
Intelligent Agents and Their Potential for
-

Future Design and Synthesis Environment
Compiled by
Ahmed K. Noor
University of Virginia
Center for Advanced Computational Technology, Hampton, Virginia

John B. Malone
Langley Research Center, Hampton, Virginia

February 1999

https://ntrs.nasa.gov/search.jsp?R=19990041500 2020-06-15T21:40:06+00:00Z

The NASA ST1 Program Office . . . in Profile

Since its founding, NASA has been dedicated CONFERENCE PUBLICATION.
to the advancement of aeronautics and space Collected papers from scientific and
science. The NASA Scientific and Technical technical conferences, symposia,
Information (STI) Program Office plays a key seminars, or other meetings sponsored or
part in helping NASA maintain this co-sponsored by NASA.
important role.

The NASA ST1 Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information.
The NASA ST1 Program Office provides
access to the NASA ST1 Database, the
largest collection of aeronautical and space
science ST1 in the world. The Program Office
is also NASA's institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA ST1 Report
Series, which includes the following report
types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counterpart or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services that complement the
ST1 Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA ST1
Program Office, see the following:

Access the NASA ST1 Program Home
Page at hffp:llwww.sti.nasa.gov

Email your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA ST1
Help Desk at (301) 621-0134

Telephone the NASA ST1 Help Desk at
(301) 621-0390

Write to:
NASA ST1 Help Desk
NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076-1320

Intelligent Agents and Their Potential for
Future Design and Synthesis Environment
Compiled by
Ahmed K. Noor
University of Virginia
Center for Advanced Computational Technology, Hamp ton, Virginia

John B. Malone
Langley Research Center, Hampton, Virginia

Proceedings of a workshop sponsored by the National Aeronautics and
Space Administration and the University of Virginia Center for

Advanced Computational Technology, Harnpton, VA, and held at
NASA Langley Research Center, Hampton, Virginia

September 16-17,1998

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 1999

I The use of trademarks or names of manufacturers in this report is for accurate reporting and does not I
constitute an official endorsement, either expressed or implied, of such productsor m&ufacturers by the
National Aeronautics and Space Administration. -

Available from the following:

NASA Center for Aerospace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Preface

This document contains the proceedings of the Workshop on Intelligent Agents and
Their Potential for Future Design and Synthesis Environment, held at NASA Langley
Research Center, Hampton, Virginia, Sept. 16-17, 1998. The workshop was jointly
sponsored by the University of Virginia's Center for Advanced Computational Technology
and NASA. Workshop attendees came from NASA, industry and universities. The
objectives of the workshop were to assess the status of intelligent agents technology and to
identify the potential of software agents for use in future design and synthesis
environments. The presentations covered the present status of agent technology and several
applications of software agents.

Certain materials and products are identified in this publication in order to specify
adequately the materials and products that were investigated in the research effort. In no
case does such identification imply recommendation or endorsement of products by NASA,
nor does it imply that the materials and products are the only ones or the best ones available
for this purpose. In many cases equivalent materials and products are available and would
probably produce equivalent results.

Ahmed K. Noor
Center for Advanced Computational

Technology
University of Virginia

Hampton, Virginia

John B. Malone
NASA Langley Research Center

Hampton, Virginia

iii

Page intentionally left blank

Page intentionally left blank

Attendees

1. Dr. Khaled Abdel-Tawab
Center for Advanced Computational
TechnologyKJniv. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1992; Fax (757) 864-8089
Email:k.i.abdel-tawab@larc.nasa.gov

2. Ms. Danette Allen
Mail Stop 488
NASA Langley Research Center
Hampton, VA 23681
(757) 864-7364; Fax (757) 864-7944
Email: b.d.allen@larc.nasa.gov

3. Dr. Richard R. Antcliff
Mail Stop 254
NASA Langley Research Center
Hampton, VA 23681
(757) 864-4606; Fax (757) 864-1707
Email: r.r.antcliff@larc.nasa.gov

4. Dr. Manuel Aparicio
IBM, Intelligent Agent Services
P.O. Box 12195
4205 South Miami Blvd.
Research Triangle Park, NC 27709
(919) 254-7622
Email: aparicio@us.ibm.com

5. Mr. Don E. Avery
Mail Stop 367
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1947; Fax (757) 864-4449
Email: d.e.avery @larc.nasa.gov

6. Prof. William P. Birmingham
Electrical Engineering and Computer
Science Department

The University of Michigan
1101 Bed Avenue
Ann Arbor, MI 48109
(734) 936-1590; Fax (734) 763- 1260
Email: wpb@eecs.urnich.edu

7. Prof. David C. Brown
Dept. of Computer Science

Worcester Polytechnic Institute
100 Worcester Road
Worcester, MA 01609
(508) 831-5618; Fax (508) 831-5776
Email: dcb@cs.wpi.edu

8. Mr. Dennis M. Bushnell
Mail Stop 110
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8987; Fax (757) 864-8980
Email: d.m.bushnel1 @larc.nasa.gov

9. Ms. Abigail C. Chapin
Computer Science Department
University of Virginia
Charlottesville, VA 22903
(804) 970-5096
Email: acc2a@ virginia.edu

10. Mr. Adam J. Cheyer
SRI International
333 Ravenswood Ave. EJ217
Menlo Park, CA 94306
(650) 859-41 19; (650) 859-3735
Email: cheyer@ai.sri.com

11. Mr. Simon S. Chung
Mail Stop 157A
NASA Langley Research Center
Hampton, VA 23681
(757) 864-7337
Email: s.s.chung@larc.nasa.gov

12. Dr. Thomas M. Eidson
High Technology Corporation
28 Research Drive
Hampton, VA 23666
(757) 865-0818; Fax (757) 865-6766
Email: teidson@htc-tech.com

13. Mr. Carl R. Elks
Mail Stop 130
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2078
Email: c.r.elks@larc.nasa.gov

14. Mr. Travis Emrnitt
University of Virginia
1734 Franklin Drive
Charlottesville, VA 229 1 1
(804) 984-2706
Email: emmitt@virginia.edu

15. Mr. Yamir E. Encarnacion
1301 North Courthouse Road #I209
Arlington, VA 22201
(703) 527-6567
Email: yamir@worldnet.att.net

vii

1 6. Prof. Tim Finin
Dept. of Computer Science and
Electrical Engineering

Univ. of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
(410) 455-3522; Fax (410) 455-3969
Email: finin@cs.umbc.edu

1 7. Dr. Stanley Franklin
Institute for Intelligent Systems
Math Sciences, Dunn Bldg. #373
University of Memphis
Memphis, TN 38152
(901) 678-3142; Fax (901) 678-2480
Email: stan.franklin@memphis.edu

1 8. Mr. William T. Freeman
Mail Stop 188E
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2945; Fax (757) 864-891 1
Email: w.t.freeman@ 1arc.nasa.gov

19. Dr. George G. Ganoe
Mail Stop 328
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1940; Fax (757) 864-1975
Email: g.g.ganoe @ 1arc.nasa.gov

20. Ms. Thea M. Ganoe
Center for Advanced Computational
Technology/Univ. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8391; Fax (757) 864-8089
Email: t.m.ganoe@larc.nasa.gov

2 1. Mr. Brantley R. Hanks
Mail Stop 367
NASA Langley Research Center
Hampton, VA 23681
(757) 864-4322; Fax (757) 864-4449
E ~ a i l : b.r.hanks @ 1arc.nasa.gov

22. Dr. Charles E. Harris
Mail Stop 188M
NASA Langley Research Center
Hampton, VA 23681
(757) 864-3447; Fax (757) 864-7729
Email: c.e.harris@larc.nasa.gov

24. Dr. Jerrold M. Housner
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2907; Fax (757) 864-8912
Email: j.m.housner@ larc.nasa.gov

25. Prof. Michael N. Huhns
Dept. of Electrical and Computer
Engineering

University of South Carolina
301 South Main Street
Columbia, SC 29208
(803) 777-5921; Fax (803) 777-8045
Email: huhns@ sc.edu

26. Mr. Stephen C. Irick
Mail Stop 432
NASA Langley Research Center
Hampton, VA 23681
(757) 864-7078; Fax (757) 864-7009
Email: s.c.irick@larc.nasa.gov

27. Dr. Anupam Joshi
Dept. of Computer Science and
Electrical Engineering

Univ. of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
(410) 455-2590; Fax (410) 455-3969
Email: joshi@cs.umbc.edu

28. Prof. Lany Kerschberg
ISE Dept., MSN4A4
George Mason University
4400 University Drive
Fairfax, VA 22032
(703) 993-1661; Fax (703) 993-1638
Email: kersch@gmu.edu

29. Ms. Kara A. Latorella
Mail Stop 152
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2030; Fax (757) 864-7793
Email: k.a.latorella@larc.nasa.gov

30. Mr. Marc Latorella
Penn State University
Mail Stop 152
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2030
Emajl: mdll35 @ psu-edu

23. Prof. James Hendler
Computer Science Department
University of Maryland
College Park, MD 20742
(301) 405-2696; Fax (301) 405-8488
Email: hendler@cs.umd.edu

viii

3 1. Mr. Henry A. Lieberman
Media Lab.
Massachusetts Inst. of Technology
20 Ames Street 305 A
Cambridge, MA 02139
(617) 253-0315; Fax (617) 253-6215
Email: lieber@media.rnit.edu

32. Mr. Kenneth N. Lodding
Computer Sciences Corporation
3217 North Annistead Avenue
Hampton, VA 23666
(757) 766-8244; Fax (757) 766-2571
Email: k.n.lodding@larc.nasa.gov

33. Ms. Christine G. Lotts
Mail Stop 238
NASA Langley Research Center
Hampton, VA 23681
(757) 864-29 1 1
Email: c.g.lotts@larc.nasa.gov

34. Dr. Kwan-Liu Ma
ICASE
Mail Stop 403
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2195; Fax (757) 864-61 34
Email: kma@icase.edu

35. Dr. Moinuddin Malik
Center for Advanced Computational
Technology/Univ. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2492; Fax (757) 864-8089
Email: mmalik@puma.larc.nasa.gov

36. Mr. Brian H. Mason
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-4895
Email: b.h.mason@larc.nasa.gov

37. Dr. Neal N. McCollom
Lockheed Martin Tactical
Aircraft Systems

Mail Zone 2275
P.O. Box 748
Fort Worth, TX 76108
(817) 763-3378; Fax (817) 763-3689
Email: neal.n.mccollom@lmco.com

3 8. Mr. Alan R. McCoy
Center for Advanced Computational
TechnologyRJniv. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8518; Fax (757) 864-8089
Email: a.r.mccoy@larc.nasa.gov

39. Dr. Mark A. Motter
Mail Stop 152
NASA Langley Research Center
Hampton, VA 23681
(757) 864-6978; Fax (757) 864-7793
Email: m.a.motter@larc.nasa.gov

40. Dr. Vivek Mukhopadhyay
Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2835; Fax (757) 864-97 13
Email:
v.mukhopadhyay @ 1arc.nasa.gov

41. Mr. Michael L. Nelson
Mail Stop 158
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8511; Fax (757) 864-8342
Email: m.l.nelson@larc.nasa.gov

42. Prof. Ahmed K. Noor
Director, Center for Advanced
Computational Technology

University of Virginia
Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1978; Fax (757) 864-8089
Email: a.k.noor@larc.nasa.gov

43. Dr. Peter Norvig
Mail Stop 269-1
NASA Ames Research Center
Moffett Field, CA 94035
(650) 604-6207
Email: pnorvig @ mail.arc.nasa.gov

44. Dr. F. G. Patterson, Jr.
NASA Headquarters
Code FT
300 E Street, S.W.
Washington, D.C. 20546
(202) 358-2171; Fax (757) 358-4164
Email: pat.patterson@hq.nasa.gov

45. Mr. Daniel L. Page
Computer Sciences Corporation
Mail Stop 157B
NASA Langley Research Center
Hampton, VA 23681
(757) 864-9361
Email: d.l.page@ 1arc.nasa.gov

46. Ms. Jeanne M. Peters
Center for Advanced Computational
TechnologyAJniv. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1989; Fax (757) 864-8089
Email: j .m.peters @larc.nasa.gov

47. Ms. Elizabeth B. Plentovich
Mail Stop 261
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1919; Fax (757) 864-8093
Email: e.b.plentovich@larc.nasa.gov

48. Dr. Alan T. Pope
Mail Stop 152
NASA Langley Research Center
Hampton, VA 23681
(757) 864-6642; Fax (757) 864-7793
Email: a.t.pope@ 1arc.nasa.gov

49. Mr. Joe Rehder
Mail Stop 139
NASA Langley Research Center
Hampton, VA 23681
(757) 864-4481 ; Fax (757) 864-97 15
Email: j.j.rehder@larc.nasa.gov

50. Mr. James L. Rogers
Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2810; Fax (757) 864-9713
Email: j .l.rogers@ larc.nasa.gov

5 1. Ms. Andrea 0. Salas
Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681
(757) 864-5790; Fax (757) 864-9713
Email: a.o.salas@larc.nasa.gov

52. Mr. Manuel D. Salas
ICASE
Mail Stop 403
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2 174; Fax (757) 864-6 134
Email: salas@icase.edu

53. Dr. Chris A. Sandridge
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2816
Email: c.a.sandridge@larc.nasa.gov

54. Mr. William J. Seufzer
College of William and Mary, and
Computer Sciences Corp.

Mail Stop 157D
NASA Langley Research Center
Hampton, VA 23681
(757) 864-9014
Email: w.j.seufzer@larc.nasa.gov

55. Mr. David W. Sleight
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8427
Email: d.w.sleight@larc.nasa.gov

56. Ms. Kathryn Stacy
Mail Stop 125
NASA Langley Research Center
Hampton, VA 23681
(757) 864-6719; Fax (757) 864-8910
Email: k.stacy @ 1arc.nasa.gov

57. Dr. Olaf 0. Storaasli
Mail Stop 240
NASA Langley Research Center
Harnpton, VA 23681
(757) 864-2927; Fax (757) 864-8912
Email: o.o.storaasli@larc.nasa.gov

58. Dr. Z. Peter Szewczyk
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2913; Fax (757) 864-8912
Email: z.p.szewczyk@larc.nasa.gov

59. Mr. Michael D. Uenking
Mail Stop 152
NASA Langley Research Center
Hampton, VA 23681
(757) 864-6954; Fax (757) 864-7793
Email: m.d.uenking@larc.nasa.gov

60. Mr. James A. Villani
Logistics Management Institute
2000 Corporate Ridge
McLean, VA 22102
(703) 91 7-7304; Fax (703) 9 17-7 198
Email: jvillani@ 1rni.org

6 1. Dr. John T. Wang
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681
(757) 864-8185; Fax (757) 864-8912
Email: j.t.wang @larc.nasa.gov

62. Dr. Tamer M. Wasfy
Center for Advanced Computational
Technology/Univ. of Virginia

Mail Stop 201
NASA Langley Research Center
Hampton, VA 23681
(757) 864-1984; F a (757) 864-8089
Email: t.wasfy @larc.nasa.gov

63. Ms. Shahani M. Weerawarana
Dept. of Computer Sciences
Purdue University
3074 High Ridge Road
Yorktown Heights, NY 10598
(914) 243-0186
Email: markus @ cs.purdue.edu

65. Mr. Robert E. Yackovetsky
AST Program Office
NASA Langley Research Center
Hampton, VA 23681
(757) 864-3894
Email:
r.e.yackovetsky @ 1arc.nasa.gov

66. Mr. Long P. Yip
Mail Stop 254
NASA Langley Research Center
Hampton, VA 23681
(757) 864-3866; Fax (757) 864-1707
Email: 1.p.yip @ 1arc.nasa.gov

67. Dr. Thomas A. Zang
Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681
(757) 864-2307; Fax (757) 864-9713
Email: t.a.zang@larc.nasa.gov

64. Mr. Earl R. Wingrove
Logistics Management Institute
2000 Corporate Ridge
McLean, VA 22102
(703) 917-7387; Fax (703) 917-7066
Email: ewingrov@lmi.org

Overview of Intelligent Software Agents

Ahmed K. Noor
' Center for Advanced Computational Technology

University of Virginia
Hampton, VA

Page intentionally left blank

Outline

The fascination with non-human agents dates back to the beginning of recorded history. Popular
notions about androids, humanoids, robots, cyborgs and science fiction creatures permeate our culture
and form the backdrop against which software agents are perceived. As a result of technological
advances in computer hardware, networking, comrnunciations, and modeling and simulation, the new
paradgm of parallel, distributed, collaborative and immersive computing is emerging. One of the
consequences of this paradigm is a significant increase in software complexity. Hence, there is a
need for intelligent software that will not only respond to requests, but anticipate, adapt and actively
seek ways to support diverse, geographically dispersed teams. This presentation provides an
overview of intelligent agent technology. The outline is given in Fig. 1. First, a definition of
intelligent agents is given, and some of their attributes are described. The parent disciplines and the
technologies are listed. A classification and some of the applications of intelligent agents are
discussed. The future potential of intelligent agents and their use in the design and synthesis
environment is outlined. A list of some of the information sources on intelligent agents is given.

Figure 1

Definition

Due to the inter-disciplinary character of agents, it has not been possible to agree on a generally
accepted, comprehensive definition of an intelligent agent. At the highest level, three major
categories of agents can be Qstinguished: human agents, hardware agents, and software agents (Fig.
2). All agent categories have the common feature that they, to a large extent, independently perform
tasks on behalf of their contracting party (or user) for which specialized knowledge is needed, or
which consist of many time-intensive individual steps. The functional definition for agents used
herein is: a softwarelhardware agent resides in an environment, uses sensors to identify certain
aspects of the environment and executes commands that affect the environment. Intelligent software
agents act on behalf of people, take initiatives and make suggestions. Today's passive software is
referred to as software tools.

Figure 2

Characteristics of Software Agents

Some of the characteristics of a software agent are shown in Fig. 3. These are:
reactive - responds in a timely fashion to changes in the environment.
autonomous - exercises control over its own internal state. Exhibits self-starting behavior.
proactive - exhibits goal-directed behavior by taking initiative.
adaptive - changes its behavior based on previous experience.
inferentially capable - has reasoning capability based on a knowledge base and is able to learn.
mobile - able to navigate within electronic communication networks, and migrate from one host

platform to another.
communicative - communicates with other agents and humans.
collaborative - has the ability to cooperate with other agents for complex tasks that exceed the

capability of a single agent.

The first six characteristics are particular to the agent, and the last two pertain to its interaction with
the environment.

\ ENVIRONMENT //

Figure 3

5

Mobile Agents

The concept of a mobile agent emerged from communication protocol between computers, in use
since the late 1970's. It is based on remote procedure calls (RPC). Each call involves a request sent
from the user to the server, and a response sent from the server to the user (Fig. 4).

An alternative to RPC is the remote programming (RP). The user computer sends to the server a
mobile agent. The agent, not the user computer, orchestrates the work on the server.

Ongoing interaction in RPC requires ongoing communications. By contrast, in RP, it does not.

Figure 4

Parent Disciplines and Enabling Technologies

The development of agent technology is strongly influenced by three disciplines: classical A1
planning systems, control theory and cybernetics, and cognitive psychology (and neuroscience). A
number of technologies can facilitate the development and use of intelligent agents, namely:

A1 knowledge-based and expert system
Object-oriented software development, and
Soft computing.

An example of the first is the Cyc knowledge base, inference engine, and application modules, which
use the CycL representation language. Agents can be structured such that their world view,
communications, and internal mechanisms are based on a strong notion of modularity, avoidance of
single points of failure, relative autonomy, and various types of reuse via object-oriented
methodologies of design, development and execution. Soft computing provides agents with the
ability to: a) reason under uncertainty, and with imprecise or incomplete data (via the use of fuzzy
logic); b) discern patterns, learn and generalize (via the use of neural networks); and c) best fit or deal
with the situation at hand (via the use of genetic algorithms).

Figure 5

Intelligent Agents

Intelligent agents can be described in terms of the space defined by the three dimensions of agency,
intelligence and mobility (as proposed by Gilbert, et al. at IBM).

Agency is the degree of autonomy and authority vested in the agent. It can be
measured by the nature of interaction between the agent and the environment it
resides in. At a minimum, an agent must run asynchronously. More advanced
agents interact with data, applications and other agents.

Intelligence can be defined as the degree of reasoning and learned behavior. At a
minimum, there can be a set of preferences in the user's statement of goals and the
tasks delegated to the agent. Higher levels of intelligence include a user model and
reasoning. Still higher levels are systems that learn and adapt to their environment,
both in terms of the user's objectives, and the resources available to the agent.

Mobility refers to the degree to which agents travel through the network. Mobil
scripts may be composed on one computer and shipped to another for execution.
Mobil objects are transported from computer to computer in the middle of execution
and carrying accumulated state data with them. Figure 6 shows the domain of
expert systems and fixed-function agents in the same three-dimensional space.
Intelligent agents can be thought of as advanced proactive expert systems.

Preferences Reasoning Planning Learning

Mobility J Degree
of

lntelligence

Figure 6

8

Technologies Used for Developing Agent Applications

Three categories of technologies are used in developing agent applications: languages, ontologies,
and support computing technologies. Languages can be divided into object-oriented/scripting
languages and agent communication languages (ACL). The latter are used for applications containing
multiple agents. Several examples of the first category of languages are listed in Fig. 7. The figure
also shows the degree of typing and the number of instructions that can be executed per statement for
various scripting languages. An example of an ACL language is the Knowledge Query and
Manipulation Language (KQML) which is an evolving standard ACL being developed as part of the
DARPA Knowledge Sharing Effort (KSE). The KQML language can be viewed as consisting of three
layers: the content, message and communication layers.

Ontologies describe the way in whch knowledge is organized, and the vocabulary used to describe
the domain's concepts. Examples of the support computing technologies that facilitate the design and
implementation of agent applications are client-server technology, and the Common Request Broker
Architecture (CORB A).

Figure 7

Agent Classification

As with the definition of an agent, several classifications have been proposed for software agents.
These classifications are described herein. The first is based on the attributes exhibited by the agent.
Interface agents are autonomous and inferentially capable. Collaborative learning agents are
collaborative and inferentially capable, and smart agents are autonomous, inferentially capable and
collaborative.

The second classification uses three criteria: intelligence, mobility and number of agents. With
respect to degree of intelligence, agents are classified into simple and complex. The latter exhibit a
highly intelligent behavior. With respect to mobility, agents are classified into stationary and mobile.
The number of agents associated with a system forms the third classification criterion. Single agents
are not capable of contacting other agents, even when they reside in their environment. By contrast,
multi-agent systems consist of a number of agents that can communicate or even cooperate with each
other.

Number ,of Agents

simple "* complex

Mobility

Figure 8

Agent Classification/Applications

The third classification is based on the particular applications for whch the agent is used. Five
categories of agents can be identified, namely:

Interface agents - used for intelhgent tutoring and intelligent help, as well as for workflow
automation.

Infomation agents - used for search, retrieval and filtering, as well as for advising and focusing.
Cooperation agents - including meeting facilitators and management of group processes.

* Product development/mission synthesis agents. These include assistants and work-flow
automation agents and the agents used for collaborative, distributed product development (resource
selection, mediators and recommenders).

Computing, networking and communication agents. These include management agents for
configurable computing and active networks.

Examples of some agents in the aforementioned categories are described subsequently.

Intedace Agents - tn telligen t tutoring - tntelfigent help - Assistants and worltfiow automation agents

kformation Agents
Search, retrieval and filtering - advising and focusing

Cooperntion Agents - meeting faciiitators
- decision support - management of group processes

Product development/rnission synthesis agents - assistants and work flowautomation
- coilaborative [distribuged) product development
[resource selection, mediators, recommenders)

Computing, networkbrg and communication agents - management agents - configurable comptfting - active networlcs

Figure 9

Intelligent Agents in Human-Computer Interfaces

Figure 10 shows the evolution of human-computer interfaces and the involvement of intelligent
agents in them. During the period of the 1950's through the 19701s, static interfaces were used in the
form of teletype style and full-screen text and light pen. The system designer built the interface and
the user had to learn how to use it. This was followed in the 1980's and early 1990's by more
flexible interfaces - windows, mouse and graphical tablet. The flexibility was restricted to simple
changes (colors, size, or positions of windows). In the 19907s, windows, mouse, graphical tablets,
adaptive multimedia (audio, video and animation) interfaces were introduced. The adaptation covered
both the communication and functionality and included: user-initiated self adaptation, user-controlled
self-adaptation, computer-aided adaptation and system initiated adaptation. The trend is now moving
towards intelligent interfaces, whch integrates adaptive interfaces with intelligent agents for making
intelligent help and tutoring available to the user. In the future, intelligent agents will be used in
adaptivelreconfigurable interfaces that take advantage of the advances made in cognitive
neuroscience to couple humans with the computing facilities and hence, maximize their performance.
Among the adaptivelreconfigurable interfaces are the neural interfaces which use brain waves to
sense the actual state of attention and alertness of the user.

Figure 10

Intelligent Agents in Learning Technology

Figure 11 shows the evolution of learning technology and the extent of using intelligent agents.
Computer-based technology (CBT) systems of the 1960's and 1970's were initially passive. Later
developments in that period included learner modeling and more elaborate computer-learner
interfaces. The addition of expert systems to CBT resulted in Intelligent Tutoring Systems (TTS) of
the 1980's. ITS had explicit models of tutoring and domain knowledge, and were more flexible in
their response than CBT systems. However, they were developed for "information transfer" and were
not change-tolerant. The advent of intelligent agents, which enabled the learner to manipulate
cognitive artifacts from several perspectives or viewpoints, led to the interactive learning systems
(ILS) of the 1990's. Examples of these systems include on-line courses, interactive learning systems
and intelligent evaluation facilities. The current trend is towards collaborative distributed learning
systems extensively using intelligent agents in the learning environment. Such dynamic environments
will provide the learners access to other ideas and concepts, allow them to express their viewpoints
and incrementally adapt initial viewpoints to more informed and mastered concepts.

2000

Figure 11

13

Intelligent Agents for Information
Retrieval and Filtering

Depending on the extent of use and the degree of intelligence of the agents used, the hierarchy of
search engines (shown in Fig. 12) can be identified. The simple search engines represent a low level
of search tools. The intelligent agents used in these tools store all the information found in a
database, which can be central or distributed. Examples of simple search engines are AltaVista,
Webcrawler, Excite, HotBot, Infoseek, Lycos and OpenText. The next set of search engines in the
hierarchy are the pseudo meta search engines, which provide the user with known search engines that
serve as a starting point in the individual search for information. An example of such a search engine
is the Configurable Unified Search Engine (CUSI).

Meta search engines provide automation of the simultaneous query to several simple search engines.
They provide the user with the results of the associated search query in a compressed and improved
form compared with the simple search engine. Examples of meta search engines are MetaCrawler,
Savvysearch, MetaGer, and Inquirus. Advances in intelligents agents and other technologies will
lead to customized (personalized) search engines which provide the user with the information in a
variety of formats including text, equations, images, animations, and video.

Level of
Sophistication

Time

Figure 12

Intelligent Agents in CADICAE Systems

Figure 13 shows the evolution of CADICAE systems. In the 19507s, engineering design was
primarily a pencil and paper activity, and the computing engine was the slide rule (used in
conjunction with design manuals). The first major improvement was the development of computer-
aided drafting and wire frame models. This merged CAD systems with solid modeling facilities, and
subsequently, to the current virtual product systems with embedded simulation capabilities for the
entire life cycle of the product. The addition of intelligent agents will transform the systems into
knowledge-enriched virtual product development systems. The benefits obtained include higher
productivity, better product quality, and a broader design to provide an integrated system solution.

Know
how

models

-.
CAD

VPD

1950 Year 2000

Figure 13

Future Directions

In the future, agents will become pervasive within computing and communication systems. They will
form the central components of future information-based engineering systems. Specifically, software
agents will:

Have increased intelligence, flexibility and independence. Specifically, they will:
Exhibit inference capability and be able to reason about goals

0 Be trainable, easy to configure and program via goal statements or natural language
* Provide unprecedented levels of functionality (via combining hierarchical multiagent systems

with A1 constructs and infrastructure utilities).
Provide personalized advice and services
Keep diverse teams informed, focused and organized

0 Revolutionize collaborative engineering processes and scientific research. They will enable the
development of knowledge work teams (or distributed minds - see Fig. 14).

Figure 14

The potential benefits of collaborative distributed environments for virtual product development and
mission synthesis have led several organizations to initiate programs to realize these benefits.
Among the government programs are:

Simulation Based Design (SBD)
Rapid Design Exploration and Optimization (RaDEO) of the Defense Advanced Research
Projects Agency
Partnership for Advanced Computational Infrastructure (PACI) of the National Science
Foundation
Knowledge and Distributed Intelligence (KDI) of the National science Foundation

s System Integration for Manufacturing Applications (SIMA) of the National Institute of Standards
and Technology

e Intelligent Synthesis Environment USE) concept being developed by NASA and the University of
Virginia.

. Figure 15 shows the five major components of ISE: human-centered computing, infrastructure for
distributed collaboration, rapid synthesis and simulation tools, life-cycle integration and validation,
and cultural change in the creative process.

Human-Centered 3

Figure 15

Potential Role of Intelligent Agents in ISE

Extensive use of intelligent agents will be made in ISE. Specifically, the following uses of intelligent
agents in each of the five components can be identified:

In the human-centered computing component, intelligent agents are used to overcome the
limitations of the current user-interface approaches, e.g., verbots (virtual humans), can enable
natural language understanding as well as adaptive1reconfigurable interfaces.
In the infrastructure for distributed collaboration component, intelligent agents:

Simplify the different tasks associated with distributed computing (e.g., communication and
network managers can act as global resource managers).
Organize and automate the work flow for diverse teams.

cycles per second

Alpha waves

I - ONE SECOND - I Mu waves
neural interface

Optical isolation Amplifier

Digital-Signal Analog-to-digital
Processor Converter

biological interface

Figure 16

Potential Role of Intelligent Agents in ISE

a In the rapid synthesis and simulation tools component, intelligent agents act as modeling, analysis
and design advisors.
In the life cycle integration and validation component, intelligent agents:

Check data integrity, distribute and provide constraints
Query broad spectrum of databases
Improve database performance and support data security.

In the cultural change component, intelligent agents manage knowledge networks to support
collaborative distributed learning environments.

I - IUt x

.- af%lel M Z I c A D v i *

1 AJI F o l d q . f Confents qf 'Brcrar . &
I

SIMULATION ADVISOR

Simulation Type
Qualitative
Deterministic
Nondeterministic - probablistic - Fuzzy-based

-Anti-optimization
Accuracy/model selection

Quick Q Accurate *
i

Figure 17

Information Sources

Extensive resources are available on agent technology.
Books and monographs, including several published in 1998.
Overview and survey papers, online articles, News Webletter and bibliographies.
Workshop and conference proceedings.
Journals, research groups, societies and companies.
Internet repository. URL address: http://www.cs.umbc.edu/agents/

Wrbnl*c7*
%dw:rmon
UfiniL*QJ

intelligent
Software Agents

*awl.

Figure 18

The Role of Intelligent Agents in Advanced
lnformation Systems

Larry Kerschberg
Center for Information Systems Integration

and Evolution
George Mason University

Fairfax, VA

Page intentionally left blank

The Role of Intelligent Agents in Advanced
Information Systems

Larry Kerschberg
Professor of Infonnation and Software Engineering

Director, Center for Information Systems Integration and Evolution
George Mason University
Fairfax, VA 22020-4444

kersch@gmu.edu
Phone: 703-993- 1661
Fax: 703-993-1638

http://cise.krl.gmu.edu/-kerschl

This research has been sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and a NASA "Flat-Sat" grant from Goddard
Space Flight Center.

The Role of Intelligent Agents in
Advanced lnformation Systems

%m ,-a\-* - < *?<2

UVAlNASA Workshop on Intelligent Agents
and Their Potential for Future Design and

Synthesis Environments

L any Kerschberg

~ir&tor, Center for Information Svstems Intearation and Evolution
http:/lcise.krl.gmu.edu/
Depaitment of information and Software Engineering
School of lnformation Technology and Engineering
George Mason University, Fairfax, VA 22030
Editor-in-Chief, Journal of lntelliaent Information Svstems

Presentation Outline

In this presentation we review the current ongoing research within GMU's
Center for Information Systems Integration and Evolution
(http://cise.k.l.gmu.edu). We define characteristics of Advanced Information
Systems, discuss a family of agents for such systems, and show how GMU's
Domain Modeling tools and techniques can be used to define a "Product Line
Architecture" for configuring NASA Missions.

These concepts can be used to define Advanced Engineering Environments
such as those envisioned for NASA's new initiative for Intelligent Design and
Synthesis Environments.

Presentation Outline
--b@&

I Relevant Research at GMUfs Center for Information
Systems Integration and Evolution

I Motivation for Advanced Information Systems
I Multi-layered Information Architecture
I Agents, Agent Architecture, Knowledge Rovers, and Active

View Agents
I Domain Modeling for "Product-Line Architecture" Reuse
1 GMU Agent-Based Approach to "Flat-Sat Concept" for

NASA's Integrated Mission Development Center (IMDC)
I Conclusions

CISE Relevant Research

GMU's Center for Information Systems Integration and Evolution (CISE) has been
involved in a number of research and development projects that influence the ideas
presented in this talk. These include: 1) Domain Modeling for Families of Systems
(joint work with Dr. Hassan Gomaa, and sponsored by Mr. Walt Truszkowski of
NASA Goddard, 2) DARPA's Rogram on the Intelligent Integration of Information
which motivated our work into federated and mediated data, information and
software architectures, 3) The GMU Independent Architecture Study for EOSDIS in
which we proposed a federated approach to ECS, and which is now being
implemented by NASA, and 4) DARPAYs Advanced Logistics Program in which we
formulate a "Knowledge Rover" architecture consisting of a family of configurable
software agents to support an enterprise information architecture.

ClSE Relevant Research
*3*ykTz&z r&.?

I NASA Goddard - Domain Modeling of Families of
Systems
I Payload Operations Control Centers; Factory Automation
I Software Process Model Generation

I DARPA - Interngent Integrat/bn of Information
I Federated Mediated Information Architecture

I NASA Goddard - EOSDIS Independent Architecture
Study
I Federated Client-Server Architecture; Current NASA Federation

Partner

I DARPA - Knowledge Rovers
I A family of agents for logistics support

Key Features for Advanced Information Systems

Advanced Information Systems must be active and evolutionary. We feel that
intelligent software agents can provide the services needed for this class of
systems.

These systems will be distributed and federated so as to share data and
knowledge among the participants. Issues of data quality, timeliness,
completeness and applicability of the data will all have to be dealt with.

The major contribution of agents, we feel, will be at the "middleware" layer so
that users can be assisted in finding data, integrating it, and using it for
decision-making. Here we propose the notion of Curator Agent (or several of
them) to constantly review the information in a repository as to its quality,
pedigree, context, and other attributes so that users can assess whether it is
appropriate to their tasks and requirements.

If Advanced Information Systems are to evolve, they must be able to adapt to
changing data requirements, workflow patterns, constraints and quality-of-
service requirements.

The agent-based approach provides an appropriate framework for building such
information systems.

Key Features for

@L%W

I Federated hformafion sysfems where by local sites
retain ownership and authori!y over data and
knowledge, a nd the associated curation responsibilifies
so as to ensure data quality

I Middleware services to locate, broker, retrieve, and
integrate information from multiple sources.

I Evolutionaty systems that reason, learn and adapt to
changing data, workflow, constraints, and quality-of-
service requirements.

I Agent-basedsystems provide appropriate framework for
advanced information systems.

Layered Information Architecture

The layered information architecture incorporates the three information layers
consisting of: 1) the Information Interface Layer, the Information Management
Layer, and 3) the Information Gathering Layer.

The Active Information Services are those that have been developed by GMU
(see references at the end of this presentation).

The GMU research group has developed a federated service architecture that
provides Federation Interface Managers (FIMs) as active wrappers for
information sources, an intelligent thesaurus, temporal mediation services,
active views, and harmonization and inconsistency management services .

Data mining and knowledge discovery techniques are applicable to the study of
data quality, user usage patterns, automatic classification, schema evolution,
and system evolution.

Layered information Architecture

Data and Information Architecture

The data and information architecture incorporates three information layers
consisting of:

1) Information interface layer where users access the system, formulate queries,
collaborate in problem-solving activities, initiate pull scenarios and receive
infomation from push scenarios. Users have access to their local databases and
work through local views. We assume that collaboration mechanisms and tools
exist at this layer.

2) Information management layer where objects, mediated active views, and
information in an Information Repository are integrated, managed, replicated,
and updated. This layer mediates between the information interface layer and
the information gathering layer, allowing users to perceive an integrated
information space, when in reality, data resides in multiple heterogeneous
databases and information sources. A mediated view of data is provided at this
layer and user views are materialized from the mediated view.

3) Information gathering layer where data from diverse, heterogeneous inter-
networked information sources are accessed. Special rover agents are used to
perform the mediated access to local as well as internet resources.

Data and Information Architecture

Information Communicdion
Interface
Layer

Information
Management
Layer

Layer

Knowledge Rover Architecture

This slide depicts a "pull scenario" in which a "decision-maker" works
cooperatively with an "information worker" to pose a query to the User Agent. The
User Agent consults with the Executive Agent to schedule the query. The Executive
in turn coordinates with the other agents (Mediators and Brokers, Active View
Agent, Internet Rovers and Field Agents).

Note that the Real-Time Agent works continuously to monitor for events and
conditions of interest, while the Information Curator Agent manages the ongoing
process of information integration, for the information that will be stored in the
Information Repository.

In addition to Pull Scenarios, we have Push Scenarios where data is being provided
by the heterogeneous data sources, by field agents and by Internet rovers. The real-
time agent monitors important events and provides such information to Active View
Agents which may update mediated data views or inform humans of such events.
The data feeds also are processed by the information curator agent.

Knowledge Rover Archit

Knowledge Rover Family

The next few slides provide a definition of the services provided by the various
agents in the Knowledge Rover family.

Knowledge Rover Family

I Executive Agent- is a coordinator for a group of agents. It is
informed of significant events. A significant event can lead to the
activation of new agents. For example, if the system is notified of a
request, then the executive agent would coordinate with other
agents in implementing the scenario.

I User Agent- acts on behalf of a user, and is responsible for
assisting users in: 1) browsing catalogs and information holdings
such as the information repository, 2) the intelligent formulation of
queries, and 3) the planning of tasks within a mission-specific
scenario such as modifying the design of a spacecraft's power
supply.

Knowledge Rover Family

The next few slides provide a definition of the services provided by the various
agents in the Knowledge Rover family.

Knowledge Rover Family

I Red-time Agent- is mission-specific, defined and configured to
process incoming data, and update the appropriate database or
notify the appropriate users. They monitor the external
environment, and signal relevant agents when an event is detected.

I Broker Agent- provides intelligent dictionary, yellow pages,
object location and brokerage services.

I Mediation Agents- are configured to assist in the integration of
information from multiple data and information sources, having
diverse data formats, different meanings, differing time units, and
providing differing levels of information quality.

Knowledge Rover Family

The next few slides provide a definition of the services provided by the various
agents in the Knowledge Rover family.

Knowledge Rover Family
".C%Y*%~&

I Active View Agents - are created to monitor for relevant
changes and complex condifins in mu/tiple daiabases, and to
initiate actions that will update and synchronize objects specified
in the local and mediated views.
I This agent would be especially helpful to designers collaborating on a

design in which changes have to be communicated and acted upon in
a timely fashion.

I Infomation Curators- are responsible for the quality of
information in the Information Repository.
I They assist in evolving the data and knowledge basesassodated with

enterprise information resources.
I They work with knowledge rovers to incorporate newly discovered

resources into the information repositories.

Knowledge Rover Family

The next few slides provide a definition of the services provided by the various
agents in the Knowledge Rover family.

Knowledge Rover Family

I Internet Rovers- are instructed to carry out specific tasks on
behalf of the executive.
I The knowledge rover dispatches field agents to specific sites to get the

relevant information.
I The rovers are also responsible for Internet resource discovery.

I FieIdAgents- are specialized rovers that have expertise in a
certain domain, for example, pharmaceuticals, and knowledge about
domain-specific information holdings at one or more sites.
I A field agent could be tasked to monitor all aspects of a single item, say

an 'antibiotic' produced by several manufacturers and distributed by
several vendors.

Active View Agent

Active View Agents (AVA) - are created to support user views specified over
multiple, autonomous and heterogeneous data sources. In many cases, users do
not have to be notified of all event occurrences; rather, users and their
associated active views are notified whenever critical events and object states
are signaled. The active view agent is initially specified as a view materialized
from multiple data sources. In addition, integrity constraints, called staleness
conditions, are specified, and the AVA then transforms and distributes the
constraints to local data sources. The AVAs and Real Time Agents cooperate in
assessing when the significant events arise or staleness conditions are violated.
The views are then materialized and appropriate triggers are invoked and pre-
specified actions are taken.

Active View Agent
" -~$g<w

I Intelligent view and cache management
I Materialized views + staleness conditions,
I Refresh the cache only with important changes,
I Reduces pull scenarios that poll database periodically, and
I Mediates between data push versus user data pull needs

I Provides acfive monitoring of significant events and
conditions.

I Automatically generates Internet rovers and field agents
with associated rules, triggers, event conditions and
object subscriptions.

I Discussed in doctoral dissertation of Samuel Varas.

GMU "Flat-Sat'' Architecture

GMU (Gomaa and Kerschberg) is working with NASA Goddard's IMDC (Integrated
Mission Development Center) to develop the "Hat-Sat" concept of configuring a
mission from hardware, software and simulated components. The metaphor is that
the components are laid out on a table and an agent-based configuration tool would
assist in the configuration of the mission.

Our approach is to formulate domain models for the major subsystems involved in a
mission, and to have a Mission Agent coordinate with Subsystem Agents to arrive at
a solution to the configuration of a mission.

GMU LLFlat=Satyy Architecture

I Mission Agent
I Interacts with user to get characteristics of new mission

I Mission parameters
I Mission features

I Decompose problem into major subsystems
I Ground Station Software

Ground Station Agent
I flight Software

Fligt Somare Agent
I Spacecraft Simulator

Spacecraft Simulator Agent
I Mission Experiments

&periment Agents

GMU Domain Models

We have constructed a domain model for ground station software and are working to
construct other domain models such as flight simulation software.

GMU Domain Models

I Ground Station Software
I Reusable Ground Station Domain Model

I Currently based on TPOCC Domain Model
I Developed by GMU for NASA Goddard (Walt Truszkowski, Code

500)

I Ground Station Agent
I Receives Ground Station 'features" from Mission Agent
I Tailors Reusable Ground Station Domain Model

I Configures mission-specific ground station specification
I Includes components needed to satisfy features (options) chosen
I Communicates any constraint violations to Mission Agent.

Conclusions

I Agents-based architectures promote active advanced information
systems.

I Knowledge rover family of cooperating agents provides active semces
supporting the intelligent enterprise's information architecture.
I Agents such as Active View, Real-Time, Curators, and Rovers are

middle-ware agen& that mediate user requests against multiple
heterogeneous information sources.

I These agents may also be used to monitor relevant datafknowledge
for active data management, constraint management, data mining,
knowledge discovery and evolution.

I Agents and reusable "product line" architectures provide a framework
for future design and synthesis environments.

Selected References

1. Gomaa, H., Kerschberg, L. et al., "A Knowledge-Based Software Environment for
Reusable Software Requirements and Architectures," Journal of Automated
Software Engineering, Vol. 3, Nos. 314, 1996, pp. 285-307.

2. Kerschberg, L., "Knowledge Rovers: Cooperative Intelligent Agent Support for
Enterprise Information Architectures," in Lecture Notes in Computer Science,
Peter Kandzia and Matthias KZusch (eds.), Springer-Verlag, Heidelberg, Vol.
1202, 1997, pp. 79-100.

3. Kerschberg, L., "The Role of Intelligent Software Agents in Advanced
Information Systems," in Advances in Databases, Carol Small, Paul Douglas,
Roger Johnson, Peter King and Nigel Martin (eds.), Springer-Verlag, London,
Vol. 1271, 1997, pp. 1-22.

4. Kerschberg, L., Gomaa, H., MenascC, D. A. and Yoon, J. P., "Data and
Information Architectures for Large-Scale Distributed Data Intensive Information
Systems," in Proc. of the Eighth IEEE International Conference on Scientific and
Statistical Database Management, Stockholm, Sweden, 1996.

5. MenascC, D. A., Gomaa, H. and Kerschberg, L., "A Performance-Oriented Design
Methodology for Large-Scale Distributed Data Intensive Information Systems,"
First IEEE International Conference on Engineering of Complex Computer
Systems, Florida (Outstanding Paper Award), 1995.

6. Seligman, L. and Kerschberg, L., "A Mediator for Approximate Consistency:
Supporting 'Good Enough' Materialized Views," Journal of Intelligent
Information Systems, Vol. 8, No. 3, 1997, pp. 203-225.

"Conscious" Software Agents

Stanley Franklin
The Institute for Intelligent Systems

University of Memphis
Memphis, TN

Page intentionally left blank

Conscious Software Agents

Stan Franklin
Conscious Software Research Group (CSRG)

The Institute for Intelligent Systems (11s)
University of Memphis, Memphis, TN

The Conscious Software Research Group currently includes Stan Franklin, Art
Graesser, Sri Satish Ambati, Myles Bogner, Derek Harter, Arpad Kelemen,
Irina Makkaveeva, Lee McCauley, Aregahegn Negatu, Fergus Nolan, Uma
Rarnamurthy and Zhaohua Zhang.

The major mission of the Institute for Intelligent Systems (US) is to explore
intelligent systems in humans, animals, computers, and abstract information
technologies. It is widely recognized that there are substantial limitations with
the conventional systems that have attempted to provide solutions to problems
in computer science, telecommunications, business, management and science.
Most of the conventional systems are static, linear, brittle, inflexible, slow,
andlor not adaptive to changes in the world. Scientists, engineers and scholars
throughout the world have therefore been developing intelligent systems that
are considerably more powerful. They have recognized that some of the most
intelligent systems already exist in biology and the human mind. Therefore, the
intelligent systems of tomorrow will be hybrids of the intelligence in machines,
biology and human cognition.

"Conscious" Software Agents

Stan Franklin
and the

Conscious Software Research Group

Institute for Intelligent Systems
The University of Memphis

Dr. Stanley Franklin gives permission for NASA to publish his presentation in' the Workshop Proceedings.

Definition of An Autonomous Agent

Note that neither "autonomous" nor "agent" is being defined, but rather the
technical term "autonomous agent."

This definition comes from the paper:

"Is it An Agent, or Just a Program?: A Taxonomy for Autonomous Agents,"
Stan Franklin and Art Graesser, Proceedings of the Third International
Workshop on Agent Theories, Architectures and Languages, in Intelligent
Agents 111, Springer-Verlag, 1997, pp. 21-35.

It can be found on the web at:

In humans, the agent's agenda derives from evolved in-drives, in software
agents, from drives or goals built in by the designer.

The last requirement can be rephrased to say that the agent must be
structurally coupled to its environment in the sense of Maturana and Varela.

An autonomous agent
is a system

I situated within and
a part of an environment I I
that senses that environment
and acts on it,

over time, I
1 in pursuit of its own agenda I I

so as to effect what it senses
in the future.

2

Examples of Autonomous Agenti

One way of clarifying the boundaries of this definition is by looking at
extreme cases. Humans and some animals are at the high end of being an
agent, with multiple, conflicting drives, multiple senses, multiple possible
actions, and complex, sophisticated control structures. At the low end, with
one or two senses, a single action, and an absurdly simple control structure we
find a thermostat.

Software agents are to be distinguished from artificial life agents. The latter
"live" in artificial computational environments created just for them, while the
former "live" in real computational environments such as file systems,
databases or networks.

NASA Workshop

Examples

Humans

Most other animals

Some autonomous robots

Many software agents

Artificial life agents

Stan Franklin
3

A Cognitive Agent

This notion comes from, "Autonomous Agents as Embodied AI," Stan
Franklin, Cybernetics and Systems, Vol. 28, No. 6, 1997, pp. 499-520 (special
issue on Epistomological Issues in Embedded AI). A general architecture for a
cognitive agent is outlined and discussed. The paper is also available on the
web at: http://www.msci.memphis.edu/-franklin/AAEI.html

NASA Workshop

What is a cognitive agent?

Most of:

Multiple senses--fusion
Attention
Multiple drives

* Conceptualization
Memory-beliefs
Learning

* Emotions-attitudes, moods
Action selection-intention
Multiple coordinated actions

Stan Franklin
4

Conscious Software Agents

Global workspace theory is, as a good psychology theory should be, relatively
abstract, with a high level architecture and its functionality specified. A
conscious software agent must flesh out the theory with lower level
architecture and mechanisms.

Hypotheses about human consciousness and cognition are produced by
assuming that humans do it like the agent does. Thus, every design decision
becomes an hypothesis.

NASA Workshop

"Conscious" Software Arrent

A cognitive agent that implements
Baars' global workspace theory
of consciousness

Flesh out the theory with detailed
architecture and mechanisms

Produce hypotheses about human
consciousness and cognition

Bernard J..Baars,

m g e University Press, 1988
e Theorv of Consciousness.

Bernard J. Baars,

Oxford University Press, 1997

-.
Stan franklinl

5

Global Workspace Theory

For a current, quite readable account of the theory see the second book listed
on the previous slide. For a much more scholarly approach that specifies the
empirical evidence on which the theory is based, see the first book listed on
that slide.

The single most important contribution of global workspace theory is the idea
of broadcasting the contents of consciousness in order to recruit relevant
processors to help deal with whatever is new or problematic in the current
situation. Anythmg else can be dealt with subconsciousnessly.

Of course capacity must be limited. Large messages cannot be easily
understood.

The same argument shows why consciousness is serial. Messages arriving in
parallel are not likely to be understood.

NASA Workshop

Global W O ~ ~ S D ~ C ~ Theory

The nervous system
a distributed parallel system with
many specialized processors

Global workspace
contains a coalition of processors

* Broadcasts globally
to all other processors

Recruit other processors
needed for any degree of novelty

Limited capacity

Serial by nature

Stan Franklin
6

Contexts

Thinking of contexts as coalitions of processors is one of the major
contributions of global workspace theory.

Unconscious contexts shape
conscious experience

Contexts--coalitions of

Perceptual contexts
Conceptual contexts
Goal contexts
Cultural contexts

Contexts tnclude
unconscious expectations
unconscious intentions

Contexts at Work

This figure was taken from Baars' 1988 book.

I hereby give permission for Stan Franklin's republication from my 1988
book, A Cognitive Theory of Consciousness, for which I now own copyright.

Bernard Baars, The Wright Institute, Berkeley, CA

More to Global Workspace Theory

Global workspace theory is sufficiently broad as to serve as a general theory
of cognition. It even deals with the issue of the self.

NASA Workshop

More to Global Workspace Theory

Learning

Emotions

Metacognition

Voluntary action

And much more

Stan Franldin
9

Conscious Mattie

Conscious Mattie (CMattie) is our first implementation of global workspace
theory, our first conscious software agent. She will "live" in a UMX system,
carrying out her tasks autonomously, and corresponding in natural language
with seminar organizers and participants via email.

Conscious Mattie

A conscious software agent that

actively gathers information
from humans

understands their email messages

composes announcements
of next week's seminars

mails them each week

to an email list
that she keeps updated

learns new concepts and behaviors

all without the supervision
of a human.

Modules and Mechanisms

CMattie7s various modules are, for the most part, implemented with
mechanisms taken from the "new AI." Readable introductions to almost all of
them can be found in Stan Franklin's Artzficial Minds (MIT Press, 1995).

NASA Workshop

Modules and Mechanisms

Perception--Copycat Architecture-Hofstadter

Action Selection-Behavior Net-4aes

Associative Memory-Sparse Distributed
Mamory-Kane~a

Episodic Memory-Case-based Memory

Emotions-Pandemonium Theory-Jackson

Metacognition--Fuzzy Classifier Systems
--Holland, Zadeh

Learning-Copycat Arch, Case-based Reasoning

Stan Franklin
11

CMattie's Architecture

Though modular by design, CMattie's architecture is highly interconnected.

The diagram below is both incomplete and out of date. Metacognition and
learning are missing, as is episodic memory.

I I Conscious Mattie's Architecture l I

Levels of Abstraction

CMattie's architecture is conveniently categorized into high and low level
pieces. The high level modules include all those needed to make her a
cognitive agent. At the low level are the codelets that actually do all the work.
She's a multi-agent system.

Levels of Abstraction

- behaviors
- message type nodes
- emotions
- metacognitive actions

Low level
- codelets

Natural Language Processing

CMattie corresponds with seminar organizers and participants via email in
natural language. This is possible because of her quite narrow domain. There
are only a few things people want to talk to her about. The key to
understanding a message is to ferret out its message type, of which there are
only about a dozen. This allows natural language understanding via surface
features.

See "Natural Language Sensing for Autonomous Agents," Zhaohua Zhang,
Brent Olde, Stan Franklin Art Graesser and Yun Wan, INTERNATIONAL
IEEE JOINT SYMPOSIA on INTELLIGENCE and SYSTEMS, 1998.

NASA Workshop

Messaae T V D ~ S

initiate seminar

conclude seminar - speaker-topic

change day andlor time

change place

omit this week

add or change email
address

delete email address

Stan Franklin
14

Slipnet

CMattie's slipnet contains the knowledge needed for understanding incoming
messages. Here is a tiny portion of it. Codelets might identify one of the many
forms of Tuesday, activate the Tuesday node which spreads activity to the
day-of-the-week node, which in turn helps activate the message types that are
expected to contain a day of the week.

Behavior Net

CMattie selects her next behavior (goal context in global workspace theory)
by means of an expanded version of Maes' behavior net. Activation is spread
in two directions, one originating with an explicitly represented drive, and the
other from the environment. In this case, environmental information comes
through perception whose output is to the focus. A behavior is chosen to be
active if all it preconditions are satisfied, if its activation is above threshold,
and if its activation is the highest such.

A Behavior Stream

tivation from drive

Codelets

These small pieces of code do almost all of CMattie's work. They correspond
to Baars' processors, Minsky's agents, Jackson's demons, Omstein's small
minds, and to Hofstadter's codelets, from whence comes our name for them.

Small pieces of code
Each performs a simple, specialized task
Acts as a demon,
always watching for a chance to act
Most Subsewe some high level entity, e.g.
- behavior
- slipnet node
- metacognitive action

Primitive codelets work on their own, e.g.
- watching for incoming mail
- checking for time and place conflicts

Codelets do all the work
CMattie is a multi-agent system

CMattie Today

Several papers describe CMattie's architecture, mechanisms and functioning:

"Virtual Mattie-An Intelligent Clerical Agent" (Stan Franklin, Art Graesser,
Brent Olde, Hongjun Song, and Aregahegn Negatu), presented to the A M
Symposium on Embodied Cognition and Action, Cambridge MA, November
1996.

"Learning Concepts in Software Agents," Uma Ramamurthy, Stan Franklin
and Aregahegn Negatu, Fifth International Conference of The Society for
Adaptive Behavior 98, Zurich, 1998.

"Metacognition in Software Agents Using Classifier Systems," Zhaohua
Zhang, Stan Franklin and Dipankar Dasgupta, Fifteenth National Conference
on Artificial Intelligence, Madison, Wisconsin, 1998.

Several more papers are in draft f o m and will appear.

NASA Workshop

CMattie Today

Currently a conceptual model

Design maybe 90% complete

Coding maybe 50% complete - 1Wk to 200k lines of Java code

Earlier version running

Aim for a running implementation
by January 1,1999

Stan Franldin
18

Proof of Concept Project

If conscious software is to prove itself as a technology, it must do so in a more
challenging domain than that of CMattie. I can imagine building a system
using classical A1 techniques that would perform CMattie's tasks. For a proof
of concept project for conscious software, we need one that no one would
think to implement that way, in fact, one that no one would think to
implement in software at all.

NASA Workshop

Proof of Conce~t Proiect

For conscious software--a task with:

A challenging domain

Currently done only by humans

With a substantial payoff

Stan Franldin
19

IDA

IDA promises to be a proof of concept project. She will assign sailors to new
billets at the end of their current tour. Two-hundred and eighty humans, called
detailers by the Navy, and no software systems, currently do this job. The
Navy has previously supported software projects aimed at assisting detailers
but none aimed at replacing them.

IDA: An lntelliaent Distribution Aaent

IDA is to do the work of an enlisted detailer
Dialogue with members via email

Read personnel data

Check requisition lists

Understand Navy policies
Choose options to offer members

Write orders

Advantages

IDA shows sufficient promise that the Navy is currently funding her
development and enthusiastically cooperating with it.

NASA Workshop

Advantaaes of IDA

Unifonn application of policy

Strict adherence to policy

Interacts with existing systems

Fewer detailers needed (save some
of @Om I yr)

Efficient use of moving costs (save some
of WWml yr)

Stan Franklin
21

Page intentionally left blank

Decentralized Decision Making in gv
Concurrent Engineering

William P. Birmingham
University of Michigan

Ann Arbor, MI

Page intentionally left blank

Decentralized Decision Making in Concurrent Engineering

William P. Birmingham
Joseph D' Ambrosio

AT Lab
Electrical Engineering and Computer Science Department

The University of Michigan, Ann Arbor

This talk describes a view of concurrent engineering (CE) as a
coordinated decision process [1,2]. This view assumes that engineering
design in general, and CE in particular, are fundamentally decentralized
processes. Thus, it is important to find ways to coordinate decision
making of all participants in any CE activity, while striking a balance
between concurrency and coherent action.

The main ideas of this talk are:
Concurrent engineering and design in general are naturally distributed
and decentralized activities.
Designers act as decision makers, choosing among design alternatives
and other activities, eventually resulting in their taking some action.
Preferences are central to this activity. Hierarchical preferences exist
and can be exploited to increase concurrency (i.e., decrease design
time) and design quality.
Design processes result from "preference-guided" actions taken by
designers.

Decentralized Decision Making in
Concurrent Engineering

William P. Birmingham
Joseph D'Ambrosio

AI Lab
Electrical Engineering and Computer Science Department

The University of Michigan, Ann Arbor

September 16-17,1998

Workshop on Intelligent Agents and Their Potential for
Future Design and Synthesis Environment

Introduction: Distributed CE

A CE process consists of a variety of agents (who may be human or
artificial), that contain local knowledge, preferences and data. The agents
each maintain a private view of the emerging design: this is a manifestation
of the distributed, decentralized nature of any design or CE process that
contains multiple agents. This view of the design -- the design space -- is
represented in our work by a (possibly large) set of attributes that describe
important features of the artifact being designed.

While the CE process is decentralized, there is still need for agents to
communicate. The CE network we propose is based on constraints and
attributes. Agents are linked via constraints, which are defined over
attributes. So, if an agent has an attributed named "weight" and there is a
constraint defined over weight, such as "max weight < 90 lbs," that agent will
communicate its weight attribute to all other agents via this constraint.

We view agents thus as decision makers: they try to choose assignments to
the set of attributes they maintain so as to maximize their preferences. Since
agents may have conflicting preferences, a coordination process is needed.
The assignment of attribute values is conditioned on both constraints and
preferences.

Introduction: Distributed CE

Distribution

production rates

Manufacturing
scheduling @ MRP

CE Process: Decentralized:
Apply knowledge ASAP to Design spaces
design problem Design knowledge
Composed of "agents" Coordination process

0 Decision makers Preferences
Utility maximizers Constraints

Introduction: Hierarchical CE

To control decision making in a large organization, designers (agents in our
CE model) are organized hierarchically. Some agents are responsible for
some decisions, and it is usually expected that the results of these decisions
are used by agents lower in the hierarchy. We have adopted a general model
of hierarchy, where the preferences of supervisor agents (those higher in
hierarchy) have higher priority over those lower in the hierarchy. We define:

p*: the function that defines priority
Simple version: p* is a lexicographical order on preference application
for agents.
Among peers (agents at the same level in the hierarchy), the preference
priority function cannot exist. So, these agents use group decision-
making processes (e.g., Nash or voting).

Introduction: Hierarchical CE

Agents in CE processes are related:
Hierarchical

Ordering of preferences with special function, p*
Peer-to-peer
Implies different decision-making processes

Introduction: Design Spaces

Important note about representation: As mentioned earlier, we assume a
distributed view of design:

* No single shared representation (e.g., no blackboard)
Communication among agents occurs only for those things that need to be
shared for decision malung. Communication is directed by constraints.

The action is in the interface: that is where agents need to coordinate their
decision making. This is because attributes (as reflected in either the
constraints or the preferences of individual agents) are shared, and thus are
possibly in contention.

Introduction: Design Spaces

Each designer has own view of design: design space

Total design space (all possible designs):
DS = DS, x ... x DS,

Introduction: Distributed CE Advantages

The view of CE, and design in general, as a distributed, decentralized
process has many advantages.

Introduction: Distributed CE Advantages

Better representation of problem
Recognizes distributed knowledge, control
Exploits inherent parallelism

Reduced design time

Robust against changes in organization
Minimal shared information (information hiding)
Participates come/go as needed without undue impact

Optimization
Achieve "optimal" results (where possible)
Key: shared preference structure, decision processes

Modeling: Decision Makers

As shown in the next few slides, designers can be modeled as decision
makers. They are primarily concerned with assigning values to attributes,
typically by exploring various design alternatives (e.g., exploring the design
space).

Designers solve an optimal-choice problem: choose the best assignment of
attribute values, which is the optimal (or satisfying) design. Sometimes this is
possible, often it is not: in this case, the agent acts on the best information it
has to choose the best design alternative possible. Designers effect the design
state, however, by performing some action. As described later, we are
ultimately concerned with the action selected by a designer to make a change
in the design state.

It is important to note that assigning values to attributes is an abstraction that
includes a wide variety of design activity, from selecting a component in a
catalog to doing creative exploration of the design space.

Modeling: Decision Makers

Designers: decision makers
Autonomous: make decision over
own design space (DS,)

Exploring the design space
Task: choose best design from DS,
via action(s)

Implies preferences & rational
decision making
May have to coordinate decision
making with other designers

Modeling: Decision Makers

In formulating the decision problem, we model design possibilities (generally,
the feasible alternatives) as "outcomes," over which the preference function is
defined. We further assume that designers -- agents -- have regular preferences
that can be represented as a utility function.

Modeling: Decision Makers

Outcomes: possible designs
Created/explored via "know how" or algorithms

Denoted by: ei
Influenced by: constraints, preference structure

Decision-theoretic model
Preferences have structure: utility function

Ui:DS,x ... xDS,+R
Can optimize w.r.t. Ui

"Globally" (under certain conditions)
Locally

Modeling: Decision Makers

The outcome of a decision is an action that an agent takes. Thus, we are
ultimately concerned with choosing the best action that results in the best
design. The range of actions an agent may take is very large: it can choose a
component, run an analysis tool, or simply wait to hear from other agents
about what decisions they made.

The notion ofdesigner-as-agent is summarized by the function given in the
slide. This function describes the information used by the agent in its decision
making and shows the result as a choice of action.

Modeling: Decision Makers

Actions: designer must take some action
Forces convergence to a solution

Examples:
Remove a design from design space
Choose a design from design space

Assume: designer has set of actions
Consistent with "design knowledge"
Denoted by: Act,

A = designer,(DS, Ui, 8, Act,)

Where A E A*

Modeling: Mediators

Decision making is not the only activity that occurs in a CE process. There are
any number of tools that are used to analyze designs, run simulations, and so
forth. The key difference between these tools and agents is that the tools make
no decisions about what actions to take, i.e., how to modify the design space.

Similarly to the designer model, we define tools as mediators. Note that
mediators are part of the network.

1 Modeling: Mediators
- -

Other activities in CE process: analyze, evaluate, ...
Mediator: similar to decision makers, but

Take no actions

DSj = mediatorj(DS, Oj)

Where DS, c DS

Modeling: CE Network

The slide below casts the CE organization shown earlier in this presentation
as a set of mediators, designer (agents), constraints and preferences.

I Modeling: CE Network

Distribution

MRP

- - - Utility Function

0 Software agent

0 Mediator

Non-software mediated attribete assignment

0 Human designer
II

Software Agents: Definition

As we are interested in providing as much computational support for the CE
process as possible, we now define designer agents and mediators as software
agents. (We do not prohibit humans as designer agents.)

A model of software agents that we use is based on the notion of rational
decision maker. The software agent can be viewed as having mental states,
which represents the information needed to make a decision.

We have intentionally made parallels between software agents described here
and the model of designers in previous slides: we are establishing that the
agent model is appropriate for CE tasks, and thus, software agents are a
natural outcome of this modeling perspective.

Software Agents: Definition

Autonomous rational decision maker
Utility maximizing
Optimal choice problem: A E Act,

"Best design" choice

Mental states
Preferences over designs, actions
Beliefs

Itself (Uil 8, Act)
Other agents & mediators

Interacts with "environmentff

Software Agent: Architecture

A schematic of the agent's decision making process is given in this slide: this
is a schematic representation of how the designer function could be
implemented. In addition, the schematic shows how the agent interfaces with
the network. The designer sends and receives messages (denoted by m,) that
correspond to attribute values and preference statements.

The utility function used in the schematic (U(..)) takes as input preference
functions of the designer agent's supervisor, and is required to obey any
restrictions imposed by p*. Thus, we can ensure that the behavior of the
designer agents is consistent, as they will value different outcomes (designs)
in consistent ways. For example, if a designer agent decides to eliminate
some portion of the design space, it can be sure that this decision is consistent
with the preferences of its supervisor.

Software Agent: Architecture

mi .. m,
(Adopted from D m [2])

Design Process: Overview

So far, we have shown how individual designer agents make decisions. Most
design processes, however, consist of more than a single decision, implying a
design process where decisions are made over time. Our model currently does
not support explicit reasoning over time, yet we are able to construct design
processes by using the principles outlined thus far. We show this in a simple
example in the upcoming slides.

In our design processes, we attempt to exploit concurrency by maximizing
concurrent decision making by agents. We also assume that the designer and
mediator agent organization are hierarchically arranged (although this is not
necessary).

Design Process: Overview

Context: Decentralized decision making
Agents and mediators operating concurrently
Need to ensure that agents are making "good" decisions
Need to achieve various scoped objectives

System
Subsystem
Individual agent (e.g., wants to do well)

Design Process: Overview

We have found that preferences are a powerful way to coordinate multiple
agents, leading to design processes. The basis for design processes using our
CE model is the following:

Establish the network by setting up constraints and distributing preference
structures.
Agents then send messages to determine feasible design spaces.
Once feasibility is established, the agents then attempt to find the best
design they can.

1 Design Process: Overview

* Coordination: ensure agents make good decisions
Constraints: limit feasible design space

* Preferences: make sure that common valuations are made

Every agent has same preference structure
Hierarchical/aartiallv shared references

Design Process: Example

The next two slides present an example of a design process, albeit on a
very simple problem. The design objective is to select two components
that are compatible, as expressed by the constraints, with the best
possible utility (from the possible choices). For this simple example, we
assume that the utility functions are the same for both agents.

An interesting point in this example is that we have defined utility
functions over various design states. So those design states that are
"consistent" (each constraint has at least one solution) are preferred to
"decomposable" states (where all remaining parts are guaranteed to be
in at least one feasible solution). Through these very general statements
about design states, rather than specific design steps, we can induce an
effective design process.

The design process, then, is the following:
1. Make the constraint network consistent.
2. Make the network decomposable.
3. Pick a solution.

Design Process: Example

Task: constraint problem w/utility maximizing
Design organization:

Two agents: Battery, Starter
Actions: select a component, eliminate a component

Mediator: Power-&lance

Design process:
Reach consistency, then decomposability

U(Consistency (DS)) > U(Decomposable(DS)) >
(U(-Deanposable(DS)) or U(-.Consistency(DS))

Choose solution

Design Process: Decision Making

The steps used to solve the problem are shown below. The initial components
for each designer are listed in the top two tables. Components are removed in
a search for a solution. Note that "belief' means the agent, based on its
knowledge and communication with other agents, believes the listed
proposition to be true.

Here is what happens in each step:
1. Each designer agent concurrently removes parts that are infeasible. The

agent makes a determination by sending its attribute value assignments
to the constraint, which report feasibility statements.

2. Each designer agent concurrently removes parts that are non-
decomposable. If there is a tie, the agent prefers to throw away
components with lower utility. The agent makes a determination by
sending its attribute value assignments to the constraint, which report
feasibility statements.

3. Each designer agent concurrently chooses its highest utility part and
returns it as an element of the solution to the design problem.

It is important to note that this design process is heuristic, based on
attempting to find a decomposable network and preferring to discard lower
utility components. It is possible that backtracking will be needed for some
design problems.

Design Process: Decision Making

Part Peak Power Cost Utility

B l I 1 0 20 25

3 Decom

Summary

We summarize this talk by recapitulating the major points:
Concurrent engineering and design in general are naturally distributed and
decentralized activities.
Designers act as decision makers, choosing among design alternatives and
other activities, eventually resulting in their taking some action.
Preferences are central to this activity, and hierarchical preferences exist
and can be exploited to increase concurrency (i.e., decrease design time)
and design quality.
Design processes result from "preference-guided" actions taken by
designers.

Additional points are given in the slide below.

I Summary

CE Design Processes:
Decentralized decision makers (designers)

Design spaces and actions
Coordinating decision making necessary

"Designing" Agents and Mediators:
Rational, autonomous decision makers
Fits CE process "naturally"

Benefits
Potentially faster design processes
Scalable

0 Uniform framework for human and software agents

References

1. DIAmbrosio, J., Darr, T. P. and Birmingham, W. P., "Hierarchical
Concurrent Engineering in a Multiagent Framework," Concurrent
Engineering: Research and Applications,, Vol. 4, No. 1, May 1996, pp.

2. D'Ambrosio, J., Darr, T. P. and Birmingham, W. P., "A Constraint
Satisfaction Approach for Multi-Attribute Design Problems," ASME
DTM, Sept., 1997.

3. Darr, T. P., "A Constraint-Satisfaction Problem Computational Model for
Distributed Part Selection," Ph.D. Dissertation, EECS Department, The
University of Michigan, 1997.

MultiAgent Systems, WWW, and Networked ,--
Scientific Computing 34 -6 zk

d

*. .
#?=? 2 <\ :;>
4 .r

Anupam Joshi
Department of Computer Science and Electrical Engineering 3 5$t23/b +2$.,'*

University of Maryland Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250

John R. Rice
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

and

Elias N. Houstis
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

MuRiAgent Systems, WWW,
and Networked Scientific

Anupam Joshi, John R. Rice, Elas N. Houstis

NASA Workdmpon l~~fcffig~lt Agentsand Thtk Po$&
J;.F.bao&signdSpz&esis E n h n i s

Srpdentbrr 1617,1998.

The Multidisciplinary Problem Solving Environments Idea

Enabling Technologies for Building MPSEs

Background for Building MPSEs in Scientific Computing

An Agent-Based MPSE Architecture

& . e n & - an MPSE for Solving Composite PDE Models

A PSE is a computer system that provides all computational
facilities needed to solve a ?afge?c/ass of problems.
Facilities include solution methods, selection among thean, p r s
sentation tools, progpmmhg-in-the.-large, tools for hardware
selection and for parallel and distributed computing (if needed).

The diagram illustrates a heat flow problem on a system with many materials
and boundarylinterface conditions. The overall system is quite complex, but
can be viewed as a set of interacting entities.

An automobile engine. Its behaviour can be viewed as emerging from the
interaction of multiple simple(r) parts, which provides a mechanism to use
distributed agent based simulation.

Many problems from the physical world are very

* No universal sobers for multiple-domain PDE problems can

Building a PDE solver for a complex problem is very
expensive, time consuming, and even unrealistic

Users cannot wait

A complex physical phenomenon consists of a collection of

Each part obeys a single physical law locally
Different parts work together by adjusting interface
conditions with neighbors
The real world evolves in this way without a "global"

Networks of cooperating PDE solvers can i m i i e
this physical situation

* Definition: An MPSE is a framework and a software kernel
for combining PSEs for tailored, multidisciplinary

* Another definition: An MPSE is a software system solving
a problem, viewed by the user as a complex, composite
one, consisting of a number of smaller, distinct
subproblems, each of which is solved by a relatively
independent software bearing the features of a PSE.
The subproblems should be viewed by the user as distinct.
The subproblems should be related but independent, not
simply different stages of the solution of a single problem.

The PSEs solving the subproblems interact with each other
(through the MPSE kernel) and the interaction is required to
solve most of the subproblems.
There is an object ("global solution" for the user) obtained
as a result of the work and the interaction of the individual
PSEs. The user perceives it as the ultimate goal of this
MPSE and it cannot be achieved by any subset of the PSE

The MPSE kernel provides a (global) user interface which
does not depend on the subproblems and the PSEs

To be able to build software for solving complex,
multidisciplinary (heterogeneous), real-life problems for
reasonable time and cost which uses all available variety of
computational and communication resources.

To provide the users with cooperative environment in which
they interact and solve (sub)problems through their specific
domain of expertise.

To make possible the reuse and the evolution of the
available high-quality applications (PSEs)

Technologies for building the MPSE kernels

Methods for interaction between the PSEs that are general enough
and also allow for dialog containing specific data pertinent to the

Methods for "upgrading" the existing PSEs in order to be able to

Specific mediation schemes between the subprobla.
Methods for locating the available resources (hardware, software,

User interface issues

Abstracting the underlying hardware and communication smc-

Abstracting the multidisciplinary aspect of the problem solving
Allowing the problem definition and the presentation of the solu-
tion in user's terms
Allowing control of the solution process, if desired
Facilitating the users' cooperation and collaboration

The Multidisciplinary Problem Solving Environments Idea

Enabling Technologies for Building MPSEs

Background for Building MPSEs in Scientific Computing

An Agent-Based MPSE Architecture

&M.genb - an MPSE for Solving Composite PDE Models

* Distributed Computing and Problem Solving
Essential for building MPSEs

Parallel Computing

Mobile Computing

Virtual Computing
Computing on WWW

Object-Oriented Technology

Autonomy - operating without the direct intervention of
humans or others and having some control over the agent's
own actions and internal state
Social ability - interacting with other agents via agent-
communication language
Reactivity - perceiving the environment and responding to

Pro-activeness - exhibiting a goal-directed behavior by
taking the initiative

A step beyond the object-oriented paradigm
Encapsulation - accessing an agent only through sending
and receiving messages
Visual representation of the agents
Modularity and flexibility - addlremove agents, move them

Extensive use of concurrency
AgentArihh'mmre = methodology for building agents +
communication system for agents + rules for placing and
executing agents
Decomposing large tasks into self-contained modules

None known in use in Scientific Computing and Simulation

Most deal with information systems and services; locating
and searching for specific information; exchanging data

Emphasize the A1 aspects of the agent technology - beliefs,
thrust, intentions; also security, authentication

Interesting example: M. Girard's Ph.D. thesis on building
multiagent systems

Reason for developing - need of communication between
agents (and systems) designed and controlled
independently from each other

Communicates attitudes - querying, stating, believing, achieving,
subscribing, offering
Supports communication betweeo asynchronous and autonomous
software objects (agents)
The messages are perfornatives
No universal meaning of the messages - different interpretation in
different systems
Knowledge-base type queries, answers, and statements

Sample KQML (Knowledge Query and Manipulation Language) messages
exchanged between a client and a server. The example illustrates a client
querying a server about a person's grades.

(ask-one :sender Jerry
:content (homework-grade 2 ?grade)
:receiver grade-server
:reply-with homework2
:language JerryProlog
:ontology CS-181)

(tell :sender grade-server
:content (homework-grade 2 F)

:in-reply-to homework2
:language JqProlog

* The Multidisciplinary Problem Solving Environments Idea

Enabling Technologies for Building MPSEs

An Agent-Based MPSE Architecture

* &&@en& - an MPSE for Solving Composite PDE Models

Available Modules:
Simple shapes with one PDE or ODE system
Ordinary boundary conditions
Reasonably simple forms for the DEs

Needed Modules and Code
Interfaces between DE systems
More general approximation schemes along the interfaces

Must always write code for special, nonstandard situations

Equations describing the interface conditions between two components. The
specific example provided shows a case where both the values and the
derivatives are continuous across the interface.

Example: Continuous Values and Derivatives

This diagram illustrates the "local" nature of each solution, which proceeds
with interface values from neighboring solvers from some prior iteration.

The diagram illustrates in an abstract manner the computation process that
takes place in interface relaxation.

Illustration of a mediation process, where the values and derivatives are
matched across the interface on alternate iterations.

Alternate valuelderivative matching

even iteration

LA amos q sanp iLrepmoq snowd asn

sambs 1-1 Il~ddv

suo!l!puoa axg.ialu! pau!ulaiaplang

sanp iLrepunoq Aau loj nogquo3 a3eprnl aq aAIos pm
suognIos %upoq@pu %qn aqvaiu; aq pmw aiqocfiaiq

A natural idea: Build the MPSE as a multi-agent system

Have the MPSE kernel provide all necessary functions of
interagent communication medium

Each PSE working on a subproblem behaves as an
independent agent, called so/veragent
In order to achieve this behavior, a piece of software calledagent
wrapper is provided, which takes care of the interaction with the
other agents and the other aspects of emulating agent behavior.
The wrapper encapsulates the original PSE and is responsible for
running it and for the necessary interpretation of the results.

Any interaction (mediation) between any two solver agents
during the solution process goes through medktof a g e n ~
The mediators process the data exchange between the solvers in
order to enforce some global or local solution strategy, recognize
(locally) that some goal has been achieved, and provide informa-
tion to the global controller

Advantages of this approach
Handles well the independence and the interaction of the PSEs

An illustration of the functional architecture of the SciAgent system. We can
see multiple solvers, mediators and recommenders interacting.

The Multidisciplinary Problem Solving Environments Idea

Enabling Technologies for Building MPSEs

Background for Building MPSEs in Scientific Computing

An Agent-Based MPSE Architecture

m* ScMgeenis - an MPSE for Solving Composite PDE Models

The user's view of the SciAgents system. The domain expert visualizes the
system as a collection of solvers and mediators and specifies the interaction
between them.

Corn.&-ng Agents: Solvers & Mediators

The network to solve the example problem

The user's view of the SciAgents architecture. S h e interacts with both the
global interface, as well as the interfaces (if any) of the solvers and mediators.
The components are connected via a software bus like mechanism.

There may be many users using a single network of agents.
A user might build only part of the network
Only the instances of the agents compute, the user builds a

network by instantiating them
The agents communicate sending and receiving messages
using the software bus as a global message handler
The agents are aware of their environment. If a necessary
computing agent has not been instantiated, the
computation will be suspended (locally)
The agents use their interfaces to communicate with the

The abstraction of SciAgents as seen by a designer. Every physical
component has a solver and some mediators defining its interface conditions
with other components. There is also a message handler, which acts as a stub
for the software bus functionality.

* The mediators govern the computations locally; the global
solution 'emerges" from the local computations as a result
of local independent decision making and communication
All agents activekseek and exchange data through KQML

Interagent coordination
Initial data exchange
Exchanging iteration data
Local suspension and resumption of the computations
Global control and steering of the process

Working, reasonably extensively tested version
More than 25 problems with many variations each

Muttithreaded agent implementations (wrapper, mediator,
and global controller) for Solaris environments
Communication and computation threads in every agent

KQML-based communication; used available KQML
libraries; name service by an HTTP-server

JELLPACK is the only available solver repository

Limited number of mediator templates
Adding a few currently

In search of the 'right"too1 and design of the global
interface - currently input from a script

Very minimal changes and additions to //ELLPACK - less
than 1000 lines of code

Running on a cluster of workstations - RPC-based remote
instantiation

Asynchronous global control and steering of the
computations; "stop-and-go" at any time
Demonstrated locality of the decisions, automatic local
stopping and restarting the computations depending on the
local convergence
Demonstrated basic agent characteristics - encapsulation,
pro-activeness, goal orientation, complex interactive

Easily extendable with new solvers and mediator schemes
Demonstrated applicability of the interface relaxation

An example problem, illustrating heat dissipation from a heat source which is
centered at (0,O). It is surrounded by two layers of materials of different
geometries and conductive properties, which are in turn exposed to the
atmosphere. The boundary conditions are specified. Each piece shows its
interface components and the mediatorsw) and solvers(S).

Specifies the system of differential equations arising from the example in the
previous slide. We also describe the relaxation technique used by the
mediators.

L, = Txx + Tyy + 0.4T

L, = T, + Tyy - 10(Tx + T,,) + 0.3T

Relaxation formula:

An example input file to the SciAgents system. We specify the number of
solvers and mediators. For each mediator, we specify the interface
components it connects across various solvers. Finally, we specify the various
machines on which these solvers and mediators will run.

The solution to the system. Note that the solution obeys the continuity
conditions imposed by the simulation.

Some Standards Activity in Agent-Based Learning
and Virtual Consultation for Manufacturing

Manuel Aparicio IV
IBM Knowledge Management and

Intelligent Agent Services
Research Triangle Park, NC

Page intentionally left blank

Some Standards Activity in Agent-Based Learning
and Virtual Consultation for Manufacturing

Manuel Aparicio IV
Chief Scientist, IBM Knowledge Management and

Intelligent Agent Services, Research Triangle Park, NC

This presentation represents several interests in intelligent agents.

First, it will introduce one of IBM's primary commercial initiatives in intelligent
agents. The market is still emerging and is a hard market, but agent technology is
providing real value. IBM provides such technology through our Knowledge
Management and Intelligent Agent Services.

Second, we are providing the agent technology within the SMART consortium,
focused on advanced manufacturing, particularly for lower MES and the make-side of
supply-chains.

Third, we are active in several international, multi-organizational agent organizations.
FIPA is becoming the de facto and de jur standards body for agents, while the Agent
Society is a trade organization and excellent Web site for more information.

Thanks to Yen-Min and Jim for our joint services and SMART work. In the latter,
Munindar has been an enormous source of ideas and research pre-work of what we
have developed, particularly about supply-chain commitments. Also, Dan has helped
us understand human decision making and how agents should help.

Manufacturing

Dr. Manuel Aparicio IV
Chief Scientist, IBM Knowledge Management and intelligent Agent Service:
Agent Lead, Solutions for MES-Adaptable Reusable Technology (SMART)
North American Director, Foundation for Intelligent Physical Agents
Director, Agent Society

With Yen-Mih Huang and James Fleming jlBMj, Munindzr Singh (NCIU) , Dan Arliey (MIT Sioani

Agenda

Following these interests, the presentation agenda will introduce each. Agent-based
learning will be a primary theme, not only because of our work, but because all the other
presentations so far have mentioned agent learning, which I would like to emphasize.

First, our services work this year has concentrated on MemoryAgent, which includes the
core learning technology as well as a collaborative model for organizational knowledge
management. At a deeper technical level, I will also introduce a list of requirements for
agent-based learning.

In the SMART consortium, we have applied MemoryAgent to semiotic sequences and
activity-resource assignment, and are now looking at collaborative planning.

For interoperation of MemoryAgent with other agents, we are working with other
members of FIPA on human-interaction, user personalization, and learning services.

I would then like to summarize the theme of agent-based learning running through this
workshop and make some final comments toward the workshop's objectives.

IBM MemoryAgent
Learning and collaboration model

x: Agent-based learning requirements
SMART Agents

Semiotic Sequencing
Activity-Resource Assignment

* Collaborative planning and replanning
FIPA Standards

a: Learning specification
NASA Workshop

Summary learning themes
* Objectives

MemoryAgent

First, MemoryAgent.

IBM MemoryAgent

Agent Characteristics

Franklin and Graesser established a very well known characterization of intelligent
agents. We use this list in IBM as part of our education efforts and in SMART to track
our progress along the different dimensions of agency.

While they listed learning as an optional characteristic, we noticed this starting to
become the strongest customer requirement at the end of last year. Agent learning is
commonly understood as a requirement by the common person, "I want an intelligent
assistant that watches me and learns how to help me." Of course, a more rigorous
definition is needed to distinguish learning from simple customization and adjustments
on the one hand and from pure magic on the other. The point now is simply to focus on
learning as a key attribute of increasing importance in agents.

Agent Characteristics

Goal-Driven
= Reactive

environment and responds
Always Running t Works even when you're not

there

,% Interacts with other agents

Changes behavior based on
previous experience

I: Moves from machine to
Believable machine

% Represented by visible entity

Source: 'Is i t a n agent, or just a program?: A Taxonomy for Autonomous Agents",
Stan Franklin and Art Graesser, 1996

Intelligent Agent Scope

Another way to introduce and understand agents is to consider their power along three
dimensions.

I will not be discussing mobile agents such as IBM Aglets (agent applets), although all
three dimensions can and have been combined in the more sophisticated applications.

The other two dimensions are the focus of this presentation. Intelligence moves from
simple facts and profiles to rule-based inferencing for example, but learning should be
considered as an ultimate addition. Learning does not totally replace other forms of
intelligence but is often hybridized with them.

The interaction dimension will be secondary to learning in this presentation, but the
collaborative model of agents sharing experience with each other will be included.
This dimension also implies agent interaction with users -- a most critical aspect, which
will also be addressed.

Intell igent Agent Scope

Interacting ‘

Standalone -

Intelligence
Agent + Degree of reasoning and learned
Interaction behavior exhibited by agent

Preference: I tell it what I want
Learning: I f learns what I want

ns Agent lnteraction
Degree of autonomy and authority
vested in agent

Mobile Agents interact with other agents

Mobility
Degree of agent movement

Knowledge Management

We see agent-based learning as simplified into these two aspects, especially for the
paradigm of what is being called knowledge management.

First, expertise is what experts do. Knowledge management is largely focused on text
analysis and indexing for document-based information and best practices. However,
we add that much of knowledge is task-based and recordable by the agent while the
user works.

Second, once this behavioral-based expertise is captured, the organization can share it
among all its experts to support each other. It can also be used to teach novices in the
task or to provide this expertise to other more general populations.

Knowledge Management
with Agent-based Learning

Knowledge Capture - Build your organization's
knowledge base, on an individual basis, automatically
while people do their regular jobs. Store personal
memories and individual task knowledge.

Virtual Consultant - Share this captured knowledge.
Consult the expertise of someone else without needing an
appointment to see them, using the knowledge base built
by Knowledge Capture. Organize corporate memories and
distributed organizational knowledge.

Clinical Agent Application

For example, we tend to use clinical decision support because it highlights a number
of key issues and everybody understands this domain to some degree.

Imagine a physician presented with a case and in ordering a prescription online (such
as intelligent wireless devices). To provide the individual with some value
proposition, especially to encourage lead physicians to use the system, the agent
provides an intelligent default. Based on past practice patterns, the agent suggests a
drug and shows its confidence in the suggestion, as well as intelligent defaults on the
parameters of the order.

If the physician asks for a consultation, then the probable practice patterns of others
are gathered and displayed. This is not an expert system of abstracted, engineered
knowledge presented by an impersonal machine. This is a community of experts
helping each other, mediated by learning agents.

This same approach is applicable to financial advising, and vendor selection as other
examples. The latter is of value to manufacturing supply-chains with a community of
buyers sharing reputation and quality of service predictions.

Clinical Agent Application

Knowledge Capture
Watch user
Learn patterns

- Intelligent defaults

Virtual Consultation
Select Consultants
Show Advice
Explain reasons

Collaborative Architecture

The collaborative architecture is seen to require the services of other standard agent
types-

For instance, the expertise of each agent must be registered with a directory
facilitator so that other agents can search for it. This registration can be as simple as
keyword (drug name, vendor name, action type, etc.) indexing, but the competence of
the agent in regard to the subject can also be registered. This notion of competence
will be mentioned later but represents the degree of confidence to which the agent and
its user are able to answer a question about the subject.

Ontology services are obviously required to make such a search less brittle, by using
taxonomy, synonym, or more complex relations to understand the search query.

Note how this is different than collaborative filter, which is usually based on
clustering techniques. The search for expertise is based on the task at hand, not the
similarity of end-users. The task at hand is about real work and behaviors, not merely
preferences, although intelligent default within the individual agents does provide for
such task-based preference.

Practice QoS Practice
patterns feedback patterns "who knows what"

BuyerAgent

This architecture is demonstrated as an open distributed system of MemoryAgent and
directories. Given a source of purchase requisitions, for instance, an expert buyer can
select from a list of vendors, auction sites, or look at internal inventory. As this and
other buyers make such selections under different conditions in the requisition
(material, volume, due date, quality of service needs), the agents learn and share such
knowledge across the organization, including new users still learning the job.

Note that if quality of service is also available, the agent can learn not just the expert's
actions, but the probable consequences. For instance, under certain order attributes
such as large volumes, a vendor might often make partial delivery with a back order.

Generally, no action is good or bad in an absolute sense. No expert knows everything.
The agents learn under what conditions different actions are best indicated and which
other agentlusers to consult.

Agent-Based Learning

In order to perform such learning scenarios, agent-based learning is defined to include
special, difficult attributes.

For instance, this learning is assumed to happen in "real-time," when the users make
their selections and options. Learning should not be a batch-mode, off-line process.
Unlike most learning techniques more generally defined, the agents should simply see
and learn what they see and manage themselves. They cannot have black-art
parameters and predefinition of the problem space, for example.

These requirements are best met by case-based or memory-based techniques. While
neural network and case-based techniques have become very successful in the last
several years, these requirements drive toward more advanced, second-generation
techniques. It is these newer and next methods that will provide such agent-based
value.

.& lncrernental - lmmediafe value, grows with each case

.< Parameter-free - No black-arts, "knob tweaking"
Positive-instance only - Might nof get negative feedback

*. Explainable - Boolean rules or fuzzy membership funcfions
x. Malleable - Adjusfs fo new attribufes as they are seen
x: Bounded - Not exponential (Learning is NP-complete)

Controllable generalizing - Measurable disfance/risk depending on context
Self-pruning - Learn to ignore what is irrelevant

s Self-competent - Know self-maturity and what is not known
Solution:
, Associative-memory and case-based fechniques

Neural Networks are 1 of 9 fundamental emerging technologies (Red Herriti
:k lBM MemoryAgent does all of the above

IBM MemoryAgent

Further description of these agent-based learning requirements, along with
demonstrations and APIs are available in an evaluation package, which is also the basis
for FIPA's learning specification. An FIPA compliant, openly available agent service
will soon be available for qualified experimentation with other agents.

Request from http:llwww.networking.ibm.com/iag/iaghome.html
. General Documentation

+ lntro and application scenarios
DecisionAgent Shell
x Set of demos for medical, financial: and purchasing
a Documentation to build new demo
MemoryAgent Core
.+ 80K Java LEARNING.JAR (times out)
h Java Docs (with example code)
Also look at FlPA PersonalizationlLearning standard
.+ http:iidrogo.cselt.it/fipa (www.fipa.org will be soon)
r MemoryAgent leads User Personalization, Learning Service spec
* Now building IIOP-available (FIPA spec) MernoryAgent Service

An NIIIP Project Under NIST ATP

More toward NASA's interests in the workshop, our use of MemoryAgent within the
SMART manufacturing consortium will now be reviewed.

A Nl l lP Project under NIST ATP

Manufacturing by Exception

SMART agents provide flexibility to manufacturing through a manufacturing-by-
exception philosophy, espoused by AMR in its reports. The idea of agent-based
filtering is clearly applicable; an agent can be delegated to watch for engineering
changes, production quality, or any other changes or transients, notifying its user
when values are out of bounds or some other exception-condition occurs.

We have taken this idea further with agent learning by including simulation-based
specification. Agility is developed through simulation of contingencies or being
actually faced with different conditions and learning how to best respond, depending
on conditions. Explicit definition of all such processes is impractical; the
specification of even one process is a secondary task to the process itself.

Therefore, by watching the processes in simulation or real action, agent-based
learning can become the specification by suggesting the best action and processes.
Through generalization such as in semiotic sequence learning, novel but appropriate
processes can be generated even if never explicitly trained. This is a radical form of
agility, but the truth is that a form-freedom balance is most advisable as will be
described.

Management by delegat ion
x Subordinate should take initiative and alert manager as needed
x Now we have software agents as subordinates
-, Filters in AMR report, manufacturing data is too voluminous
x "Tell me only when something is wrong"
Modern requirements for agi l i ty go deeper, however

Simulation-based specification in manufacturing
-. Military simulations as "what-if" contingency planning
y, Management "planning" through scenario preparedness
Y. "Ask me only when you don't know"
Radical agil i ty means that everything i s a n except ion
-. Move to case-based, memory-based contingencies

Simulate, try, and run cycles
x The total learned experience is the specification

Shutdown and E-Stop

To demonstrate the radical agility of learning agents, we built a LineAgent that listened
for CORBA events, from plant control to individual machines and could also query
work-in-progress. This agent could watch and learn shutdown sequences from a
manufacturing engineer (from a simulator or actual line events), so that it could suggest
the sequence to forepersons and operators whenever it received a shutdown event from
plant control. Moreover, because the representation was semiotic (similarity-based),
LineAgent could generate and suggest novel but appropriate sequences, based on
similarity of state to known past states. For instance, LineAgent could receive an E-stop
event from one of the machines, and even though no emergency stop procedure was
explicitly defined, the goal of efficiently and safely stopping the line was common to
other known procedures.

Even though such simulation-based or programming-by-example "procedures" are
deterministic and replicable and in many ways more than equivalent to hand-coded
procedures, the social acceptance issues of learning and generating such critical
operation sequences also needs to be addressed. In fact, in subsequent work we focused
on less emotional tasks and worked more on trust and control.

SMART LineAgent:

Semiotic sequence, defined as learned state-based transitions

No Problem!

Activity-Resource Assignment

Working with the domain experts in SMART to find a valuable but less radical
application, we applied MemoryAgent to activity-resource assignment, more
specifically, to the enact process routings from process plans. SMART technologies
also include workflow systems, which were used to send process operations as JFLOW
(OMG workflow standard) activities to a WorkflowAgent. Assuming that one such
agent was responsible for an agile manufacturing line, these activity requests would be
received by the agent and displayed to the foreperson or manufacturing engineer along
with a list of possible routings (machines, other lineslagents, or humanlmanualshops
listed as JFLOW participants). The user would make the appropriate assignment and
the agent would learn this. As same or similar activity descriptions arrived, the agent
would begin to suggest such routings as a form of intelligent default. To the degree
that the user became comfortable with the agent's performance in suggesting, helshe
could adjust a level-of-autonomy control, a confidence threshold above which the
agent would autoassign. The user could also specify a time delay before such action,
allowing the user to see and change if needed. In short, what the agent did not know to
autoassign was thrown an "exception" to the user, who would show the assignment,
making the agent smarter to later assignments, etc.

Activity Manager

Believability Dimension

This issue of trust of control is critical to acceptance of agents in manufacturing.
Aside from the technical issues which seem rather solvable, the human and social
dimensions can inhibit deployment. The introduction of learning agents makes trust
and control issues even more critical.

Our approach has been to develop level-of-autonomy controls in the human-computer
interface itself and to more fully elaborate the underlying model of learning.
"Confidence" is really a more complex variable, which we have split into relevance
and competence components. Relevance is the degree of association or membership
of a given case to a group of already observed cases. Purely, it represents a distance of
the case in some memory space (such as in a sparse distributed memory). Competence
represents the statistical power and significance of all the observations. A ndive agent
might report high relevance between similar cases (which is true), but should also
know and report its level and clarity of experience. These dimensions can be
variously used by different applications, depending on the application and its decision
criteria. Actual performance of predictions is obviously the final measure, but we did
not include it in this particular application (ndive learning by observation).

SMART Workf lo wAgen t :

Level of autonomy and mixed initiative
Trust and control are the issues for agent acceptanc~

.- Especially with learning agents
Underlying elaboration in model

.* Relevance
Competence

;r. f erformance
Auto-assignment control panel

Confidence threshold
Delay time until action

Next Directions

Starting with WorkflowAgent as described but including process planning as well
(somewhat of a return to sequence learning), a form of memory-based planning and
replanning can be developed. Of particular interest to other speakers in this workshop
would be the inclusion of multi-user planning and replanning. Problem decomposition,
hierarchical organization, and peer negotiation would be required additions.

Other standards must also mature for such work to most benefit in a continued
relationship to workflow. For one, a standard process definition would be required.
The runtime interoperability standards of WfMC and JFLOW, for instance, are
adequate for activity-resource assignment (the routing), but more interoperability
between workflow and agents would require standard definition of workflow plans
themselves. For another, better standards for organizational structure is desirable.
Even for activity-resource assignment using workflow runtime interfaces, better
definitions of organizational structure and roles would be helpful.

SMART Workf lo wAgents:

Adaptive AgentlWorkflow Integration
Deeper integration with workflow definition as plan
Agents can modify I advise users how to modify
JFLOW standard for workflow definition in progress

Agent-assisted Process Planning
:. Next step up from just process routing of fixed plan - Change in product needs change in process plan

Agents learn and advise plan-change techniques
Advanced group-learning ideas from workshop

Form-Freedom Balance

While agent-based learning provides adaptability along with its representation of
specifications, hybridization with other representations is less radical. A balance of
well-known forms such as explicit procedure definitions combined with the freedom of
learning is indicated.

For instance, a workflow or process plan can represent well-known or "hardened"
processes. Learning agents can watch and represent real procedures as found in end-
user behaviors. As these actual procedures are observed and repeated, they can be
promoted to explicit procedures.

However, all procedures are still faced with too many exception conditions and the
plan must often change as real-world conditions change. Specifying all such exception
conditions and contingent procedures is impractical and leads to spagetti-looking
process definitions, not the clear-cut standard procedure a workflow or process plan is
intended to provide. Such exception handling should be left to agent learning and its
ability to store and generate procedures based on similarity to past experience. This
form and freedom can work together when standard procedure needs to change but can
be re-specified by recalling past procedures, again based on similarity measures.

SMART Workflo wAgents:
Form-freedom Balance

Form: well-worn, workflow process plan

Freedom: generation of re-planning based on memory of past plans

FIPA Standard

The Foundation for Intelligent Physical Agents provides a set of agent standards. A
learning service interface is among them. This learning interface is part of the Human
Interaction specification. Of course, learning is a much more general application
technology, but as presented here, agent-based learning is strongly associated with
human interaction. Our philosophy with MemoryAgent and its effect on this standard
are to focus on learning by observation of expert end-users.

International Agent Standards

FIPA Standard

Learning Specification

The FIPA specification for learning can be outlined as a set of actions. Memorize and
forget provide the core actions for storing or removing observations.

Choose and match provide the core actions for using a memory of such observations.
These actions reflect the two primary types of decisions that humans make; given a
situation, we can choose one or more options from a set of selections; given a particular
selection we can measure or match the attributes to each other, such as when setting a
good price on a selected product or predicting the quality of service from a selected
vendor. Scope is a more refined action, similar to choose.

Relevance and competence allow the client to ask for measures of similarity and
statistical confidence. Relevance provides a measure of "membership" for a new
observation to the set of prior observations. For instance, how closely does a new
operation belong to the operations typically routed to a specific machine. Competence
indicates the maturity of the agent and its clarity of observations to make such a
recommendation.

Sensitivity and association provide linear and nonlinear forms of explanation about the
recommendation, while consult provides a model of collaboration between learning
agents.

User Personalization Se
Learning Specification

Learning Theme

All of the previous speakers have mentioned learning, which I would like to list here as
a theme of this workshop. (Mike Huhn is next and last to speak so is not included here
but has contributed significant work on multi-agent learning systems as well.)

Some of the other speakers have provided very clear examples of agents that learn and
recommend from observation, which is very similar to what is presented in this talk. Of
most direct use in agent-based simulation, resource and parameter selection seems like
an ideal problem for such preference-watching agents. Of course, simulation and design
decisions are more than mere individual "preferences." This is a matter of organizational
expertise which should also be shared in a collaborative community of users and their
agents.

Similar to MemoryAgent's collaborative model presented in this talk, some of the other
speakers have mentioned reputation services, agent-based sharing of experience, and
facilitated search for agents that are most competent to perform a particular task (or
most competent to advise). For instance, recommender agents can register their
competence in a resource, making a facilitator into the hub of a system for asking other
agents about their choice experience - the reputation of the resource.

NASA Workshop:
Summary Learning Theme

7 Resource selection and design advisors (Noor)
+ Mixed-initiative and passive observation (Lieberman)

Reputation service of learned rules (Hendler)
* Societal communication of shared experiences (Finnin)

Associative memory and action selection (Franklin)
* Anytime within deadline, flex within constraint (Decker)

Registration of learning competence to facilitator (Cheyer)
Individual ownership, sociological curation (Kerschberg)
Recommender of resources from similar problems (Joshi)

% Learning to improve group level iteraction itself (Brown)
* Shared preferences in distributed decisions (Birmingham)

Workshop Objectives

The workshop objectives are to evaluate the market as well as the technical maturity.
For our experience, the market is still emerging and some aspects of agent-based
learning and collaboration still need research. However, the basic technologies and
collaboration models are commercially available. The only difficulty is in mapping the
raw technology to some particular applications, representations, and legacy systems.
As this commercialization quickly matures, however, the complexity and expertise in
learning and agents per se will tend to be encapsulated. For instance, a
Recommendation System shell can allow the client system to focus on the decision
attributes, what kinds of choices are possible, and effecting those choices, rather than
the technology itself.

For personalization agents, we are working to give the user a better variety of choices,
providing novelty, and giving both the user the best opportunity to learn about the
space and the agent to learn about the user (and space). In addition, agent-based
learning is generally understood as critical to ubitiquous computing, from personal
communicators to nano-satellites that learn to effectively coordinate with each other.
Otherwise, emotional intelligence has been virtually ignored in commercial learning
systems, but will later emerge as a critical dimension in situated agent systems.

Established fundamentals and emerging business
But still need mature commercializations

Blend of AI/IA with XML/Java developer relevance
Operational controls and encapsulations for ease and reuse

Future directions for learning
*. Anytime algorithm

- Calculate greater sensitivities first
Nano-devices and wireless transmission - New scaling for host size and bandwidth
"Where is creativity?" (novelty)

Create opportunity to learn for weak userlagent knowledge
Emotion is fundamental to intelligent decision making

Intelligent Agents for Design and Synthesis
Environments: My Summary

Peter Norvig
Computational Sciences Division

NASA Ames Research Center
Moffett Field, CA

Page intentionally left blank

Intelligent Agents for Design and Synthesis
Environments: My Summary

Peter Norvig
Chief, Computational Sciences Division

NASA Ames Research Center
Moffett Field, CA

This presentation gives a summary of intelligent agents for design synthesis
environments, from my own personal point of view, and from what I have seen
of the participants' presentations.

Intelligent Agents for
Design and Synthesis Environments:

My Summary

Peter Norvig
Chief, Computational Sciences Division

NASA Ames Research Center

Conclusions

We'll start with the conclusions, and work backwards to justify them. First, an
important assumption is that agents (whatever they are) are good for software
engineering. This is especially true for software that operates in an uncertain,
changing environment. The "real world" of physical artifacts is like that:
uncertain in what we can measure, changing in that things are always breaking
down, and we must interact with non-software entities.

The second point is that software engineering techniques can contribute to good
design. There may have been a time when we wanted to build simple artifacts
containing little or no software. But modern aircraft and spacecraft are
complex, and rely on a great deal of software. So better software engineering
leads to better designed artifacts, especially when we are designing a series of
related artifacts and can amortize the costs of software development.

The third point is that agents are especially useful for design tasks, above and
beyond their general usefulness for software engineering, and the usefulness of
software engineering to design.

Conclusions

Agents are good for Software Engineering
- Especially in uncertain, changing environment

Software Engineering is good for Design
- Especially when designs are repeated

Agents are good for Design
- When above caveats hold

Why Intelligent Agents?

To see why intelligent agents are important for software engineering, we need
to look at some history. Up through the 1970's, software was mostly built in
terms of monolithic applications. They were designed and built in terms of
inputloutput behavior. Like a mathematical function, if you provide them with a
certain input, they are supposed to respond with a certain output.

In the 1980's we see a movement towards object-oriented applications. There
are two main innovations. First is to concentrate more on objects rather than
procedures and their input/output behavior. An object contains both state
information (data) and behavior specification (a set of things the object can
do). The second innovation is to separate what the object can do from how it is
done. In the monolithic application, a procedure is simultaneously a
mathematical specification (what) and a particular implementation (how). In
the object-oriented approach, the message says what we want done, but that can
be accomplished by one of several possible methods, and we are always free to
add new methods. We increase modularity by separating what from how.

Why Intelligent Agents
for Software Engineering?

Monolithic App (Just do it)

Object-Oriented App (Separate whathow)

Why Intelligent Agents?

In the 1990's, we begin to see agent-oriented applications. Again there are two
innovations. First, certain objects are thought of as agents. That means that
they can initiate actions rather than just responding to messages. It often means
that the agents persist for long periods of time, and that they serve for the
benefit of some other person or software entity. Second, agents do not need to
know all the other agents. Rather than having to know who to send a message
to, they can broadcast the message to a broker, who relays it to an appropriate
receiving agent. We are always free to add or subtract agents. That means that
we increase modularity by separating what from who.

In the late 1990's, we see intelligent agents, which can reason about and
improve their performance. An intelligent agent has a set of base methods that
it can perform (like a regular agent), but it also has meta methods. You can ask
it what it can do, how well it can do it, what resources is it likely to need to do
it, etc. A set of agents, communicating along these meta-method channels, can
optimize its use of resources, finding the best subset of agents and the best
methods to accomplish a task. Regular agents (or regular object-oriented or
monolithic applications) cannot even be asked these questions, let alone
optimize a solution.

Why Intelligent Agents
for Software Engineering?

* Agent-Oriented App (Separate whatlwho)

Intelligent Agent (Add when, why, how well)

Methods
History
____*

Performance
BDI
etc.

Design Environments: The Challenge

The challenge we have is to come up with a good design environment (or
design process) that lets us build a family of related artifacts (such as a
sequence of spacecraft for a related set of missions). By good I mean that we
want to end up with an artifact that works better, is more reliable, is easier and
cheaper to build, and is faster to develop.

An important point is that we are amortizing the overhead of the design
process over the whole sequence of designs. Some types of bookkeeping that
would be wasteful overhead on a single design project end up being big time-
savers over a sequence of designs. Sometimes the design environment may not
seem to help on the first design, but it starts to show up when subsequent
designs draw on the lessons that were learned and documented the first time
around.

Design Environments:
The Challenge

Design and build a family of related artifacts

Amortize costs over the whole family
Improve quality of each design
- Better, faster, cheaper

Use of people and resources
Reuse of designs
Evaluation of designs, artifacts, and processes
Improvement of designs

Design Environments: The Problem

The real world is a messy, unpredictable place. Design is hard because we
must build an artifact based on a huge set of assumptions, and then unleash it
into the messy world where many of those assumptions may fail. Design is also
hard because there are always trade-offs between strength and weight, cost and
reliability, speed and carrying capacity, etc. The designer can use help in
weighing these trade-offs against one another.

Building a family of designs is harder, because we must remember all the
assumptions, and the reasons behind them. Suppose the second vehicle we
build only needs to carry half the weight of the first. What does that mean
about the required strength, type of materials, and size? What assumptions that
lead to the original design were dependent on carrying capacity? How do we
know we have the right answers, when some of the original team members are
no longer on the project? A design environment must provide a way for us to
record the rationale behind design decisions, and it should help us sort out the
ramifications of a change in requirements.

Design Environments:
The Problem

* Design is Hard
- Coerce precise, discrete artifact into a messy,

continuous, uncertain world
- Meet many conflicting constraints and

preferences

Family of Designs is Harder
- Solve particular problem while keeping in

mind possible related problems

A Solution: Better, Faster, Cheaper

Four ways to make the design process better are described here. First, we can
make the people on the team work better together. Collaboration software and
hardware (such as videocameras) can improve communication. Principles of
human-centered computing can make the interaction with machines more
productive. Software agents can free the team members from routine tasks.

Second, we can make it easier to reuse designs. Good software engineering
practices (including agent-oriented design) helps. Recording the rationale
behind design decisions is essential, and information retrieval (of documents,
simulation runs, recorded videoconferences, etc.) helps team members
understand the context of a decision.

Third, given a proposed design, we can provide tools that evaluate how well the
design meets the goals. We can generate code from specifications, run
simulations, and analyze the resulting data.

Fourth, we can search for new designs that incrementally improve on
previously proposed designs. Search techniques from A1 and OR can help here,
as can model-based reasoning techniques that suggest what components should
change.

A Solution:
Better, Faster, Cheaper

Use of People and Resources
- (Collaboration, Human-Centered, Agents)

* Reuse of Designs
- (Rationale Capture, Information Retrieval)

Evaluation of Designs, Artifacts and Processes
- (Simulation, Visualization, Data Analysis,

Automated Program Synthesis)

Improvement of Designs
- (Search, Model-Based Reasoning)

Related Work at Ames

Much of the work in information technology at Ames is directly applicable to
design and synthesis environments. It is mentioned here to give you an idea of
what kind of technology to expect today, before even doing any research and
development specifically for design and synthesis environments.

We can start with the Autonomous Systems group. Their intelligent agent,
planning, scheduling, and model-based reasoning technology can be part of an
intelligent artifact, as in their remote agent technology which is flying on DS-1,
or it can be used to analyze artifacts. The Intelligent Collaboration group helps
dispersed teams work together, and the Variational Design group applies
similar techniques to specific problems such as working with wind tunnel test
data. The Collective Intelligence project studies how to optimize a system of
agents by learning a good collection of utility functions. The Human-Centered
Computing group provides tools for designing systems that humans use. The
Data Understanding and Adaptive Systems groups analyze, optimize, and
categorize data of all kinds, and track changes in the data. The Intelligent
Mechanisms group uses photo-realistic virtual reality to drive tele-operated
robots. This work could be applied to other sorts of visualization problems.

Related Work at Ames

Autonomous Systems (Williams)
Intelligent Collaboration (Keller)

* Variational Design (Korsmeyer)
Collective Intelligence (Wolpert)
Human-Centered Computing (Clancy)
Data Understanding (Cheeseman)
Adaptive Systems (Colombano)
Intelligent Mechanisms (Sims)

lmproving Design with Agents,
0 r,

lmproving Agents by Design

David C. Brown
Al in Design Group

Worcester Polytechnic Institute
Worcester, MA

Page intentionally left blank

Improving Design with Agents,
or,

Improving Agents by Design

David C. Brown
A1 in Design Group

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

WPI
Improving Design with Agents,
or,
Improving Agents by Design

David C. Brown
A1 in Design Group

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

Dr. D.C. Brown hereby gives NASA permission to publish his paper, Improving Design with Agents, or, Improving
Agents by Design in the Workshop Proceedings.

Assumption

We start by assuming that NASA's future design and synthesis environment
will be built as a real multi-agent system. In what follows, we will first look at
the task that the environment will need to support, and then examine the
consequences of using agents for this environment.

Assumption

0 Assume that the design environment is built using agents,
i.e., situated, autonomous, flexible

0 Not just a distributed system.

Consider factors that affect agents.

Design Problem Requirements

Like all good designers, we examine the requirements for such an environment.
It is immediately clear that most of the design decisions will be critical, and that
the activity will be non-routine with creativity involved.

Design Problem Requirements

0 Use in space III* hazardous environment

0 High speed III* stresses, fast reacting

0 Human users III* safety, reliability

i.e., critical design decisions

0 New, very unusual and difficult problems
III* non-routine design,

creativity

Other Aspects

Other requirements on the synthesis environment, due to the designs to be
generated, will need to be handled using a distributed, concurrent and integrated
approach. Consequently the environment will be very complex.

Other Aspects

O Repairability, etc. *I* DFX

(life cycle issues)
13 Complexity Decomposition
rlg

Concurrent engineering,
teams,
distributed designers,
parallel activity,
integration

i.e., a very complex system.

Reliability

Highly reliable designs need to be generated. Design reuse and simulation are
the two software solutions.

Reliability

0 Highly reliable design needed

Usual methods:

0 Reuse known reliable designs
+ less able to do this here

0 Build and test
+ expensive and slow

0 Simulate
+ Virtual build and test
+ Virtual Reality
+ Simulation based design

First Design

On the dimension that goes from common^' to "uncommon," it is clear that
most of the design problems to be tackled using the environment will be quite
unusual, with requirements that have not been seen before. This makes both
design reuse and design process reuse difficult.

First Design

First Design
- new reqs.
- hard to reuse existing designs
- hard to reuse existing design processes

Redesign and Variational Design
- based on existing design
- based on existing type
- reuse easier

Routineness

Design situations vary during the design process depending on the knowledge
available and the experience of the designer(s). A Routine situation is
recognizable and both the methods and the knowledge can be immediately
retrieved for that situation. In a Non-Routine situation this is not the case. The
space of design situations is multi-dimensional, but here we just concentrate on
the abstractness of what needs to be decided, the Conceptual to Parametric
dimension. Moving in the non-routine conceptual direction requires the
designers to be provided with support. Routine parametric situations can be
automated.

Routineness

Design situations:

hem
w

rl b
c P

r~ZatomoLkKI
pww

Rwine

Creativity

If the need for creativity is perceived then it can act as a goal to the designer,
producing different behavior. As creativity is determined relative to a standard,
designers will attempt to produce non-standard designs or use non-standard
design processes. The unusual nature of the design requirements in this
synthesis environment will already be forcing the designers towards creativity.

Creativity

0 Creativity is determined by comparison with a standard.

0 The comparison applies to the:
+ Design process
+ The design product

@ The standard can be set by the past performance of the:
+ Individual (designer or design team)
+ Community

0 Creativity arises in situations where the designer is forced to
produce unusual designs or processes.

0 Creativity can act as a "goal," changing activity.

Decomposition

Another issue to consider is how the choice of agents might be made. There
are several ways to decompose a system into agents. In a complex system
several of these would be competing as candidates. There probably isn't any
single correct way.

Decomposition

Cl How to decompose into agents?
+ there are many pressures

0 by design process
+ tasks and subtasks
+ by reasoning type

selection, evaluation, estimation, etc.
0 by design product structure

+ systems and subsystems
+ components and subcomponents

0 by knowledge available
+ by discipline (e.g., kinematics)

O by convention/historical
+ organizational structure
+ legacy systems (e.g., CAD)

Types of Design

There are many categories of design that appear in the literature. As one
moves further away from Parmetric, fewer methods and software tools are
currently available. Conceptual design, much needed for unusual design tasks,
is the hardest to support.

Types of Design

0 Parametric
+ High automation,

many methods.
KBS, CSP, CAD, Optimization, etc.

13 Configuration
+ Medium automation,

possible.
KBS, constraint techniques, GAS

0 Conceptual
+ Low automation,

much harder at present
representation difficult
procedures less known

* rarely routine

ABS as Configuration

Agent-based systems can be seen as a configuration of agents, both in the static
sense with agents put together to build a system, but also in the dynamic sense,
with interacting agents forming configurations in response to the shared task
Large agents, which are quite common and may already exist as legacy
systems, have both advantages and disadvantages. Small agents remove many
of those disadvantages, but add communication overhead. They would need to
be custom built.

ABS as Configuration

CI An agent based system is a configuration
... viewed statically
... viewed dynamically, in response to use

0 The size of the components to be selected for a
configuration makes a difference.

CI Large agents
+ more functionality
+ more knowledge, goals, constraints
+ more assumptions made
+ more hidden preconditions

Ill*

+ less predictable
+ less understandable
+ less easy to model

0 Small agents
e.g., SiFAs: Single Function Agents

The Consequences

From what has already been presented, it appears that the environment will
need to be used for unusual, creative, conceptual, non-routine designs. This has
many unfortunate consequences for the design of a multi-agent version of the
environment.

The Consequences

The more first-time, 1-off, creative, conceptual, non-routine
the design is,

the less ...
... we can predict the design process.
... we can predict the result.
.. . we can predict the necessary agents of the MADS.
... we can predict an appropriate organization for the MADS.
... we can predict the necessary ingredients of the agents.
... we can predict the agent-agent interactions.
... existing software systems (including A1 in Design) can

help.

Adapt

If we build a multi-agent design system for NASA's design and synthesis
environment, we are not likely to get it "right7' the first time. In order to
compensate for this the system must at least act intelligently. A better response
is for it to adapt, and consequently, to compensate for its inadequacies.

i.e., if we build a Multi-Agent Design System we are not
likely to get it "right7' the first time!

I~I* It must at least act intelligently.

It ought to adapt.

The Cure?

The use of learning in multi-agent design systems is quite a new area. Learning
might play a part in both the support and automation roles of the environment.
There are rich opportunities for learning in MADS.

The Cure?
0 Learning

i.e., ML in MADS

Rest of the talk:
Support & Automation

Rich Opportunities:
Dimensions of ML in D
Learning needs models
Evaluation of ML in MADS

MADS Research Examples

Conclusions

Support

In a support situation most of the environment's intelligence will be added as it
gets used, as it will not be possible to anticipate everything a priori. There are
many possible things to learn, including learning about the user, the design
product, etc.

Support
Conceptual, non-routine, creative, synthesis

I* Support
D Intelligent Support - built in? no

- learned? yes
+ know the user

learn
+ know the design product

learn
+ know the design process

0 learn
+ know the architecture

learn
+ know the agents

learn
capabilities, limitations, assumptions, ...
preferences, knowledge, goals, plans, ...

+ know the interactions
learn

Automation

In an automation situation, much more of the intelligence can be built in from the
start.

Automation

Parametric, routine, normal, reuse
ill* Automation

0 Intelligent Automation - built in? yes
- learned? yes

4 same issues
can handle more of them.

4 more concern with efficiency, and more ability to
improve it.

An Agent's Models

In order to learn, agents need to have models. Updating these models
constitutes the learning.

An Agent's Model

Agents need models to learn:
0 Model of Agent(s)

e.g., own abilities;
beliefs of others.

0 Organizational Model
e.g., a hierarchy

0 Cooperation Model
e.g., delegation

0 Communication Model
e.g., who to send to

[Based on ideas of S. Labidi, 19971

Variations in MLinD

There are man variations on learning in design systems. The seven dimensions
developed by Grecu & Brown provide a large space of learning activities, and
suggest new opportunities.

Variations in MLinD
1. What can trigger learning?

e.g., expectation violations.
2. What elements support learning?

e.g., sequences of design decisions;
post-design feedback.

3. What might be learned?
e-g., design preferences.

4. Availability of knowledge for learning
e.g., via direct communication.

5. Methods of learning
e.g., case-based and analogical learning.

6. Local vs. global learning
e.g., learning between design team agents.

7. Consequences of learning
e.g., design improvement;

process improvement;
{organization improvement).

[Grecu & Brown 1998~1

ML in MADS Examples

Some of the research at the AI in Design Group at WPI is concerned with
learning in design. Next we will provide three examples.

ML in MADS Examples

1 Learning Multidisciplinary Design Methodologies
+ to improve integration

2 Adjusting an Agent's Design Preferences
+ from agent interactions

3 Learning Key Features
+ from expectation violations

0 Other MLin MA(D)S Work
+ Deng & Sycara 1997
+ Nagendra Prasad, Lesser & Lander 1997
+ plus other ML in MAS work

http://dis. cs. umass. edu/research/agents-learn. htrnl

Discipline Problems

This work uses an agent-based system to generate design traces that are turned
into design methodologies for multi-disciplinary designs. Agents are built by
cutting large blocks of discipline-based knowledge (e.g., D 1, below) into
smaller pieces. Each piece becomes an agent. The system is exercised with
many design problems, generating many traces. Traces are patterns of design
methods. These traces are clustered and generalized into methodologies that are
appropriate for many design problems. Hence, methodologies are learned from
system behavior.

Discipline Problems
0 Multidisciplinary design problems.
0 Knowledge: large discipline-based chunks.
0 Leads to less integrated design process.
0 Break chunks into smaller methods.
0 Encode as agents.
0 Experiment with resulting ABS.
CJ Traces ~l* learned Methodologies.

-m@+
-@gb

[Shakeri, Brown & Noori 19981

Design Preferences

This work uses a conflict between agents to trigger learning. The Selector sets
21 as the value of W, but the Critic provides a critique indicating that values
over 15 are poor. The Selector learns to avoid situations such as this. Learning
significantly improved the number of interaction that occurred due to conflict.

Design Preferences

A
Fritic

O w U 0 K W .

0 Learning is triggered by conflict
e.g., Selector-Critic; Selector-Selector

0 Use concept formation to learn responses of agents in
particular situations.

0 Depending on experiences, interactions reduced by 9%
- 55%

[Grecu & Brown 19961

Key Features

In this work, what triggers learning is expectation violations. The agent reasons
out what features might have contributed to the violation, and then uses some
learning experiments to determine the key features, Le., those that are most
predictive of the violation.

Key Features

0 Agents have expectations
e.g., values,

response time of an agent,
quality of agent's response, ...

0 Agent detects expectation violations
0 Knowledge used to produce list of features that might

have produced this violation.
0 Determine key feature(s) using inductive learning

experiments.
0 Incorporate learned relationship into knowledge.

[Grecu & Brown 1998a1

ML in MADS Evaluation

A complex multi-agent design system requires very careful and
comprehensive evaluation, as there are many possible effects that might alter
its performance.

ML in MADS Evaluation

0 What to consider when evaluating distributed learning in
design systems.

For example:
0 The response to objectives

e.g., low cost
0 Leaming processes shared by multiple objectives.
0 Interference of learning processes.
0 Cross-talk resulting from training on several classes of

design problems.

[Grecu & Brown 1998bl

Conclusions

The multi-agent implementation of the design and synthesis environment will
have faults built into it. It will need to learn in order to compensate for and
correct these problems. The area of learning in multi-agent design systems is an
important and exciting new challenge that will have significant payoffs.

Conclusions

0 The nature of the design problem affects the use of
agents for constructing an environment for the design of
future aerospace systems.

0 Any MADS built will be inefficient and ineffective
relative to the task.

0 It will need to compensate for these weaknesses by
learning.

0 ML in design research is flourishing.
0 ML in MAS research is flourishing.
0 ML in MADS research is newer but is an area in which

major opportunities exist for significant advances.

References

This is a very small selection of the references about agents, learning in
design, learning in multi-agent systems, and learning in multi-agent design
systems.

References

D. L. Grecu and D. C. Brown, "Learning by Single Function
Agents During Spring Design," Artificial Intelligence in
Design'96; J . S. Gero and F. Sudweeks (eds.) , Kluwer
Academic Publishers, 1996, pp. 409-428.

D. L. Grecu and D. C. Brown, "Guiding Agent Learning in
Design," Proc. KIC3: Third Workshop on Knowledge
Integrated CAD, Tokyo, Japan, 1998a.

D. L. Grecu and D. C. Brown, "Evaluating the Impact of
Distributed Learning in Real-World Design Problems,"
AID98 Workshop on Machine Learning in Design,
Lisbon, Portugal, 1998b (preprints).

References

References (Cont ' d.)

D. L. Grecu and D. C. Brown, "Dimensions of Machine
Learning in Design," AI EDAM, special issue on Machine
Learning in Design, A. H. B. Duffy, D. C. Brown and A.
K. Goel (eds.) , Cambridge University Press, 1998c, pp.
117-121.

S. Labidi, "Managing Multi-Expertise in Design of Effective
Cooperative Knowledge-Based Systems," Proc. IEEE
KDEXJ97, Knowledge and Data Engineering Exchange,
Newport Beach, CA, 1997.

M. V. Nagendra Prasad, V. R. Lesser and S. E. Lander,
"Learning Organizational Roles for Negotiated Search in
a Multi-Agent System," in special issue on Evolution and
Learning in Multi-Agent Systems, Znternational Journal
of Human-Computer Studies, 1997.

References

References (Cont ' d.)

C. Shakeri, D. C. Brown and M. N. Noon, "Discovering
Methodologies for Integrated Product Design," Proc.
Artipcial Intelligence and Manufacturing: Second Bi-
annual A1 & Mfg. Workshop, Albuquerque, NM, 1998.

D. Zeng and K. Sycara, "Benefits of Learning in
Negotiation," Proc. AAAZ-97.

Page intentionally left blank

Developing CORBA-Based Information Agents 2Cq"

Padmanabh Dabke
Lockheed Martin Missiles & Space

Palo Alto, CA

Page intentionally left blank

Developing CORBA-Based Information Agents

Padmanabh Dabke
Lockheed Martin Missiles & Space

Orgn HI-43, Bldg. 255
325 1 Hanover Street

Palo Alto, CA 94304-1 19 1
dabke @ict.atc.lmco.com

Developing CORBA-Based
Information Agents

Padmanabh Dabke
dabke8 ict.atc.lmco.com

The work described in this presentation was supported under the Defense
Advanced Project Agency (DARPA) contract MDA 972-95-D-0003

SBD Objective

The primary goal of the current phase of the Simulation Based Design(SBD) [I] program is to
create a software infrastructure for managing distributed collaborative product development
projects. The SBD infrastructure is not tied to any application domain, rather it provides
domain-independent enterprise integration middleware for achieving Integrated Product and
Process Development (IPPD). The infrastructure assists in capturing important product
characteristics as well as business processes within an enterprise. Once the product and process
related information is captured, SBD infrastructure facilitates effective management of an IPPD
environment by maintaining product coherency and automating enterprise processes.

Create a domain independent information infra-
structure for collaborative development of complex
engineering products.

Integration Approach

Traditional approaches to enterprise integration can be broadly classified into two types. In the
first approach, a set of software tools are linked together in an ad-hoc manner via a set of
scripts, hard-coded programs, etc. The second approach, called the "gateway" approach,
involves committing to a single product or an integrated family of products and using
"gateways" provided by the vendor to integrate other tools.

The first approach works well for static environments involving a few co-located teams of
people. The approach lacks the maintainability and reusability needed in more dynamic
environments. The second approach is both efficient and powerful within a single discipline
employing a narrow set of technologies; however, it is inadequate for more diverse multi-
disciplinary environments.

SBD adopts a "component-based" approach towards enterprise integration. In this approach the
legacy systems are encapsulated as "components" which are software objects with well-defined
interfaces for remote communication. SBD then provides a variety of "glueware" services for
integrating these components.

Other Approaches - Point solutions - Integrated tool suites

SBD Approach
-Wrap legacy systems to

convert them into
"Components" capable of
standardized remote
communication - Use SBD Glueware to
rapidly link enterprise
resources including
software tools and people

SBD Infrastructure Capabilities

SBD infrastructure provides three broad capabilities to support its component-based
integration approach. It provides tools that assist users in "wrapping" legacy systems to create
Common Object Request Broker Architecture (CORBA) [2] based components. Once built,
these components can be accessed in a uniform and integrated manner via SBD's cataloging
service. Finally, SBD middleware provides "glueware" services in the form of workflow
automation, event management, etc., that provide mechanisms for maintaining a coherent
product model, and automating business processes.

Tools to build plug-
compatible, distribution-
enabled components from
legacy systems
Uniform and integrated
access to components
Glueware for linking
enterprise components and
coordinating human

SBD Architecture

SBD's integration approach is implemented as a set of CORBA-based services collectively
known as the "Core Processing System" (CPS). The CPS consists of three layers, each plugged
into the CORBA backplane. The bottom layer consists of a collection of "Base Services" such
as Naming (which provides a global namespace for all SBD objects), security, persistence (e.g.
databases), and ontology (CORBA interface repository being an example of a simple ontology
server).

The middle layer in the architecture consists of collaboration services that facilitate location
and integration of CORBA-based components. Services in this layer can be further classified
into "Object Services" and "Linking Services." Object Services enable integrated and uniform
discovery of enterprise resources. Linking services assist enterprise management by automating
workflows, change-notifications, event management, etc. Finally, the top layer of the SBD
system consists of the user interfaces to the underlying system. Heavyweight user interfaces
can be built directly on the CORBA backplane. Alternatively, very thin Web-based interfaces
can be developed via a "Web Gateway" that bridges COMA and HTTP-based communication.

Agents in SBD

SBD's Information Agents are part of the middle layer of the CPS. Each agent in SBD has
four distinguishing characteristics. An agent is a "component" in the SBD environment and
therefore a CORBA object. Further, each agent implements a reasoning scheme that
automates a focused information management paradigm such as mediation and
dependency management. Each agent understands a paradigm-specific control language
that allows human users and other agents to effectively communicate with the agent.
Finally, the most important feature of SBD agents is that their vocabulary is dynamically
bound to the external CORBA objects registered with the CPS. This feature allows SBD
agents to use the external object space as a virtual working store (as opposed to
maintaining a huge database of objects internally). This feature allows SBD agents to have
a small footprint and yet quickly adapt to the application domain through external
application CORBA objects.

Part of SBD's collaboration

Provide a well-defined
information management

Agents are CORBA objects
Agent vocabulary is
dynamically bound to the
external CORBA model

Agent Architecture

Each SBD agent is composed of three components: an inference engine implementing the
Agent Coordination Model, a CORBA adapter, and a Dynamic Invocation Adapter (DIA). The
first two components are specific to the agent being implemented. The DIA is a reusable
component that is part of all SBD agents.

An SBD agent communicates with other agents and client user interfaces through the CORBA
adapter. An agent operates on enterprise CORBA objects through the DIA. DIA in turn relies
on CORBA Naming Service and Interface Repository to enable dynamic communication with
external CORBA objects.

Coordination CORBA

Designing Agent Interface

Communicating with an SBD agent typically requires a specification of the intent (whether it is
a query, assertion, task to be performed by the agent, etc.), content (query string, subscription,
etc.), and a context for the message (sender name, message ID, etc.). The CORBA interface for
each agent is designed by mapping these three elements in a standard manner. "Perforrnatives"
that capture the intent are mapped into methods with the same name (e.g., the Query Agent has
a method called "evaluate"). The content portion is passed as an argument and is expressed in
an agent-specific language. The contextual information is also passed as arguments of
appropriate data type.

Agent communication consists of:
-Intent - the type of action expected from the agent (query,

assertion, assignment, etc.)
-Context - message ids, sender, time stamp, etc.
-Content - information the agent will act upon (query

string, work specification, etc.)
Performatives are represented as methods

-Make agent actions explicit

Context information is sent via arguments
-Relatively fixed for a type of agent

Content information is represented in a language
-The most dynamic user configured part of agent

communication

Dynamic Invocation Adapter

The Dynamic Invocation Adapter (DM) is used by SBD agents to evaluate expressions in
agents' content language. Evaluating language expressions requires resolving symbols to the
corresponding internal or external objects, as well as invoking methods on the resolved objects.

The DIA exploits the introspection capability built in Java as well as the COMA framework.
Local symbols are resolved by looking up the internal symbol table. External objects are
looked up in the COMA Naming Service. The method invocation in local objects is supported
through the Java reflection API. The remote method invocation is supported via CORBA's
Interface Repository and the Dynamic Invocation Interface (DII).

Executes language expressions
Symbol Resolution

-Check the local symbol table first
-Otherwise resolve the object name via Naming Server

Evaluation Algorithm
Method Invocation

-Java reflection for local objects
-CORBA dynamic invocation for remote objects

Existing SBD Agents

At the time of this presentation, SBD's Core Processing System includes four information
agents. The Query Agent, also referred to as the Object Server, serves as an object integrator
and supports distributed queries specified using a subset of Object Query Language (OQL)
defined by Object Data Management Group (ODMG) [3].

The Workflow Agent understands a tasking language. The fundamental unit in this language is
a task that has inputs, outputs, a goal, and a plan for achieving the goal. The language includes
constructs for exchanging data, loops, switches, spawning activities in series or parallel, etc.

The mediation agent provides an engine and a graphical user interface for constructing data
transformations. Users can define transforms between two object models in Java, or as tasks in
the tasking language. These transforms can then be interactively composed to provide the
mapping in the selected object models.

The Notification Agent provides a distributed dependency management service based on the
publish-subscribe model. Notification Agent is described in more detail in the next part of this
presentation to illustrate the design and deployment of SBD's information agents.

Workflow
Notification
Mediation

Dependency Management Architecture

Notification Agent is deployed in situations where information producers do not know the
consumers interested in their data, and information consumers are not aware of information
suppliers but can characterize potentially relevant information. Information producers (e.g.,
databases, report writers, etc.) publish shared information with the Notification Agent with an
associated event-type. Information consumers post subscriptions to the Notification Agent. The
subscriptions characterize potentially interesting information and specify actions on the SBD's
object space. The Notification Agent acts as an information broker in this publish-subscribe
model. When the agent receives a publication, it matches the associated data with each
subscription. If the published data matches a subscriber's interest, the agent operates on the
existing enterprise objects (e.g., sending notifications to User Agents representing human
participants, running analysis tools with appropriate data sets, etc.) as specified in the
subscription.

Information Information
Consumers

User Resources

Notification Agent CORBA Interface

Notification Agent supports three performatives, namely, "publish," "subscribe" and
'bunsubscribe." The agent's CORBA interface provides corresponding "subscribe" and
"unsubscribe" methods. For efficiency, two publish methods (one for publishing a single
message, and another for publishing a set of messages simultaneously) are provided.

The agent also provides additional methods for creation, deletion and querying event type
information. These methods allow the users to create a hierarchy of event types. Each
publication is associated with exactly one event type. The event type offers a simple and widely
used means of event filtering.

module notifleationagent {
interface NotifrcationAgent : sbdroot::Agent, sbdservice::Service {

void publishMesages(ii MesssgeSeq ms)
raises (sbdroot::LanguageNotUndersw sbdroot::ParseExeeption,
sbdrwt::IntemaW~cepti~n, sbdroot::MissingMessageField,
UnknownEventType);
void publishMessage(in sbdrwt::Message msg)
raises (sbdrwt::LanguageNotUnderstood, sbdroot::ParseException,

sbdroot::InternalException, sbdroot::MissingMessageField,
UnknownEventType);

void subscribe(in sbdrwt::Message subscription)
raises (sbdrwt::LanguageNotUnderstood, sbdroot::ParseException,

sbdrwt::InternalException, sbdroot::MissingMessageField);
void unsubscribe(in string subscriber, in string message-id);
MessageSeg getSubscriptions(in string subscriber);
void addEventType(ii string new-type, in string parent-type, in string descr)
raises (UnknownEventType);

void removeEventTypeGn string t) raises (UnknownEventType);
sbdroot::StringSeq getEventIhps0;
sbdroot::StringSeq getSubTypesCi string event-type) raises (UnknownEventType);
string getSupefiSrpe(ii string event-type) raises (UnknownEventType);
string getEventDeseriptionCi string event-type) raises (UnknownEventType);

Example Publish and Subscribe Messages

This viewgraph shows examples of a publish and subscribe message. The message is shown in
Knowledge Query and Manipulation Language (KQML) [4] only for the purpose of
illustration. The actual communication is achieved via the agent's CORBA interface described
in the previous viewgraph.

The publish message specifies the event type to be "GeometricModificationEvent." The
publication has two data fields: "sender" of the message is a User Agent called "Designer," and
"modified-object" is a satellite bus called "LM-700."

The subscription message indicates interest in events of type "GeometricModificationEvent."
The subscriber is interested in the event only if the object in the "modified-object" field is a
component of "Satellite-1." If a match is made, the subscriber wants the Notification Agent to
run optical analysis on the component using a tool called "Optima."

:message-id analysis-id-1

(and (issubtypeof event-type GeometricModificationEvent)
(iscomponentof modified-object Satellite-1))

(runAnalysis Optima modified-object)

:sender Designer
:event-type GeometricModificationEvent
:modified-object LM-700

Use of DIA in Publish-Subscribe

The publishlsubscribe messages presented in the previous viewgraph are interpreted by the
Notification Agent via Dynamic Invocation Adapter (DIA). The interpretation of the messages
depends on five objects (Designer, LM-700, Satellite-1, Optima, Analyst) being registered with
the Naming Service. LM-700 and Satellite-1 are of type "Composite" and their interface
definition is registered with CORBA Interface Repository.

Note that the Notification Agent itself is completely unaware of the domain-specific part-
subpart relationship between LM-700 and Satellite-1. Effective management of information
within any domain requires use of such knowledge. However, maintaining all domain specific
knowledge internally would significantly increase the size of the Notification Agent and create
a potential bottleneck. Delegating part of the reasoning to external enterprise objects allows the
agent to remain small, quickly incorporate the domain knowledge, and distribute the
computation for better performance.

interface Component {
boolean isLeaf0;
boolean iscomponentof(
in Component parent);

interface Composite :

ComponentSeq getcomponentso;

interface OpticalAnalysis {
void runAnalysis(i ...

Benefits of SBD'S Agent-Based Approach

SBD's information agents provide an effective mechanism for establishing dynamic
information links between enterprise components. Agents make it possible to cleanly separate
wrapping of legacy systems from linking them. This allows wrapper builders to focus on
exposing the legacy capability without linking consideration, thus improving wrapper
reusability across multiple integration schemes.

As business processes evolve, the changes can be implemented by simply sending localized
messages to responsible infomation agents that capture the revised plan of propagating
information, as opposed to global recompilation in a monolithic, hard-coded integration
environment.

As illustrated by the publish-subscribe example, SBD's agents delegate much of the reasoning
to external enterprise objects. This implementation approach allows SBD agents to have a
small footprint, and at the same time, quickly adapt to the application domain.

Each SBD agent understands a paradigm-specific language that provides a concise notation for
expressing business logic in the coordination model implemented by the agent. Efforts are
underway to provide visual communication interfaces for further improving the usability of the
agents.

Improves wrapper reuse
More flexible way of managing dynamic information

Allows construction of paradigm-specific agents with a
small footprint which distribute domain specific
reasoning to externas CORBA objects
Paradigm-specific languages capture integration logic
in a concise, user-friendly, and effective manner

Future Work

One of the key concerns in deploying the CPS is it's performance in a clientlserver
environment and scalability. Server and Client platforms come in all shapes and sizes and there
is no universal solution for dividing computation between clients and servers. One of the future
areas of research is to use a mobile agent model to create adaptive clientlserver systems that
optimize the client and server computational load.

The issue of scalability can be addressed by creating a federation of information agents to
distribute information brokering. The SBD team is currently formulating mechanisms to
determine "when" and "how" to replicate agents, and how to keep multiple agent instances in a
consistent state.

Security, including authentication, authorization, data encryption, etc., is a major concern in
deploying the CPS. SBD's approach towards incorporating these features will most likely be
based on an enterprise container model. In this model SBD agents will operate as components
within a container and delegate the security (as well as transaction management, persistence,
etc.) implementation to the container.

Finally, the SBD team is currently examining new agent interaction and coordination
paradigms (such as market-based control strategies, adaptive agents, etc.) and evaluating their
applicability to SBD's pilot applications.

New agent interaction paradigms

References

1. Cox, Aoife, Bouchard, Eugene, and Drew, Daniel, "SBD System Design,"
Concurrent Engineering: Research and Applications, Vol. 4, No. 1, Mar. 1996, pp.
35-46.

2. "A Discussion of the Object Management Architecture,"
http:/hww.omg.org/library/omaindex. html, Object Management Group, January
1997.

3. Cattell, R.G.G. et al., "The Object Database Standard: ODMG 2.0," Morgan
Kofmann Publishers, Inc., 1997.

4. Labrou, Yannis, Finin, Tim, "A Proposal for A New KQML Specification,"
Electrical Engineering Department, University of Maryland Baltimore County,
Baltimore, MD, TR CS-97-03, February 1997.

1. Cox, Aoife, Bouchard Eugene and Drew, Daniel, "SBD System Design,"
Concurrent Engineering: Research and Applications, Vol. 4, No. 1, Mar. 1996,

2. "A Discussion of the Object Management Architecture,"
htp://www.omg.org/library/omaindex.hmJ, Object Management Group, January

3. Cattell, R.G.G. et al., "The Object Database Standard: ODMG 2.0," Morgan
Kofmann Publishers, Inc., 1997.

4. Labrou, Yannis and Fi, Tim, "A Proposal for A New KQML Specification,"
Electrical Engineering Department, University of Maryland Baltimore County,
Baltimore, MD, TR CS-97-03, February 1997.

Page intentionally left blank

Coordinating Intelligent Agents

Keith S. Decker
University of Delaware

Newark, DE

Page intentionally left blank

Coordinating Intelligent Agents

Dr. Keith S. Decker
Department of Computer and Information Sciences

103 Smith Hall
University of Delaware

Newark, DE 197 16

Phone: (302) 831-1959
Fax: (302) 831-4091

Email: decker@cis.udel.edu
WWW: http://www.cis.udel.edu/-decker/

Coordinating Intelligent Agents

Keith Decker

University of Delaware
Department of Computer and Information Sciences

http://www.cis. udel. edd-decker

Designing Intelligent Agents and Organizations

Our research program is involved in developing intelligent software agents
(large, persistent, autonomous, communicative, goal- and data-driven
computer programs) and *organizations* of these agents (including sometimes
humans) that can operate in environments where there is a lot of uncertainty
about what is happening and where there may be time pressures or deadlines.
The agents will in general have many goals, some partially overlapping or
conflicting. We cannot realistically look for optimal solutions, but instead must
satisfice-try to find a solution that is "good enough," in the time and
resources that are available. No agent can work completely alone (regular
distributed systems research in CS tends to deal with distributed execution of
independent processes).

Designing Intelligent Agents &
Organizations That:

operate in environments with uncertainty, deadlines
have multiple, possibly +I- interacting
goalslobjectives
need to satisfice, not optimize

produce results that vary in quality depending on time pressure

interact with other agents
non-independent subproblems
partially overlapping goals/objectives

Research Agenda

Our research program can be divided into three areas. First, how to formally
represent and reason about these sorts of problems, both as a software
engineer and internally as a software agent. To this end we developed the
TAEMS task structure description language (representing what we think are
the important concepts) and the GPGP approach to coordination (a way to
reason about TAEMS descriptions within each software agent so that a team of
them acts coherently together). Secondly, we actually build software and tools
for building actual software agents. This includes the RETSINA project that I
started with Dr. Katia Sycara at CMU, and the DECAF project which is a Java
version here at the University of Delaware that combines features of
RETSINA and my work on coordination at UMass. Finally, we are also
interested in understanding, modeling, and even imitating human
organizational structures in the context of software agents (both organizations
of ALL software agents, and mixed humanlsoftware agent hybrid
organizations). This is very important both because complex problems often
need more than trivial organizational solutions, and because most real systems
are embedding in existing human organizations (so they must respect the
boundaries of those organizations and the roles of the people with whom they
interact).

Research Agenda

Representing and reasoning about these
environmental features

TAEMS Task Structures
GPGP Coordination

Software agent architectures and organizations that
embody these solutions, that adapt in dynamic
environments
RETSINA
DECAF

Understanding human organizational models
computationally (with applications to all
computational, human, and mixed organizations)

The Problem of Coordinating Computational Actions

The problem of coordinating activities (at the level of scheduling action)
mostly falls into three general areas: choosing among alternatives, ordering,
and locating actions in time with respect to the ordering.

The problem of coordinating
computational actions

Managing complex interdependencies between activities
If there is a choice, then the particular action carried
out matters.

high quality, long duration actions
fast, lower quality approximations

* The order in which actions are carried out matters
hard precedence constraints
soft facilitation opportunities

The time at which actions are carried out matters
hard or soft deadlines
time implies ordering when actions can be done at multiple agents

CDPS Luboratory

The Problem of Coordinating Computational Actions

This problem is made worse by the fact that no single agent will have a
complete view of the problem being solved. Even if the agents communicated
enough to develop such a global view, in many real problems it would soon be
out of date, as the world is dynamically changing around the agents. Finally,
even if the agents developed a global view and the world stood still while they
thought about it, there is still the problem of action outcome uncertainty.

Some of the ways that people deal with the coordination problem are to create
schedules, plans, appointments, and so on (commitments to certain actions at
certain times and places). At a higher level, people create laws, rules, or social
norms that allow us to "know" what others will do without actually
communicating with them in every situation (the obvious example is trafXc
laws that say, for example, what side of the road to drive on and what to do at
intersections. Finally, human organizations (and the roles within) allow
coordination via general, long-term commitment to certain classes of actions.

The problem of coordinating
computational actions

Continued
Dmculties in CHOOSING and TEMPORALLY
ORDERING actions

Incomplete view of the problem
Dynamically changing situation
Uncertainty in the outcomes of actions

Example Coordination Mechanisms
Schedules, plans, timelines, appointments, commitments
Laws, rules, social behavioral norms
Organizations, roles, negotiated order

CDPS Labom,

Example Applications and Coordination Problems

This slide briefly mentions several classic example domains and a brief
example of one possible coordination problem.

Example Applications &
Coordination Problems

Distributed Sensor Networks
when to provide predictive information?

Concurrent Engineering, Software Engineering
which order for design subtasks done by same agent?

"Agile" Manufacturing, Hospital Scheduling
how to reshuffle loads to recover from failure

LAN Diagnosis
avoiding self-induced packet storms

Transportation Planning
who should do what delivery?

Software Agents for Information Gathering
Agents on the WWW: where to look? Who follows up on leads?

CDPS Laboratory

Coordination Assistance

Agents can also be used to assist people in solving coordination problems (as
well as needing the coordination of their own, autonomous work). However,
because you are dealing with real people, these agents are necessarily limited
in what they can and cannot do.

Coordination Assistance

People as decision-makers,
schedule-choosers
making sure problems get solved
completely
tracking time-critical tasks
efficient problem solving adapted
dynamically to the current situation

Outline From Here On...

The rest of the talk will discuss these three topics.

Outline from here on...

Representing Coordination Problems (TAEMS)
Solving Coordination Problems (GPGP)
Building Agents and Multi-agent Systems (DECAF)

Complex Task Environment Features

First, we discuss REPRESENTATION. This slide lists the features of
problem solving "task environments" that we wish to be able to represent.
Notice that we do not eliminate most of the complexity of real problems,
which is a problem with some other approaches.

Complex Task Environment
Features

Responses are required by deadlines
Domains are "worth-oriented": states are more or less
acceptable
Satisficing: optimal performance often not possible
missing info
lack of time (trade off time vs. quality)

Need to integrate results from multiple agents
Non-independent subproblems

* CDPS Lobormy

Representation Framework: TAEMS

The TAEMS (Task Analysis and Environment Modeling System) language is
used to formally define what a task structure is, what parts are known by what
different agents, and what happens when agents execute these parts. TAEMS
is often used as an annotation language on top of HTN (I-berarchical Task
Network) plans. Pictures such as the one here are based on careful, functional
descriptions and an underlying state-based model of computation. Interior
nodes in the task structure are abstract tasks, the leaf nodes are specific,
instantiated agent actions (for a software agent, these would normally be
instantiated executable code).

The basic idea is that each agent is trying to maximize performance, as
described by some set of utility characteristics (summarized as "quality" for
good characteristics, and "cost" for bad characteristics). Since the time that
something gets done often affects these things a lot, we also track the
"duration" of various activities. TAEMS task structure annotations describe
how the actions of any agent affect the performance of that agent or others (by
changing quality, cost or duration). The basic relationship here is the
"subtask" relationship; but more important are various hard and soft
relationships that might exist between tasks (i.e., "enables" where A must
come before By or "facilitates," where doing A will cause B to be done better,
cheaper or quicker). All relationships have a formal, quantitative mathematical
definition.

TAEMS agents can reason about these task structures, and even use them as a
language for communicating about coordination problems: "Hey Cindy, my
task 4 3 enables your task P8. I'm letting you know that I will finish task Q3 at
10:45 p.m. today."

Representation Framework:
TAEMS

Performance = attempt to

Representation of structu
multiple levels of
ABSTRACTION

tasks
executable methods
Methods have a duration,
maximum quality,
quality accumulation fn.
(Anytime, DIT, etc.) - subtark relalionship

Explicit, Quantitative
representation of task
interrelationships

Example: Hospital Scheduling

An example task structure drawn from real case studies. Patients in General
Hospital reside in units that are organized by branches of medicine, such as
orthopedics or neurosurgery. Each day, physicians request certain tests and/or
therapy to be performed as a part of the diagnosis and treatment of a patient.
Tests are performed by separate, independent, and distally located ancillary
departments} in the hospital. The radiology department, for example, provides
x-ray services and may receive requests fiom a number of different units in the
hospital.

Furthermore, each test may interact with other tests in relationships such as
"enables," "requires-delay" (a slight variation on "enables"), and "inhibits" (a
negative variation of the soft "facilitates" relationship). These task
relationships indicate when the execution of one task changes the
characteristics (here, primarily duration) of another task.

Since different agents may have different goals with respect to each other and
with any global goals, the performance of such a system can be worse than
that of a centralized system. In many domains such as hospital scheduling (or
telescope observation scheduling), we "cannot* centralize scheduling because
it would take away the authority of each unit over the day-to-day control of its
own activities. A distributed approach matches with the existing human
organizational structure. It also allows each unit to attempt to optimize slightly
different measures, as may be used by administrators to evaluate human unit-
level performance.

Example: Hospital
Scheduling

method (executable task)

accrual function ntin
task already communi-

- subtask relationship
. b enables relationship
+ requires delay

Generalized Partial Global Planning

Now that we have talked about REPRESENTATION, let us move onto
DESIGNING COORDINATION MECHANISMS (using these
representations).

GPGP is a domain independent "scheduling* approach (The term "planning"
in the name is historical, from Durfee's PGP. In the modem A1 view of a
continuum between planning and scheduling, both GPGP and PGP focus on
the scheduling side.) The GPGP approach makes several architectural
assumptions. Most important of these is that the agent represents its current set
of intended tasks using the TAEMS task structure representation language. An
agent using the GPGP approach provides a planner or plan retriever to create
task structures that attempt to achieve agent goals, and a scheduler that
attempts to maximize utility via the choice and temporal location of basic
actions in the task structure. Each GPGP mechanism examines the changing
task structure for certain situations, such as the appearance of a particular class
of task relationship, and responds by making local and non-local
commitments to tasks, possibly creating new communication actions to
transmit commitments or partial task structure information to other agents.
The set of coordination mechanisms is extendable, and any subset can be used
in response to a particular task environment situation.

Generalized
Partial Global Planning

Coordinated scheduling of agent actions
action choice, order, and temporal locations
communicates partial non-local views, commitments, and domain results

Generalizes and extends Durfee's PGP algorithm
Not tied to single domain

A set of coordination mechanism respond to features in current task
environment

Parameterized and Extendable Family
different environments will require different coordination mechanisms

Works in conjunction with existing agent architectures
and local scheduler(s)

CDPS Loboratory

Generalized Partial Global Planning

Initially, GPGP defined the following five coordination mechanisms based on
Durfee' s PGP:

- Updating non-local viewpoints. Each agent detects the possible
coordination relationships, then communicates the related task structures.

- Communicate results when they will be used by others.
- Handling simple redundancy. When more than one agent wants to execute

a redundant method, one agent is randomly chosen to execute it and send
the result to the other interested agents.

- Handling hard relationships (A must come before B) from the predecessor
side. A is the bbpredecessor" task, B is the "successor."

- Handling soft relationships from the predecessor side (if A is executed
before B, the execution of B will be perhaps faster or will return better
results, but it is not strictly necessary).

Generalized

Dudlk 25

Coordination Substrate
Non-local view
Result Communication
Method Redundancy
Hard Predecessor
Coordination
Relationships
Soft Predecessor
Coordination

Subjecthc
Relationships TOS cmup 1

dmian Mmlbod Ian am~.bk I.&)

Lad ask with

- s ~ b ~ ~ c l a ~ i p

.) crmblemhimhip

--aP. faFililals Ic1aiiOwp

Objeaive ask or mthcd
in lk mwommt

SubjecIivtrrprrua(nof

Coordination

AgmtX g;:isC

MADEsmart Demo Overview

This description is for the slide below and the next slide. We are currently
working with a group implementing the UCAAIACM vision of coordination
support as a part of the MADEsmart project at Boeing Helicopters.
MADEsrnart seeks to partially automate the integrated product teams used to
organize design engineers through the use of multi-agent approaches. For
example, associated with each human engineer in an integrated product team is
a UCAA (User Coordination Assistant Agent) that can interact with that
engineer. Other agents, using ACM technology, wrap around existing
computationally intensive resources such as composite fiber placement
simulations and the COSTADE design cost analysis tool, which uses an
existing FORTRAN-based model.

Rapid Design Exploration through:

- Autonomous Agents for Independent Tasks -
Flexibility, Efficiency, Responsiveness

- Rapid Exchange of Compatible Data
- Collaborative Exploitation of Data

Coordination of Agents through:
- Static Workflows
- Dynamic Planning & Scheduling*

MADEsmart Demo Overview

Rapid Access to Legacy Data & Applications

- ICADICATIA for Geometry Manipulation
- COSTADE for Optimization
- Web-based Integration of Distributed Processes

Krishna N. Jha
krishna.n.jha@boeing.com

http://www.bbtech.com/MADW

MADEsmart - User Interface

For this project, the core agent architecture components are being integrated
using GBB, a commercial blackboard system developed by BBTech. If you
look at the upper right of the screen dump, you can see the current task
structure. A graphical task structure specification tool allows programmers to
create and edit agent-executable task structures (behaviors), including the
flows of information between executable methodslbasic actions.

In the initial implementation, the UCAA has little scheduling to do, mostly due
to the fact that only one project is being worked on, and the initial task
structures have been purposely kept quite spartan. We plan to eventually apply
our scheduling technologies to intelligent user interfaces (via the Local
Schedule Display in the UCAA). The UCAA will help a user to schedule his
or her activities at the workstation and display that schedule (using the Local
Schedule Display) in a meaningful and expressive form that can be queried and
explained. In most cases, the user will have significant freedom in the ordering
of hisher activities--the purpose of the Local Schedule Display is to make
sure that tasks are not forgotten, that time critical or critical enabling tasks are
identifled to the user, and that facilitating or other soft-related tasks are also
identified.

RETSINA Agent Architecture

Finally, let us turn from REPRESENTATION and COORDINATION
MECHANISMS to tools for building software agents. This slide describes
some of the features of the RETSINA software agent approach developed with
Katia Sycara while I was at CMU. They are continuing to develop toolkit
pieces, and we are also doing this at the University of Delaware (under the
name DECAF: Distributed, Environment-Centered Agent Framework).

RETSINA Agent Architecture

Shared by all agent types
BeliefIDesireDntention theory inspired
Interleave computational actions from many
concurrent behaviors
Interleave planning and execution

0 Schedule periodic and deadlined activities
Handle behaviors strung out in time

next step externally, asynchronously enabled

RETSINA Agent Architecture

This slide describes the general structure of a RETSINA agent's intemd
control loop. In DECAF, the inner threads are executed concurrently.

RETSINA Agent Architecture

Meta-Control Loop
Startup

initial goals [e.g. advertise-selfl
Loop

Communication (& coordination)
Planning
Scheduling
Action Execution & Monitoring

Shutdown
cleanup; notify any related agents

RETSINA Architecture

This is a pictorial view of the previous slide. Again, in DECAF the
communicating/planning/scheduling/executions are concurrent. The data flow
in both systems is that new KQML messages (i.e., ASK) create new
"objectives*. The planner creates task structures to achieve the objectives.
There are usually many simultaneous plans and possible actions vying for
agent resources-the scheduler creates an appropriate agenda of tasks. Finally,
the execution monitor actually carries out the agenda. IN DECAF, THESE
ARE DONE CONCURRENTLY AND CONSTANTLY. The agent is thus
CONSTANTLY re-planning and re-scheduling as the world changes
dynamically about it, and in response to uncertain action outcomes that force it
to interleave planning and execution.

- Control Flow
-----+C Data Flow

RETSINA Agent Architecture

This shows a more detailed breakdown of activities in the f o u main control
threads.

RETSINA Agent Architecture

Communications
processes external messages
create new goalslobjectives

Planning
Hierarchical Task Network-based formalism (next slide)
library of task reduction schemas

Altmative task reductions
contingent plans. loops

incremental task reduction, interleaved with execution
information gathered during execution d i u future planning

Scheduling
fully expanded leaf nodes = executable basic actions
enabled actions (all parameters and provisions in place)
initial implementation earliest deadline first

adjusts periodic task with m i s d deadlines

Execution Monitoring
setup execution context (parameters and provisions)
action monitoring

envelopes C'if this goes OR ..'3
deadlulesltirmouu
data collection for cloning decision

complete execution (provide results to appropriate downstream actions)

Reusable Behaviors

A very important feature of these architectures is the ability to reuse certain
plans (capabilities) over and over in many different agents targeted for many
different application domains.

Reusable Behaviors

Advertising
send agent capability model to matchmaker or broker middle-agent
shared query behavior for other agents

Polling for messages
Answering simple queries

one-shot
periodic

Information monitoring
monitoring for some change or other event

Self-cloning
moving some tasks to another, identical agent
different processor or the same (with blocking I/O)
Simple model to predict idle time using learned estimates of periodic task durations
New agent is cloned when next task would overload the agent
"old" agent unadvertises; 'hew" agent takes its place

The Warren System

Warren was one RETSINA application for Stock Portfolio Management.

The Warren System

An open, multi-agent system for information
gathering and decision-support
Cooperative agents form teams to solve problems

Information agents encapsulate existing Internet data sources
(web pages, databases, NNTP servers, etc.)
Interface agents interact with human users
Task agents undertake arbitrary problem-solving activities
(information filter, fusion, etc.)

Domain: Financial portfolio management

Typical Warren Organization

This is a picture of the different agents that collectively went into the Warren
system.

Typical Warren Organization

I
SEC database

Conclusions

Conclusions

Coordination: locally choosing and temporally
ordering actions
TAEMS: representing coordination problems
GPGP: mechanisms for dealing with coordination
problems
DECAF: agent building toolkit

*For more information, see
h ttp://www .cis .udel .edu/-decker

$*. -6 '
Y &

, /,'
, -<$

@ 3 w*-, !/I ,d,

3 542 /S,lr'
Multiagent-Oriented Programming Z L i " ~

Michael N. Huhns
Center for Information Technology

University of South Carolina
Columbia, SC

Page intentionally left blank

Multiagent-Oriented Programming

Michael N. Huhns
Center for Information Technology

University of South Carolina
Columbia, SC

This presentation describes a new approach to the production of robust
software. The approach is motivated by explaining why the two major goals of
software engineering-correct software and reusable software-are not being
addressed by the current state of software practice. A methodology based on
active, cooperative, and persistent software components, i.e., agents, and how
the methodology enables robust and reusable software to be produced is
described. Requirements are derived for the structure and behavior of the
agents, and a methodology is described that satisfies the requirements. The
presentation concludes with examples of the use of the methodology and
ruminations about a new computational paradigm. --

Multiagent- Oriented Programming

Michael N. Huhns
Center for Information Technology

University of South Carolina

11/1&/98 1:12 PM 1

Tremendous Interest in Agent Technology

There is great interest in software agent technology currently. As evidence,
there were more than a dozen conferences and workshops devoted to agents
held around the world during the summer. There are four major reasons for
this interest:

1) The Internet has made vast numbers of heterogeneous resources
available which software agents are needed to access and manage.

2) Processors are being used to control devices throughout our
environment, such as automobiles, appliances, and consumer devices.
These devices are much more useful if they can communicate
intelligently with users and each other.

3) New speech understanding technology is making it feasible for people to
communicate with devices in natural language, and this is more
effective if the devices appear to be intelligent agents.

4) Software development continues to be problematic, and multiagent
technology can provide a new paradigm.

Tremendous Interest
in Agent Technology

Evidence:
400 people at Autonomous Agents 98
550 people at Agents World in Paris

Why?
Vast information resources now accessjble

. .
Ubiquitous processors
New intetface technology
Problems in producing software

11/18/981:12 PM Univerdny of South Camlina 2

Overview

There are two primary reasons for the rise in popularity of agent technology.
Each of these is fundamental to computer science, so that agent technology is
likely to be important and viable for the foreseeable future.

Overview
='-

The fundamental architecture for
enterprise information systems is
progressing beyond a client-server model

m The development of software is
progressing beyond object-oriented
techniques

Both trends require agent technology!
ll/l(V98 1:lZ PM Univem'fy of South Carolina 3

Trends in Information Technology

Information environments have moved beyond the closed corporate
environments of the past, and are now open: the resources that are available via
networks are dynamic and cannot be predicted or controlled. Also, information
processing tasks have moved from batch jobs to applications that combine
contributions from humans and computers.

I. Trends in
Information Technology

--
In Information Environments:

Closed 3 open

In Information Processing Tasks:

3 Automated
Automated + Manual

11/1m8 1'12FM Unhr~rsllyof Soulh Cafnlina 4

Trends.. .
Information is no longer treated as just the static data that is found in databases.
The dynamic flow of information to and from databases must be considered as
well. Artificial intelligence has progressed from expert systems to individual
agents to cooperative problem-solving agents to multiagent systems.

Trends.. . m-

In Information Flow:

3 Static -- DBMS
Dynamic -- Workflow Management System

In Arfificial Intelligence:

I Expert System
Software Agent
Cooperative Distributed Problem Solver
Multiagen f System

11/f8/98 1:12PM Univsrsily of South 5

Trends.. .
Database technology has progressed from individual database management
systems to tightly coupled, homogeneous, distributed DBMSs, to federated
DBMSs with a single global schema to cooperative DBMSs that are active,
autonomous, and heterogeneous.

Trends.. . ms
In databases:

I
DBMS
Distributed DBMS
Federated DBMS
MultiD BMS
Cooperative Information Sources

11/18/98 1'12PM UnrverSnyolSouth CamIrm 6

Trends.. .
Most corporate information systems are being converted from centralized
architectures to client-server architectures. However, the trend is to move to
distributed information system architectures featuring peer-to-peer interactions
and, eventually, to cooperative information system architectures where the
peers cooperate in processing information tasks.

Trends.. . I=
II In MIS:

I Centralized Architecture
Client-Sewer Architecture
Distributed Processing Architecture
Cooperative Information Systems

1 1 / 1 W 1 12 PM UniverSny of South WuDlina 7

Information System Architecture: Client-Server

A client-server architecture is hierarchical, with no formal interactions among
servers or among clients.

Information System Architecture:
Client-Sewer

71/18/98 1:72 PM

Information System Architecture: Cooperative

A cooperative architecture allows interactions among servers and among
clients. The interactions can be cooperative in that the components can assist
each other in solving tasks when the tasks are consistent with their own best
interests.

Information System Architecture:

(Mediators, Proxies, Aides, Wrappers)

11. Trends in Software Development

The two major goals of software engineering, correct software and efficient
production of software, are not being met. Programmers currently produce
approximately the same number of lines of debugged code as they ever did, in
spite of many developments that were supposed to be "magic bullets," such as
structured programming, declarative specifications, object-oriented
programming, formal methods, and visual languages.

II. Trends in
Soware Development

The two goals of software engineering
correct software
efficient software production

are not being met. Programmers produce - the same
number of lines of debugged code, in spite of
B structured programming
B declarative specifications
B object-oriented programming

formal methods
visual languages

11/18198 1.12 PM Umemiy of &uih c a r ~ h ~ 10

Hardware Outpaces Software

Over the last dozen years, processor performance and memory chip capacity
have doubled every two years, in accordance with Moore's '2aw." Network
capacity has grown even faster, but software productivity has been almost
static.

Hardware Outpaces r-
Sofnyare

Processor Performance

Network Capacity

Software Productivity

Software Language &
Tool Power

Avg. Annual Growth Rate

48%

78%

5%

11%

11/1.Y98 1:12 PM Univemfy of South CamIba 11

Why?

There are several reasons for the difficulty in improving the process by which
software is produced. First, software is complicated, and is typically
considered the most complex activity undertaken by humans. Second, software
must be perject, and is guaranteed to work correctly only when all errors have
been removed. Third, the effect of an error is relatively independent of its size,
in that the simple omission of a comma can render a million lines of code
inoperable. Fourth, software systems are typically diverse and too often crafted
afresh for each application.

Why?
--

I Software is complicated
I Software is guaranteed to work correctly

only when &I errors have been removed
I The effect of an error is unrelated to its

size
I Software systems are diverse

1 l/l(V98 1:12 Phi Unimm'ty of South CamPna 12

- .

Programming Paradigms

There have been a number of different paradigms for the production of software
since the 1950's. These paradigms have moved the basic unit of abstraction
from components that model and implement computations to components that
model and implement real-world objects. For example, the concept of an
"employee" in a relational database is less like a real-world employee than is
the class "employee" in an object-oriented database, because the object model
includes the behavior of objects in the class.

Programming m-
Paradigms

1950's -- Machine and assembly language
1960's -- Procedural programming
1970's -- Structured programming
1980's -- Object-based and declarative programming
1990's -- Frame works, design patterns, scenarios,
protocols, and components (ActiveXCOM and Java
Beans)

The trend has been from elements that represent
abstract computations to elements that
represent the real world

11/18/98 1112 PM Universilyol Swth W i n a 13

- .

A New Paradigm

It is time to consider a new paradigm for software development, a paradigm
that is based on the following premises. First, it is important to recognize that
errors will always be in complex systems, and that it is necessary to
accommodate them. Second, there are circumstances where perfect, error-free
code can be a disadvantage. Third, systems that interact with the real world
can take advantage of the uncertainties inherent in the world to lead to more
robust and simpler software. Fourth, the new paradigm should continue the
trend toward programming constructs that are more faithful to the real-world
components they are meant to model.

4 A New Paradigm
--

Errors will alwavs be in complex systems
Error-free code can be a disadvantaue
Where systems interact with the real
world, there is a power that can be
exploited
Continue the trend toward programming
constructs that match the real world

. ~

11/18/98 192 PM Univer&y of South Cemlina 14

Example 1: Robots Meeting in a Hallway

An example of how error-free code can be a disadvantage occurs when two
identically and perfectly programmed robots meet in a hallway. They each will
move side-to-side in synchrony and will never be able to pass. Now what if
one of the robots has an error in its programming? It will then not behave the
same as the other, the robots will break synchrony, and they will each be able to
pass each other and continue their progress. The overall system of robots is
more robust because of the presence of an error. The example is representative
of any situation where there is contention for a scarce resource, such as access
to a database.

Ex. 1: Robots 4 Meeting in a Hallway

(applications using any common, scarce resource)

ll/18mS 1:12 Phi Univem'ty of Soufh Carolina 15

Example 2: Children Forming a Circle

When a teacher tells a group of children to form a circle, they do this very
robustly. They can form a circle whether there are 5 or 50 children, whether the
children are large or small, and whether or not all of the children are old
enough to understand the concept of a circle. Children can be added to or
removed from an existing circle, and it will re-form correctly. The children
implement a circle-forming algorithm that is distributed and requires no central
control.

The robustness is due to the knowledge and ability of each child regarding what
a circle is and how each child can contribute to its formation.

Ex. 2: Children r
Forming a Circle

(Most business software modules, which are passive, are meant to
represent real objects, which are active)

I IlIl(MB I12 PM Unrvers~ry of Soufh Carolina

I6 1

Forming a Circle

A conventional object-oriented approach to programming a circle algorithm
would involve creating a class for each type of object that might be part of the
circle, and then writing a control program that would use trigonometry to
compute the location of each object. The addition or removal of objects would
require recomputing all locations.

A multiagent or team-oriented approach would represent each child by an
agent, and would give each agent the knowledge of what a circle is and the
ability to position itself to be part of a circle.

Forming a Circle m s
(cont.)

Conventional approach
- create a C++ class for each type of object; then

write a control program that uses trigonometry
to compute the location of each object

Team-orienfed approach (based on objects
having a ftitudes, goals, and agent models)

- like children forming a circle, it is robust due to
local intelligence and autonomy

1 l/lW 1:12 PM Univeshy of W h CamIina 17

7 ..

Features of Languages and Paradigms

A procedural language, an object language, and a multiagent language can be
compared according to a number of criteria

Features of m-
Languages and Paradigms

Concept

Abstraction
Building Block
Computation Model
Design Paradigm
Architecture

Modes of Behavior
Terminology

Procedural Language Object Language Multiagent Language

T y ~ e Class Society
Instance, Data Object Agent
Procedure/Call Methodhlessage Perceive/Reason/Act
Tree of procedures Interaction pattems Cooperative interaction
Functional decomposition Inheritance and Managers, Assistants,

Polymorphism and Peers
Coding Designing and using Enabling and enacting
Implement Engineer Activate

11/1(MB 1:12 PM U f l h r t y d south C%IDIlM 18

Team-Oriented Software Development

The most important characteristics of a team-oriented paradigm for software
development are that the modules (1) are active, (2) are declaratively specified
in terms of what behavior they should exhibit, not how they should achieve that
desired behavior, (3) hold beliefs about the world, themselves, and others
(whether humans or computational modules), and (4) the modules volunteer to
be part of a software system. This last characteristic is a key to the reuse of
software.

Team- Oriented
Sofnyare Development

-+dF

Modules are active
Modules are declaratively specified, in
terms of "what", not "how"
Modules hold beliefs about the world,
especially about themselves and others
Modules volunteer

11/18/98 1 12 PM Unwemiy olSouth Camlma 19

The Agent Test

Most researchers in agent technology have put forth their own definition of an
agent. These definitions are usually a list of characteristics that an agent should
possess, such as autonomy, persistence, reasoning ability, intelligence,
comunication ability, etc. Munindar Singh at NCSU and I instead propose a
test for agenthood, which implies some of the above characteristics but does not
require any of them. The test, to be useful, should be both necessary and
sufficient, i.e., any software component that passes it should be considered
generally to be an agent, and any component that fails it should be considered
generally not an agent.

4 The Agent Test
--

a "A system containing one or more reputed
agents should change substantively if
another of the reputed agents is added to
the system."

11/18/98 1:12 PM Universityof SoMh Carolina 20

- .

Applications

There are many important applications of agents in a wide variety of domains
that are under development at the University of South Carolina in its Center for
Information Technology.

Applications
=-

Sainsbury's Supermarkets (UK) simulates customers with agents
m Sydkraff (Sweden) controls electricity distribution

HealthMagic (USA) reminds patients of prescriptions and
appointments

m France Telecom and Deutsch Telekom diagnose circuit faults and
route message traffic
US Army manages logistics databases

m Siemens (Germany) provides personalized telecom services
Amazon and Barnes & Noble help customers purchase books on-
line
US Postal Service includes smart-card agents on packages to track
deliveries
RaytheonITl sensors cooperate in target detection

11/18/98 1.12 PM Un~vsvsrry of SUM car~~ina 21

To Probe Further.. .
There are many sources of information available on agent technology.

4 To Probe Further--.
=-

Readings in Agents (Huhns & Singh, eds.), Morgan Kaufmann,
1997
http://www.mkp.com/books~catalog/l-55860-495-2.asp
IEEE Internet Computing, http://computer.org/internet
DAl-List-RequestQece.sc.edu
lnternational Journal of Cooperative lnformation Systems

m lnternational Conference on Multiagent Systems (ICMAS)
lnternational Joint Conference on Artificial Intelligence
lnternational Workshop on Agent Theories, Architectures, and
Languages (A TAL)
IFCIS Conference on Cooperative lnformation Systems

11/1848 1:12 PM Uniw~~~'ty 01 South CaroIm 22

C ,

"' "2 8.5 m c x

. ., .-,, " 3

3+0,:3 L
The Open Agent ArchitectureTM 3 . 4) ~

@pipi/

Adam Cheyer, David Martin
and Douglas Moran

Artificial Intelligence Center
SRI International
Menlo Park, CA

Page intentionally left blank

The Open Agent ArchitectureTM

Adam Cheyer, David Martin
and Douglas Moran

Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park CA 94025

This presentation provides an overview of the motivations, implementation,
and application of SRI's Open Agent Architecturem (OAATM), a new
framework for constructing dynamic, distributed systems.

Building flexible, dynamic communities of
distributed software agents

Adam Cheyer
David Martin

Douglas Moran

Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park CA 94025

http://www.ai.sri.com/-oaa .

What is an Agent?

Many very different types of technologies have made use of the term "agent" to
describe themselves. The OAA belongs to the class known as "cooperative" or
"distributed agents," and can be thought of as a more powerful extension of
"distributed object" frameworks such CORBA or DCOM. As you will see,
OAA agents possess a number of features beyond distributed objects: a higher-
level interface specification, an inter-agent communication language which can
be translated to and from human natural language, and the ability to proactively
monitor the state of the environment and autonomously take action based on
various types of events.

Autonomous Agents
Based on planning technologies

Learning Agents .

User preferences, collaborative filtering, ...
Animated Interface Agents

Avatars, chatbots, ...
Simulation-Based Entities
Information Retrieval. Filtering & Monitoring
Agent Communities

Cooperation and competition among

Overview of the OAA

OAA research may be unique in that it simultaneously pursues two areas rarely
grouped together in the same framework: 1) how to build more flexible,
adaptable distributed systems, and 2) how can a human user interact more
naturally with this virtual community of agents. As we hope to show, there are
a number of surprising synergies between these two, seemingly disparate,
objectives.

OAA: A framework for integrating a
community of software agents in a
distributed environment

o Flexible interactions among agents
through delegation:

what now how or who -7

0 Natural interfaces for human users

.. -
SRI International, A1 Center Open Agent Architecturerm 12/29/98

Approaches to Building Applications

In "the old days" (of which there still remain many remnants...), programmers
constructed large monolithic applications which ran standalone on a desktop
computer. Object-oriented technology encouraged improved code reusability
somewhat, allowing a large program to be constructed from many individual
components. However, the interactions among components were hard-coded by
programmers. Distributed object frameworks enable the component pieces to be
spread across multiple computers, but inflexible interactions among
components remains a problem.

Current technology is not suitable to the dynamic nature of the Internet, where
new, unimagined resources become available every day, and other network
services disappear. What is required is the ability to create programs from a
dynamic, virtual community of services which cooperate and interact in a
flexible manner. This is one of the major goals of the Open Agent Architecture.

Applications

User Interfaces for Distributed Agents

If applications are going to be made up of many cooperative network services,
it is essential that human users have efficient and natural methods for
interacting with them. We believe in a multimodal approach, where any data or
services can be accessed using flexible combinations of many input modalities -
if graphical user interfaces are available, fine. If, in addition, a telephone or
microphone is present, speech recognition might be used in conjunction with
the more standard interfaces. Likewise for electronic pens. A distributed
architecture must be able to adapt to the changing set of input and output
resources available to the user. We also envision an architecture that supports
multiple humans, and even computer avatars, to share the same workspace on
collaborative tasks.

In this talk, we will highlight these user interface characteristics through
demonstrations of several OAA applications.

SRI International. A1 Center Open Agent Architecturem 12/29/98

OAA Architecture

In the OAA, a Facilitator agent provides the agent community with a number of
services for routing and delegating tasks and information among agents. Upon
connection, each agent registers its functional capabilities and specifications of
its public data. Then, when a human user or automated agent makes a request of
the agent community, specifying at a high level the description of the task along
with optional constraints and advice on how the task should be resolved, the
Facilitator agent distributes subparts of the task among agents and coordinates
their global activity.

All OAA agents share exactly the same characteristics, from Facilitator agents
to User Interface agents: they publish their capabilities and communicate
among themselves using the Inter-agent Communication Language. However, it
is often useful to conceptualize several classes or types of agents as illustrated
in this slide: UI agents, NL agents, Facilitator agents, Application agents, and
Meta agents.

Inter-agent Communication Language (ICL)

Perhaps the key innovation of the OAA is the Inter-agent Communication
Language, the means with which agents exchange information, requests and
notifications.

Interagent Communzcatton Language ! . . ICL?
Using ICL, agents:

- Register capability specifications
- Request services of community:

Perform queries, execute actions, exchange
information, set triggers, manipulate data

I ICL delegation:
description of request + advice & constraints

Support for programming languages I C, C++, Visual Basic, Java, Delphi, Prolog, Lisp

- - > <
SRI International, A1 Center Open Agent Architecturem 12/29/98

Delegation Through ICL

The ICL is a logic-based language that can represent complex, multi-step tasks.
The language was designed to be compatible with the output of many natural
language systems. The result is that a human user can make a request in English
using vocabulary provided by the dynamic set of registered agents, and this
request will be translated into a task description directly executable by the
community.

The ICL allows an agent (or human user) to delegate complex tasks to an agent
community with a configurable level of detail. Generally, an agent will make a
request supplying only basic suggestions about how the task should be
executed: perhaps specifying the type of task, or special time constraints under
which the task is to be performed.

Delegation Through ZCL
oaa-Solve (TaskExpr, ParatuList)

Expressions: logic-based (cf. Prolog)
Parameters: provide advice & constraints

High-level task types: query, action, inform, ...
Low-EeveE: solution-lirnit(N), time-limit(T),

I oaa-AddData(Dataqr, ParaarEist) oaa-AddTrigger (Tug, Cond,Action, Ps)

7

SRI International, A1 Center Open Agent Architecturem 12/29/98

OAA Triggers

Triggers are managed by the agent library and can be delegated under the
Facilitator's control across multiple agents in the system. As noted in the slide
below, four types of triggers are built into the OAA infrastructure: triggers for
communication messages, data changes, time conditions, or domain-specific
(task) events such as the arrival of an email message.

Triggers are stored using the OAA data management predicates, so agents
are free to examine, search, add, or modify triggers on any other agent or
agents.

* Creating a trigger requires that the user or agent specify at least its type, a
conditional statement to test, and an action or other ICL expression to
perform when the trigger fires. Optional parameters include recurrence
values (how many times should the trigger fire before being removed),
additional test conditions to try before the trigger fires, when the trigger
should expire, etc.

OAA agents can dynamically register interest in
any data change, communication event, or real-
world occurrence accessible by any agent.

comrn: on-send, on-receive message
time: "in ten minutes", "every day at 5pm"
data: on-change, on-remove, on-add
task: "when mail arrives about ..."

The actions of triggers may be any ICL
expression solvable by the community of agents

SRI International, A1 Center

Automated Office Application

OAA characteristics such as flexibility agent cooperation can be best shown
through an actual example. In the Automated Office system, we see that from
one simple English request spoken into a telephone, many OAA agents, written
in several programming languages and spread across multiple computers, can
cooperate and compete (when appropriate in parallel) to resolve a task for the
user. The system is extensible beyond many other distributed systems -- as new
agents are added at runtime to the system, what the user can say and do literally
changes. In addition, the execution process is highly distributed: there is no
single agent (not even the Facilitator agent) who has knowledge pre-coded into
it specifying how agents will work together for all given user input.

Automated Office Application

-T -. $&@ SRI International, A1 Center Open Agent ArchitectureTM 12/29/98

Unified Messaging

The Unified Messaging application is a direct extension of the Automated
Office application, but provides greater support for media translation,
distributed reference resolution, and adaptable presentation. It also adds a
number of media and presentation agents such as fax, printer, voicemail, etc.
The focus of this application is on how to build a dynamic community of agents
that can adapt to the input and output media used to access them (e.g., graphical
user interface, telephone).

Multimodal Maps Application

The Multimodal Maps application illustrates a natural user interface to
distributed agent services, using services provided by a distributed, parallel
infrastructure. Ambiguities at many levels during the interpretation process
(modality fusion) are resolved by competing and cooperating agents operating
in parallel.

The Multimodal Maps application also uses the collaborative services of the
OAA infrastructure, enabling multiple human participants to share a common
workspace from remote locations, exchanging information and requests with
each other and with automated agents.

" SRI International, A1 Center

InfoWiz Application

The InfoWiz project is centered around the idea of putting an interactive kiosk
into the lobby of SRI. People who have a few minutes to spend should be able
to learn something about SRI, enjoy themselves, and walk away with a good
feeling of having seen something interesting and unusual.

One of the design decisions of the project has been to use speech recognition as
the main form of user input to the system. In order to encourage spoken
interaction with the system, we have created an animated character, a cartoon
wizard, who attempts to engage the user in conversations about SRI. The
InfoWiz can answer questions, provide supplementary information, make
suggestions, and take the user on guided tours of the information space. This is
our first attempt at allowing an animated avatar agent to interact directly with
humans.

@SRl International
! i N R S h I t b R ~ ~ h T e C h t h @ ~ I

7 -
SRI International, A1 Center Open Agent Architecturem 12/29/98 1

The OAA is a general-purpose framework which has been applied to a wide
number of distributed applications in diverse domains. So far, we have
presented several applications which illustrate OAA's unique capabilities for
including the human user as a special member of the agent community. In the
following slides, additional applications of OAA technology will be briefly
discussed.

a SRI International, A1 Center Open Agent ArchitectureTM

MVIEWS Application

Full-motion video has inherent advantages over still imagery for characterizing
events and movement. Military and intelligence analysts currently view live
video imagery from airborne and ground-based video platforms, but few tools
exist for efficient exploitation of the video and its accompanying meta-data. In
pursuit of this goal, SRI has developed MVIEWS, a system for annotating,
indexing, extracting, and disseminating information from video streams for
surveillance and intelligence applications. MVIEWS integrates technologies
such as pen and voice recognition and interpretation, image processing and
object tracking, geo-referenced interactive maps, multimedia databases, and
human collaborative tools.

SRI International, A1 Center Open Agent ArchitectureTM 12/29/98

ESTWO Application

The MAESTRO system, integrated with the MVIEWS video tools, uses fusion
of numerous recognition technologies to improve automated recall and analysis
of broadcast news videos.

SRI International, A1 Center Open Agent Architecturem 1 2/29/98

Multi-Robot Control

Robots, integrated as members of an OAA community, can access distributed
services such as speech recognition, text-to-speech, map software, and so forth,
and can communicate with each other to accomplish coordinated tasks. Using
this approach, a multi-robot team captured first place at the 1996 AAAI robot
competition, office navigation event.

SRI International, A1 Center Open Agent Architecturem 12/29/98

ComrnandTalk Application

CommandTalk is a spoken-language interface to synthetic forces in entity-
based battlefield simulations, developed by SRI International under our
DARPA-sponsored project on Improved Spoken-Language Understanding. The
principal goal of ComrnandTalk is to let simulation operators interact with
synthetic forces by voice in a manner as similar as possible to the way that
commanders control live forces.

CommandTalk was initially developed for LeatherNet, a simulation and
training system for the Marine Corps developed under direction of the Naval
Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD).
Recently, CornrnandTalk has been extended to Navy, Air Force, and Army
versions of ModSAF, to provide control of all synthetic forces in DARPA's
STOW97 Advanced Concept Technology Demonstration.

Agent Development Tools (ADT)

A set of runtime and development tools have been created to guide an agent
developer through the steps of creating a new agent and including the agent
within an application community. The tools are implemented as agents
themselves, allowing them to collaborate with each other and with other agents.

Tools are implemented themselves in OAA.

Guide user through process of creating an agent:
Definition of capabilities
Documentation management
(publication on Web)
Code generation of agent template

* Definition of NL vocabulary
Update NL & speech recognition systems
Assembly of multiagent projects

Runtime tool for launching and monitoring

- .

Related Work

OAA, like distributed object frameworks such as OMG's CORBA or
Microsoft's DCOM, supports applications formed of distributed, heterogeneous
components. But interactions among objects in the latter systems are hand-
coded by programmers, who must know which objects are available and what
services they provide. Even distributed agent frameworks like KQML and
FIPA, which rely primarily on higher-level message passing, produce
applications with tightly-coupled component interdependencies.

The OAA tries to relax some of these constraints by making the process of
d e f ~ n g agent interactions a cooperative task between the programmer and an
automated Facilitator agent. The programmer specifies the capabilities of an
agent using a rich description language, and then defines needs in abstract
terms. The Facilitator agent then instantiates these requirements in assignments
to agents, managing parallelism, failure conditions, conflicts, etc., for the task.

4
Distributed Objects (CORBA, DCOM)

+ Object-based integration of heterogeneous components
+ Network services (e.g. security, transactions)
+ Commercial implementations exist (e.g. Iona,Visigenic)
- Interactions primarily hard-coded (method calls)

I
Agent Communication Languages (KQML, FIPA)

+ Asynchronous message-passing communication richer
than object model. Facilitates parallelism

+/- Communication acts separate from content (KTF, SL)
- Interactions primarily hard-coded (peer-to-peer msgs)

I OAA focuses on providing delegation services for
flexible interactions on tasks, triggers and data mgmt

+ Research applicable to both DOBJ and ACL models
+ Bridges can be built from and & other models
+ OAA concepts could be layered on top of other models

I Center open

A Sample Text-tomspeech Agent in C

Creating a new OAA agent involves the following steps:

Include libraries for OAA and choose a communications subsystem.

Define the list of capabilities your agent can solve using ICL expressions.
These may be either simple patterns to unify against an incoming request
(e.g., play(tts, Msg)), or more complex specifications that include
translations and synonyms, executable test conditions or constraints, etc.

For each capability declared, the agent should parse an incoming request
using the built-in icl- routines, map the request to the API of the underlying
application, and then return solutions to the request by constructing ICL
return values.

The body of the agent should initialize a connection to a Facilitator agent,
register the agent's capabilities and name with it, and then enter a loop
waiting for incoming requests from other agents.

ICLTerm capabilities = icl-TermFromStr("[play(tts, Msg)]");

ICLTerm oaa-AppDoEvent(1CLTerm Event, lCLTerm Params) (
if (strcmp(ic1-Str(EverR), "play") == 0) {

return playTTS(icl-ArgumentAsStr(Event, 2));

com-Connect("parent", connectionlnfo);
oaa-Register("parent", "tts", capabilities);
oaa-MainLoop(True);

' , SRI International, A1 Center Open Agent Architecturem 12/29/98

OAA Characteristics

In summary, here are some of the main characteristics of the OAA framework
for distributed computing.

Agents can be added or replaced on the fly

High-level, natural expression of delegated tasks

Unified approach to service provision, data
management, and task monitoring

Handwriting, speech, gestures, and direct
manipulation can be combined together

Unanticipated sharing across many applications

3 @+y$j ?..$$
<d,*

8 ><..,

KR for the World Wide Web k*-ce ?P

James Hendler
University of Maryland

College Park, MD

Page intentionally left blank

KR for the World Wide Web

James Hendler
University of Maryland

College Park, MD

One of the most exciting changes in computing in the past decade has been the
introduction of the world wide web and the internationally expanding internet,
making enormous amounts of information available to users regardless of location.
This access, however, has created information management problems beyond the
capabilities of most systems. A1 systems, combining intelligent agent technologies
with large knowledge bases, have long been proposed as a leading contender for
dealing with searching, managing, and filtering this wealth of knowledge.

In this talk, we look at some work aimed at bridging the gap between A1 and
databases, and the use of this research in support of world wide web applications. In
particular, we describe the SHOE language, an ontology mark-up language for web
documents. We show how SHOE is being used to support an emerging comrnunity-
wide web management and search tool for researchers in microbiological
epidemiology (particularly concerning documents on "transmissible spongiform
encephalopathies," such as the well-known "mad cow disease"). Also described is
the Parka-DBm system, a combination of A1 and database technologies which
allows for collection of SHOE data into knowledge bases that can be browsed or
queried by users.

for the World we Web
Prof. J. Hendler

University of Ma yland

The Web is Changing

Trends in computing and information technology indicate a number of new
directions in which we see the world wide web changing from its current form.
These trends are the motivation for our work, which focuses on building tool-
based mechanisms to support groups of web users who form on-line communities.

Web is changing!
communities forming

- Example: AAAI setting up the definitive A1 site
- XML requires communal agreement on Tags

+:+ Tool bias increasing
- Less and less users/web masters use raw HTML, etc.

a Search is doomed
- When web is 100-1000 times as large (2-4 yrs) the keyword-

based search techniques break - even worse than now
+ Standing queries and push are necessary

+> Writability coming
- Group writability and local schemes for global annotation now

under way (based on servlets)

New techniques are necessitated!

Ontologies for Web Use

The changing nature of the web mandates that many applications must have access to
information' beyond the simple English words appearing on the page. Ontologies are
formal languages that let us specify the particular terms for individuals and classes and
the relationships between these.

tologies are Necessary for

+ Ontologies can let tools "understand"
information written on documents, found in

- Allow "domain" information to be encoded

+ Define the legal relations
+ Relate individuals to classes

- Provide a mechanism for communal semantics
- Provide a mechanism for expressing standing

queries beyond a keyword based approach

Problem 1: Where Do Ontologies Come From?

To provide a machine readable ontology, it must be specified in a formal
language. Most previous work has focused on languages based on formal logics,
which are notoriously difficult for untrained users to author.

blem 1

+ Where do the ontologies come from (and
how are they re~resented)?
- Different communities want different jargon,

but across related communities, sharing is
needed

+ the ontologies must be extendible

- Users are not A1 experts
+ the ontology language must be relatively simple

- Ontology must be integrated into web tools
+ the ontology language must be HTML, SGML,

XML compliant

Problem 2: Ontology Support Tools

The second problem arises from the difficulty in finding tools that allow the
expressivity of AI languages without sacrificing efficiency. Database languages,
whether relational or object-oriented, do not permit the scope of expressive forms and
inferencing permitted by AI languages.

- Intelligent agent applications require
semantic models beyond the usual for

+ Need expressivity of A1 ontologies

- Information technology applications
demand scaling to the megabyte and
beyond sizes that most A1 knowledge-
based tools cannot support

+ Need scaling of databases (esp. RDBMs)

SHOE

SHOE is a language for creating machine-readable ontologies that can be recorded on
web pages. The home page for more information about the SHOE language is
http://www.cs.umd.edu/projects/plus/SHOE.

\

e: Ontology for the Web 1Lukeet o1 19971

http:llwww .cs.umd.eriulprojects/pluslSHOE
+:+ Contains:

- FAQ, Tutorial
- Language Spec, Base ontology, SGML DTD
- Example ontology (Computer Science)
- Expos6 and Parka-DBTM information
- Papers
- Coming soon: FDA TSE server

-@

SHOE Description

SHOE has been designed to be interoperable with many current web tools and
techniques. It has been designed with SGML and XML considered, and this makes
SHOE much more usable than other A1 techniques. SHOE is also designed to interact
with the PARKA-DB ontology management system. Parka-DB is a patent-pending
system that allows ontological information to be stored in database formats. It is
described in more detail later in this presentation.

*

imple HTML Ontology Extension

+ An SGML compliant ontology mark-up
language
- Extensible ontologies
- Tool for annotating personal web pages

+ Agent for collecting SHOE information
- Stored in Parka-DBTM KB (scalable KR)
- Generic (Java applet) querying tool

* Being used to support work at FDA

@ - Community use, special purpose tools

Example Queries

The examples below illustrate the need for SHOE. They point out that while there are
many queries that could be answered from existing web sources, but which are very
difficult to answer with current web tools. We will work through one of these examples
in detail on successive pages.

e SHOE Example Queries

t I'm doing a report on musician families, can you find
me an album performed by someone but written by
one of his/her relatives?

+ Find those internet providers in my vicinity with the
lowest rates and a better-than-average customer-
satisfaction record. + A while ago I met a married couple with the last
name "Cook." I know they work for the same
company and that the company is a subcontractor
for DoD Contract A123-45-6789. I want to find the
Cooks' home pages.

Root Ontology

SHOE allows one ontology to modify and extend another. These must be rooted in
some very basic terms, and can be found in a root ontology that is located on the SHOE
web page or which can be created by others at some other web site. Here we show
some of the basic facts from the SHOE root ontology defining person, places, things
and names. Also shown is the fact that one person can be a "relative" of another.

e - Example Root Ontology

SHOE root ontology (www.ontology.com/root.html):
<ONTOLOGY ID="root" VERSION="l.O">

<DEF-CATEGORY NAME="Thing">
<DEF-CATEGORY NAME="PersonW ISA="ThingW>
<DEF-CATEGORY NAME="Place" ISA="ThingW>
<DEF-RELATION NAME= "nameu>

cDEF-ARG POS="l" TYPE="Thing>
cDEF-ARG POS="2" TYPE=".STRINGW>

<VIEF-RELATION>
<DEF-RELATION NAME="relativel'>

4EF-ARG POS="lY' TYPE="Person>
4EF-ARG POS="2" TYPE="Person">

<VIEF-RELATION>

(SHOE home page has a suggested root ontology for applications)

Extending a SHOE Ontology

An ontology defined in SHOE can be extended. The example below extends the
root ontology shown previously by defining the terms album, image, cover and
perJomzer as would be expected in normal use of these terms.

ending an Ontology
extended ontology
(www.ontology.com/music.html):

<ONTOLOGY ID="music" VERSION="l.5">
<USE-ONTOLOGY ID="root" VERS1ON="1.Ofl PREFIX="ff

URL="http://www.ontology.co~n/root.html~~~
<DEF-CATEGORY NAME="Album" ISA="r.ThingW>
<DEF-CATEGORY NAME="Image" ISA="r.Thingl'>
<DEF-RELATION NAME="cover">

<DEF-ARG POS="lff TYPE="Albumff>
<DEF-ARG POS="2" TYPE="Image">

<\DEF-RELATION>
<DEF-RELATION NAME="performer" ARGS="Album r.Person15

cDEF-ARG POS="lfl TYPE="Album">
<DEF-ARG POS="2" TYPE="Image">

<\DEF-RELATION>

Using SHOE

Users' pages can be marked with SHOE annotations as defined in an ontology. In the
example below, clearly a fictitious use, we examine a user named "Bill Clinton" who
has added information about himself to the web in SHOE readable form. Later on the
same page, information about "Roger Clinton" is added, including the fact that he is a
relative of Bill Clinton.

-
&ETA HTIF-EQUIV "SHOE" CONTENT="VERSION=l.O">

<USEONTOLOGY ID="mot" VERSION="l.O" PREFlX="r" ~"hnp:/I~~~.ontdogy.wmlmothtml">
<CATEGORY NAME="r.PersonW>
<RELATION NAME="r.name"xARG POS=l VALW'rne">

4 R G POS=2 VALUlk'WiU Clinton"x/RELATION>
UINSTANCE,
cR Hi. I'm Bill Clinton Welame to my web page. Details on my sex life ...

Adding a subentity (www.whitehouse.govIb'1.htrnl#roger)

<INSTANCE KEY="ht lpJI~~~ .whi~govNd1tml#roger">
<CATEGORY NAhllE=.Ir.Person">
&ELATION NAME="r.npme"xARG POS=l VALUE=Ume9'>

4 R G POS=2 VALUE="Roger Clinton"x/RELATION>
cRELATION NAME="rAative"><ARG POS=l VALUE="&'>

<ARG WS=2VAL~"http:llm.whiteholw.govN1111bal"~LATION>
<RNSTANCE>

The Knowledge Annotator

As users would not generally be able to handle the complexity of the notations in
SHOE, a special JavaTM applet has been created to make it easier to do this markup.
This applet, known as the knowledge annotator, is available from the SHOE web page.

phical KR Annotation

+ Embed documents

- Gives relations
with domain and

Further Use

Since SHOE is compliant with SGML, it is easily generated from a user's database in
the same way that they can generate the HTML that users see. Thus, a marketing page
can contain a fair amount of product information written in the SHOE markup form.

e - Marketer's Use
cP> Welmme to Ule Music Company! ...
<USE-ONTOLOGY ID="music" VERSION="l.O" PREFIX="g" ~"http://~~~.ontologv.wmlmusichbnl">
-STANCE ICEY='%~:l/~~~muSicsompany.mmlB'I~tml">

<CATEGORY "g.album">
<RELATION NAME="g.r.IuuId"'G PO%1 VALUE="me">

4 R G PO%2 VALUE ="Bill Clinton: 'Ihe Saxophone SessionsWxlDEF-RELATION>
<RELATION NAME="g.wver"ARG POS=l VALUE ="me9'>

4 R G POS=2 VALUE ="http:l/~~e-a,mp~~y~~m/Bill.piF'xlDEF-RELATION>
<RELATION NAME="g.performer"xARG P O S l VALUE ="me">

4 R G P O S 2 VALUE = " ~ ~ ~ J I ~ . M ~ ~ ~ ~ ~ W . ~ O Y I ~ ~ I I ~ " ~ ~ D E F - R E L A T I O N ~
cRELATION NAME="g.composer"xARG POS=I VALUE ="men>

4 R G POS=2 VALDE ="http://www.Mteh~.gov~Itmt#roper"~EF-RELATION>
</INSTANCE>

*This is an album.

.It is named "Bill Clinton: The Saxophone Sessions"

*The cover is in the file http://www.music-company.com/Bill.gif

*The performer is on page http://www.whitehouse.gov/bill.html"

*The composer is on page http://www.whitehouse.govhill.htm1#roger

Expos6 is a web agent that searches the web for pages written with SHOE
annotations. When one is found, Expos6 imports this knowledge into a server-based
version of Parka-DB for use by other tools.

use' - An _off -line Shoe-based

+ Expose searches for web pages with Shoe
code

+$ Stores the results in a Parka-DB knowledge
base
- Parka is a high-performance ontology

management system

s A graphical front-end is used to query the
KB.

PARKA-DBTM (pat pending)

As mentioned earlier, Parka-DB is a scdeable system for keeping information in a
form so that it is efficiently accessed (like a database) but with expressive power
allowing ontological constructs and some forms of inferencing. Details of the Parka-
DB system can be found on the web page http://www.cs.umd.edu/projects/plus/Parka.

ka-DB is a Scaleable KR
tern

Expressivity Scalability

0

The Parka-DB system developed at UM provides
scaling and inferencing (KBs with millions of

@ assertions - see our web site)

PARKA-DB Features

Parka-DB was developed at the University of Maryland over a period of about ten
years. It provides unmatched capabilities for information storage combined with
knowledge management. Using its unique combination of knowledge- and data-based
capabilities, Parka-DB provides a wide range of capabilities not found in other
knowledge representation systems.

-DBTM (pat pending): Back-end
ology for Very Large Knowledge

o Parka-DB offers all of the following
- EFFICIENCY: Run-time in seconds for millions of frames

Outperforms OODBs for KR tasks
- PERSISTENT STORAGE: KB stored using database techniques

+ Fast load, write, edit
- MEMORY MANAGEMENT: Effective use of secondary storage

+ Runs efficiently even on notebooks

- PORTABILITY: C implementation, well-defined A
+ Runs on SunOS, Solaris, LUX, Linux and Windows NT

- SCALABILITY: Runs on wide range of platforms
* Generic PVMlMPI implementation ports to all common multi-

processor and distributed platforms
- ZNTEROPERABILW. Information storage in DB formats

+ Integrated with standard relational RDBMS

PARKA-DB Server

SHOE interacts with a server-based version of Parka-DB. Using a JavaTM Applet, a
user can query or browse information stored in the knowledge base. The figure below
shows a typical query using the front-end. Parka-DB is also implemented in a modular
fashion that allows remote queries using a simple MI, allowing other front-ends to be
built easily.

-DB Java Front-End

s Parka-DB Java

- Combinations

- Find related

Example Concluded

Using all the tools described so far, the user is able to express a query that asks to see
the cover of an album that is performed by one person, composed by a second, and
these two people are relatives. Using the information from the music ontology, the
(fictitious) Clinton home page, and the album vendors page, the query is answered with
a search in the Parka-DB server and the page is displayed in the user's browser.

+Expose - The Result

SHOE in Real Use

The fust real use of SHOE is in a project we are performing jointly with the "Joint
Institute for Food Safety and Nutrition" (JIFSAN). This project uses SHOE as part of a
web project for providing information to regulators, scientists and the general public
about the safety of foods. The currently used sample pages focus on "Transmissible
Spongiform Encephalopathies," and particularly, the well-known "Mad Cow Disease"
(Bovine Spongiform Encephalopathy).

AN Project: TS E Clearinghouse

+ First "Real World" SHOE Application
- Microbiological epidemiologists concerned

with food safety and risk assessment
+ Transmissible Spongiform Encephalopathy

- Example: Bovine SE (Mad Cow Disease)
+ Many pages available for markup

Buy-in from TSE research community
- US Food and Drug Agency
- US Dept of Agriculture
- World Health Org.

@

TSE Ontology

The figure below shows part of the TSE ontology as recorded in SHOE and as it
appears in a human-readable form on the ontology page. This ontology was created by
extending the root ontology described earlier.

TSE Example

This is an example of a query that asks for the symptoms of the diseases that might
effect bovine species. The query returns a list of the symptoms and the web pages to go
to for more information on each. This list was built by use of the Expos6 agent visiting
annotated TSE pages and building these into the separate knowledge base. This is what
the query looks like using the default Parka-DB front-end as described earlier.

TSE Path Analyzer

As mentioned previously, other front-end applets can be easily built to query the Parka-
DB server. The example below is from a "path analyzer" provided so that a regulator
can examine how components from a particular species might end up in particular
products. The analyzer makes a set of queries from Parka-DB and displays the results
graphically. Clicking on any of the returned items will open a menu of web pages on
which the particular item or process is described.

Conclusions

This presentation has shown how new trends in web use require tools with better
querying capabilities. To support this, we have developed SHOE, an extension to
HTML that allows users to define and use ontologies on web pages. SHOE uses a
unique server-based knowledge representation language (Parka-DBTM) to support
querying. Parka-DB provides both scaling and inferencing capabilities. Future work
(not described in this presentation) is focusing on combining Parka-DB and SHOE to
provide a basis for better push technology using aestanding query approach.

- Tools must support communities of users
- Tools must allow better query capabilities

+ SHOE provides an appropriate mark-up language
- XML compatible, Java tools available
- Being used in a real application (TSE web pages)

s SHOE is supported by Parka-DB
- Language scales to web community sizes
- Database replaces "page" for querying

s Future work
- Standing queries
- Belief systems and web page validations

Page intentionally left blank

i f$@
Why Surf Alone? Exploring the Web with

Reconnaissance Agents

Henry Lieberman
Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA

Page intentionally left blank

.. .: .
. . . . -

Why Surf Alone? Exploring the
Web with Reconnaissance Agents

Henry Lieberman

MIT Media Lab

Cambridge, Massachusetts

Http://www.media.mit.edu/-lieber

Henry Ueberman MIT Media Lab

Traditional Web Surfing
a $?g@&!%@%$ -

Either ...
Browsing [= Unconstrained link following]

Good news: People love to explore

Bad news: Tend to get "lost in hyperspace"

Or Searching [= Precisely targeted retrieval]

Good news: Computers can search faster

Bad news: What if I don't know exactly what I
want?

Henry Ueberman MTT Media Lab

Let an agent produce browsing suggestions while
the user is browsing.

Let each partner do what they do best

The user is better at deciding which pages are

The computer is faster at searching pages.

Agent performs search, but learns how to evaluate
pages from the user.

Letizia acts as an advance scout for Web browsing:

It watches your Web browsing to try to learn
what topics you are interested in.

While you are reading a Web page, Letizia
searches the neighborhood of the page to
discover other pages you might be interested in.

Why the Name Letizia?

"Letizia ~lvarez de Toledo has observed that this
vast library is useless: rigorously speaking, a
single volume would be sufficient, a volume of
ordinary format, printed in nine or ten point type,
containing an infinite number of infinitely thin

- Jorge Luis Borges, The Libra y of Babel

Henry Ueberman MIT Media Lab

Letizia is a "Channel Surfing"
Interface for the Web

,r, e &%%h%$X>Y -

Henry Ueberman MK Media Lab

Browsing a link requires a "leap of faithff

* You don't know what's behind the link.

Letizia's lookahead can try to anticipate
whether you'll be interested in the link.

Breadth-First vs. Depth-First Search

Web browsers encourage depth-first browsing

But most information of interest is not deep in Web.

Letizia conducts a breadth-first search in parallel
with the user's browsing activity.

User's browsing actions immediately refocus the

User's Search [Depth-First]

** ' . I v .UIDI

User's Search & Letizia's Search
.'i; .' "" , '"""y2 $b&gx&&g&@$* -

Heulyllebcmrr'~ &Ita I

Henry Lieberman MTT Media Lab

Infers interests from content of document.

Applies weak heuristics based on keywords

Would be better to use partial parsing techniques,
knowledge-based content inference.

Inferences of interest from sequence of browsing

Selection of link indicates interest in
containing document.

"Passing over" links indicates disinterest.

User actions other than browsing

Search, entering on hotlist, mailing,
downloading, dwell time. ..

Persistence of Interest

Users tend to remain interested in a topic long after
they have performed a search or browsed a
document containing that topic.

It is too much trouble to restate interest at each

Agent can play the role of maintaining persistence

Discovering Serendipitous
Connections

c2$&g&&$Yy@**p$ -
Browsing tends to be "chunky"; you browse a set of

related topics for a while, then switch to an
unrelated topic.

If I browse for "Parisf', then "Jazzf', ...
then "Calendar of Events in Boston"

... agent can show "French Jazz Festival".

I could type all the topics into a search engine, but I
won't.

Henry Ueberman MK Media Lab

Let's Browse

An agent to assist multiple users browsing together

What does it mean for a group of people to
browse together?

How could an intelligent agent assist the
browsing process?

Automatic detection of the presence of users.

Automated "channel surfing" browsing.

Dynamic display of profiles, recommendations.

Let's Browse Setup
3 d -

Henry Lieberman MK Media Lab

User Profiles
$&@:&;&g~ -

In advance, Web crawler scanned a breadth-first
neighborhood surrounding the user's home page.

Organization's page used if home page not found.

TFIDF keyword frequency analysis.

Weighted list of keywords.

Can also compute profile dynamically.

Henry Ueharman MK Media Lab

Discovering Common Interests

Intersections of user profiles.

Changes dynamically as users come and go.

Result: Needed to keep lower-frequency terms to
ensure non-empty intersections of interests.

n MTT Media Lab

Design Principles for
Autonomous Interface Agents

< " & B j j -
If you're only trying to make suggestions, each

decision isn't so critical.

There's a tradeoff between deliberation and action.

Take advantage of information that the user gives the
agent "for free".

Take advantage of the user's "think time".

The user's attention may be time-shared.

Autonomous interface agents may fit the cognitive
styles of some users, but not others.

Henry Ueberman MIT Media Lab -

Letizia Shows How Intelligent
Agents Can Improve Interfaces

~~$?g-$~*gq$> -
Letizia works with an interactive interface

It doesn't try to replace interaction.

Letizia learns from interaction with the user

It gets better over time.

Letizia anticipates the user's needs and interests

It works proactively, while the user may be
doing something else.

Henry Ueberman MIT Media Lab

I REPORT DOCUMENTATION PAGE I OMB No. 07704-0188 I Form Approved

I

Public reporting burden for this wlledion of information is estimated to average 1 hour pw response. inOtudina the time for reviewina instructions. searchii exMns data sources,
gathering and maintaining the data needed, and wmpleting and reviwing the w~ection of infumation. Send-mments regarding <his burden &mate orGy &her aspect of thii

d information, including suggestii for reducing thk burden, to Washimaton HeaQuarba Services. Direct& for lnfomalbn O r n r a t i i and Rewrts. 1215 Jefferson I
Davis Highwg! Suite 1204, ~ t i i g t o n , - ~ ~ 2220222202-43U2, and-to the ~fice-of Manageknt and 8udget, ~aperwork Redudion Project (07~-01&). Wash i in , DC &03.

1. AGENCY USE ONLY (Leave blank) (2 REPORT DATE (3. REPORTTYPE AND DATES COVERED I

I h e d K. Noor and John B. Malone, Compilers

I February 1999 I Conference Publication
4. TITLE AND SUBTITLE

Intelligent Agents and Their Potential for Future Design and
Synthesis Environment

5. FUNDING NUMBERS

WU 282-10-01-42

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(=)

NASA Langley Research Center
Hampton, VA 23681-2199

m

11. SUPPLEMENTARY NOTES
Ahmed K. Noor: University of Virginia Center for Advanced Computational Technology, Hampton, VA;
John B. Malone: Langley Research Center, Hampton, VA

8. PERFORMING ORGANlZAflON
REPORT NUMBER

L-17802

9. SPONSORlNUMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

12a. DlSTRlBUTlONlAVAlLABILIN STATEMENt (1%. DISTRIBUTION CODE I

10. SPONSORlNG/MONlTORlNG
AGENCY REPORT NUMBER

NASA/CP-1999-208986

Unclassified-Unljmited
Subject Category 61 Distribution: Standard
Availability: NASA CASI (301) 621-0390

I
13. ABSTRACT (Manlmum 200 words) I

This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future
Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17,
1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational
Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the
workshop were to assess the status of intelligent agents technology and to identify the potential of software agents
for use in future design and synthesis environment. The presentations covered the current status of agent technol-
ogy and several applications of intelligent software agents.

Certain materials and products are identified in this publication in order to specify.adequately the materials and
products that were investigated in the research effort. In no case does such identification imply recommendation or
endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best
ones available for this purpose. In many cases equivalent materials and products are available and would probably
produce equivalent results.

Prescribed by ANSI Std. 23418
298102

