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Abstract— In this article, we give a new algorithm for localization 
based on RSS measurement. There are many measurement 
methods for localizing the unknown nodes in a sensor network. 
RSS is the most popular one due to its simple and cheap 
hardware requirement. However, accurate algorithm based on 
RSS is needed to obtain the positions of unknown nodes. Recent 
algorithms such as MDS(Multi-Dimensional Scaling)-MAP, PDM 
(Proximity Distance Matrix) cannot give accurate results based 
on RSS as the RSS signals always have large variations. Besides, 
recent algorithms on sensor network localization ignore the 
received signal strength (RSS) and thus get a disappointing 
accuracy.  This is because they are mostly focused on the 
difference between the estimated distance and the real distance.  
This paper introduces a target function - signal-based maximum 
likelihood (SML), which uses the maximum likelihood based on 
the directly measured RSS signal. Inspired by the SMACOF 
(Scaling by Majorizing A COmplicated Function) algorithm, an 
iteration surrogate algorithm named IRLS (Iteratively 
Reweighted Least Square) is introduced to solve the SML. From 
the simulation results, the IRLS algorithm can give accurate 
results for RSS positioning.  When compared with other popular 
algorithms such as MDS-MAP, PDM, and SMACOF, the error 
(distance between the estimated position and the actual position) 
calculated by IRLS is less than all the other algorithms. In 
anisotropic network, IRLS also has good performance.  

Keywords- sensor network, localization, RSS, signal-based 
maximum likelihood, SML, SMACOF, IRLS. 

I.  INTRODUCTION  

Location estimation is needed in many applications such as 
remote patient monitoring, package and personnel tracking, 
location-based messaging, environment monitoring, and 
wildlife habitat monitoring. In these systems, there are usually 
hundreds of or even thousands of low-cost sensor nodes. In 
addition, based on the signals received from other nodes, it 
would know its distance from these nodes. Estimation on the 
location of these nodes is an important issue for any sensor 
network. It is necessary to accurately localize the sensors in 
order to measure data which is geographically meaningful. 
This localization issue has been studied by many researchers 
and there are many different methods and algorithms [1-5] 
dealing with this situation.   

For applications like automatic guidance and wildlife 
habitat tracking, GPS-like devices are widely used. However, 
GPS devices are expensive and inefficient on power 

consumption [1]. Moreover, the signal of GPS requires line-of-
sight between the receiver and satellites and cannot go through 
the walls of buildings. Thus, in sensor networks with a large 
number of sensor nodes, attaching a GPS device to each node 
is not practical. In most cases, there are only a few nodes with 
known positions in the whole sensor network, while others are 
unknown. The only information between the known nodes and 
the unknown nodes is the communication among them, which 
can imply the distance or angle between the nodes. 
Localization in a sensor network is to utilize any useful 
information for position estimation of the unknown nodes. 

The problem considered in this paper is as follows. A 
sensor network is assumed to have hundreds or thousands of 
nodes in a region, and the nodes can communicate with each 
other. Some of the nodes have pre-known positions, but most 
of them are with unknown positions. The localization of the 
nodes depends not only on the location of the pre-known nodes 
(anchors), but also on the type of measured information among 
the nearby nodes, which leads to localization methods such as 
TOA (time-of-arrival), AOA (angle-of-arrival), and RSS 
(received signal strength). 

To improve the accuracy of localization, the measurement 
between the nodes is the most important factor, which is 
dependant on the hardware. With the given hardware of the 
sensors and the locations of the anchors, the algorithm used for 
localization is vital to the position accuracy. Besides the 
accuracy, the algorithms should also take the computation 
complex into consideration which is restricted by the hardware 
configuration (mainly the computation capability) of the 
network. Thus, the kind of algorithms with high accuracy and 
less computation cost is desirable. However, every localization 
algorithm should be based on a certain localization method, or 
the combination of several localization methods. 

A. Received signal strength (RSS) 

The distance between two nodes can be estimated by the 
signal strength (RSS). The transmitted signal can be RF (radio 
frequency), acoustic or other signals. RSS is always thought to 
be a coarse method because the RSS signal is not as stable as 
TOA. However, this method is simple in the configuration of 
the nodes and low-cost. Furthermore, RSS does not need 
additional elements or energy requirement while wireless 
nodes in sensor network use RF signal to communicate with 
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each other. For sensor network with low-cost nodes, RSS-
based distance measurements are preferred.  

Radio frequency signals mainly suffer from multipath and 
shadowing, which cause variations in RSS measurement. When 
the transmitter and the receiver are in contact, RSS in the 
receiver’s side is not a constant, but varies due to shadowing 
and multipath. Moreover, in a 2D sensor network, one node 
may contact with other nodes in different directions. In order to 
have equal connection ranges in all directions, the nodes’ 
antenna is always omni-directional. However, even the omni-
directional antenna does not perform perfectly uniformly in all 
directions. The variations due to shadowing, multipath, and 
different directions can be expressed together as the standard 
deviation in the log-normal distribution model. 

B. Related work 

Doherty et al [2] model range and angular constraints in 
sensor network localization as convex constraints. The 
resulting minimization problem can be solved efficiently using 
semi-definite program (SDP). SDP in some particular 
conditions can become linear programming (LP) to be solved 
more efficiently. Hence, the problem becomes an issue on 
minimizing a linear function over a polyhedron. 

Triangulation and multi-lateration greatly depends on the 
density of the anchors. If there are not enough anchors, the 
error of the estimation of unknown nodes will be accumulated 
and become very inaccurate. Proximity distance matrix (PDM) 
first appears in [3], which aims to build a transformation 
between the proximity and the distance. It is used to estimate 
the distance to at least three anchors of every unknown node. 
Then multi-lateration or triangulation can be used to obtain the 
positions of unknown nodes. 

Nonlinear dimensionality reduction is also used in sensor 
network localization. Chengqun et al. [4] employ the geodesic 
distances to measure the dissimilarity between sensors, and 
propose a centralized algorithm based on isomap technique [7]. 
In specific, they first build the neighborhood graph based on 
the sensors and their pair-wise distance, and then compute the 
geodesic distance of each pair of sensors. Finally, they 
construct the 2D embedding and obtain the relative coordinate 
using MDS. Since the performance of isomap is sensitive to the 
parameter, in order to alleviate the influence of the parameter, 
they also propose an adaptive parameter selection procedure 
based on the true locations of the anchors and their transformed 
locations. 

Patwari et al [5] briefly mentioned that the manifold 
learning techniques (including isomap) can be used for 
localization problem under the spatially correlated sensor 
model. Generally, this algorithm is similar to the classic 
algorithm MDS-MAP [6], because isomap can be considered 
as a geodesic distance version of the MDS. Instead of using the 
Euclidean distance for embedding, isomap considers the 
geodesic distance on a weighted neighbouring graph. 

Multidimensional scaling (MDS) is first used as a statistical 
technique in information visualization for exploring similarities 
or dissimilarities in data [6, 7]. It also has the ability to 
calculate the positions of the unknown nodes based on the 

distance between them. However, MDS obtains result only 
when distances between any two nodes are known previously. 
Some researchers employ MDS as the core step in their 
algorithms. MDS-MAP [6] utilizes MDS and obtains a success 
on positioning with a small variation of distance measurement. 
First, based on the connectivity and distance information 
between nodes, a rough estimate of relative node distance is 
made. Then relative positions are obtained by Singular Value 
Decomposition on the estimated distance information matrix. 
Finally absolute positions of the unknown nodes are estimated. 
The computation complexity of this method is about O(n³) time 
for a sensor network of n nodes. Another efficient algorithm, 
SMACOF (Scaling by Majorizing A COmplicated Function), 
[8] uses an iterative method on the issue of sensor network 
positioning. However, the convergence of this method cannot 
be guaranteed. 

II. PROBLEM STATEMENT 

A. RSS propagation 

Due to the simple and cheap hardware requirement, RSS is 
the most popular measurement nowadays. The accuracy of 
positioning based on RSS depends on the model of RSS 
propagation and the algorithm used for estimating the positions.     
On the model of RSS, the relationship between the RSS value 
and the 1D distance can be estimated. However, in reality, the 
sensor networks are always in 2D or 3D, which means the 
nodes in a sensor network may have different models in 
different directions. Therefore, the antenna of each sensor 
should be omni-directional. For an omni-directional antenna, 
the relationship between RSS value and the distance in every 
direction should be similar. One example is from [9]. No 
matter what the pattern is in vertical, the horizontal pattern is 
circular as shown in Fig. 1 

 

Fig. 1 One example of the antenna pattern, which is omni-directional in the 
horizontal plane [9] 

Wireless signal power decays proportional to d α− , where 
d is the distance between the transmitter and the receiver; α is 
the ‘path-loss exponent’, typically a value between 2 and 4 
[10]. The signal strength model is as follows: 

0
10

0

10 log ( )
N

d d
rss rss N

d ση= − +       (1)  

where d is the actual distance to the measured point, 0drss  is 
the received signal strength at reference distance 0d , η  is the 

path-loss exponent. 
N

Nσ  is a zero-mean noise which is a  
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normally distributed random variable with variance Nσ  

corresponding to the fading. Both η  and Nσ  are calibrated 
from the environment. The higher the value of η  is, the more 
the signal strength is attenuated, rendering a shorter average 
transmission range for each node. Random variable 

N
Nσ  

corresponds to the amount of environmental noise, which 
affects the accuracy of the measured distance [11].  

To simplify equation (1), let 0d =1, the model becomes: 

1
, 10 ,10 log

Ni j i i jrss rss d Nση= − +              (2) 

where ,i jd is the distance between node i and j. Here we 

assume that node i is the transmitter and node j is the receiver. 
1
irss  is a constant, which is inherent of node i. If there is a 

receiver one meter away from the transmitter node i, the 
received signal strength obtained by this receiver is 1

irss . This 

can be expressed by 0 11 d
i irss rss == . ,i jrss  means the strength of 

the signal which is transmitted from i and received by j. 

Different transmitters may have different value of 1
irss  due 

to different transmission power or other hardware 
characteristics. Even in a typical ad hoc network with all the 
sensors designed to have the same function, the transmission 
power of all the sensors cannot be assumed to be identical. 
Therefore, in a sensor network with n nodes, 1

irss  i=1,2,3,…,n 
should be calibrated in advance.  It is then assumed that these 
values remain unchanged with proper design of the transmitter 
circuitry.  Further discussions on RSS measurement algorithms 
are all based on the above model with equation (2). 

B. Pre-known Information 

There are n nodes in the sensor network, in which the first 
m nodes’ positions are unknown. Therefore, the unknown 
parameters are { }1 2 1 1{ , ,..., } , ,..., ,m m mx y x y=z z z , which are 

the coordinates of the unknown nodes. The variable received 

signal strength ,i jrss  is measured and recorded as � ,i jrss . 

Suppose an unknown node i can hear l nodes, which include 
the node j. The set H is the set of all the pairs in which the two 
nodes can receive signal from each other. Obviously, the pair 
of the nodes i, j, recorded as ( , )i j , belongs to H. The meaning 
of the symbols used is given below: 

TABLE I.      SYMBOLS IN THIS ARTICLE 
Notation Description 

D Dimensions of coordinate in the sensor network (D=2 
in this paper) 

n Number of total sensors 
m Number of unknown sensors 

[ , ]T
i i ix y=z  Actual coordinate of node i , ( i =1,2,…,n) 

ˆ ˆ ˆ[ , ]T
i i ix y=z  Estimated coordinate of node i , ( i =1,2,…,n) 

Z= 1 2[ '; ';...; ']nz z z  The matrix containing all iz  

,i jd  Actual distance between node i and j, (i,j=1,2,…,n) 

,i jrss  Actual strength (dB) of the signal transmitted from 
node i and received by node j  (i,j=1,2,…,n) 

�
,i jrss  Measured strength (dB) of the signal transmitted from 

node i and received by node j, (i,j=1,2,…,n). It does 
not equal to ,i jrss   due to noise in measurement. 

1
irss  0 11 d

i irss rss == , strength (dB) of the signal transmitted 

from node i and received by a receiver, if this receiver 
is one meter away from node i. ( i =1,2,…,n) 

η  Path-loss exponent 

N
Nσ  White noise of the RSS signal, which is a zero-mean 

normally distributed random variable with variance 

Nσ  

Nσ  Variance of 
N

Nσ  

H If a pair of nodes can communicate with each other, 
this pair of nodes belongs to H. H is a set consisting of 
all pairs with this property. 

 

III. THE ALGORITHM: SML & IRLS 

To employ RSS value directly, a target function using 
signal-based maximum likelihood (SML) is developed, which 
is anticipated to be more accurate than others which are based 
on the distances values. IRLS (Iteratively Reweighted Least 
Square) will be introduced, which is an iterative method to 
solve the new target. 

A. Signal-based Maximum Likelihood (SML): New Target 

This section applies the maximum likelihood on the 
received signal strength to give the target function. Assume  

� the probability density function of ,i jrss , ( , )i j H∈  is 

, 1 1[ ; ( , ,..., , )]i j m mP rss x y x y , 1 1, ,..., ,m mx y x y  are unknown,  

� �
,i jrss , ( , )i j H∈  is one measurement  

Due to maximum likelihood, the optimal estimated value of 
{ }1 1, ,..., ,m mx y x y  would make the product of the probability 

density functions of � ,i jrss  (for all pairs ( , )i j H∈ ) maximum.   

{ } ( )

�
1 1

1 1
, ,..., ,

, 1 1
( , )

ˆ ˆ ˆ ˆ, ,..., , arg min

[ ; ( , ,..., , )]

m m

m m
x y x y

i j m m
i j H

x y x y L

L P rss x y x y
∈

= −�
�
�

=�
�

∏
  (3) 

where { }1 1ˆ ˆ ˆ ˆ, ,..., ,m mx y x y  is the estimation of { }1 1, ,..., ,m mx y x y . 

From (2), the variable ,i jrss  varies according to the 

Gaussian distribution, i.e.  

( )

, 1 1

21
, 10 ,

2

[ ; ( , ,..., , )]

10 log1
exp

22

i j m m

i j i i j

NN

P rss x y x y

rss rss dη

σπσ

� �− +
� 	= −
� 	

 �

  (4) 

where 2 2
, ( ) ( )i j i j i jd x x y y= − + − . 

Take the logarithm of L and find the minimum, the 
unknown coordinates { }1 1ˆ ˆ ˆ ˆ, ,..., ,m mx y x y  can be obtained by 
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{ } ( )

�( )
1 1

1 1
, ,..., ,

2
1

, 10 ,
( , )

ˆ ˆ ˆ ˆ, ,..., , arg min

10 log

m m

m m SML
x y x y

i jSML i i j
i j H

x y x y L

L rss rss dη
∈

� =
�
�

= − +�
�

�
  (5) 

Function (5) is the target function based on the maximum 
likelihood with known RSS measurement. This is based on the 
RSS, thus called signal-based maximum likelihood (SML). The 
following section gives the solution of the above target 
function. 

B. IRLS: A Solution for SML 

Inspired by the SMACOF algorithm, one solution of SML 
can be reached using an iterative surrogate function. However, 
SMACOF is based on the TOA, which has the target different 
from that in RSS positioning. The focus will become: how to 
find an iterative surrogate function to solve SML? IRLS can 
solve SML using the iterative surrogate idea.  

The algorithm steps of IRLS are:  

1. Start with (0)Z  and 1ijw = ; ( (0)Z  is random) 

2. Find � 2
( 1) ( )arg min ( ) ( )k k

ij ij ij
i j

Z w d Z d rss+

>

= −�  using 

SMACOF (shown in 2a, 2b, and 2c) 
2a. Start with (0)X ; ( (0)X � ( )kZ ) 
2b. Iterate 

�
(k+1) ( )

( )

( )
( )

( )
ij† k

ijk
i j ij

d rss
X V A X

d X>

= �    (6) 

where  ijA  is the matrix with below elements: 

1, 1ii jj ij jia a a a= = = = − , other elements are 0; 

ij
i j

V A
>

=� ; 

†V  is the pseudo inverse of V; 
( )( )k

ijd X  is ,i jd derived from location matrix ( )kX ; 

�( )ijd rss  is ,i jd  derived from measurement � ,i jrss ; 

2c. Increment iteration time 1k k← +  go to 2b until the        
result converges (loop 1), 

2d. Give the final value of (k+1)X  to (k+1)Z . 
3. Update weights 

�
�

( 1)
10 10( 1)

( 1) ( 1)

log ( ) log ( )

2ln[10( ( ) ( ))] ( )

k
ij ijk

ij k k
ij ij ij

d Z d rss
w

d Z d rss d Z

+

+

+ +

−
=

− ×
 

4. Increment iteration time 1k k← + , go to 2 until the result 
converges (loop 2). 

C. Change Relative Positions to Actual Positions 

Like the classical MDS, SML & IRLS give the relative 
positions, which should be changed/aligned into the actual 
positions using known nodes. As we know, three points will 
define a plane. Thus only 3 known nodes are needed for 
aligning. A formula to get actual positions using relative 
positions and 3 anchors can be found in [12]. 

IV. DETAILED ANALYSIS 

This section simulates the IRLS, and chooses the suitable 
iteration time based on the simulation result. To the non-
convergence situations, non-convergence treating is 
introduced. For improving the accuracy, a method is developed 
to choose three anchors for aligning the relative positions to the 
real positions. 

A. Parameters for simulation of IRLS 

We first describe the setting of parameters used for the 
simulation. From [3, 7], it is reasonable to set the parameters as 
in TABLE II. The parameters Nσ , and � have been introduced 

before. minrss  is the minimum signal strength that the nodes 
can receive. 

TABLE II.      SETTING OF THE PARAMETERS FOR SIMULATION 

                    

 

The situation is assumed as follows: 

1. There are totally 100 nodes randomly located in a square of 
[0, 10] by [0, 10]. 

2. There are three nodes with known positions (anchors). 

3. RSS between any pairs of nodes are measured as long as the 
RSS value is larger than minrss . The measurement � ,i jrss  
is assumed to have a Gaussian distribution with the mean 

value of ,i jrss , and the standard deviation of  Nσ .  

The mean value of the measurements � ,i jrss is 

� 1
, , 10 ,( ) 10 logi j i j i i jmean rss rss rss dη= = −   (7) 

where 2 2
, ( ) ( )i j i j i jd x x y y= − + − , ( , )i j H∈ . 

�
,i jrss  is generated by a Gaussian distribution generator in 

Matlab.  

�
,i jrss =normrnd(mean(� ,i jrss ), Nσ ) (8) 

Therefore, the known information includes [ , ]T
i i ix y=z  

(i,j=1,2,3), � ,i jrss  (i,j=1,2,…,n), 1
irss  (i=1,2,…,n), and �.  

1
irss  for nodes i=1,2,…,n are all set be near to -55 dB. In 

the following simulations, the values should be in the range of -
45dB to -65 dB.  

Evaluation on the performance of the methods is based on 
the error between the actual position and the estimated position 
of the unknown nodes: 

1

ˆ ˆ( ) ( )
m n

i i i i
i

x x y y
error per node

m n

−

=

− + −

=
−

�
  (9) 

The result of IRLS is very accurate as shown in Fig. 2.   
Fig. 3 shows the error per node when the iteration time 

minrss  � 
Nσ  

-120 dB 3.5 3 

1088



increases. The x-coordinate: iteration time indicates how many 
time does iteration equation (6) run. The steps of IRLS contain 
two loops: loop 2 is the update of the weight, which includes 
loop 1. Loop 2 is run 5 times totally, loop 1 is set 30 times for 
maximum. Therefore, iteration function (6) is run 5*30=150 
times for maximum. But 150 is rarely reached because we 
break loop 2 when the changes compared with last iteration is 
too small. Fig. 4 shows the SMACOF, which also runs iteration 
function (6) for the same times as IRLS does. But the final 
error per node is 0.3906, much larger than 0.1659 of IRLS. 
Thus, from Fig. 3 and Fig. 4, IRLS is a more accurate 
algorithm when compared with SMACOF.  

 
Fig. 2 The estimation result of IRLS in 100-node network (triangles are 

estimated positions; circles are actual positions) 

 

Fig. 3 Estimation in different iteration times of IRLS 

 

Fig. 4 Estimation in different iteration time of SMACOF 

B. Choosing of Iteration Time 

The iteration times of loop 1 and loop 2 can be changed. 
From Fig. 3, we find the iteration converges quickly. There 
should be great room to decrease iteration time to ease 
computation pressure.  

If we decrease the iteration time of loop 1, the weight will 
be updated less frequently, which means the characteristic of 
IRLS will not be used. That will mean IRLS would get a very 
similar result like SMACOF. If the loop 1 is run 5 times, the 
weight update will be run 4 times (Initial weight does not count 
in). Take the iteration in Fig. 3  for example, the weight update 
is run 4 times in Fig. 5. 

 

Fig. 5 Weight update of Loop 1 

If we decrease the iteration time of loop 2, the convergence 
will not be easily reached. As shown in Fig. 6, convergence 
speed is decreased by a more frequent weight update. When the 
weight is updated in 10 iterations, the slope for convergence is 
not as big as that in Fig. 5. The optimum choice is: 5 times for 
loop 1, 25 times for loop 2 after many simulations of trying the 
values. 25 may not be reached because loop 2 breaks when the 
results are very close to the last iteration. 

 

Fig. 6 Convergence speed is decreased when iteration time of loop 2 is too 
small, which is 10 

C. Dealing with Convergence 

There is no theoretical base to guarantee the iteration of 
IRLS to be always global convergent. The SMACOF algorithm, 
like our IRLS algorithm, does not guarantee on convergence.  
However, much better results can be obtained than the 
conventional algorithms.  More experiments on convergence-
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checking are done with different number of nodes. The rate of 
convergence is evaluated as shown in Fig. 7. Besides, the 
experiments in centralized IRLS, which are conducted with 
100 nodes, are all convergent. Therefore, generally speaking, 
the rate of be convergent is growing with the increase in the 
number of nodes. The non-convergence occurs randomly with 
no rules. Based on its random occurrence, we can repeat the 
algorithm for another time till no non-convergence occurs. 
Actually when the rate of convergence is nearly 0.9, very near 
to 100%, repeating the algorithm will not increase the 
computation complex greatly. 

To avoid the non-convergence situations, we use the 
following methods. 

1. When non-convergence occurs, we repeat the 
algorithm. 

2. The scale of network can be adjusted to increase the 
probability of convergence. From Fig. 7, the best scale 
of sub-graphs should be more than 20.   

 
Fig. 7 Rate of being convergent 

D. Choice of Anchors 

As stated before, aligning the relative position only needs 3 
anchors, while there are usually more known nodes in a 
network. The choice of three suitable anchors is an important 
step to make the algorithm accurate. The choice of the anchors 
will affect the accuracy of the algorithm. It is desirable that the 
three anchors are far apart enough, i.e. the area of the triangle 
with anchors at the corners should be larger than a certain 
value. 

V. PERFORMANCE OF CENTRALIZED IRLS 

For comparison with other popular algorithms whose input 
is the distance, not the RSS value, we first need to change the 
RSS value into distance. The known data for SML includes 
�

,i jrss , 1
irss , and �. However, for MDS-MAP, PDM, and 

SMACOF, the distance � ,i jd , which is derived from � ,i jrss , is 
needed in their steps  for calculation. Due to the relationship 

between the distance and RSS in (2), � ,i jd  is obtained from the 

measured distance � ,i jrss  by the equation (10) and the 

logarithmic relationship between � ,i jd  and � ,i jrss  is shown in 
Fig. 8, 

�
� 1

,

10
, 10

i j irss rss

i jd η

−
−

=     (10)  

With the above additional parameters, the estimated 
position for the unknown nodes can be estimated, from 
SML&IRLS and other algorithms, respectively.  

 

Fig. 8 The relationship between distance � ,i jd  and RSS � ,i jrss  

The parameters for simulation has been introduced in 
section IV. The evaluation on the performance of the 
algorithms is also based on the error per node in equation (9). 

To decrease the effect of the sudden appearance of too big 
or too small number in the Gaussian distribution generator (8), 
the simulation including the procedure to generate Gaussian 

distribution � ,i jrss , is conducted for 20 times. The mean error 
for 20 times’ simulation is recorded.  

In current technology, omni-directional nodes’ variance 

Nσ  is: Nσ  varis from 3 to 12. When Nσ  is large, the 

estimation result will be very coarse. In this simulation, we get 
the performance of the four algorithms MDS-MAP, PDM, 
SMACOF, and IRLS under five values of standard 

deviation Nσ : 0.5, 1, 3, 5, 7.  The current hardware 

implementation can only realize standard deviation with values 
of 3, 5 and 7. With five different values of standard deviation, 
the mean error is shown in Fig.9. The result shows that MDS-
MAP, PDM are disabled under RSS measurement with large 
standard deviations. IRLS can obtain acceptable accuracy when 
standard deviations are large. Besides, compared with the other 
three, IRLS greatly improved the estimation accuracy. 

Fig. 10 shows the accuracy of the four algorithms while the 
sensor network has different number of nodes: 30, 50, 100, 
200. In this case, the standard deviation of RSS signal is 

Nσ =3, which is common in RSS measurement. From the 

simulation, MDS-MAP and PDM obtain disappointed accuracy. 
SMACOF can give a better result, but the best one is IRLS. 
IRLS performs well in the large scale networks with the error 
at least 60% less than others. With the scale of the sensor 
network increasing, IRLS can give better accuracy. The 
accuracy of RSS-positioning estimation is also affected by the 
range of the nodes. Fig. 11 and Fig. 12 show the effect of the 
range in network with 100 nodes and 50 nodes, respectively. In 

such a large standard deviation ( Nσ =3), no algorithm 

performs well under all the different ranges. However, when 
the range is larger (minimum RSS is smaller than -85dB), 
IRLS is accurate.  
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Fig. 9 Comparison on the accuracy in 50-node situation with different standard 

deviation  

 

Fig. 10 Comparison on the accuracy with difference scale of the sensor network 

 
Fig. 11 The effect of range in a 100-node network 

 
Fig. 12 The effect of range in a 50-node network 

 

Fig. 13 IRLS performance in the C-shape network (triangles are estimated 
positions; circles are actual positions) 

 

Fig. 14 Comparison on the accuracy of the four algorithms in c-shape network 

The density of the nodes in a network is not always 
uniform. Current algorithms cannot perform well in anisotropic 
networks. Some researchers try to find suitable algorithm in 
anisotropic networks. IRLS obtains good result in an 
anisotropic network (C shape) as shown in Fig. 13. Not only in 
the large standard deviation situations, it is also better than 
other algorithms in small standard deviation, which is shown in 
Fig. 14. 

From the above simulations, IRLS is shown to be accurate 
in both isotropic and anisotropic networks. The robustness of 
IRLS is also shown. IRLS is more robust to RSS variations 
than other algorithms (Fig. 9). MDS-MAP is sensitive to the 
signal variations due to the inherent emphasis on short 
distances by the classical MDS computation. PDM firstly 
approximates the distance from the unknown nodes to the 
anchors, signal variation greatly influences the accuracy in this 
step. Then when PDM use triangulation in the second step, the 
errors in the distance are amplified. Other triangulation or 
muti-lateration methods accumulate the errors when the 
estimated nodes are set to be anchors for next iterations. IRLS 
using the iterative surrogate method does not accumulate the 
errors, neither have inherent emphasis on special distances. 
Therefore, IRLS is not sensitive to the signal variations. 
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Robustness does not only mean being robust to the signal 
variations, but also means the adaptation to the loss and 
addition of nodes. If an algorithm is robust, the accuracy 
should not decrease dramatically when some nodes fail 
randomly in the network. From the steps of IRLS, it is clear 
that if one or more nodes are dead, the result will not change 
much. This is because such situation can be considered as a 
decrease of the initial nodes. 

The computation complex of MDS is low. Compared with 
MDS, IRLS is much slower. From a simulation using 
MATLAB on a computer with Intel Core 2 @ CPU 2.66GHz, 
RAM 2GB, IRLS costs comparable time with SMACOF. It is 
well-known that sensor network positioning is a NP-Hard 
problem, which has heavy computation cost. MDS (classical 
MDS) uses SVD as the core step. So the computation complex 
is O(n³), while n is the number of the nodes. IRLS as well as 
SMACOF, use the iteration method. The computation complex 
depends on the iteration time. Even the computation complex 
of iteration methods is always hundreds times higher than 
SVD, it is still acceptable from Fig. 15 and Fig. 16. 

 

Fig. 15 Time-used in 100-node network 

 

Fig. 16 Time-used in 50-node network 

VI. CONCLUSION 

A new algorithm suitable for sensor network localization 
based on RSS measurement has been proposed. RSS 
positioning utilizes the received signal strength (RSS) as a 
distance measurement between a pair of nodes. However, 
current algorithms would simply translate the RSS 
measurement directly into distance measurement, and ignores 
the information embedded in the variation of RSS. Moreover, 
current algorithms rarely have good performance under large 
variations of RSS measurement. In this paper, a new target 
function that is based on signal maximum likelihood (SML) on 

RSS measurement has been developed. The algorithm that 
tackles the new target function has been shown to be more 
accurate than the current algorithms.  

Different from other algorithms, the proposed algorithm 
that tackles the SML is robust to large variation of RSS 
measurement. Inspired by the SMACOF method, an iterative 
algorithm called Iteratively Reweighted Least Squares 
technique (IRLS) has been developed, which utilizes the 
iterative surrogate idea. With the experience on many 
simulations, the iteration times for the two levels of loop in 
IRLS are properly chosen. The choice of the three anchors can 
also help to improve the accuracy. A comparison has also been 
carried out between IRLS and the current algorithms such as 
MDS-MAP, PDM, and SMACOF, which are all based on 
distance measurement, and not on RSS measurement. The 
simulation of the centralized version of IRLS has shown that it 
has better accuracy than all the current methods. The 
computation complex of IRLS is comparable with the 
SMACOF method.  

To summarize, the IRLS method which is based on RSS 
positioning has provided a more accurate and robust alternative 
for localization in a sensor network. In future work, the IRLS 
method can be extended for large scale network, and a 
distributed version of IRLS will be developed. 
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