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Abstract

Localization of the wireless sensor network is a vital area acquiring an impressive research

concern and called upon to expand more with the rising of its applications. As localization is

gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jam-

ming attacks disrupt communication opportunity among the sender and receiver and deeply

impact the localization process, leading to a huge error of the estimated sensor node posi-

tion. Therefore, detection and elimination of jamming influence are absolutely indispens-

able. Range-based techniques especially Received Signal Strength (RSS) is facing severe

impact of these attacks. This paper proposes algorithms based on Combination Multiple

Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency

Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence

of multiple types of jamming attacks including capture and replay, random and constant jam-

mers over a log normal shadow fading propagation model. In order to overcome the impact

of random and constant jammers, the proposed method uses two sets of frequencies

shared by the implemented anchor nodes to obtain the averaged RSS readings all over the

transmitted frequencies successfully. In addition, three stages of filters have been used to

cope with the replayed beacons caused by the capture and replay jammers. In this paper

the localization performance of the proposed algorithms for the ideal case which is defined

by without the existence of the jamming attack are compared with the case of jamming

attacks. The main contribution of this paper is to achieve robust localization performance in

the presence of multiple jamming attacks under log normal shadow fading environment with

a different simulation conditions and scenarios.

Introduction

Wireless sensor network localization can be achieved using techniques like received signal

strength (RSS), time of arrival (TOA) and angle of arrival (AOA). The vast majority of these

techniques are built on the physical properties of the wireless system design [1]. Following the
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widespread deployment of the location information services, there is an emerging event of the

malicious attacks on the localization services. A large portion of these attacks are expected to

affect the localization procedures so that the applications associated with the location informa-

tion services will be extremely influenced. Location infrastructure is vulnerable to several

attacks such as classical and physical attacks [2, 3].

The result of jamming attacks causes a huge deviation on the estimation of the sensor node

position which leads to severe estimation error. Applications based on localization are directly

affected as a result of these errors. Jamming attacks can inserting a false signal into the network

due to the shared infrastructure medium of the wireless channel communication. For instance,

a jammer can transmit a certain signal in order to outface the communications among the

transmitter and receiver. The essential objective of the jamming attacks is to interfere with the

wireless channel with an appropriate and powerful signals. Localization approach using range

based strategy such as RSSI is extremely influenced by these attacks [3]. Meanwhile, localiza-

tion of wireless sensor networks is facing a major issue due to the jamming attacks’ impact.

There are considerable challenges and difficulties that ought to be researched on by researchers

to cope with these dangerous attacks.

The task of security provision in wireless sensor networks is very demanding and includes

several challenges such as protection against dangers, losses, damages, and attacks. The chal-

lenge becomes more complex given the limited input and output (I/O) resources, memory and

computational power possessed by wireless sensor nodes. Avoidance of intrusion and uphold-

ing secrecy is among the most common security issues encountered in a wireless sensor net-

work. The task of security of the access in wireless networks is very ambiguous against the

wired or fixed networks. The reason for this is explained by the utilization of the wireless trans-

mission medium of wireless networks. Access security of wireless sensor networks poses more

challenges when compared to their traditional wired counterparts. This can be attributed to

the hostile environment resource limitation of the sensor nodes. Wireless sensor networks are

typically heterogeneous in nature. They consist of tiny sensors and actuators that make up

their general-purpose computing elements. The computing elements are usually characterized

by restricted resources such as bandwidth, computational power, peripherals and power, thus

making it challenging and taxing to design a secure wireless sensor network system. Existing

security schemes consume more energy and need large resources such as computational

power, memory, etc. Other challenges such as network density and size, physical attack risks,

nature and features of wireless communication channels, unknown topology before deploy-

ment etc. further complicate the provisioning of wireless security networks [4].

Wireless sensor networks have also attracted the attention of cryptographers and other

security researchers [5–9]. Many recent works are incapable to achieve an exceptionally

secured localization algorithm without performing the cryptographic strategies which impose

additional hardware and computation requirement. The proposed method of this paper takes

into account the robust localization performance of wireless sensor network in the presence of

multiple jamming attack without the need of cryptographic techniques which indeed increas-

ing the hardware complexity and the computational requirements. However, non crypto-

graphic technique which implemented to cope with the presence of jamming attacks in the

wireless network through detecting the jammers as well as eliminating its impacts remains

unexplored. Hence, this paper proposes algorithms based on multiple frequency multiple

power localization (MFMPL) technique to cope with the multiple types of jamming attacks

under the shadow fading propagation model without utilizing cryptographic strategies. The

promising performance of the new proposed algorithm is accomplished to attain accurate and

powerful localization performance.

Wireless sensor network localization over multiple jamming attacks
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Background

Due to the broadcast nature of wireless transmission, the wireless signal is susceptible to other

interferring signals if a proper frequency matching has occurred between these signals. Mali-

cious node can eavesdrop the transmitted signal as well as injecting a false signal into the wire-

less network system. Jamming or man-made interference is the most famous kind of the

physical layer attacks in wireless sensor networks to interfere, distort or distrupt the communi-

cation between the transmitter and the receiver. Along these lines, such attacker can easily gen-

erate a signal and cope with the targeted signal which leads to disrupt the communication. The

main pivotal task of the physical layer in the wireless sensor network is responsible for the gen-

eration of the signal frequency as well as the selection of modulation, signal detection and

authentication of the information [10]. Concurrently, jamming attacks have full access capabil-

ity due to the shared infrastructure medium. Hence, it is clearly unsafe to deploy a sensor nodes

in a such harsh and untrustworthy environment [11, 12].Fig 1 illustrates the sensor nodes

deployment in the jamming area that examines various impacts of jamming attacks [13].

Jamming attacks strategies

Jamming attacks are typical kind of the physical layer attacks in the wireless sensor networks.

It is capable to disrupt the communication opportunity so that the essential aim of the jam-

ming attacks is to inject a powerful signal into the channel in order to occupy it and prevent

the direct sensor nodes communication. Stand on jamming attacks techniques, jammers can

be categorized into various kinds as follows [14–16]:

• Constant Jammer: This type of jammers is constantly transmitting a radio signal into the

channel.

• Deceptive Jammer: This kind of jammers injects continuous packets into the channel with

no gap between the transmitted packets. As a result, normal communication will be tricked

Fig 1. Illustration of varying jamming effects on different nodes.

https://doi.org/10.1371/journal.pone.0177326.g001
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and trusting that it is a proper packet. Therefore, this jammer deceives the target receiver to

keep accepting these inappropriate packets.

• Random Jammer: This kind of jammers constantly stands in between the jamming and the

sleep action. The processing of this jammer is to infuse a signal into the channel for a specific

time tj, then the sleep action will be started by switch off its signal for a specific time ts.

• Reactive Jammer: This type of jammer stay silent until an activity of the channel is detected

and then it will start transmitting its packets.

• Capture and Replay Attack: A replay attack occurs when information is stored without

authorization as a result of a security breach or eavesdropping and maliciously retransmitted

to deceive the receiver to perform unauthorized operations like fake authentication, identifi-

cation, or to duplicate a transaction. This is usually achieved when an attacker captures the

login credentials of an authorized user as he attempts to login to a network and afterwards

replayed. Replay attack may employ an effective and simple strategy called the denial of ser-

vice (DoS) for locally heard data packets. These packets are then passed by another forward-

ing node, leading to an increase in the congestion level and redundancy at each forwarding

node. A replay attack can be carried out anytime and anywhere within the network.

Fundamentals of the range-based received signal strength indicator

technique

The basic principles of the RSS ranging portrays the relationship of the wireless signal power

between the transmitter and the receiver according to the distance among them. This relation-

ship can be described through Eq (1).

Pr ¼ Pt �
1

d

� �a

ð1Þ

where

Pr: the wireless signal received power.

Pt: the wireless signal transmitted power.

d: the distance between the sending and receiving nodes.

α: the transmission parameter value depends on the propagation environment.

By converting Eq (1) to dB, then

10 logPr ¼ 10 logPt � 10a logd ð2Þ

Eq (2) can be rewritten as:

PrðdBÞ ¼ A � 10a logd ð3Þ

From Eq (3), the parameter A and α indicate the relationship between the received signal

strength and the distance for a such transmission path.

Currently, the channel propagation models are commonly utilized in wireless sensor net-

works which include free space and log normal shadow fading environment. In fact, the log

normal shadow fading is more prevalent and suitable model for indoor as well as outdoor

localization. Besides, it has been considered to be the most compatible for a real channel design

of the wireless sensor network localization, because of its flexibility to various environmental

configurations. On the other side, the free space model has another merit: (1) Free space

model is more extensive transmission distance as compared with the carrier wavelength and

Wireless sensor network localization over multiple jamming attacks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177326 May 11, 2017 4 / 43

https://doi.org/10.1371/journal.pone.0177326


the antenna size as well. (2) The line of sight transmission has been considered in this model,

so that it does not have the obstruction issue between the transmitter and the receiver [17, 18].

Assume that the sensor node is deployed at a distance d in the network so that the received

signal power can be obtained accordance to Eqs (4) and (5).

PrðdÞ ¼
PtGtGrl

2

ð4pÞ
2d2L

ð4Þ

PLðdBÞ ¼ 10 log
Pt

Pr
¼ � 10 log

l
2

ð4pÞ
2d2

" #

ð5Þ

In Eq (4), PL(dB) is the power path loss in dB, Gt and Gr are the antenna gain, and L is the

system loss parameter, which is not related to the transmission loss. Gr = 1, Gt = 1 and L = 1

are ordinarily take these values for the system design. Eq (5) describes the formula of the signal

attenuation utilizing logarithmic form.

The most common propagation model which is appropriate for both of indoor and outdoor

localization as well as confers several parameters which can be implemented for various envi-

ronment is the log normal shadow fading model. The mathematical expression for the log-nor-

mal shadowing model can be obtained according to Eq (6).

PLðdÞðdBÞ ¼ PLðdÞ þ Xs ¼ PLðdoÞ þ 10 loga
d
do

� �

þ Xs ð6Þ

According to Eq (6) do is the reference distance, which relies on upon the empirical value,

while α is the path loss exponent, which relies on upon the channel propagation medium and

in case of obstructed environment its value becomes larger, the parameter Xσ is a zero-mean

Gaussian random variable. The parameters do, α and σ depict the path loss channel model for a

particular distance between the transmitter and the receiver. The model can be implemented

for a generic design and analysis of the wireless systems [19, 20]. Regarding the above two

sorts of propagation models, log normal shadow fading is more realistic for wireless sensor

network applications, due to the inclusive merit and the capability to be designed for such

environments.

The relationship of frequency and power for the path loss propagation

model

The log-normal path loss between the transmitter and the receiver of the channel propagation

model can be depicted according to Eq (7) [20, 21]:

PðdÞ ¼ PðdoÞ � 10a log
d
do
þ Xs ð7Þ

where P(d) is the received power of the wireless sensor at a such distance d to the landmark

(Anchor node), P(do) is the power loss in a free space and is usually considered as one meter, α
is the path loss exponent, while Xσ is the effect of the shadowing parameter with a variance of

Xσ, which can be expressed by Eq (8).

Xs � Nð0; s2Þ ð8Þ

The power loss P(do) is the most usually depends on the transmitted frequency which has

been used. Thus, it is more often considered to be a transmission frequency dependent param-

eter [22]. Moreover, the path loss parameter describes the amount changing of the RSS

Wireless sensor network localization over multiple jamming attacks
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measurements with respect to the distance, which inclines to increase its value in case of a

higher transmission frequency used by a such device. Eq (9) demonstrates the relationship

between the path loss exponent with respect to the utilized frequency transmission [23].

a / f ðMHz Þ
ð9Þ

Where:

α: Path loss exponent.

f: Beacon signal frequency which is used by anchor node.

Finally, severe changes of the received signal power which is caused by the shadow fading

impacts due to the obstruction environment that exists in its propagation paths. Therefore, the

experimental measurements proved that the shadow fading is depended directly on the trans-

mitted frequency and the power level as well [24].

The signal propagation model parameters related to such RSSI ranging techniques are gen-

erally determined by online or offline estimations. In fact, online measurements exhausted

more computational time as well as the communication resources. Regardless, in practical sit-

uations, the signal propagation parameters are entirely hard to be measured [25]. Hence, the

precise determination of the signal propagation parameters absolutely leads to a perfect mea-

surement of the RSS rangings [26].

In perspective of the path loss propagation model, the probability density function of RSS

measurements in a such landmark (Anchor node) which has been assembled from (N = 1,

2,. . . . . . . . .N) landmarks can be formed as appeared in Eq (10).

fðx;yÞðPÞ ¼
YN

i¼1

10

log10
ffiffiffiffiffiffi
2p
p

siPi

exp �
Pi

8
log

d2
i

d̂2
i

 !2" #

ð10Þ

where Pi = [p1. . .pN] refers to the received power vectors for N landmarks. Also,

Pi ¼
10ai

si log10

� �2

ð11Þ

d̂i ¼ do
PðdoÞ

Pi

� �
1

ai ð12Þ

d̂i is the estimate of distance di to the ith landmark (Anchor node). (x, y) refers to the esti-

mated position of the unknown sensor node which is computed from the RSS readings. In this

way, the parameter Pi comprises of the path loss component as well as the shadow fading stan-

dard deviation parameter which is clearly depended on the transmitted frequency and power

level for a such landmark.

Related work

A few studies related to the localization of wireless sensor network which dealing with the

vicinity of jamming attacks. The vast majority of the existing works are concentrating on local-

izing the jammers in the network. On the other side, another few works concentrating on find-

ing the sensor node position under this harsh environment. A localizing of jammers

techniques such as Centroide Localization (CL) and Weighted Centroide Localization (WCL)

has been presented in [27]. CL algorithm assembles and averages the coordinates of the

jammed nodes to determine the jammer location in the network. This algorithm suffers from

the propagation irregularities with a high sensitivity to the node distribution in the network.

Wireless sensor network localization over multiple jamming attacks
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Likewise, WCL is a strengthened form of CL approach with enhancement of the jammer local-

ization accuracy. An improved technique known as Virtual Force Iterative Localization (VFIL)

[27] uses an iterative method for estimating the jammer location. This method demonstrates a

high accuracy as well as less sensitivity for the sensor node distribution in the network but it

takes more computations than CL and WCL.

A reactive technique to detect and locate the jammer position through utilizing a distrib-

uted collection of wireless sensor nodes has been investigated in [28]. This work is using auto-

nomic computing as a framework and employing a circular curve fitting algorithm. The

determination of the approximate jammer position has been accomplished via analyzing the

active nodes position and targeted nodes location as well. The effect of the medium access con-

trol (MAC) protocol on timing and collision was ignored in this work. In addition, the location

of the sensor nodes has to be known a priori in order to estimate the position of the jammer in

the network. Therefore, this work is focusing on localizing the position of the jammer in the

network only without any solution for accurate localization of the sensor node in the presence

of jamming attack environment.

The point of view which has been taken into consideration by these works is to get an

appropriate action, alert the system network or it has been accomplished just to test the

impacts of jammers on the localization performance. Our previous work [16] explores more

details about localizing the jammers related to the wireless sensor networks.

A scheme to localize a wireless node using jamming attack as the advantage of the network

has been proposed in [29]. This approach consists of two steps. In the first step, it discovers the

location of the jammer using power adaptation technique and then uses these properties to

localize the jammed nodes. But in this approach it is assumed that the sensor nodes have high

transmission power which is not always the case for energy constrained sensor nodes.

An extensive study on the implementation and possibility of jamming attack detection of

the wireless sensor networks has been carried out. One typical example of a jamming attack

effect is a four different jamming attack models were proposed by [30] using various detection

techniques to identify jamming attacks in sensor networks. They classified poor radio link

using packet delivery ratio (PDR), before performing a consistency check to ascertain if jam-

ming was the root cause. Although their method was quite effective in detecting jamming

attacks, it could not offer counter or preventive measures against jamming.

Instead of utilization such fundamental statistical strategies, multimodal techniques, for

example, joining PDR with signal strength measurements could deliver better performance. In

an ordinary situation with no interference, a high signal strength coincides with a high PDR.

While in the case of the signal strength is low, i.e. it is near to the noise level, the PDR value

will likewise be low. On the other side, a low PDR does not neccessary infer a low signal

strength reading, it might be that all neighbor nodes have a dead battery due to consuming

power resources, device fault or the node is jammed. For the case of jamming, the signal

strength ought to be high, which negates the low the PDR.

Regarding the relationship between the signal strength and the PDR ratio, an advanced

jamming detection strategy has been investigated in [31]. The basic idea of this proposed

approach is to measure the signal strength readings and the PDR ratios during the non -inter-

fered network operation and construct these information in a table (PDR, SS). From this infor-

mation, it can ascertain an upper bound for the maximum signal strength (SS) that would

have introduced a specific PDR value in a non -jammed situation. According to this bound

information, the (PDR, SS) plane is apportioned into legitimate and jammed regions. This

work indicates that the (PDR, SS) values for all jammers unmistakably fall inside the jammed

area which is recommending that regions classification is achievable. Therefore, PDR consid-

ered to be the most robust statistical strategy which can be used for differentiating the jamming

Wireless sensor network localization over multiple jamming attacks
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attack from an overcrowded network situation and it is suitable for various jammer models as

well. However, it is still unable to differentiate the jamming attacks caused by another network

that outface the communication among the sender and the receiver.

A novel wormhole attack detection technique has been presented in [32]. The main contri-

bution of this work is to detect wormhole attacks in a geographic routing protocol (DWGRP).

The detection of malicious nodes is achieved through selecting the best and the most reliable

neighbors based on pairwise key pre-distribution technique and the beacon packet as well.

Hence, this work depends directly on identifying trust neighbors with respect to the secure

shared keys which require extra complex hardware. Furthermore, this method will fail in the

presence of non-cryptographic attacks and susceptible to a cryptographic attacks as well.

A new Single Stage Memory Random Walk technique and Single Stage Memory Random

Walk with Network Division (SSRWND) have been proposed in [33]. This work has been

implemented in order to detect node replication attacks in wireless sensor networks. The main

contribution of this work aims to reduce the communication and memory costs while keeping

the detection probability high. This work depends directly on the witness nodes in the network

in order to get more effective and robust clone detection. Hence, the requirements of this

work include uniform distribution and non-deterministically with equal probability of the wit-

ness nodes should be selected. Furthermore, it is assumed that static sensor nodes knowing

their locations as well. The assumptions of this work are impractical and still susceptible to

cryptographic attacks and the capture and replay attacks.

Given the graveness of the effects of radio jamming attacks, a number of studies have also

proposed some anti-jamming techniques. In [34], the effect of radio jamming can be neutral-

ized if the power of transmission nodes is proportional to the power of the jamming radio. The

authors assumed that the jamming effect on source-receiver communications is not isotropic.

They improved the transmission power of a testbed with Mica2 motes and used it to study the

jamming effect. Therefore, the proposed method takes into consideration the effects of jam-

ming attacks on the transmission power without any solutions to cope with jamming.

The technique presented in [35] uses an optimization technique to address the jamming

problem. The authors represented the jamming issue as an optimization problem and tried to

solve it to determine the probability of transmitting a radio signal from both the network and

jammer’s end, in order to achieve optimal jamming and defense effectiveness. The focus of

their research was to understand the interactions that take place between the jammer and the

nodes in a network only.

Regarding to the scheme in [36] which studied insider jamming attacks and found that jam-

ming attacks can be carried out by an attacker once a compromised node is exploited to reveal

common cryptographic information. To address the insider jamming attacks challenge, a com-

promise-resilient anti-jamming scheme was proposed. The scheme uses group keys that are

shared by sensor nodes to determine the physical channel used by a sensor network. This

method needs to generate a new key group of cryptographic information which will be utilized

for all the non–compromised sensor nodes in order to cope with the single insider jammer.

This method will fail if multiple jammers exist as well as it needs extra hardware which increas-

ing the complexity of the wireless sensor network design.

The channel surfing technique proposed in [37, 38] to address the jamming interference.

The authors studied two methods of channel surfing: coordinated channel switching, where

the radio channel of the entire sensor network is changing dynamically, and the spectral multi-

plexing, where radio channel is changed by the nodes in the jammed area with the boundary

nodes acting as relays. This technique is a complicated strategy to cope with the jamming

attacks as well as taking more time to repair the sensor node communication and it will fail in

the presence of multiple jammers in the networks.

Wireless sensor network localization over multiple jamming attacks
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An approach based on frequency hopping spread spectrum (FHSS) and direct sequence

spread spectrum (DSSS) has been presented in [39] which is considered to be the best counter-

measure to cope with the jamming attacks. The basic strategy of this approach is that the

jammed nodes utilizing the channel diversity to establish the communication with the sensor

nodes which are outside the jamming area. However, this strategy is only implemented for the

routing process and the localization of the sensor node is not taken into consideration in this

method.

Although traditional methods of cryptography, e.g. authentication can be used to protect

against conventional attacks from adversaries such as false message injections, non-crypto-

graphic attacks are, however, completely orthogonal and have the ability to corrupt the signal

strength measurement processes. Unfortunately, traditional security services are incapable of

militating non-cryptographic attacks, thus the need to investigate the impact of these attacks

on localization algorithms with the aim of proposing methods that can be effectively used to

detect and eliminate such threats from the network. Despite advances in the domain of secure

localization [40–43], there is yet to be any study in the area of robustness of RSS-based localiza-

tion algorithm generation against physical attacks. The evaluative study in this paper is there-

fore significant in its contribution to wireless sensor network designs, particularly in the area

of protocol decisions drivers, which will enable engineers to make better informed decisions

about whether there is a need for a more complicated security localization algorithm.

The network availability attacks are usually indicated as a Denial of Service (DoS) attacks,

which going to make the wireless network unavailable, corruption or disorder the network

performance. Usually it can target one of each layer of the open system interconnection (OSI)

layer of the sensor network. The optimized attack schedule has been investigated in order to

streamline the effect on the system performance due to the insufficiency of energy at the

attacker side. An optimal DoS attack that maximizes the Linear Quadratic Gaussian (LQG)

control cost function under the energy constraint has been introduced in [44]. The work start

with analyzing the properties of the cost function under an arbitrary attack schedule, then

deriving the optimal jamming attack schedule and the corresponding cost function. System

stability under this optimal attack schedule is also considered. In this work, different examples

are provided to demonstrate the effectiveness of the proposed optimal denial-of-service attack

schedule. This work considers the effectiveness of the proposed optimal jamming attack policy

in WNCs, but it does not take into account the impact of jamming attacks on the localization

accuracy.

Optimal attack schedules to maximize the expected average estimation error at the remote

estimator have been demonstrated in [45]. This work provides the optimal attack schedules

when a special intrusion detection system (IDS) at the estimator is given. The work investigates

how an attacker should schedule its Denial of Service (DoS) attacks to degrade the system per-

formance. Specifically, it considers the scenario where a sensor sends its data to a remote esti-

mator through a wireless channel, while an energy-constrained attacker decides whether to

jam the channel at each sampling time. In this work, a single sensor scenario has been studied

and the impact of jamming attacks on the localization accuracy does not take into

consideration.

Network and adversary model

For the network model, N sensor nodes are deployed in a non authoritative region which has

an obligation to estimate their positions with respect to a range distance measurements for a

number of implemented anchor nodes / access points (APs) in the network. The anchor nodes

(APs) are deployed around the perimeter of the network with known locations a priori.

Wireless sensor network localization over multiple jamming attacks
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Anchor nodes transmit beacon signals according to a multiple frequency and power strategy

with their coordinates denoted as (x, y). At the sensor node, reference position (x, y, d’) is con-

structed from the received beacon signals, d’ refers to the range distance estimation between

the sensor node and each anchor node in the network. The range distance estimation is

obtained as a result of measuring the received signal strength (RSS). When required valid bea-

cons are available with their reference position, sensor nodes can applying lateration and trila-

teration techniques in order to estimate the sensor node location in the network.

The adversary is capable to perform straightforward signal manipulations in the wireless

sensor networks. For instance, creating a fabricated signal, signal cancellation, signal modifica-

tion and re-requesting of signal sequences. There are established security concepts such as pas-

sive or active attackers. Besides, there are a characterization of other notions that are more

particular to wireless sensor network such as mote-class or laptop-class and the start of the

attacks either inside or outside security border. Along these lines, definitions and further infor-

mation of adversaries related to the wireless sensor networks can be found in [33, 46–49]

The shared infrastructure of the transmission medium in the wireless sensor networks con-

fers the chance for an adversary to dispatch wireless physical jamming attacks. To give a

straightforward illustration, a malicious node can ceaselessly transmit a radio signal with a spe-

cific end goal to hinder any valid access to the medium and/or interfere with reception. This

demonstration is called jamming and the malicious nodes are known as jammers.

For the adversary model, there are multiple jammers placed randomly in the network. Con-

stant and random jammers interfere the wireless sensor network channel via two fixed fre-

quencies. On the other hand, all the transmitted beacon signals will be captured and replayed

by the capture and replay jammer. The coverage area which is occupied by each jammer node

can be described as a circle centred at the point of the jammer location in the network. More-

over, through applying a powerful antenna, transmission range for each jammer is wider and

stronger than the range of the sensor nodes. Fig 2 shows a network scenario with anchor

nodes (APs), sensors and the jamming sensors.

In order to simulate a powerful and effective jamming attacks in the network system, multi-

ple jammers indicated by three different types have been implemented as follows:

• Constant jammer.

• Random jammer.

• Capture and replay jammer.

Constant and random jammers work in a different frequency ranges denoted by 400 and

600 MHz respectively. These jammers will target the anchor node transmitted beacon signals

at these frequencies only. The anchor node transmitted beacon signals will be captured by the

capture and replay jammers and retransmitted in the network. Therefore, taking these jammed

beacons into consideration in the localization process will lead to a huge estimation error for

the sensor node position due to the deviation of the measured received signal strength (RSS).

This kind of signal strength attack detrimental to the whole wireless sensor network localiza-

tion process. Hence, the impact of this considerable attack should be ceased.

Pre-localization mechanism of filtering beacon signals

Despite the high availability of the received beacon signals which is accomplished through a

powerful technique of the proposed algorithm in order to cope with the constant and random

jammers in the network, these available beacons can not be considered to be valid due to the

impact of the capture and replay jammers. Hence, each sensor will receive beacons from
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different anchor nodes (APs). Since the beacon signals are sending two different sets of fre-

quencies shared and distributed through a uniform sequence between the implemented

anchor nodes as well as jammers cannot attack all the frequencies at once, sensor nodes will

receive beacons even in spite of presence of constant and random jammers. The only problem

now is with the capture and replay jammer which directly affect the localization performance

through interfering and injecting invalid beacons through the wireless sensor network.

Valid beacons from the access points will be captured and replayed by the jammer. This

will influence the distance calculations using RSS ranging and the effect is cascaded to the sen-

sor node location estimation. For this problem, set of filtering techniques at the sensor nodes

have been proposed. Whenever the sensor node receives the beacons, it will be forwarded con-

sistently through these filters to drop the replayed beacons. Fig 3 displays the block diagram of

the filtering stages.

• Frequency Filter: This filter will estimate the frequency of transmission for the access point

and match it with the frequency of the received beacon from the access point. According to

Eq (13), if there is any deviation in the estimated received frequency with respect to the

actual transmitted frequency it will be dropped and does not take into consideration of the

Fig 2. A network model with anchors, sensors and multiple jammers.

https://doi.org/10.1371/journal.pone.0177326.g002
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localization process.

ESS ¼ EstimatedFrequency � ActualFrequency ð13Þ

Non zero ESS value indicates an error and the beacon will be dropped.

• Power Level Filter: When the frequency validated beacons comes to Power level filter, the

received signal strength is calculated and the packet is buffered. For the subsequent beacon

from the access point, the power level is checked for lying in proportion with respect to the

power level. The beacons not in proportion to the power level are just dropped and one

packet passing the power level test is given to the duplicate filter. Ordinarily, the threshold

value ought to be used to settle on an appropriate choice indication at the power level filter

stage, as well as it is considered to be an important criterion for the detection process. There-

fore, for each beacon signal passed through this filter if the error in the RSS measurements

received from a certain anchor (AP) with a percentage error exceeds 15% of the actual RSS

ought to be neglected, while RSS error less than 15% ought to be accepted and this beacon

forwarded to the last filter stage.

Fig 3. Proposed beacon signals filter technique.

https://doi.org/10.1371/journal.pone.0177326.g003

Wireless sensor network localization over multiple jamming attacks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177326 May 11, 2017 12 / 43

https://doi.org/10.1371/journal.pone.0177326.g003
https://doi.org/10.1371/journal.pone.0177326


• Duplicated Filter: If more than one valid beacon having the same frequency and power is

received from the same anchor node, then only one is kept while the others will be dropped.

The decision strategy of the beacon selection which has been accepted is based on comparing

the RSS error for each received beacon with respect to the threshold value indication. There-

fore, the beacon with a minimum RSS error will be accepted and passed to the localization

stage.

• Localization: Using the valid beacons from different anchor nodes, the localization module

will extract the coordinates of the anchor points from these valid beacons and estimate the

optimized distance between the sensor node with respect to each anchor points using the

averaging RSS values based on the proposed algorithms which have been achieved for the

network design. Regarding to this information, lateration and trilateration techniques are

applied in order to determine the sensor nodes position.

The analytical flow chart which depicts the strategy of the pre-localization stage for filtering

the beacon signals of the proposed solution can be indicated according to Fig 4.

In order to accomplish the robust localization accuracy in the presence of multiple jamming

attacks environment which is considered to be the main objective of this paper, the proposed

solutions have been implemented.

Proposed solution

The proposed algorithm is a function of multiple frequency multiple power transmission

achieved by two techniques: a Step Function Multiple Frequency Multiple -Power Localization

(SFMFMPL) and a Combination Multiple Frequency Multiple Power Localization

(C-MFMPL). Keeping in mind the end goal is to relieve the impacts of shadow fading, the

averaging technique for all the RSS readings with respect to the transmitted frequencies has

been also accomplished. In our proposed approach, the sensor nodes have the prior knowledge

about the expected sequence of the frequency and the power level for the transmitted signals at

each anchor / access point (AP). The proposed scheme can address the effect of the constant

and random jamming attacks since these two types of jamming sensors can broadcast in only

one frequency and will jam the packets sent at that frequency. However, the main impact of

these jammers will appear for achieving a robust RSS averaging technique which is imple-

mented to deal with the shadow fading effects. Hence, the new strategy of our proposed solu-

tion is accomplished through utilizing two sets of multiple frequency transmission shared

between the deployed anchor nodes as well as distributed in a uniform sequence. With an aim

to bypass the interference impact caused by capture and reply jamming attack which is consid-

ered to be the most dangerous type of jamming attacks, a proper technique has been proposed

to filter out those invalid beacons by using three stages of filters. Therefore the received bea-

cons will be checked by the frequency filter, power level filter and duplicated filter to remove

the replayed beacons and applying the lateration using nonlinear least squares as well as trila-

teration techniques to estimate sensor node position.

It is assumed that the sensors and the anchor nodes are precisely timed synchronized. This

is possible through utilizing a quartz crystal clock which is implemented for all sensors and

anchor nodes. With the assistance of this method all of them are time synchronized in the net-

work as well as it is simple and cost effective to be achieved [50, 51]. Time synchronization can

be accomplished through another several techniques suitable for wireless sensor networks.

Further information related to time synchronisation has been presented in [52].
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Fig 4. Analytical flow chart of the pre-localization mechanism for filtering the beacon signals.

https://doi.org/10.1371/journal.pone.0177326.g004
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Robust multiple frequency multiple power localization (MFMPL)

approach

Multiple frequency and multiple power transmission have been performed in order to deter-

mine the sensor node location in the network. Definitely each sensor node has a prior knowl-

edge about the specific transmitted frequency and the power level that used by the deployed

anchor nodes in the network as well as the next decided frequency and power level sequence.

At the sensor node side, the receiver attempts to synchronize the prospect frequency and

power level as well as checking whether any interference existence in its path due to jamming

attacks. The estimation of the sensor node location has been obtained through applying the

lateration as well as trilateration technique. Furthermore, to avoid receiving invalid beacons at

each sensor node due to capture and replay jamming attacks, a set of filters are used. The func-

tional block diagram of our previous work (SF-MFMPL) can be found in [53]. Fig 5 outlines

the functional block diagram of the (C-MFMPL) scheme.

The proposed strategy which is specified by multiple frequency multiple power localization

(MFMPL) can be achieved via two phases as follow:

Fig 5. The functional block diagram of the C-MFMPL technique.

https://doi.org/10.1371/journal.pone.0177326.g005

Wireless sensor network localization over multiple jamming attacks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177326 May 11, 2017 15 / 43

https://doi.org/10.1371/journal.pone.0177326.g005
https://doi.org/10.1371/journal.pone.0177326


Initialization phase

Regarding the initialization stage, every anchor node will pick a random seed and utilizing it

to outline the frequency estimation function as appeared in Eq (14).

FreqðtÞ ¼ Fðt; StðseedÞÞ ð14Þ

Frequency calculation function is determined by this random seed at the current time. The

beacon signal which be transmitted at that time is denoted to the frequency calculation func-

tion. St refers to the seed generation function which creates the seed for a specific time with

respect to the present time and the initial seed value. F and St refer to the initial seed for the

beacon signal transmission by each anchor node which is kept in a protected memory of the

sensor node with the goal that it is very hard by an attacker to estimates these values. In addi-

tion, anchor nodes transmit beacon signals with a multiple power levels in a consecutive way.

Therefore, t power level sequence should be well known in priori by each deployed sensor

node in the network.

According to the proposed technique based on SF-MFMPL, each AP (access point) is speci-

fied by a function of frequency and power level in a step wise over the possible values of trans-

mission. The step function within the step duration is kept different for different anchor nodes

(APs). A sample of a step function can be described by the Eq (15). Further details which

describe the step function mechanism of the proposed strategy SF-MFMPL can be found in

our previos work [53].

f ðtÞ ¼

a 0 � t <= 3T

b 3T < t <= 7T

c 7T < t � 8T

8
>>><

>>>:

9
>>>=

>>>;

ð15Þ

A step function multiple frequency multiple power localization (SF-MFMPL) approach

which is used in the simulation test to relieve the impacts of log normal shadow fading. The

mathematical representation of the averaging operation for N (RSS) values gathered from a

certain anchor nodes has been implemented by the proposed solution in accordance with Eqs

(16) and (17) respectively.

F ¼ ff1ðp1Þ; f2ðp2Þ; f3ðp3Þg ð16Þ

averageRSSIi ¼
1

N

XN

j¼1

RSSIij ð17Þ

The other proposed method in this study which has been utilized to achieve the multiple

frequency and power level transmission mechanism can be identified by a combination of all

the decided frequencies and power levels used for the beacon signals transmission via each

anchor node in the network. However, the proposed method based on Combination Multiple

Frequency Multiple Power Localization (C-MFMPL) has been built to face the log normal

shadow fading model which obtains the essential features of the multiple frequency and power

level as well as the averaging technique of all the received signal strength all over the transmit-

ted frequencies in facing and overcoming the shadow fading impacts.

Hence, the mathematical representation of the proposed method based on C-MFMPL algo-

rithm can be performed by a set of RSS with the coordinates of a certain anchor nodes col-

lected and stored in the buffer by each sensor node in the network which indicated according

to Eq (18). Meanwhile, averaging of RSS values all over the transmitted frequencies which
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stored in a such buffer is expressed in Eq (19).

F ¼ ff1ðP1; P2; P3Þ; f2ðP1; P2; P3Þ; f3ðP1; P2; P3Þg ð18Þ

Where

f1, f2, f3 is the transmitted frequencies.

P1, P2, P3 is the decided power levels.

Sbuffer ¼ faverageRSSI1ðf1; f2; f3Þ; averageRSS2ðf1; f2; f3Þ;

averageRSSI3ðf1; f2; f3Þg
ð19Þ

Furthermore, Eq (20) outlines the Rbuffer set that is collected and stored in the buffer speci-

fied by the averaging RSS readings with the coordinates of the certain anchor nodes.

Rbuffer ¼ fSbuffer; Pbufferg ð20Þ

The Pbuffer and Sbuffer sets indicate the anchor nodes coordinates and the average RSS mea-

surements, respectively.

The calculation of the distance (d) with respect to the averaging valid RSS values has been

obtained in order to mitigate and overcome the shadow fading impacts. Moreover, to increase

the accuracy of the ranging measurements specified by the distance among the sensor and

each anchor node (AP), the optimization of the determined distance (d) has been applied in

order to get more accurate ranging measurements which leads to obtain a better estimate of

the sensor node location in the network. According to the Eq (21), the optimization of ranging

distance (dOptimized) can be identified by averaging the calculated distances of the averaging

valid RSS readings.

dOptimized ¼
1

3

X3

j¼1

dRSSIj ð21Þ

The major key role of determining the d_Optimized ranging mechanism is to take an

advantage of not only the averaging of the RSS from one transmitted frequency, but for all the

different transmitted frequencies which have different response and effects with respect to the

shadow fading propagation model as well as this advantage will be reflected directly for more

enhancing of the localization performance.

The point of interest which elaborate the mechanism of the proposed method localization

stage based on both SF-MFMPL and C-MFMPL which has been accomplished over log normal

shadow fading propagation model can be outlined regarding to Fig 6.

Localization phase

Localization procedures include two stages which can be indicated by ranging and lateration.

Ranging stage is responsible of estimating the distance d between the sensor node with respect

to a certain anchor node (AP). The distance d is extracted from the RSS measurements accord-

ing to Eq (22).

RSS ¼ Po � 10a logd ð22Þ

Hence, the distance can be determined from Eq (23) as follows:

d ¼ 10

Po � RSS
10a

0

@

1

A ð23Þ
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where: Po is the power received in dBm at a 1-m distance; d is the distance between the node

and the AP; α is the path loss component.

Regarding the lateration technique, the location of the sensor nodes has been obtained

through measures the distance estimations with respect to various anchor nodes in the net-

work. Two common strategies for determining the sensor nodes position can be indicated as

non-linear least square (NLS) as well as linear square (LS) techniques. For NLS technique the

distance estimation di and the known coordinates Li = (xi, yi) for such landmark is utilized to

determine the sensor node location ðx̂; ŷÞ according to Eq (24).

ðx̂; ŷÞ ¼ argminx;y

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xÞ2 þ ðyi � yÞ2
q

� d̂i

� �2

ð24Þ

where i = 1. . .n for n total landmarks.

Since the computations is quite complex, an approximation solution of this equation can be

obtained according to Eq (25) [23].

AP̂ ¼ b ð25Þ

where:

A ¼
x1 �

1

n

Xn

i¼1
xi xn �

1

n

Xn

i¼1
xi

y1 �
1

n

Xn

i¼1
yi yn �

1

n

Xn

i¼1
yi

0

B
B
@

1

C
C
A ð26Þ

Fig 6. The localization strategy of the proposed method.

https://doi.org/10.1371/journal.pone.0177326.g006

Wireless sensor network localization over multiple jamming attacks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177326 May 11, 2017 18 / 43

https://doi.org/10.1371/journal.pone.0177326.g006
https://doi.org/10.1371/journal.pone.0177326


and:

b ¼
1

2

x2
1
�

1

n

Xn

i¼1
x2

i

� �

þ y2
1
�

1

n

Xn

i¼1
y2

i

� �

x2
n �

1

n

Xn

i¼1
x2

i

� �

þ y2
1
�

1

n

Xn

i¼1
y2

i

� �

� d̂2
n �

1

n

Xn

i¼1
d̂2

i

� �

0

B
B
B
B
@

1

C
C
C
C
A

ð27Þ

A is depicted the coordinates of such landmark and b is described by the distance estima-

tion to such landmark. Therefore, The estimation of the sensor node location can be solved

regarding to Eq (28).

P̂ ¼ ðATAÞ� 1ATb ð28Þ

Furthermore, in light of the localization process based on trilateration strategy, the coordi-

nates of the implemented anchor nodes is characterized by the i-th beacon Bi are (xBi, yBi),

the unknown sensor node coordinates is defined by (x, y) while RSSIi and di indicates the sig-

nal strength as well as the distance estimations respectively among the sensor node and each

anchor node. Hence, assuming three beacon nodes (b1, b2, b3) which defined by three esti-

mated distances (d1, d2, d3), so that the sensor node location coordinates can be determined

as follows [54, 55]:

ðx � xB1Þ
2
þ ðy � yB1Þ

2
¼ d2

1

ðx � xB2Þ
2
þ ðy � yB2Þ

2
¼ d2

2

ðx � xB3Þ
2
þ ðy � yB3Þ

2
¼ d2

3

ð29Þ

By subtracting the earlier two equations from the third one, we can obtain the following

equations:

2ðxB3 � xB1Þx þ 2ðyB3 � yB1Þy ¼ x2
B3
� x2

B1
þ y2

B3
� y2

B1
þ d2

1
� d2

3

2ðxB3 � xB2Þx þ 2ðyB3 � yB2Þy ¼ x2
B3
� x2

B2
þ y2

B3
� y2

B2
þ d2

2
� d2

3

ð30Þ

By expressing Eq (30) in matrix form, we obtain:

x

y

" #

¼
2ðxB3 � xB1Þ 2ðyB3 � yB1Þ

2ðxB3 � xB2Þ 2ðyB3 � yB2Þ

" #� 1

�
x2
B3
� x2

B1
þ y2

B3
� y2

B1
þ d2

1
� d2

3

x2
B3
� x2

B2
þ y2

B3
� y2

B2
þ d2

2
� d2

3

" #

ð31Þ

However, instead of utilizing real distance di, it is reasonable to use the noisy estimations

d̂i , therfore Eq (31) signified as follows:

ðx̂ � xB1Þ
2
þ ðŷ � yB1Þ

2
¼ d̂2

1

ðx̂ � xB2Þ
2
þ ðŷ � yB2Þ

2
¼ d̂2

2

ðx̂ � xB3Þ
2
þ ðŷ � yB3Þ

2
¼ d̂2

3

ð32Þ

x̂

ŷ

" #

¼
2ðxB3 � xB1Þ 2ðyB3 � yB1Þ

2ðxB3 � xB2Þ 2ðyB3 � yB2Þ

" #� 1

�
x2
B3
� x2

B1
þ y2

B3
� y2

B1
þ d̂2

1
� d̂2

3

x2
B3
� x2

B2
þ y2

B3
� y2

B2
þ d̂2

2
� d̂2

3

2

4

3

5 ð33Þ

where ðx̂; ŷÞ is the sensor node coordinate estimation. By subtracting Eq (33) from Eq (31), we
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can obtain the localization error of the unknown sensor node as follow:

x̂ � x

ŷ � y

" #

¼
2ðxB3 � xB1Þ 2ðyB3 � yB1Þ

2ðxB3 � xB2Þ 2ðyB3 � yB2Þ

" #� 1

�
ðd̂2

1
� d2

1
Þ � ð̂d2

3
� d2

3
Þ

ðd̂2
2
� d2

2
Þ � ð̂d2

3
� d2

3
Þ

2

4

3

5 ð34Þ

In perspective of Eq (34), it shows the localization error for using the trilateration strategy,

which is related to the RSS ranging estimation deviations and as well as the coordinates of the

anchor nodes. Since the anchor nodes are deployed in a fixed point with priori known and

unchanged coordinates, therefore the localization error is depended directly on the RSS rang-

ing estimation errors only. Hence, the localization error can be obtained regarding to the equa-

tion below:

Localization Error ðEÞ ¼
ðd̂2

1
� d2

1
Þ � ð̂d2

3
� d2

3
Þ

ðd̂2
2
� d2

2
Þ � ð̂d2

3
� d2

3
Þ

2

4

3

5 ð35Þ

The systematic flow chart which portrays the mechanism of the proposed solution for esti-

mating the sensor node location can be expressed according to Fig 7.

Performance analysis and results

The simulation testing of the proposed approach has been performed by using MATLAB. The

terrain network area comprises of two dimensions (1000 � 1000) meter. The number and

deployment of the anchor nodes (APs) in the network is quite significant. Therefore, we utilize

a few plausible number of anchor nodes deployment with 20 nodes distributed uniformly

around the perimeter (5 beacon nodes at each direction). These anchor nodes are scattered in

a uniform distribution over an area of 1000 � 1000 m. There are 15 multiple jammers and 100

sensor nodes deployed randomly in the network terrain. The localization must be carried out

for these sensor nodes. This section introduces the effectiveness localization performance eval-

uation of the proposed solutions step function multiple frequency multiple power localization

(SF-MFMPL) technique for finding the position of the sensor nodes for facing the log normal

shadow fading propagation model, we accomplish two techniques to specify the MFMPL first

is SF-MFMPL and the second technique is combination multiple frequency multiple power

localization (C-MFMPL) scheme. Furthermore, to obtain efficient averaging strategy of the

valid RSS readings which have considerable effect due to constant and random jammers for

the case using a single set of transmitting frequencies, so that another strategy of the MFMPL

algorithm has been achieved through utilizing two sets of transmitting frequencies shared

between all the implemented anchor nodes in a uniformed sequence as follow:

• Even anchor nodes using set 1 frequencies (400, 600, 800) MHz for transmission.

• Odd anchor nodes using set 2 frequencies (500, 700, 900) MHz for transmission.

With a specific end goal to assess the performance of our proposed method we utilize the

following simulation specifications as summarized in Table 1.

In this section, the localization performance analysis has been accomplished for our pro-

posed techniques SF-MFMPL and C-MFMPL respectively against multiple types of jamming

attacks on the network as well as for facing the log normal shadow fading model in accordance

to the simulation cases as follows:

Case I: path loss exponent α = 3, standard deviation of the log-normal shadow fading σ = 5

dB;
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Fig 7. Flow chart of the proposed algorithm mechanism.

https://doi.org/10.1371/journal.pone.0177326.g007
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Case II: path loss exponent α = 4, standard deviation of the log-normal shadow fading σ = 6

dB.

The simulation testing evaluation specified by the average localization error is determined

between the estimated and real positions of the sensor nodes in the network. The performance

analysis is performed for the specified propagation model cases through changing the number

of multiple jammers in the simulated network as well as for different selection number of the

anchor nodes. Figs 8 and 9 illustrate the average localization error of the SF-MFMPL algorithm

according to the two cases of the shadow fading model as well as for lateration and trilateration

techniques respectively.

It is definitely comprehended that extending the number of the anchor nodes in the net-

work as the need to enhance the localization performance. The simulation results regarding to

Figs 8 and 9 still efficient and accurate in terms of localization accuracy regarding to a few logi-

cal numbers of anchor nodes deployment configuration at the network for both of lateration

and trilateration techniques as well as the effective averaging technique with the significant of

different frequencies features for overcoming the shadow fading effects in the wireless network

environment.

Moreover, Figs 10 and 11 demonstrate the average localization error of C-MFMPL with

respect to change the number of multiple jammers attack in the network and according to the

lateration and trilateration techniques respectively.

In fact, the features of the averaging technique which has been used to overcome the

shadow fading influence have a different strategy for both of the proposed methods. In the pro-

posed method C-MFMPL, the averaging mechanism has been obtained through taking into

consideration all the transmitted frequencies and power levels together for measuring the aver-

aging of each RSS, while according to the other proposed method SF-MFMPL the averaging

strategy of the RSS has been achieved through number of transmitted beacon signals with

respect to the same assigned power levels and frequencies. Definitely, the characterizations of

log normal shadow fading parameters denoted by (α, σ) are subjected and depended directly

on the frequency and the power level which have been used. Therefore, different frequencies

and power levels have different effects according to the shadow fading characterizations in the

wireless networks. This is a reflection of the robustness of our proposed algorithm in the face

of the shadow fading with an accurate localization performance as be shown in the simulation

results above.

Table 1. Simulation specifications of the proposed system model.

System Model Simulation Specifications

Network Area 1000 * 1000 m

Frequency Used by AP Set 1 (400, 600, 800) MHZ

Set 2 (500, 700, 900) MHz

Power Used by AP 4, 6, 8 dB

No of sensor 100

No. of random jammers 5

No. of Constant jammers 5

No. of capture replay jammer 5

Sensor and jammer nodes Placement Random

Anchor nodes (Aps) Placement Around Perimeter

Propagation Model Log Normal Shadow Fading

https://doi.org/10.1371/journal.pone.0177326.t001
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Fig 8. Average localization error versus number of the jammers for SF-MFMPL algorithm based on lateration technique.

(a) Shadow Fading Case I; (b)Shadow Fading Case II.

https://doi.org/10.1371/journal.pone.0177326.g008
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Fig 9. Average localization error versus number of the jammers for SF-MFMPL algorithm based on trilateration technique.

(a) Shadow Fading Case I; (b) Shadow Fading Case II.

https://doi.org/10.1371/journal.pone.0177326.g009
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Fig 10. Average localization error versus number of the jammers for C-MFMPL algorithm based on lateration technique. (a)

Shadow Fading Case I; (b) Shadow Fading Case II.

https://doi.org/10.1371/journal.pone.0177326.g010
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Fig 11. Average localization error versus number of the jammers for C-MFMPL algorithm based on trilateration technique.

(a) Shadow Fading Case I; (b) Shadow Fading Case II.

https://doi.org/10.1371/journal.pone.0177326.g011
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A comparison of the localization performance between the SF-MFMPL and C-MFMPL

algorithms as indicated by 20 anchor nodes (APs) which are deployed in the network as well as

for the two propagation model cases is illustrated in Fig 12.

Regarding the simulation results as illustrated in Fig 12, the localization performance of the

C-MFMPL approach showed more enhancements in the average localization error as com-

pared with the SF-MFMPL method. In fact, the different strategies which have been achieved

for indicating the multiple frequency and power level mechanism for our proposed algorithms

will drive to different simulation results especially for facing the shadow fading impacts.

Besides, the simulation results proved that the performance of trilateration technique is better

than the lateration method for the two proposed algorithms and for both cases of the propaga-

tion model as well. Table 2 outlines the comparison synopsis of the localization performance

evaluation of the two proposed techniques as indicated by 20 anchor nodes in the network for

the two cases of the propagation model.

The impact of varying the path loss component (α) on the localization performance con-

cerning to various standard deviation (σ) of the log normal shadow fading model has been

taken into the simulation testing consideration of the proposed algorithms SF-MFMPL and

C-MFMPL respectively. Figs 13 and 14 outline the localization performance under these

impacts.

In practical environment, the parameters of the log normal shadow fading are vulnerable to

error as well as unpredictable. For this reason the simulation tests of the proposed algorithms

have been accomplished in order to take into account the impacts of varying these parameters

on the localization performance evaluation. As represented in the simulation results of Figs 13

and 14, the proposed algorithm demonstrated an accurate and effective localization perfor-

mance for estimating the sensor node location with a reasonable localization error rates. Fur-

thermore, the simulation results proved that the performance of trilateration strategy is

superior to the lateration technique for the two proposed algorithms. Tables 3 and 4 outline

the comparison synopsis of the localization performance evaluation of our proposed tech-

niques indicated by varying the shadow fading parameters with respect to the lateration and

trilateration strategies respectively.

In this paper, we discuss the wide range capability of the received signal strength localiza-

tion based over the existence of multiple jammers influence. An exploration of the localization

performance response to unexpected three different numbers of jammers exists in the network

at the same time has been accomplished. Hence, a comparison of the simulation results has

been obtained according to the same specifications as well as the system model implementa-

tion of the proposed modality for various required scenarios. In addition, taking into consider-

ation the performance evaluation of the ideal case which can be denoted as the localization

performance of the proposed system in the absence of jamming attack impacts. The compari-

son results are performed in order to show the robustness of our approach as well as the effec-

tiveness of the jamming attack interference on the localization performance based on signal

strength.

Figs 15 and 16 outline a comparison of the average localization error between the ideal case

and different number of multiple jammers in the network for the SF-MFMPL under a shadow

fading channel propagation model which is specified by the lateration and trilateration method

respectively.

According to the simulation results as outlined in Figs 15 and 16, the performance evalua-

tion of the proposed system in the case of three numbers of jammers exists in the network

showed a very close average localization error as compared with the ideal case and the localiza-

tion error increased slightly with respect to increasing the number of jammers. Meanwhile, the

localization performance of the proposed system as the number of jammers increased to 15 is
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Fig 12. A comparison of the average localization error for SF-MFMPL and C-MFMPL algoritms based on lateration and

trilateration over the two implemented cases of the shadow fading model. (a) SF-MFMPL Strategy; (b) C-MFMPL Strategy.

https://doi.org/10.1371/journal.pone.0177326.g012
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very accurate and have a powerful performance specially for range based received signal indi-

cator localization based sensor node location in the presence of a harsh jamming environment.

Tables 5–8 summarize the tested simulation results comparison for SF-MFMPL approach.

Another comparison of the average localization error for the implemented cases of the

C-MFMPL under the two cases of the log normal shadow fading model is shown in Figs 17

and 18.

In light of the simulation results of Figs 17 and 18, it is noticed that the performance evalua-

tion of the ideal case is very close to the proposed approach in the presence of only three multi-

ple jammers which implemented in the network. However, the average localization error

increased slightly as indicated to the other cases of increasing the number of jammers, this is

normal for the reason of the amount of the beacons which have been lost due to constant and

random jammers influence. Furthermore, the main observation of the performance analysis

for the proposed method C-MFMPL is obtained better localization accuracy as compared with

the proposed method SF-MFMPL according to all simulation testing conditions as well as for

lateration and trilateration strategies. This fact can be elaborated due to the important features

of the C-MFMPL for taking the great advantages of all multiple transmitted frequencies and

power levels in the averaging process so as the optimized ranging in facing the shadow fading

environment. Tables 9–12 illustrate the simulation testing results summarization of the

C-MFMPL over different tested conditions also for lateration and trilateration as well.

For a general analysis of the proposed algorithms which specified by SF-MFMPL and

C-MFMPL algorithm under a multiple number of jammers exist in the network, the constant

and random jammers are using different frequencies for their attacking, besides our proposed

approach depends on the averaging technique of the RSS over all transmitted frequencies.

Therefore, a serious problem appears for applying the averaging process if the anchor nodes

send beacons utilizing one set only such as (400, 600, 800)MHz, so that a new mechanism has

been achieved in our proposed method by using two sets of frequencies shared between the

implemented anchor nosed with uniformed sequence instead of one set only in order to miti-

gate and overcome these two jammers impacts. In addition, this mechanism still simple for

implementation and does not need for extra hardware or increasing the complexity of the sys-

tem design, while it can be achieved using multiband antenna array for the required designated

two frequency sets.

However, it is possible to utilize another mechanism of transmitting beacon signals by inde-

pendent sets of frequencies for each anchor node in the network, for sure this strategy will

enhance the localization performance with respect to increasing the system design complexity.

Meanwhile, the localization performance of our proposed method showed an effective and

efficient performance enough for going for this complicated design.

Furthermore, there are even various probabilities of the jammer strategies for attacking the

network by choosing the frequency which has indicated to be targeted. In this study, which is

based on transmitting beacons by using the main set of frequencies (400, 600, 800) MHz, so

Table 2. Average localization error comparison of the two proposed solutions according to 20 anchors (APs), 15 numbers of multiple jammers and

two propagation model cases.

Propagation Model Case Average Localization Error (m) Average Localization Error (m)

SF-MFMPL C-MFMPL

Lateration Trilateration Lateration Trilateration

Case I 4.23 3.84 3.82 3.34

Case II 4.43 4.15 4.05 3.72

https://doi.org/10.1371/journal.pone.0177326.t002
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Fig 13. Average localization error versus different path loss exponent values for the SF-MFMPL algorithm (No. of multiple

jammers = 15, APs = 20). (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g013
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Fig 14. Average localization error versus different path loss exponent values for the C-MFMPL algorithm (No. of multiple

jammers = 15, APs = 20). (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g014
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that these targeting frequencies will be taken into consideration for this study to be attacked by

a constant and random jammers. In the end, these probabilities cannot be considered as a big

problem to be defeated by our proposed algorithm in any way due to the powerful design of

the proposed approach.

A comparison of the proposed methods performance with the state of art indoor localiza-

tion based on multi frequencies and powers [23] has been achieved. The main contribution of

this work is to improve the RSS localization performance over a multipath environments by

varying the transmitter’s signal power and frequency under ideal case (without attacking).

Regarding the lateration based algorithm, the linear least square (LLS) average localization

error is about (1.52 m) using constrained landmark with residual metric, while the average

localization error is around (2.13 m) for the case of matching characteristics with deviation

metric.

According to the simulation results of our proposed SF-MFMPL strategy based on latera-

tion technique, the average localization error is around (2.15 m) in case of 5 implemented

anchor nodes and it will be decreased to (1.70 m) for 20 implemented anchor nodes for

shadow fading propagation model case I. Meanwhile, the average localization error is about

(2.17 m) and decreased to (1.84 m) for the 5 and 20 implemented anchor nodes respectively at

the shadow fading propagation model case II. On the other hand, the average localization

error of our proposed method C-MFMPL based on lateration technique is about (1.89 m) in

case of 5 implemented anchor nodes and it will be decreased to (1.5 m) for 20 implemented

anchor nodes for shadow fading propagation model case I. Besides, the average localization

error is around (1.95 m) and decreased to (1.62 m) for the 5 and 20 implemented anchor

nodes respectively at the shadow fading propagation model case II. As compared to the state of

art relevant work [23], the performance analysis of our proposed strategies emphasized a

Table 3. Average localization error comparison of the two proposed solutions according to changing the shadow fading propagation parameters

(lateration based).

Path Loss Exponent (α) Average Localization Error (m)

SF-MFMPL Lateration Based C-MFMPL Lateration Based

σ = 4 σ = 5 σ = 6 σ = 7 σ = 4 σ = 5 σ = 6 σ = 7

α = 3 4.01 4.23 4.35 4.52 3.64 3.82 3.89 4.25

α = 4 4.25 4.38 4.43 4.74 3.80 3.97 4.05 4.44

α = 5 4.63 4.76 4.93 5.12 4.28 4.40 4.56 4.78

α = 6 4.87 4.97 5.28 5.54 4.44 4.64 4.87 4.92

https://doi.org/10.1371/journal.pone.0177326.t003

Table 4. Average localization error comparison of the two proposed solutions according to changing the shadow fading propagation parameters

(Trilateration based).

Path Loss Exponent(α) Average Localization Error (m)

SF-MFMPL Trilateration Based C-MFMPL Trilateration Based

σ = 4 σ = 5 σ = 6 σ = 7 σ = 4 σ = 5 σ = 6 σ = 7

α = 3 3.61 3.84 3.92 4.20 3.22 3.34 3.45 3.56

α = 4 3.82 4.05 4.15 4.46 3.41 3.58 3.72 3.83

α = 5 4.35 4.52 4.74 4.95 3.55 3.74 3.91 4.19

α = 6 4.58 4.73 4.99 5.22 3.86 4.11 4.22 4.48

https://doi.org/10.1371/journal.pone.0177326.t004
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Fig 15. Average localization error comparison for the implemented cases of the SF-MFMPL under log normal shadow

fading case I. (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g015
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Fig 16. Average localization error comparison for the implemented cases of the SF-MFMPL under log normal shadow

fading case II. (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g016
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robust and effective localization accuracy for a large scale wireless sensor network over a

shadow fading channel propagation model. Furthermore, the simulation results of our pro-

posed schemes based on trilateration technique showed more accurate localization accuracy as

compared to the lateration based and for both shadow fading propagation model implemented

cases.

The standout amongst the most important criteria of the performance evaluation is the bea-

con signals availability at each sensor node in the presence of multiple jammers in the network.

Fig 19 illustrates the effect of increasing the number of jammers and measure the availability

of beacons considered in the localization process.

Table 5. Comparison of average localization error (m) of SF-MFMPL algorithm lateration based shadow fading model case I.

Average localization error (m) SF-MFMPL Shadow Fading Lateration Based Case I

No. of Aps Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 2.15 2.30 3.62 5.25 5.88 6.31

10 1.91 2.23 3.44 4.10 4.73 5.01

15 1.84 1.97 3.11 3.56 3.97 4.41

20 1.70 1.84 2.91 3.41 3.84 4.23

https://doi.org/10.1371/journal.pone.0177326.t005

Table 6. Comparison of average localization error (m) of SF-MFMPL algorithm trilateration based shadow fading model case I.

Average localization error (m) SF-MFMPL Shadow Fading Trilateration Based Case I

No. of Aps Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.89 2.20 3.44 5.03 5.76 6.05

10 1.80 2.12 3.21 3.91 4.54 4.89

15 1.68 1.82 2.96 3.38 3.89 4.21

20 1.54 1.75 2.84 3.11 3.54 3.84

https://doi.org/10.1371/journal.pone.0177326.t006

Table 7. Comparison of average localization error (m) of SF-MFMPL algorithm lateration based shadow fading model case II.

Average localization error (m) SF-MFMPL Shadow Fading Lateration Based Case II

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 2.17 2.46 3.98 5.66 6.28 6.67

10 2.02 2.31 3.67 4.48 4.92 5.42

15 1.89 2.28 3.37 3.86 4.27 4.62

20 1.84 1.93 2.96 3.50 3.88 4.43

https://doi.org/10.1371/journal.pone.0177326.t007

Table 8. Comparison of average localization error (m) of SF-MFMPL algorithm trilateration based shadow fading model case II.

Average localization error (m) SF-MFMPL Shadow Fading Trilateration Based Case II

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.91 2.34 3.65 5.33 5.97 6.43

10 1.82 2.28 3.42 4.21 4.73 4.96

15 1.71 1.86 3.03 3.41 3.92 4.34

20 1.63 1.77 2.89 3.23 3.66 4.15

https://doi.org/10.1371/journal.pone.0177326.t008
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Fig 17. Average localization error comparison for the implemented cases of the C-MFMPL under log normal shadow

fading case I. (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g017
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Fig 18. Average localization error comparison for the implemented cases of the C-MFMPL under log normal shadow

fading case II. (a) Lateration Based; (b) Trilateration Based.

https://doi.org/10.1371/journal.pone.0177326.g018
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In light of the simulation results of Fig 19, the observation emphasized that while increasing

the number of jammers in the network with respect to the number of sensor nodes for which

beacons are available for localization in our approach it is almost constant. Despite constant

and random jammers is interfered the communication and cut the communication among the

sensors with each anchor node through their different jamming frequencies but still the bea-

con availability is very high. However, these high availability of beacon signals are not all con-

sidered to be valid beacons because of some of these beacons are not actual and real ones

which have been received from the anchor nodes, some of these available beacons are replayed

by the capture and replay jammers. Therefore, Fig 20 shows another significant metric to

describe the robustness of our proposed method which is identified by the effective percentage

of dropping the invalid beacon packets. This accuracy is determined in terms of drop ratio by

increasing the number of jammers in the network.

Table 9. Comparison of average localization error (m) of C-MFMPL algorithm lateration based shadow fading model case I.

Average localization error (m) C-MFMPL Shadow Fading Lateration Based Case I

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.89 2.27 3.54 5.05 5.80 6.20

10 1.74 2.04 3.21 3.88 4.56 4.93

15 1.61 1.83 2.98 3.23 3.98 4.11

20 1.50 1.78 2.63 3.15 3.54 3.82

https://doi.org/10.1371/journal.pone.0177326.t009

Table 10. Comparison of average localization error (m) of C-MFMPL algorithm trilateration based shadow fading model case I.

Average localization error (m) C-MFMPL Shadow Fading Trilateration Based Case I

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.73 2.11 3.28 4.88 5.54 5.89

10 1.65 1.90 2.89 3.74 4.22 4.55

15 1.56 1.76 2.57 3.13 3.48 3.66

20 1.48 1.68 2.34 2.78 3.11 3.34

https://doi.org/10.1371/journal.pone.0177326.t010

Table 11. Comparison of average localization error (m) of C-MFMPL algorithm lateration based shadow fading model case II.

Average localization error (m) C-MFMPL Shadow Fading Lateration Based Case II

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.95 2.31 3.84 5.29 6.11 6.43

10 1.88 2.02 3.42 4.15 4.66 5.13

15 1.73 1.92 3.02 3.36 3.86 4.24

20 1.62 1.81 2.77 3.27 3.71 4.05

https://doi.org/10.1371/journal.pone.0177326.t011

Table 12. Comparison of average localization error (m) of C-MFMPL algorithm trilateration based shadow fading model case II.

Average localization error (m) C-MFMPL Shadow Fading Trilateration Based Case II

No. of APs Ideal Case 3 Jammers 6 Jammers 9 Jammers 12 Jammers 15 Jammers

5 1.83 2.21 3.55 4.89 5.77 6.01

10 1.71 1.90 3.11 3.87 4.22 4.52

15 1.62 1.78 2.84 3.23 3.75 3.90

20 1.54 1.70 2.64 3.01 3.33 3.72

https://doi.org/10.1371/journal.pone.0177326.t012
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In accordance with the simulation results of Fig 20, it is noticed that as the numbers of cap-

ture and replay jammers increased in the network more invalid beacons will show up, while

the effective drop ratio is very high in our approach which contributing to lesser localization

error.

Conclusion

This paper presents a powerful range based received signal strength indicator localization

approach in the vicinity of multiple kinds of jammers over a log normal shadow fading envi-

ronment. The proposed schemes has been accomplished using two strategies of multiple fre-

quencies and power levels specified by SF-MFMPL and C-MFMPL respectively, including

lateration and trilateration techniques, with two transmitted sets of frequencies which have

been distributed uniformly among the implemented anchor nodes in order to cope with the

constant and random jammers. Meanwhile, to obtain an accurate estimation of the localization

performance, three stages of filters have been applied to filter out the received beacon signals

with a view to overcome the impacts of the capture and replay jammers. Furthermore, the

averaging of the RSS measurements all over the multiple frequencies and power levels of the

proposed algorithm supported by the distance ranging optimization play the significant key

role in facing the shadow fading effects. The promising results of our investigation on the pro-

posed algorithms demonstrated a superior localization performance through the use of a few

and reasonable number of anchor nodes in the network. Furthermore, the deployment config-

uration of the anchor nodes specified around the perimeter obtained a successful localization

Fig 19. Average beacon signals availability in the presence of multiple jammers.

https://doi.org/10.1371/journal.pone.0177326.g019
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accuracy. In addition, the simulation results revealed that the localization performance of the

proposed algorithm identified by the C-MFMPL has better performance when compared with

SF-MFMPL algorithm for both lateration and trilateration techniques under the shadow fad-

ing propagation model. Finally, the justification of the system design based on our proposed

methodology in face of the harsh shadow fading environment over a multiple kinds of jam-

mers conferred a powerful and accurate localization performance. It also maintains the system

design simplicity without any other complicated possibilities for the localization procedures,

detection and elimination of the jammers impacts in the wireless sensor networks.
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