1,484 research outputs found

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Graphical Database Architecture For Clinical Trials

    Get PDF
    The general area of the research is Health Informatics. The research focuses on creating an innovative and novel solution to manage and analyze clinical trials data. It constructs a Graphical Database Architecture (GDA) for Clinical Trials (CT) using New Technology for Java (Neo4j) as a robust, a scalable and a high-performance database. The purpose of the research project is to develop concepts and techniques based on architecture to accelerate the processing time of clinical data navigation at lower cost. The research design uses a positivist approach to empirical research. The research is significant because it proposes a new approach of clinical trials through graph theory and designs a responsive structure of clinical data that can be deployed across all the health informatics landscape. It uniquely contributes to scholarly literature of the phenomena of Not only SQL (NoSQL) graph databases, mainly Neo4j in CT, for future research of clinical informatics. A prototype is created and examined to validate the concepts, taking advantage of Neo4j’s high availability, scalability, and powerful graph query language (Cypher). This research study finds that integration of search methodologies and information retrieval with the graphical database provides a solid starting point to manage, query, and analyze the clinical trials data, furthermore the design and the development of a prototype demonstrate the conceptual model of this study. Likewise the proposed clinical trials ontology (CTO) incorporates all data elements of a standard clinical study which facilitate a heuristic overview of treatments, interventions, and outcome results of these studies

    Intelligent Agents and Their Potential for Future Design and Synthesis Environment

    Get PDF
    This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the workshop were to assess the status of intelligent agents technology and to identify the potential of software agents for use in future design and synthesis environment. The presentations covered the current status of agent technology and several applications of intelligent software agents. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Design and Implementation of a Collaborative Clinical Practice and Research Documentation System Using SNOMED-CT and HL7-CDA in the Context of a Pediatric Neurodevelopmental Unit

    Get PDF
    This paper introduces a prototype for clinical research documentation using the structured information model HL7 CDA and clinical terminology (SNOMED CT). The proposed solution was integrated with the current electronic health record system (EHR-S) and aimed to implement interoperability and structure information, and to create a collaborative platform between clinical and research teams. The framework also aims to overcome the limitations imposed by classical documentation strategies in real-time healthcare encounters that may require fast access to complex information. The solution was developed in the pediatric hospital (HP) of the University Hospital Center of Coimbra (CHUC), a national reference for neurodevelopmental disorders, particularly for autism spectrum disorder (ASD), which is very demanding in terms of longitudinal and cross-sectional data throughput. The platform uses a three-layer approach to reduce components’ dependencies and facilitate maintenance, scalability, and security. The system was validated in a real-life context of the neurodevelopmental and autism unit (UNDA) in the HP and assessed based on the functionalities model of EHR-S (EHR-S FM) regarding their successful implementation and comparison with state-of-the-art alternative platforms. A global approach to the clinical history of neurodevelopmental disorders was worked out, providing transparent healthcare data coding and structuring while preserving information quality. Thus, the platform enabled the development of user-defined structured templates and the creation of structured documents with standardized clinical terminology that can be used in many healthcare contexts. Moreover, storing structured data associated with healthcare encounters supports a longitudinal view of the patient’s healthcare data and health status over time, which is critical in routine and pediatric research contexts. Additionally, it enables queries on population statistics that are key to supporting the definition of local and global policies, whose importance was recently emphasized by the COVID pandemic.info:eu-repo/semantics/publishedVersio

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Using conceptual graphs for clinical guidelines representation and knowledge visualization

    Get PDF
    The intrinsic complexity of the medical domain requires the building of some tools to assist the clinician and improve the patient’s health care. Clinical practice guidelines and protocols (CGPs) are documents with the aim of guiding decisions and criteria in specific areas of healthcare and they have been represented using several languages, but these are difficult to understand without a formal background. This paper uses conceptual graph formalism to represent CGPs. The originality here is the use of a graph-based approach in which reasoning is based on graph-theory operations to support sound logical reasoning in a visual manner. It allows users to have a maximal understanding and control over each step of the knowledge reasoning process in the CGPs exploitation. The application example concentrates on a protocol for the management of adult patients with hyperosmolar hyperglycemic state in the Intensive Care Unit

    A Generic Approach to Supporting the Management of Computerised Clinical Guidelines and Protocols

    Get PDF
    Clinical guidelines or protocols (CGPs) are statements that are systematically developed for the purpose of guiding the clinician and the patient in making decisions about appropriate healthcare for specific clinical problems. Using CGPs is one of the most effective and proven ways to attaining improved quality, optimised resource utilisation, cost containment and reduced variation in healthcare practice. CGPs exist mainly as paper-based natural language statements, but are increasingly being computerised. Supporting computerised CGPs in a healthcare environment so that they are incorporated into the routine used daily by clinicians is complex and presents major information management challenges. This thesis contends that the management of computerised CGPs should incorporate their manipulation (operations and queries), in addition to their specification and execution, as part of a single unified management framework. The thesis applies modern advanced database technology to the task of managing computerised CGPs. The event-condition-action (ECA) rule paradigm is recognised to have a huge potential in supporting computerised CGPs. In this thesis, a unified generic framework, called SpEM and an approach, called MonCooS, were developed for enabling computerised CGPs, to be specified by using a specification language, called PLAN, which follows the ECA rule paradigm; executed by using a software mechanism based on the ECA mechanism within a modern database system, and manipulated by using a manipulation language, called TOPSQL. The MonCooS approach focuses on providing clinicians with assistance in monitoring and coordinating clinical interventions while leaving the reasoning task to domain experts. A proof-of-concepts system, TOPS, was developed to show that CGP management can be easily attained, within the SpEM framework, by using the MonCooS approach. TOPS is used to evaluate the framework and approach in a case study to manage a microalbuminuria protocol for diabetic patients. SpEM and MonCooS were found to be promising in supporting the full-scale management of information and knowledge for the computerised clinical protocol. Active capability within modern DBMS is still experiencing significant limitations in supporting some requirements of this application domain. These limitations lead to pointers for further improvements in database management system (DBMS) functionality for ECA rule support. The main contributions of this thesis are: a generic and unified framework for the management of CGPs; a general platform and an advanced software mechanism for the manipulation of information and knowledge in computerised CGPs; a requirement for further development of the active functionality within modern DBMS; and a case study for the computer-based management of microalbuminuria in diabetes patients
    corecore