37 research outputs found

    Q-Neutrosophic Soft Relation and Its Application in Decision Making

    Get PDF
    Q-neutrosophic soft sets are essentially neutrosophic soft sets characterized by three independent two-dimensional membership functions which stand for uncertainty, indeterminacy and falsity. Thus, it can be applied to two-dimensional imprecise, indeterminate and inconsistent data which appear in most real life problems. Relations are a suitable tool for describing correspondences between objects

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    A precise bare simulation approach to the minimization of some distances. Foundations

    Full text link
    In information theory -- as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing and pattern recognition -- many flexibilizations of the omnipresent Kullback-Leibler information distance (relative entropy) and of the closely related Shannon entropy have become frequently used tools. To tackle corresponding constrained minimization (respectively maximization) problems by a newly developed dimension-free bare (pure) simulation method, is the main goal of this paper. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary dimension, and our method is precise (i.e., converges in the limit). As a side effect, we also derive an innovative way of constructing new useful distances/divergences. To illustrate the core of our approach, we present numerous examples. The potential for widespread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences and entropies in various different research fields (which may also serve as an interdisciplinary interface)

    Collected Papers (on various scientific topics), Volume XIII

    Get PDF
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.‬‬‬‬‬‬‬

    Advanced maximum entropy approaches for medical and microscopy imaging

    Get PDF
    The maximum entropy framework is a cornerstone of statistical inference, which is employed at a growing rate for constructing models capable of describing and predicting biological systems, particularly complex ones, from empirical datasets.‎ In these high-yield applications, determining exact probability distribution functions with only minimal information about data characteristics and without utilizing human subjectivity is of particular interest. In this thesis, an automated procedure of this kind for univariate and bivariate data is employed to reach this objective through combining the maximum entropy method with an appropriate optimization method. The only necessary characteristics of random variables are their continuousness and ability to be approximated as independent and identically distributed. In this work, we try to concisely present two numerical probabilistic algorithms and apply them to estimate the univariate and bivariate models of the available data. In the first case, a combination of the maximum entropy method, Newton's method, and the Bayesian maximum a posteriori approach leads to the estimation of the kinetic parameters with arterial input functions (AIFs) in cases without any measurement of the AIF. ‎The results shows that the AIF can reliably be determined from the data of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) by maximum entropy method. Then, kinetic parameters can be obtained. By using the developed method, a good data fitting and thus a more accurate prediction of the kinetic parameters are achieved, which, in turn, leads to a more reliable application of DCE-MRI. ‎ In the bivariate case, we consider colocalization as a quantitative analysis in fluorescence microscopy imaging. The method proposed in this case is obtained by combining the Maximum Entropy Method (MEM) and a Gaussian Copula, which we call the Maximum Entropy Copula (MEC). This novel method is capable of measuring the spatial and nonlinear correlation of signals to obtain the colocalization of markers in fluorescence microscopy images. Based on the results, MEC is able to specify co- and anti-colocalization even in high-background situations.‎ ‎The main point here is that determining the joint distribution via its marginals is an important inverse problem which has one possible unique solution in case of choosing an proper copula according to Sklar's theorem. This developed combination of Gaussian copula and the univariate maximum entropy marginal distribution enables the determination of a unique bivariate distribution. Therefore, a colocalization parameter can be obtained via Kendall’s t, which is commonly employed in the copula literature. In general, the importance of applying these algorithms to biological data is attributed to the higher accuracy, faster computing rate, and lower cost of solutions in comparison to those of others. The extensive application and success of these algorithms in various contexts depend on their conceptual plainness and mathematical validity. ‎ Afterward, a probability density is estimated via enhancing trial cumulative distribution functions iteratively, in which more appropriate estimations are quantified using a scoring function that recognizes irregular fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian criterion. Uncertainty induced by statistical fluctuations in random samples is reflected by multiple estimates for the probability density. In addition, as a useful diagnostic for visualizing the quality of the estimated probability densities, scaled quantile residual plots are introduced. Kullback--Leibler divergence is an appropriate measure to indicate the convergence of estimations for the probability density function (PDF) to the actual PDF as sample. The findings indicate the general applicability of this method to high-yield statistical inference.Die Methode der maximalen Entropie ist ein wichtiger Bestandteil der statistischen Inferenz, die in immer stärkerem Maße für die Konstruktion von Modellen verwendet wird, die biologische Systeme, insbesondere komplexe Systeme, aus empirischen Datensätzen beschreiben und vorhersagen können. In diesen ertragreichen Anwendungen ist es von besonderem Interesse, exakte Verteilungsfunktionen mit minimaler Information über die Eigenschaften der Daten und ohne Ausnutzung menschlicher Subjektivität zu bestimmen. In dieser Arbeit wird durch eine Kombination der Maximum-Entropie-Methode mit geeigneten Optimierungsverfahren ein automatisiertes Verfahren verwendet, um dieses Ziel für univariate und bivariate Daten zu erreichen. Notwendige Eigenschaften von Zufallsvariablen sind lediglich ihre Stetigkeit und ihre Approximierbarkeit als unabhängige und identisch verteilte Variablen. In dieser Arbeit versuchen wir, zwei numerische probabilistische Algorithmen präzise zu präsentieren und sie zur Schätzung der univariaten und bivariaten Modelle der zur Verfügung stehenden Daten anzuwenden. Zunächst wird mit einer Kombination aus der Maximum-Entropie Methode, der Newton-Methode und dem Bayes'schen Maximum-A-Posteriori-Ansatz die Schätzung der kinetischen Parameter mit arteriellen Eingangsfunktionen (AIFs) in Fällen ohne Messung der AIF ermöglicht. Die Ergebnisse zeigen, dass die AIF aus den Daten der dynamischen kontrastverstärkten Magnetresonanztomographie (DCE-MRT) mit der Maximum-Entropie-Methode zuverlässig bestimmt werden kann. Anschließend können die kinetischen Parameter gewonnen werden. Durch die Anwendung der entwickelten Methode wird eine gute Datenanpassung und damit eine genauere Vorhersage der kinetischen Parameter erreicht, was wiederum zu einer zuverlässigeren Anwendung der DCE-MRT führt. Im bivariaten Fall betrachten wir die Kolokalisierung zur quantitativen Analyse in der Fluoreszenzmikroskopie-Bildgebung. Die in diesem Fall vorgeschlagene Methode ergibt sich aus der Kombination der Maximum-Entropie-Methode (MEM) und einer Gaußschen Copula, die wir Maximum-Entropie-Copula (MEC) nennen. Mit dieser neuartigen Methode kann die räumliche und nichtlineare Korrelation von Signalen gemessen werden, um die Kolokalisierung von Markern in Bildern der Fluoreszenzmikroskopie zu erhalten. Das Ergebnis zeigt, dass MEC in der Lage ist, die Ko- und Antikolokalisation auch in Situationen mit hohem Grundrauschen zu bestimmen. Der wesentliche Punkt hierbei ist, dass die Bestimmung der gemeinsamen Verteilung über ihre Marginale ein entscheidendes inverses Problem ist, das eine mögliche eindeutige Lösung im Falle der Wahl einer geeigneten Copula gemäß dem Satz von Sklar hat. Diese neu entwickelte Kombination aus Gaußscher Kopula und der univariaten Maximum Entropie Randverteilung ermöglicht die Bestimmung einer eindeutigen bivariaten Verteilung. Daher kann ein Kolokalisationsparameter über Kendall's t ermittelt werden, der üblicherweise in der Copula-Literatur verwendet wird. Die Bedeutung der Anwendung dieser Algorithmen auf biologische Daten lässt sich im Allgemeinen mit hoher Genauigkeit, schnellerer Rechengesch windigkeit und geringeren Kosten im Vergleich zu anderen Lösungen begründen. Die umfassende Anwendung und der Erfolg dieser Algorithmen in verschiedenen Kontexten hängen von ihrer konzeptionellen Eindeutigkeit und mathematischen Gültigkeit ab. Anschließend wird eine Wahrscheinlichkeitsdichte durch iterative Erweiterung von kumulativen Verteilungsfunktionen geschätzt, wobei die geeignetsten Schätzungen mit einer Scoring-Funktion quantifiziert werden, um unregelmäßige Schwankungen zu erkennen. Dieses Kriterium verhindert eine Unter- oder Überanpassung der Daten als Alternative zur Verwendung des Bayes-Kriteriums. Die durch statistische Schwankungen in Stichproben induzierte Unsicherheit wird durch mehrfache Schätzungen für die Wahrscheinlichkeitsdichte berücksichtigt. Zusätzlich werden als nützliche Diagnostik zur Visualisierung der Qualität der geschätzten Wahrscheinlichkeitsdichten skalierte Quantil-Residuen-Diagramme eingeführt. Die Kullback-Leibler-Divergenz ist ein geeignetes Maß, um die Konvergenz der Schätzungen für die Wahrscheinlichkeitsdichtefunktion (PDF) zu der tatsächlichen PDF als Stichprobe anzuzeigen. Die Ergebnisse zeigen die generelle Anwendbarkeit dieser Methode für statistische Inferenz mit hohem Ertrag.

    Collected Papers (on Neutrosophic Theory and Applications), Volume VI

    Get PDF
    This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Collected Papers (on Neutrosophic Theory and Applications), Volume VII

    Get PDF
    This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam

    Pertanika Journal of Science & Technology

    Get PDF
    corecore