference nodes. These three nodes, in turn, participate in locating the entire network using tri-lateration method with some appropriate vision characteristics. In this work, the vision characteristics that are used the relationship between the height of the image in the image plane and the real distance between the sensor node and the camera. Many experiments have been simulated to demonstrate the feasibility of the proposed technique. Apart from this work, experiments are also carried out to locate any other new object in the video sensor network. The experimental results showcase the accuracy of building up one-plane network topology in relative coordinate system and also the robustness of the technique against the accumulated error in configuring the whole network
    corecore