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The number of patient health data has been estimated to have reached 2314 exabytes
by 2020. Traditional data analysis techniques are unsuitable to extract useful information
from such vast quantity of data. Thus, intelligent data analysis methods combining human
expertise and computational models for accurate and in-depth data analysis are necessary.
The technological revolution and medical advances made by combining vast quantities
of available data, cloud computing services, and AI-based solutions can provide expert
insight and analysis on a mass scale and at a relatively low cost. Computational intelligence
(CI) methods such as fuzzy models, artificial neural networks, evolutionary algorithms,
and probabilistic methods have recently emerged as promising tools for the development
and application of intelligent systems in healthcare practice. CI-based systems can learn
from data and evolve according to changes in the environments by taking into account
the uncertainty characterizing health data, including omics data, clinical data, sensor, and
imaging data. The use of CI in healthcare can improve the processing of such data to
develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well
as for analysis of administrative processes.

The present Special Issue on Computational Intelligence for healthcare is intended to
show the potential and the practical impacts of CI techniques in challenging healthcare
applications. The Special Issue received several submissions, all of which went through
a rigorous peer-review process. After the review process, twelve papers were selected
on the basis of the review ratings and comments. These selected papers range over main
applications of CI in healthcare.

A special case of medical data is the data generated by omics technologies, which
enable DNA decoding and genome sequencing. Such data represent the expression of
genes or portions thereof in experimental subjects or in cell lines produced in the laboratory.
The study of the complex interactions between genes makes it possible to understand their
role in the course of a particular disease. In particular, the analysis of the different biological
levels allows us to better address the knowledge of pathogenetic mechanisms at the molecu-
lar level, allowing the identification of biomarkers that allow us to improve the diagnosis or
even to plan personalized therapies However, the complexity of the relationships and the
uncertainty present in the data collected and in the phenomena studied make it necessary
to use specific methods for the treatment of information with these characteristics. The first
paper, entitled, “Explaining Ovarian Cancer Gene Expression Profiles with Fuzzy Rules and
Genetic Algorithms” [1], addresses the analysis of gene expression data for approaching
the study of expression profiles in ovarian cancer compared to other ovarian diseases. The
work combines a feature selection among genes that is guided by the genetic algorithm
into the creation of fuzzy if–then rules that explain how classes can be distinguished by
observing changes in the expression of selected genes. After testing several parameters,
a final model was obtained consisting of 10 genes involved in the molecular pathways
of cancer and 10 rules that correctly classify all samples. Omics data of a different kind,
namely sgRNA sequences, have been analyzed in the paper “CRISPRLearner: a deep
learning-based system to predict CRISPR/Cas9 sgRNA on-target cleavage efficiency” [2].
In particular, ten datasets were considered. After a pre-processing step, including data
standardization and augmentation, a convolutional neural network was used to predict
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sgRNA cleavage efficiency. Experiments on benchmark datasets showed the effectiveness
of the proposed method in correctly identifying the disease. Moreover, a comparison with
state-of-the-art methods shows the superiority of the proposed deep-learning-based model.

In addition, detection and analysis of physiological data acquired from sensors are
an essential process in smart healthcare applications. Indeed, with the advent of low-cost
sensors and fast networks, a new discipline called Internet of Medical Things (IoMT)
has emerged. It allows a continuous monitoring of patients through intelligent objects.
Physiological data analysis can be performed in fog computing to abridge the excess latency
introduced by cloud computing. However, the latency for the emergency health status and
overloading in fog environment become key challenges for smart healthcare. The paper
“Intelligent Fog-Enabled Smart Healthcare System for Wearable Physiological Parameter
Detection” [3] presents a novel healthcare architecture for physiological parameter detection
that resolves these problems. The overall system is built upon three layers. In the first layer,
data from the wearable devices of patients are subjected to fault detection in a personal
data assistant (PDA) via a rapid kernel principal component analysis (RK-PCA) algorithm.
Then, in the second layer, the faultless data are processed to remove redundancy via a new
fuzzy assisted objective optimization by ratio analysis (FaMOORA) algorithm. A two-level
health-hidden Markov model (2L-2HMM) finds the user’s health status from temporal
variations in data collected from wearable devices. Finally, the user’s health status is
detected in the third layer through a hybrid machine learning algorithm called SpikQ-Net,
and according to the user’s health status, immediate action is taken. The proposed tri-fog
health model is validated by a thorough simulation showing better achievements in latency,
execution time, detection accuracy, and system stability.

When different sensors are used for data acquisition, synchronization is a critical factor.
In the article “A Synchronized Multi-Unit Wireless Platform for Long-Term Activity Moni-
toring”, a time-synchronized multi-unit, multi-sensor, and multi-rate acquisition system
for kinematic and static analysis is proposed [4]. It is a wearable multi-board acquisition
system for offline activity monitoring. A master–slave architecture was used to syncronize
measures acquired from different sensors. Moreover, a mobile Android application was
developed in order to manage the data acquisition. The high modularity of the proposed
platform makes it general-purpose. Indeed, experiments on different scenarios have been
carried out to validate its performance. In particular, a case study of surface electromyog-
raphy (sEMG) was used for monitoring muscle activities during walking. sEMG signals
are also used in the article “A Deep Learning Approach to EMG-Based Classification of
Gait Phases During Level Ground Walking” for gait phase classification [5]. Specifically,
an Artificial Neural Network (ANN) was proposed to classify gait events and to predict
foot–floor contact. The use of ANN has allowed the automatic selection of relevant features
in data, thus avoiding the data engineering phase, which is necessary when using other
machine learning algorithms. In vivo experiments have been conducted at the Movement
Analysis Laboratory of Università Politecnica delle Marche to acquire gait signals. Raw
signals were pre-processed to obtain the final labeled segments of the walking phases.
Four different architectures of the multi layer perceptron algorithm (MLP) were proposed
by modifying the model structure, and the results have been compared. The aim of the
analysis was to detect the transitions between gait phases. Furthermore, a comparison
with a feature-based (FB) method has shown that the best MLP model is more accurate in
detecting phase changes.

A further essential and crucial task in healthcare is image analysis to support medical
diagnosis. In particular, recent advances in neuroimaging techniques, such as diffusion
tensor imaging (DTI), represent a crucial resource for brain image analysis in order to detect
alterations related to severe neurodegenerative disorders, such as Alzheimer’s disease (AD).
The paper “An Ensemble Learning Approach Based on Diffusion Tensor Imaging Measures
for Alzheimer’s Disease Classification” [6] presents an ensemble learning approach for the
automatic discrimination between healthy controls and AD patients, using DTI measures
as predicting features and a soft-voting ensemble approach for the classification. The
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proposed approach, efficiently combining single classifiers trained on specific groups of
features, is able to improve classification performances with respect to the comprehen-
sive approach of the concatenation of global features and at the same time reducing the
dimensionality of the feature space and in turn the computational effort. A different task
on images has been implemented in the article “Leukemia Image Segmentation by Using a
Hybrid Histogram-Based Soft Covering Rough k-Means Clustering Algorithm” [7]. Image
segmentation is the task of partitioning a given image in not-overlapped areas to detect
regions of interest. Particularly, authors propose a leukemia diagnosis support system
through nucleus segmentation. A soft set together with a rough set were used to represent
the uncertainty in nucleus images. A four-step pipeline is proposed. Images are firstly
pre-processed, and then a clustering algorithm is applied. A histogram-based method
(HSCRKM) is proposed to identify the optimal number of cluster. Then, different features
are extracted from the images, and the resulting data are used to predict the areas in the
image as belonging to the leukemia tumor class or the healthy class. Several clustering and
classification methods have been compared to identify the optimal pair. Results show that
the proposed HSCRKM overcomes the compared clustering methods. Moreover, all the
classification models increased their performance when trained on groups coming from
HSCRKM. However, among all the considered prediction methods, logistic regression
and neural network provided the best performance (average accuracy higher than 90%).
Diabetic Retinopathy (DR) images are analyzed in the paper “Blended Multi-Modal Deep
Convnet Features for Diabetic Retinopathy severity Prediction” for an early recognition of
the disease [8]. Both uni-modal and multi-modal approaches, which combine data coming
from different sources, were used to predict the severity level of the disease (healthy, mild,
moderate, severe, and proliferative). To this aim, Deep Neural Networks (DNN) have been
proposed. In particular, in the uni-modal approach, a single pre-trained ConvNet is used
to extract the final feature representation. In the multi-modal approach, the final feature
representation is obtained by blending deep features extracted from multiple ConvNets.

One main factor that hampers the effectiveness of CI methods in the medical domain
is the imbalanced nature of medical data due to non-uniform distribution of the number of
instances per class. The paper entitled “Integrating Enhanced Sparse Autoencoder-Based
Artificial Neural Network Technique and Softmax Regression for Medical Diagnosis” [9]
addresses the problem of unbalancement in medical datasets to create robust models for
the prediction of different diseases. The authors propose an approach that integrates an
enhanced sparse autoencoder (SAE) for effective feature learning and an optimized Softmax
regression for robust classification. When employed for the prediction of three different
diseases, namely chronic kidney disease, cervical cancer, and heart disease, the proposed
method provides higher test accuracies compared to other machine learning algorithms. In
addition, the paper “Two-Stage Monitoring of Patients in Intensive Care Unit for Sepsis
Prediction Using Non-Overfitted Machine Learning Models” [10] addresses the problem of
unbalanced clinical data. In this case, data concern patients in the Intensive Care Unit (ICU)
to face the problem of early detection of sepsis, collected within the PhysioNet/Computing
in Cardiology Challenge 2019. The labeled clinical dataset includes only 2% records with
the sepsis label, leading to highly unbalanced dataset. To address these issues, the authors
propose a method using two separate ensemble models to take into the account the amount
of time the patients spent in the ICU. A total of 44 different methods, based on decision
trees, naive Gaussian Bayes, SVM, and ensemble learners,are compared. Results show the
effectiveness of the proposed method. Moreover, the considered machine learning models
return comparable utility score values when the number of features is reduced, suggesting
that feature engineering is necessary.

Long-term electrocardiogram (ECG) is used to detect Premature Ventricular Con-
traction (PVC) in the paper “Searching for Premature Ventricular Contraction from Elec-
trocardiogram by Using One-Dimensional Convolutional Neural Network” [11]. A one-
dimensional convolutional neural network (CNN) has been used for the prediction tasks. It
allows avoiding pre-processing phases on data, as required by common machine learning
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algorithms, and it is able to directly analyze raw data while extracting the most relevant
features from it. High performance values are returned by the diagnostic system (accuracy
of 99.64%).

Finally, a multistage support vector machine model has been proposed for early
recognition of Unipolar Depression (UD) disease in the article “Realizing an integrated
multistage support vector machine model for augmented recognition of unipolar depres-
sion” [12]. A pre-processing phase for feature ranking is implemented in order to reduce
the data dimensionality. Comparison with other machine learning algorithms has shown
the effectiveness of the proposed approach in correctly identifying the disease, other than
overcoming their performance. Moreover, the recursive feature selection method has
proved to be able to improve the accuracy of the classifiers.
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Abstract: The analysis of gene expression data is a complex task, and many tools and pipelines are
available to handle big sequencing datasets for case-control (bivariate) studies. In some cases, such as
pilot or exploratory studies, the researcher needs to compare more than two groups of samples
consisting of a few replicates. Both standard statistical bioinformatic pipelines and innovative
deep learning models are unsuitable for extracting interpretable patterns and information from
such datasets. In this work, we apply a combination of fuzzy rule systems and genetic algorithms
to analyze a dataset composed of 21 samples and 6 classes, useful for approaching the study of
expression profiles in ovarian cancer, compared to other ovarian diseases. The proposed method is
capable of performing a feature selection among genes that is guided by the genetic algorithm, and of
building a set of if-then rules that explain how classes can be distinguished by observing changes in
the expression of selected genes. After testing several parameters, the final model consists of 10 genes
involved in the molecular pathways of cancer and 10 rules that correctly classify all samples.

Keywords: computational intelligence; classification; fuzzy inference systems; genetic algorithms;
next-generation sequencing; ovarian cancer; interpretable models

1. Introduction

Among the most common cancers in women, ovarian cancer is the most lethal, due to
its late symptoms and diagnosis, and its onset can be a primary tumor or secondary tumor
of the fallopian tube or endometrium [1]. Based on histopathology and molecular genetic
alterations, ovarian carcinomas are divided into five main types that can be considered as
different diseases: high-grade serous, endometrioid, clear cell, mucinous, and low-grade
serous carcinomas [2]. There is currently no reliable test to diagnose asymptomatic ovarian
cancer, and any study of the molecular processes that are active in its proliferating cells
can contribute to the identification of new molecular biomarkers for efficient diagnosis,
prognosis, and therapy.

Next-Generation Sequencing (NGS) technologies provide researchers with experi-
mental datasets that describe the molecular profile of cancerous cells by allowing them
to estimate the expression of genes in a tissue sample, which is the number of copies of a
gene that are present as Ribonucleic Acid (RNA) fragments and decoded by the sequencer.
Standard bioinformatic pipelines are used to compute gene expressions and to compare
samples for significant expression differences, with differential expression analysis [3].

However, NGS experiments are quite expensive and require further laboratory val-
idation of the most significant results, as they can present noise in the data that stems
from the inherent complexity of the technology. This is why many researchers use NGS
with a limited number of samples to extract the most evident molecular activities and
validate those results only on a larger number of samples. Moreover, NGS results are
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highly dependent on the laboratory experimental settings used and the datasets produced
with different technical conditions (sequencer type, tissue type, tissue conservation, etc.)
are not directly comparable. This is why NGS data are mainly exploited for case-control
studies with only two conditions.

Due to the digitalization process, the biomedical domain represents a source of valu-
able data. A growing amount of this data is generated every day, ranging from vital
parameters to omics data and output from imaging devices. Therefore, machine learning
techniques have been used extensively in the medical domain, as they can automatically
derive useful models for making predictions, and detecting patterns that reveal hidden
relationships in the data [4]. Automatic systems have been proposed to support medical
experts while avoiding repetitive tasks. Moreover, thanks to the availability of this huge
amount of data and the high computational capabilities of modern systems, novel insights,
which could not have been discovered through manual analyses, have been returned by
automatic techniques.

Machine learning algorithms have been applied to biological data of the most varied
diseases such as neurodegenerative diseases [5,6] and cancer [7,8], just to name a few.
Computational Intelligence is a research branch dealing with nature-inspired algorithms,
such as fuzzy logic, neural networks, and evolutionary algorithms, which can process
numerical data to address complex problems that may be difficult to solve with traditional
machine learning algorithms [9]. Neural networks have gained a lot of attention in recent
years and their “deep” variants have led to Deep Learning (DL), which has redefined the
state-of-the-art performance in several domains, including the medical one [10]. In particu-
lar, DL algorithms have been successfully applied to omics data for early disease prediction
or the extraction of meaningful biomarkers [11,12]. However, DL techniques have two main
drawbacks: they are not interpretable, even though research is moving in this direction [13],
and they need a huge amount of data to learn a model.

On the contrary, fuzzy logic has been widely used in the medical field due to its
ability to represent the uncertainty and vagueness inherent in medical concepts and in
the clinician’s way of reasoning [14]. It differs from classical Boolean logic as each object
partially belongs to a given set. A membership matrix is used to represent the possibility
that each object belongs to each set [9]. Moreover, a Fuzzy Inference System (FIS) is a
fuzzy logic-based reasoning system that uses linguistic variables and linguistic terms to
represent vague and uncertain concepts that are involved in the reasoning, thus leading
to natural language-based explanations. In fact, the knowledge base of these systems is
composed of fuzzy variables whose values are represented through fuzzy sets and if-then
rules that represent the reasoning [14]. On the other hand, Genetic Algorithms (GAs) are
heuristic methods inspired by natural evolution in which optimal individuals are selected
for the reproduction of the next generation of the population [9]. They are commonly used
to solve complex problems that cannot be handled with procedural methods due to the
high complexity of the task. GAs are typically used in Bioinformatics to select a subset
of more informative genes; in fact, omics data usually produce thousands of variables for
each single sample in an experimental investigation. This curse of dimensionality affects
automatic techniques, so dimensionality reduction techniques are often used to extract the
most significant subset of genes for the specific task [15]. Thanks to their ability to gradually
refine solutions through natural selection, GAs are not biased by human knowledge of the
problem and are effectively used for feature selection [16,17].

In this study, we describe the results of our analyses performed on a set of data
presented in previous work [18]. This dataset contains the sequencing of 21 human ovar-
ian tissue samples from 12 cancer and 9 non-cancer samples, grouped into 6 diagnostic
classes. Due to the large number of classes and the low number of replicates for each
class, this dataset is quite difficult to analyze with standard bioinformatic tools. In this
paper, we aim to extract useful information from this dataset. The goal of the research
was to characterize ovarian cancer tissues by comparing them with other ovarian and
uterine tissues and to find a panel of genes capable of discriminating classes and providing
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information on the pathologic conditions. The method proposed to analyze this dataset
is based on genetic algorithms for the selection of features and fuzzy rule-based systems
for the classification task, i.e., the diagnosis of the 6 classes of samples. The proposed
method aims to provide experts with an interpretable model that can help them, in further
laboratory studies, to clarify still unknown mechanisms behind the pathology.

To the best of our knowledge, this is the first time fuzzy logic and genetic algorithms
have been combined for ovarian cancer classification. Furthermore, this is the first time this
dataset has been analyzed using automatic techniques. Therefore, both biological analyses
and computational intelligence techniques have been applied in this paper to verify the
effectiveness of the derived results.

The rest of this paper is organized as follows. Section 2 describes the dataset that has
been analyzed through the bioinformatic pipeline, and the computational intelligence tech-
niques employed. Section 3 reports the results obtained with the proposed methodologies.
Finally, conclusions are summarized in Section 4.

2. Materials and Methods

In this section, we will present the dataset employed in this work and the techniques
used to analyze it and evaluate the results obtained.

2.1. Dataset Description and Bioinformatic Preprocessing

The dataset used in this work was presented in a previous paper [18]. It was produced
with the Illumina HiSeq2500 sequencer and consists of approximately 30 million paired-end
reads (RNA fragments) per sample.

The sequenced samples were selected from 21 Formalin-Fixed Paraffin-Embedded
tissues, belonging to 6 classes that are the target of our investigation:

• 3 endometrioid carcinoma (KE);
• 6 high-grade serous carcinoma (KS);
• 3 low-grade serous carcinoma (KSB);
• 3 serous cystadenofibroma (CS);
• 3 endometriosis (EN);
• 3 healthy tuba (N).

The last three groups are non-cancerous samples. The dataset is represented by raw
FASTQ files (text files containing the RNA fragments detected by the sequencer), and the
gene expressions (RNA counts) were estimated with the bioinformatic tool STAR [19],
combined with RSEM [20] and MultiDEA [21].

After gene expression estimation, the final dataset has 21 samples and over 45 thou-
sand genes (features), but many of them will be filtered out for low intensity as low
expressions are not reliable for evaluating significant changes in gene values. By applying
the standard filter of gene expressions > 50, the feature space of this dataset is reduced
to about 9 thousand genes. The main goal of expression profiling is to identify all the
genes that are expressed in the samples under study and to extract the genes that show
changes in the expression that may be correlated to the experimental conditions. The gene
functions, activities, and interactions are collected in molecular pathways and stored in
pathway databases, such as KEGG [22] or BioCarta [23].

2.2. Differential Expression Analysis

Differential expression analysis aims to verify whether an observed change in RNA
counts (gene expressions) between two experimental conditions is statistically significant.
Changes in expression are correlated to the activation of a series of actions among molecules
in the cell (a pathway) that change the state of the cell in response to a stimulus.

Following a standard bioinformatic workflow, differential gene expression analysis
was performed with DESeq2 [24]. Significant changes are called overexpressions if the
expression of the gene increases and underexpressions if it decreases, and the magnitude
of the change is evaluated by fold change computation, which is the logarithmic rate of
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expression between two conditions. When expression values are estimated from RNA
counts, they are proportional to the length of the gene that produced the fragments detected.
The fold change metric is independent of gene length, but the significance of its result must
be statistically tested. Only mean gene expressions > 50 were considered in the analysis,
while the result of at least one halved or doubled expression with a p-value < 0.05 was
considered statistically significant, after multiple testing adjustments by False Discovery
Rate [25].

2.3. Fuzzy Rule-Based System

The classification task was performed on subsets of genes (selected by the genetic
algorithm, as will be described in Section 2.4) with a fuzzy rule-based system. A Fuzzy
Inference System (FIS) is a popular rule-based method for modeling uncertain and impre-
cise information. In the medical domain, linguistic terms are used to represent patients’
symptoms and suggestions are derived through fuzzy inference mechanisms. The do-
main knowledge is expressed in the knowledge base in the form of if-then fuzzy rules.
The strength of these systems is their “interpretability”, that is the ability to easily express
the reasoning behind the rules in a way that is understandable by humans [26]. This is a
critical aspect in medical applications as experts need to understand how certain results
are obtained to trust the technology.

The classifier was implemented with the “frbs” R package [27]. As the aim of the work
was to analyze the gene expression variations, the input variables are the genes selected
through the GA. As variations are usually considered to be high (overexpression) or low
(underexpression), we have defined the number of fuzzy terms for each gene domain as
three (low, medium, and high expression). The medium expression fuzzy set is centered on
the mean expression of the gene. The fuzzy rules are equidistant Gaussian sets, and the
extreme sets have their center defined by the most extreme values of their gene domain.
As domain experts are interested in observing the fold change rate, to linearly represent
the increase and decrease of expression (for example, a halving or doubling of expression),
we have defined the fuzzy sets on a logarithmic transformation of the estimated expressions,
as shown in Figure 1.

Figure 1. Three fuzzy sets cover the domain of gene expression, thus describing underexpression for
low values, medium for the mean expression of the gene, overexpression for high values.

The output of the model is a set of if-then rules in which the input fuzzy variables
and their values (fuzzy terms) are concatenated in the premise. The consequent contains
the output variable and its value, which in our case is discrete and corresponds to the
6 diagnoses of the samples (KE, KS, KSB, CS, EN, N). Table 1 shows an example of fuzzy
rule where the selected genes assume Medium/Overexpressed/Underexpressed values,
and the target class is KE: endometrioid carcinoma.
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Table 1. Example of a fuzzy rule for the classification of samples based on gene expression.

Premise
(If)

Consequent
(Then)

Gene1 is medium and Gene2 is overexpressed
and . . . Genen is underexpressed class is KE

Due to the low number of samples, the leave-one-out cross-validation method was
used to assess the accuracy of the fuzzy classifier.

2.4. Genetic Algorithm

To preserve the interpretability of the fuzzy rule output, only a small number of genes
should be included in the rules. The selection of these genes has been implemented with a
genetic algorithm.

The evaluation of the most important and influential genes is a complex task because
this feature selection task should take into account two important characteristics of NGS
data: (1) gene expressions and their magnitude depend on gene length; (2) genes influence
each other. These factors undermine the use of feature selection methods based on statistical
assumptions such as variance evaluation. Our genetic algorithm can select the features
considering multiple factors, suitably tuned by the fitness function.

These are the main parameters of the genetic algorithm:

• Individuals—An individual is an array of integers, each element representing a feature
in the feature space (the names of expressed genes).

• Initial population—The initial population is generated randomly.
• Crossing—A new individual is obtained by randomly selecting elements from two parents.
• Selection—A parent is selected for crossing with roulette extraction. Each individual

has a probability of being selected that is proportional to its fitness.
• Mutation—Each new individual obtained from crossing can be randomly selected for

a mutation event. If the mutation occurs (with a probability of 0.5), one of the elements
of the individual is increased by 1 (or decreased if it represents the last feature).

• Elitism—In each generation, a subset of individuals is reintroduced into the next generation.
• Immigration—In each generation, a subset of new individuals is generated randomly.
• Fitness function—Each individual is evaluated with the following fitness function:

Fitness = Accur × 0.5 + Simpl × 0.3 + Inter × 0.2 (1)

where Accur is the accuracy of the model (number of correctly classified samples/total
samples), Simpl is a value in [0,1] inversely proportional to the number of rules generated
by the model (1 if the number of rules is equal to the number of classes), so that individuals
with fewer rules are preferred, Inter is a value in [0,1] that evaluates how many selected
genes are relevant for the biomedical task under analysis: if the gene is already known
to be involved in cancer molecular pathways (as defined by KEGG [22,28]), the model
is rewarded with additional fitness. Initially, only the accuracy (Accur) of the model
was considered, but the final individuals showed a large number of fuzzy rules; in fact,
the number of fuzzy rules is strictly dependent on the selection of variables returned by
the GA. Then we introduced a factor that increases as the number of rules decreases (Simpl),
which helped us to select the final individuals with a minimum number of fuzzy rules.
However, repeatedly running the genetic algorithm with a different initial random seed
produced very different final individuals (only a few genes were present in all results),
so we decided to inject biological information into the model. This was performed by
selecting the genes involved in cancer (by extracting KEGG’s cancer pathway from GSEA)
and by adding another factor into the fitness function that increases when the individual
contains those genes (Inter). The three parameters are weighted and summed, to obtain
a total fitness in [0,1] and to give different (decreasing) importance to each element of
the sum. We tested multiple weights and chose the final three shown in the formula to give
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slightly more importance to the classification accuracy and decreasing importance to the
last two addends. This fitness function has been proposed to suit the classification task
at hand.

• Stop criteria: the genetic algorithm stops after a predefined number of generations,
chosen empirically by observing the diversity of the population over the generations,
or when the elite population contains less than 3 different individuals.

• Final individuals: the final individuals will be selected based on the best accuracy and
minimum number of final rules.

The fitness evaluation is the most time-consuming operation as it must be performed
on all individuals of each generation. As its processing is independent for each individual,
parallel computing could be used to speed up the execution time of each generation. Indeed,
we compared the execution times required to compute 100 generations of 400 individuals
by using both serial and parallel processing (with a 64 cores architecture). While the first
took more than 4 h to stop, the second one ended after about 10 min, thus with a saving of
over 20 times. The genetic algorithm was implemented with an R script and the R “parallel”
package was adopted for parallel computing.

3. Results

In this section, we present the results of the elaboration performed on the ovarian
cancer dataset. The data were analyzed with both a standard pipeline used by bioinformati-
cians and the model proposed in this paper. The analysis aims to extract information on
changes in gene expression that can be useful for discriminating between different tissues,
and thus to study the molecular mechanisms that differ in the samples.

As the dataset consists of only 3 samples for each class (6 samples in one case), the main
objective is to highlight only the most important expression changes in an interpretable
system that also takes into account the interactions among genes. The results obtained will
also be discussed from a biomedical point of view.

3.1. Differential Expression Analysis

To give an idea of how complex and difficult it is to interpret an expression analysis
with more than 2 classes, here we report some results of a standard differential expression
analysis workflow we have applied (described in Section 2). This type of analysis allows one
to highlight those changes of expression that show statistical significance in the comparison
between two conditions. We have performed this analysis in two steps.

In the first step, we have compared each group with the complete set of samples not
belonging to the selected group, to search for those expression variations that are typical of
the selected group. This analysis describes how specific a class tissue is, and is useful for
the researcher who needs to study the singular events that occur in a tissue class and not
in all the other classes analyzed, but it hides the events that occur in two or more classes
and not in the other. The results are summarized in Table 2. The “Specific genes” column
contains the number of genes that are differentially expressed only in that specific group.

Table 2. Results of the differential expression analysis performed on each group against all other data,
considered together.

Group
Differentially Expressed Genes

(Overexpressed + Underexpressed)
Specific Genes

KE 630 (12 + 501) 591
KS 534 (25 + 281) 459

KSB 549 (47 + 73) 485
CS 75 (5 + 70) 51
EN 350 (87 + 263) 291
N 124 (47 + 77) 99

10



Electronics 2021, 10, 375

In the second step, we have compared each possible pair of groups to each other,
to compute the differences of each tissue relative to another (Table 3). This analysis is more
useful for the researcher who needs to select a set of biomarkers, i.e., a minimal set of genes
that allows one to distinguish all the tissues of a study.

Table 3. Results of the differential expression analysis performed on each group versus each other
data group, considered separately. Each cell contains the total of genes that are significantly differen-
tially expressed and the partial counts of overexpressed and underexpressed).

KS KSB CS EN N

KE
825

(298 + 527)
196

(42 + 154)
1439

(721 + 718)
2041

(975 + 1066)
1160

(588 + 572)

KS - 777
(272 + 505)

668
(365 + 303)

1133
(541 + 592)

502
(236 + 266)

KSB - - 489
(395 + 94)

956
(605 + 351)

621
(459 + 162)

CS - - - 237
(131 + 106)

213
(139 + 74)

EN - - - - 725
(374 + 351)

From this analysis, we can extract the information in Table 4. As we can see, these re-
sults are quite difficult to interpret and do not take into account the interactions among
genes. Usually, at this stage, researchers analyze the molecular pathways of the differen-
tially expressed genes and select a subset of genes to further study and validation; however,
in this multiclass case this step is very complex. In Section 3.2, we will present the results
obtained with our proposed model based on fuzzy rules and genetic algorithms.

Table 4. Number of differentially expressed genes present in grouped comparisons (1 = only one
comparison, 2 = gene DE in 2 comparisons, etc.).

Number of Comparison Groups & Number of DE Genes

1 2 3 4 5 6 7 8 9 10
1491 1026 783 533 319 173 95 53 24 2

3.2. Fuzzy Rule-Based System & Genetic Algorithm

In this section, we describe the results obtained with the combination of genetic
algorithms and fuzzy rules on the same dataset.

Table 5 summarizes the parameters tested for the execution of the genetic algorithm.
Several values have been tested to speed up the execution of each generation, to avoid local
minima, and to obtain final individuals with the highest fitness. In particular, the number
of total individuals was increased to speed up the best individual’s selection (because
the number of preserved and brand new individuals also increased), and the mutation
was inserted to avoid local minima. The number of generations, initially set at 1000,
was increased to 2000, because only a minority of executions stopped for a small elite
population (see stop criteria in Section 2.4). We also analyzed the composition of the
population and observed that each feature appears at least once in the population after
about 50 generations.

The number of features to be selected was based on the trade-off between the choice
of a set of features capable of discriminating the 6 sample classes and the need to maintain
the cardinality of the set rather low, to preserve the interpretability of the fuzzy rules and
define a small number of genes to be selected for further biological study and laboratory
validation. In addition, the domain experts wished to obtain a panel of genes capable of
distinguishing samples of around 10–15 genes.
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Table 5. All parameters tested for the Genetic Algorithm. The final parameters are presented in bold.

Parameter Values Tested

Features {10, 15, 20}

Individuals {100, 200, 300, 400}

Mutation no mutation, 1 mutation with probability 0.5

Elitism 1/4 of individuals

Immigration 1/4 of individuals

Fitness function

Accur + Simpl + Inter,
Accur × w1 + Simpl × w2 + Inter × w3
(with different combinations of weights),
Accur × 0.5 + Simpl × 0.3 + Inter × 0.2

Number of generations 1000, 2000

Repetitions 50 different seeds

Several experiments were performed for the fitness function, as already detailed in
Section 2.4, near Equation (1). Different fitness functions were compared and—based on
the empirical analyses made—the one including accuracy, the number of rules obtained,
and involvement of cancer-associated genes were found to be the most suitable for our
genetic algorithm. Moreover, a weighting mechanism has been used to give to each addend
a different importance. Indeed, we give slightly more importance to the classification
accuracy and decreasing importance to the last two addends. The final parameters are
shown in bold in Table 5.

The final individuals were selected based on accuracy only (100%), computed with
leave-one-out cross-validation, then sorted by fitness. After repeating the genetic algorithm
with different random seeds, we selected 72 best individuals. The final individuals are
similar to each other for 78% of the selected features and differ on the remaining genes,
and each individual is a subset of 10 out of the same 14 genes, listed in Table 6. The pa-
rameter that encouraged the model definition with respect to genes already known to be
strongly involved in cancer pathways (as collected in KEGG) influenced the selection of
6 cancer-related genes in each individual. The remaining four genes (the first 4 in the table)
are the most important in the classification task; in fact, they are present in each of the
72 individuals. The number of fuzzy rules automatically extracted for each best individual
is always equal to 10.

Table 6. The genes selected by the genetic algorithm, sorted by frequency of occurrence in the final
72 individuals with the best accuracy and fitness. The genes known to be correlated to cancer are
marked with (*).

Gene Symbol Gene Description

XPNPEP1 X-prolyl aminopeptidase 1
GATA4 GATA binding protein 4
DTX3L deltex E3 ubiquitin ligase 3L

NPIPB12 nuclear pore complex interacting protein family member B12
CREB1 (*) cAMP-responsive element-binding protein 1
EGFR (*) epidermal growth factor receptor

CREB5 (*) cAMP-responsive element-binding protein 5
SMAD4 (*) SMAD family member 4
CKS1B (*) CDC28 protein kinase regulatory subunit 1B
MAPK1 (*) mitogen-activated protein kinase 1
KRAS (*) KRAS proto-oncogene, GTPase
CUL2 (*) cullin 2

MAPK9 (*) mitogen-activated protein kinase 9
CBL (*) proto-oncogene
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Table 7 lists the molecular pathways collected in the KEGG database and the genes
involved. Moreover, MAPK9, MAPK1, KRAS, CBL, and EGFR are also involved in other
molecular mechanisms active in cancer, such as choline metabolism, proteoglycan, and cen-
tral carbon metabolism.

Table 7. The genes known to be involved in cancer, from the KEGG database of molecular.

KEGG Pathway Count Gene Symbols

Endometrial cancer 3 MAPK1, KRAS, EGFR
Pancreatic cancer 6 MAPK9, SMAD4, MAPK1, KRAS, EGFR, CBL
Prostate cancer 5 CREB1, MAPK1, KRAS, EGFR, CREB5

Colorectal cancer 4 MAPK9, SMAD4, MAPK1, KRAS
Bladder cancer 4 MAPK1, KRAS, EGFR, CBL

Small cell lung cancer 2 CKS1B, CBL
Non-small cell lung cancer 3 MAPK1, KRAS, EGFR

Thyroid cancer 2 MAPK1, KRAS
Renal cell carcinoma 1 CUL2

From a literature search, XPNPEP1, GATA4, DTX3L, and NPIPB12 also show some
correlation with cancer. In particular: XPNPEP1 was found overexpressed in clear cell renal
cell carcinoma [29]; multiple studies have shown that GATA4 is closely associated with
tumorigenesis [30]; DTX3L is involved in cell proliferation, differentiation, and survival [31];
NPIPB12 has also been correlated to cancer [32].

Figure 2 shows an example of a set of rules defined by one of the final 72 individ-
uals. As mentioned above, the final individuals all contain XPNPEP1, GATA4, DTX3L,
and NPIPB12 and a different combination of the other genes. Moreover, all the final
individuals exhibit a similar structure to the final rules. In particular:

1. The class that needs more rules to be described is always KS (high-grade serous
carcinoma). This may be due to the complex and multifactorial nature of this cancer.
Two rules capture the overexpression of DTX3L, and one rule also includes the
overexpression of MAPK9 and the underexpression of NPIPB12.

2. The medium fuzzy set is very common in the rules, both in cancer and non-cancer
rules. We expected non-cancer rules to be most represented by the “medium” mem-
bership functions, but as the dataset is mostly represented by cancer (12) or diseased
(6) samples, and normal data are represented only by 3 samples, it is straightforward
that the central data in the expression domains are mostly present in the rules.

3. For the genes that are selected in these final rules, we observed that underexpression
is significantly present in non-cancer class rules and overexpression is present only in
cancer class rules. We also noticed that in this set there is one rule for the KSB class
(low grade of KS) that is significantly different from the others. This result requires
deeper biological insights.

4. The KE, CS, and EN classes need only one rule to be described. In particular, the KE
class is identified directly by the overexpression of XPNPEP1 and NPIPB12. This result
underlines that the KS-KSB disease is the most difficult to describe.

5. The class N needs two rules to be described that differ only in the expression of
NPIPB12, which can be medium or underexpressed. Moreover, GATA4 seems to
be crucial for normal tissue identification, as it is underexpressed only in class N,
in both rules.

Figure 3 shows two examples of fuzzy sets defined on MAPK9 and DTX3L, for KS data
only. The MAPK9 gene (known to be strongly involved in cancer pathways) shows a ten-
dency to overexpression, while the DTX3L gene shows an evident overexpression in KS data.
This trend is correctly described by the fuzzy sets defined over the expression domain.
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Figure 2. A set of fuzzy rules with accuracy = 100%, able to classify and describe the samples correctly.

Figure 3. The fuzzy sets defined over the gene expression of MAPK9 and DTX3L for the KS samples.

As can be seen, fuzzy rules are easily understood by users who are not technicians.
Fuzzy systems can describe complex behaviors with a transparent description in terms
of linguistic knowledge that is interpretable, i.e., easy to read and understand by human
users [26]. If we observe the rules generated by the FIS, they clearly explain which are the
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genes and their expressions involved in the activation of each rule. They are written by us-
ing terms coming from natural language, such as the names of the genes, the terms medium,
under, and overexpression, that are commonly used by the domain experts, and the derived
classes refer to different diseases, as classified by experts. This is a very desirable result
as biologists have to analyze these outcomes. Indeed, all the results and comments that
we were able to extract with this model based on the combination of fuzzy rule-based
systems and genetic algorithms will be subject to further examinations and assessments by
biologists and clinicians. Further laboratory validation of the expression of the 14 selected
genes on a larger cohort of patients will allow the selection of the final set of genes useful
for the definition of a final panel of biomarkers for ovarian cancer characterization.

4. Discussion and Conclusions

Ovarian cancer is a complex multifactorial disease characterized by complex gene
interactions. Different types of ovarian cancer are essentially distinct diseases, as indicated
by differences in epidemiological and genetic risk factors, precursor lesions, patterns of
spread, and molecular events during oncogenesis, response to chemotherapy, and prog-
nosis. A previous study attempted to address this disease by producing NGS datasets
of 6 different classes of samples from surgical ovarian tissues, but classical bioinformatic
workflows are unable to extract easily interpretable information for studying the expres-
sion profiles of the genes involved in the disease. The low number of replicates for each
group does not allow the application of algorithms for automatic pattern extraction such
as Artificial Neural Networks, and their limitations in result interpretation do not make
them suitable for studying the genes involved in the disease mechanisms.

In this paper, we have tried to extract a set of genes that can be used to distinguish the
6 classes of samples and also to provide an explanation of how their expression changes
in the data. We have compared the results of the most used bioinformatic pipeline with
our model, based on the extraction of fuzzy rules on a set of genes selected by a genetic
algorithm. The bioinformatic pipeline is designed for binary classes of case-control studies,
and it allows the selection of statistically significant differentially expressed genes, but the
results obtained on our 6 groups are difficult to interpret and to use for the extraction of
biological markers. Moreover, it does not take into account the correlation and interactions
among genes. Our proposal extracts a set of fuzzy rules that are indeed easier to interpret
and selects genes both considering their ability to distinguish samples and their known
involvement in cancer pathways. We have chosen to exploit fuzzy sets for our model
because they represent well the concept of overexpression and underexpression, and we
have applied genetic algorithms for gene selection because they allow us to select the
features through a random search in the feature space, guided by some factors that are
not based on variance evaluation and statistical testing. The perfect accuracy achieved by
our classification model can be justified considering the very small size of the dataset we
have adopted, which limits the generalizability of our results. Unfortunately, collecting
a large sample of data in this particular domain is an extremely difficult task. However,
we believe that the results obtained on our experimental data are still very promising
and pave the way for a working system capable of supporting domain experts in ovarian
cancer evaluation.

The result of our work is that with our method it is possible to select a small subset of
genes able to distinguish the 6 classes of samples and to define an interpretable set of rules
that can be used by domain experts to further study the selected genes, their involvement
in cancer and the possibility of using them as early biomarkers for ovarian cancer diagnosis.
Another important achievement of our proposal is that it allows us to elaborate meaningful
results even with a reduced number of replicates for each class. As an extension of this
work, in the near future, we will apply our model to other NGS datasets and define a more
flexible function for pathway information in the fitness function.
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Abstract: CRISPRLearner, the system presented in this paper, makes it possible to predict the on-target
cleavage efficiency (also called on-target knockout efficiency) of a given sgRNA sequence, specifying
the target genome that this sequence is designed for. After efficiency prediction, the researcher can
evaluate its sequence and design a new one if the predicted efficiency is low. CRISPRLearner uses a
deep convolutional neural network to automatically learn sequence determinants and predict the
efficiency, using pre-trained models or using a model trained on a custom dataset. The convolutional
neural network uses linear regression to predict efficiency based on efficiencies used to train the
model. Ten different models were trained using ten different gene datasets. The efficiency prediction
task attained an average Spearman correlation higher than 0.40. This result was obtained using a data
augmentation technique that generates mutations of a sgRNA sequence, maintaining the efficiency
value. CRISPRLearner supports researchers in sgRNA design task, predicting a sgRNA on-target
knockout efficiency.

Keywords: convolutional neural network; CRISPR; deep learning

1. Introduction

1.1. Background

Genetic engineering in different living beings has always been used for various tasks, such as
treating particular diseases or creating species with particular genetic features. Editing and modifying
these features can be accomplished with various biotechnology techniques, which, most of the time,
are quite complex.

However, things started to get easier with the discovery of CRISPR, an acronym that stands for
Clustered Regularly Interspaced Short Palindromic Repeats. CRISPR was originally discovered in
bacteria and archaea in late 1990s and early 2000s as a family of DNA segments containing short
repeated sequences. These sequences separate fragments of DNA acquired from viruses that previously
attacked the cell, forming an adaptive immunity system. In fact, after a virus attack, new viral DNA
is incorporated into the CRISPR locus in form of spacers. Researchers also found that this repeated
cluster was accompanied by a set of genes, called CRISPR associated system (Cas) genes, used to
generate Cas proteins. Once a virus attacks again, a portion of the CRISPR region is transcribed into
CRISPR RNA, or crRNA, that gets joined to a trans-activating crRNA (tracrRNA). These sequences,
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forming a unique one, are then bound to a Cas9 protein, guiding it to the target site of the virus DNA.
The Cas9 protein then unwinds the DNA and performs a double stranded cut, knocking out the virus.
The sequence targeted by Cas9 is followed by a 2-6 base pair (bp) sequence called protospacer adjacent
motif (PAM), which is part of the invading virus DNA, but not part of the CRISPR region, to prevent
Cas9 from cutting the CRISPR locus itself. In fact, Cas9 will not bind to a target sequence if it is not
followed by PAM.

Jennifer Doudna and Emmanuelle Charpentier re-engineered the Cas9 endonuclease fusing
crRNA and tracrCRNA into a single RNA sequence called sgRNA (single guide RNA). This sequence,
when bound with Cas9, can find and cut a target DNA specified by the sequence itself. By manipulating
the sgRNA sequence, the artificial Cas9 system can recognize and cut any DNA sequence. CRISPR
then becomes a powerful genome editing tool, called CRISPR/Cas9 [1,2]. Recognition and knockout
occur via a 23-bp sequence composed by a 20-bp sequence followed by a 3-bp sequence, PAM.

Designing and developing this sequence is an important task because not all the sgRNAs designed
to cut a target DNA are equally effective. The efficiency of CRISPR/Cas9 sgRNA depends on the features
like the target site, the properties of the endonuclease, and the design of the sequence [3]. Additionally,
when DNA gets cut, the cell tends to repair this cut, leading to more or less serious mutations. Predicting
efficiency in cutting DNAs (on-target cleavage efficiency or on-target knockout efficiency) and its side
effects and mutations (off-target profile or off-target effects) has an important role in sgRNA design
task. Also, researchers will be able to obtain these sequence parameters without performing a physical
genetic modification, saving time and resources for the actual experimentation. To refine sgRNA
design task, various efficiency prediction systems have been developed, using various approaches.
For example, locating PAM sequence (CasFinder [4]), scoring efficiencies empirically based on sequence
key features (CHOPCHOP [5]), or predicting them with training models (sgRNA designer [6], sgRNA
scorer [7,8], SSC [9], CRISPRscan [10]). However, prediction systems based on deep learning principles
have surpassed their competitors in both predicting on-target and off-target efficiencies.

The repetitions in a CRISPR locus have variable size: they usually range from 28 to 37 bp.
Much shorter repetitions (23 bp) have been discovered and we focused on these ones. Other authors
focused on these lengths too, in these preliminary experiments. This paper is presenting CRISPRLearner,
a system that uses a deep convolutional neural network (CNN) to extract and automatically learn
sequence features and determinants and predict on-target cleavage efficiency of an up to 23-bp sgRNA.

1.2. Related Works

Deep learning for sequencing data has been used [11–13]; it has also been used in some works to
predict sgRNA on-target and off-target efficiency. For example, a deep learning approach to predict
off-target effects is described by Lin in [14]. Another work that used deep learning to predict both
off-target and on-target efficiencies is described in [15]. In this system, called DeepCRISPR, the sequence
is encoded into a one-hot matrix, composed of 4 rows, one for each nucleobase, and 23 columns, one for
each nucleobase in the 23-bp sgRNA sequence. The matrix gets augmented with additional rows
corresponding to epigenetic features, to build a generalized model. This matrix then gets passed as
input to a CNN, which is able to use both linear regression and classification to predict efficiencies.
In the first case, the predicted value is a real value, while in second case a class is predicted (0 low
efficiency, 1 high efficiency).

The system developed by Xue [16], called DeepCas9, uses a CNN too. A sequence up to 30-bp
is encoded into a one-hot matrix using the same one-hot encoding scheme used in [15], but without
adding additional rows for epigenetic features. The obtained matrix gets passed as input to the CNN
that uses linear regression to predict efficiency represented by a real value.

All these three studies use similar encoding mechanism to transform each sgRNA sequence into a
data format suitable for the CNN. In fact, CNNs take as input a matrix of values, corresponding to
the pixel matrix of an image. Each cell of this matrix contains a value representing the color in the
corresponding cell of the pixel matrix. For grey-level pictures, matrix cells only contain real values
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from 0 to 1, where 0 represents white, 1 represents black, and values in between them represent the
shades of grey. In [14–16], the sgRNAs get encoded into matrixes where cells assume only 0 and
1 values. Each of them is then served as input to the CNN that makes predictions. Other techniques
for comparing images can be found in [17] and an interesting application of NN-based sequencing
system is in [18].

The system presented in this paper uses a CNN to predict a score for on-target knockout efficiency:
10 models regarding different type of organisms and cells have been trained using 10 different datasets.
The efficiency of a sequence is calculated using one of these 10 models, depending on the organism the
sequence has been designed for. In DeepCas9, the efficiency score is calculated with a weighted sum
between the scores predicted by three trained models. Moreover, in DeepCas9, the sequence accepted
are 30-bp sequence, which we found out was an uncommon type. In DeepCRISPR, different models
are used to predict efficiency, some based on a binary classification (1 efficient, 0 not efficient) and some
on regression. The system here presented system uses regression, and aims to output a more useful
grade of efficiency instead of knowing just if a sequence is efficient or not.

In our work, the sgRNA sequence is encoded into a 4 × 23 one-hot matrix that is served as input
to the CNN. We also implemented a particular technique to encode sequences with a length less
than 23-bp. In addition, datasets are augmented with a particular technique. These details will be
described further.

2. Materials and Methods

2.1. Datasets

To train and develop the system here presented, the datasets used by Xue in [16] were used,
consisting in 10 sgRNA efficiency datasets covering several cell types of five species, which were
collected by Haeussler in [19]. These ten datasets were:

• Chari dataset [7], consisting in 1234 guides targeting Human 293T cells
• Wang/Xu dataset [9,20], consisting in 2076 guides targeting 221 genes in Human HL-60 cells
• From Doench dataset [21], 951 guides targeting various mouse-EL4 cells were kept (as said in [16],

the sequences that were kept targeted Cd5, Cd28, H2-K, Cd45, Thy1, and Cd43 genes)
• A new version of Doench et al. dataset [6], consisting in 2333 guides targeting CCDC101, MED12,

TADA2B, TADA1, HPRT, CUL3, NF1, and NF2 genes from Human A375 cells
• Hart dataset [22], consisting in 4239 guides targeting 829 genes in Human Hct116 cells
• Moreno-Mateos dataset [10], consisting in 1020 guides targeting 128 genes in Zebrafish genome
• Gandhi dataset, consisting in 72 guides targeting different genes in Ciona genome
• Farboud dataset [23], consisting in 50 guides targeting different genes in Caenorhabditis

elegans genome
• Varshney dataset [24], consisting in 102 guides targeting different genes in Zebrafish genome
• Gagnon dataset [25], consisting in 111 guides targeting different genes in Zebrafish genome

These datasets were aggregated with others in [19], creating a dataset of 31625 sgRNAs with
their relative knockout efficiencies. Unfortunately, we were not able to merge datasets from the same
organisms (e.g., Human, Zebrafish datasets). In fact, human datasets were referring to different cell
types while for zebrafish dataset were left separated since it was not possible to extract information about
cell types or tissues. Each dataset had its own measurement scale for knockout efficiencies, producing a
dataset with non-standardized knockout efficiency measurements. Moreover, some datasets presented
sequences with a length less than 23-bp, meaning that these sequences were not in form of a 20-bp
sequence followed by a 3-bp PAM sequence, leading to non-standardized sequences too. To solve
these problems, we adopted some strategies that will be described later.
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2.2. Software

The system was developed using Python language, because of its simplicity and popularity
compared to other programming languages. The integrated development environment used to develop
CRISPLearner was Pycharm, in combination with VSCode for minor modifications. Also, Git version
control system was used, in combination with GitHub.

To develop the core of the system, the convolutional neural network behind the prediction task,
Tensorflow has been used, including Keras. Keras uses a data structure called model to represent
the way which network layers are organized. In this project, the sequential model has been used.
Other libraries used are Scipy, an open library dedicated to scientific computing, NumPy, a library
for scientific calculation that provides many functions for operations between matrices, Scikit-learn,
a library for machine learning supporting algorithms and Python default libraries, like os, re, and
shutil for various purposes.

3. System Description

This section will describe the techniques used to extract datasets from Haeussler [19] dataset,
the strategies adopted to standardize sequences and efficiencies, along with the sequence representation
technique used. In addition, the dataset augmentation technique adopted, the CNN architecture and
the CLI (Command-Line Interface) implemented will be described.

3.1. Dataset Creation

This section will describe the procedure adopted to extract and prepare data.

3.1.1. Data extraction

As said before, the datasets used to train the CNN are ten, which were collected with others in
the Haeussler dataset [19]. Each row of this last dataset contained data regarding a single sgRNA
sequence. The columns used to extract each dataset were four:

• dataset column, containing the name of the dataset where the sequence was extracted from
• seq column, containing the actual sgRNA sequence
• modFreq column, containing the efficiency value
• longSeq100Bp column, the extended 100-bp sequence

For each of the ten datasets, a file containing only a 23-bp sequence and its efficiency was
created. To identify only the sequences from the datasets needed, the dataset column was used, which
contained the dataset name. Using these names, ten files corresponding to the ten datasets were created.
Each extracted dataset contained only two columns, a column containing the 23-bp sgRNA sequence
and a column containing cleavage efficiency.

3.1.2. Standardizing sgRNA Sequences

Some datasets include sequences with a length less than 23-bp. For example, Gandhi dataset had
sequences of 22-bp, composed of a 19-bp sequence followed by a 3-bp PAM sequence. Instead, Doench
A375 and Hart datasets had sequences of 20-bp not followed by a 3-bp PAM, as it should be.

Therefore, before extracting the datasets, 23-bp sgRNA sequences in form of 20-bp sequences
followed by a 3-bp PAM sequence had to be extracted. In fact, in Doench A375 and Hart datasets,
the missing PAM sequence was instead in the 3 nucleobases immediately following the seq sequence
in longSeq100Bp extended sequence. So, the seq sequence was first found in longSeq100Bp sequence
and then extracted along with the 3 immediately following nucleobases (the PAM sequence), obtaining
a 23-bp sequence composed of a 20-bp sequence followed the 3-bp PAM sequence.

Instead, for Ghandi dataset, the seq sequence was first found in longSeq100Bp sequence and then
extracted along with the first immediately preceding nucleobase.
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After this operation, the ten files corresponding to the extracted datasets were created.

3.1.3. Standardizing Efficiency Measurement

Each dataset used a different scale to measure cleavage efficiency, based on the technique used to
measure these values. In order to train a regression model, it was necessary to rescale each of these
values to a standard measurement scale.

To do this, the same solution described by Xue in [16] was adopted. Each extracted dataset was
rescaled using a min–max scaler mapping a value in the range [0, 1]. This function was defined as
fnk =

fk− fmin
fmax− fmin

, where fmax and fmin are, respectively, the maximum and minimum efficiency value of
the dataset, fk is the original efficiency value to rescale and fnk is the rescaled value. This rescaling
function was applied on each sequence of the ten extracted datasets. For each extracted dataset,
a rescaled dataset file was created, containing a column with the 23-bp sequence and a column with its
rescaled efficiency, rescaled using the minmax function described above. Efficiency was standardized
in order to have a general measuring of the it, even if the datasets are not merged, so even if the original
efficiency is in a different scale than [0, 1], the system will always output an efficiency included in this
interval, no matter what the trained model is.

3.1.4. Data augmentation Technique

During the experimentation, data from different cell types has been used to train the CNN model.
Initially, only the rescaled datasets were used, but the results obtained were unsatisfactory, leading to
an overfitted and less performing model. Modifying the CNN architecture or changing some of its
hyperparameters did not improve model performances.

For this reason, a data augmentation technique was adopted. In particular, the data augmentation
technique used by Chuai in [15] was adopted. In fact, it seems that mismatches in the PAM distal region,
which is the 5′ end of a 23-bp sgRNA, have no influence on the sequence efficiency [6,15,20], giving us
the possibility to generate new sequences, starting from a single sgRNA, with the same efficiency value
of the original one. The rescaled sets were then augmented, generating two mismatches in the first
two nucleobases of the extracted sequences, obtaining sixteen new sequences for each original sgRNA
sequence (one of them was the original sgRNA sequence), each of them having the same identical
efficiency value.

Augmenting data has proved to be a key step in improving the CNN performances, as the
problem of low performances and high losses seemed to reside in the data itself rather than in the CNN
architecture. Table 1 resumes the number of sequences for each dataset before and after augmentation
procedure (training on 80% of the sequences, see Section 4).

Table 1. Number of sequences in the original and augmented datasets.

Dataset Original Sequences Augmented Sequences

Chari 1234 19,744
Wang/Xu 2076 33,216

Doench mouse-EL4 951 15,216
Doench A375 2333 37,328

Hart 4239 67,824
Moreno-Mateos 1020 16,320

Gandhi 72 1152
Farboud 50 800
Varshney 102 1632
Gagnon 111 1776

3.2. Data Representation for Training

To make the sequences usable for the CNN, each sequence was encoded in a one-hot matrix with
23 columns, corresponding to the nucleobases of the sequence, and 4 rows, corresponding to A, C,
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G, and T bases channels. CRISPRLearner supports sequence up to a maximum of 23 nucleobases.
For sequences with less than 23 nucleobases, a different approach has been adopted. Since an sgRNA
gets encoded into a one-hot manner, if a sequence as a length less than 23, some columns of zeros have
been added at the beginning of the real one-hot matrix. So, for example, a sequence of 19-bp will be
encoded into a 4 × 19 one-hot matrix and 4 (23 minus length of sequence) columns of zeros have been
added at the start of the matrix, creating a matrix of 4 × 23 and making the matrix usable for the CNN.
All the dataset that we used for these experiments contains only sequences of 23-bp, so this problem
should never appear, since the system is designed to work efficiently with 23-bp sequences. However,
we have left the possibility to experiment on shorter sequences if the PAM sequence cannot be extracted,
retrieved or is omitted or if a researcher wants to experiment using simply shorter sequences. Figure 1
shows an example of one-hot encoding of a sequence that has a length less than 23-bp.

 
Figure 1. One-hot encoding of a 19-base pair (bp) sequence.

3.3. Description of the Convolutional Neural Network Architecture

The core of the system is a convolutional neural network that performs regression to predict
sgRNA cleavage efficiency. Differently from Chuai et al. [15], this model is focused on a regression task
instead of a classification task. This system uses only real value labels since it’s based on regression
instead of using class label. In regression, the labels are real values, indicating precisely the efficiency of
the sgRNA on a range of real values between 0 and 1. In classification, labels are class labels, indicating
only a binary efficiency, i.e., 0 if a sgRNA is not effective and 1 if it is effective.

The first layer is an input layer that takes as input a 4 × 23 × 1 one-hot matrix. Then, a convolution
layer performs 50 convolutions with 4x4 kernel on the input matrix, producing 50 feature maps of size
1 × 20. After convolution, a ReLU activation layer removes outputs below 0, transforming them into
zeros. After ReLU activation layer, a max pooling layer performs 1 × 2 max pooling of the feature maps
produced by the convolution layer, producing 50 feature maps of size 1 × 10. After pooling, a flatten
layer combines the pooling results in a vector with size of 500. Then, two fully connected layers are
added, each with 128 nodes. Each fully connected layer is followed by a ReLU activation layer. Between
the fully connected layers, a dropout layer is added, with a dropout rate of 0.3, to reduce overfitting.
Then, a fully connected (or dense) layer serves as output layer followed by a linear regression activation
layer. Table 2 resumes the CNN architecture.

Specifically, after being converted into a one-hot matrix with 4 rows and 23 columns, the sequence
is passed to the CNN. The input layer reads the matrix as if it is a 4 × 23 black and white image. The first
convolutional layer performs 50 convolutions with a 4 × 4 filter and a stride of 1, generating 50 feature
maps of dimension 1 × 20. After convolution, the ReLU layer outputs results above threshold. The next
pooling layer performs a 1 × 2 max pooling of each feature map using a stride of 1, producing 50
feature maps of size 1 × 10. All the pooling results are combined into a single vector by a flatten layer,
resulting in a vector of 500 elements. The vector is then passed to two fully connected layers, each
composed of 128 nodes, which have a ReLU layer and a dropout layer in between them, with a dropout
rate of 0.3, to avoid overfitting. After the fully connected layers, the output layer outputs the prediction
for on-target efficiency using linear regression.
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Table 2. Layers of the convolutional neural network.

N Layer

1 Input: 4 × 23 × 1
2 Convolution: 4 × 4 size, 50 filters, 1 stride
3 ReLU
4 Max pooling: 1 × 2 size, 1 stride
5 Flatten
6 Fully connected: 128 units
7 ReLU
8 Dropout: 0.3 dropout rate
9 Fully connected: 128 units

10 ReLU
11 Fully connected (output): 1 unit
12 Linear regression

For each dataset, a model was trained on 250 epochs with a batch size of 32 and a learning rate of
0.001. An early stopping was also added to detect automatically the minimum validation loss, with a
patience of 100 epochs. The models were also optimized with Adam algorithm, trained using 80% of
each dataset and validated on the remaining 20% [26,27]. Each dataset was also randomly shuffled
before training.

To evaluate each model, the loss function used was Mean Squared Error, while the metric used was
Spearman correlation coefficient from Scipy library. The Spearman score of each model was calculated
between the predicted efficiencies (on the 20% validation set) and the respective real efficiencies from
the datasets. After each model training procedure, the model weights were saved.

4. Results

The efficiency prediction of the system CRISPRLearner was evaluated using Spearman correlation
coefficient and using Mean Squared Error loss. The system was trained on 80% of each dataset and
tested on the 20% left, generating ten different models. Few evaluations made before adding the
data augmentation technique previously described, pointed out low performances, with an average
Spearman correlation coefficient of about 0.2 and a high loss. The models trained also showed
overfitting and high validation losses. Adding data augmentation improved both losses and Spearman
scores, avoiding overfitting and making the system more effective. In Table 3 it is reported a Spearman
score comparison between this system and DeepCas9. The results are interesting, but it is clear that we
cannot speak of a decisive improvement in performance in comparison with DeepCas9, which however
in some datasets achieves better results. It is also interesting to compare the results with other
competitors by analyzing Figure 2 in [16].

Table 3. Performance comparison of CRISPRLearner with DeepCas9.

Dataset CRISPRLearner DeepCas9

Chari 0.49 0.49
Wang/Xu 0.69 0.61

Doench mouse-EL4 0.51 0.59
Doench A375 0.23 0.38

Hart 0.55 0.41
Moreno-Mateos 0.19 0.23

Gandhi 0.36 0.32
Farboud 0.60 0.57
Varshney 0.35 0.3
Gagnon 0.35 0.25
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5. Conclusion and Future Work

As indicated in the Table 3, CNN-based systems perform better that other system on some of
the datasets. This means that deep-learning based systems are generally performing better than
machine-learning based systems and systems based on other techniques. There are some exceptions,
like Doench mEl4, Doench A375, and Ghandi datasets, indicating that some other approaches still may
perform better on some kind of data.

The system presented in this paper shows good performances, paying a lower generalization.
However, allowing the user to train his own models based on the datasets he provides, leads to a
generalization of the system, even if the model itself is not generalized. In fact, a single model was not
trained for all the datasets, but for each dataset a model was trained and training more models on
new datasets will allow the system to predict more and more sgRNA efficiencies of different genomes,
cell types, and genes.

To support multiple cell identification, the user is free to train its own model using a different
dataset, expanding the system and allowing it to predict sgRNA efficiencies regarding new cell types,
gene, or genome types. This approach will allow researchers to contribute in the overall expansion and
improvement of the system, adding new trained models to perform predictions on new types of cells.

A question could be why performance results were not better than the DeepCas9 in some datasets,
but the answer could not be definitive. Performances can depend on type of data augmentation, on the
number of original sequences, on the similarity between some sequences and obviously on the design
details of each system. It is not easy to describe the behavior of the internal layers of the CNN, but we
will deepen this argument in a further study.

The system here presented will be expanded, as just said, with more cell and genome types. Also,
the ability to predict off-target efficiencies will be added to the system, transforming CRISPRLearner in
a complete system for CRISPR/Cas9 sgRNA design. Also, deploying the system online will permit it to
be expanded with new trained models more easily.
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Abstract: Wearable technology plays a key role in smart healthcare applications. Detection and
analysis of the physiological data from wearable devices is an essential process in smart healthcare.
Physiological data analysis is performed in fog computing to abridge the excess latency introduced
by cloud computing. However, the latency for the emergency health status and overloading in fog
environment becomes key challenges for smart healthcare. This paper resolves these problems by
presenting a novel tri-fog health architecture for physiological parameter detection. The overall
system is built upon three layers as wearable layer, intelligent fog layer, and cloud layer. In the first
layer, data from the wearable of patients are subjected to fault detection at personal data assistant
(PDA). To eliminate fault data, we present the rapid kernel principal component analysis (RK-PCA)
algorithm. Then, the faultless data is validated, whether it is duplicate or not, by the data on-looker
node in the second layer. To remove data redundancy, we propose a new fuzzy assisted objective
optimization by ratio analysis (FaMOORA) algorithm. To timely predict the user’s health status,
we enable the two-level health hidden Markov model (2L-2HMM) that finds the user’s health status
from temporal variations in data collected from wearable devices. Finally, the user’s health status is
detected in the fog layer with the assist of a hybrid machine learning algorithm, namely SpikQ-Net,
based on the three major categories of attributes such as behavioral, biomedical, and environment.
Upon the user’s health status, the immediate action is taken by both cloud and fog layers. To ensure
lower response time and timely service, we also present an optimal health off procedure with the aid
of the multi-objective spotted hyena optimization (MoSHO) algorithm. The health off method allows
offloading between overloaded and underloaded fog nodes. The proposed tri-fog health model is
validated by a thorough simulation performed in the iFogSim tool. It shows better achievements in
latency (reduced up to 3 ms), execution time (reduced up to 1.7 ms), detection accuracy (improved up
to 97%), and system stability (improved up to 96%).

Keywords: Tri-Fog Health System; fault data elimination; health status prediction; health status
detection; health off
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1. Introduction

In recent times, smart healthcare becomes an emerging application of the internet of things (IoT).
A smart healthcare system consists of wearable sensors used to monitor the specific health status
of the users or patients [1,2]. Most importantly, wearable technology has become a vital part of
not only remote patient monitoring but also for user health monitoring regularly. The introduction
of wearable devices minimizes the frequent involvement of doctors in health monitoring. It also
assists in the early detection of diseases, drug research, smart hospital development, and safety
provisioning [3,4]. Two major technologies have to be investigated to develop a smart healthcare
system. Firstly, through biomedical sensors like temperature, motion, blood pressure, and how
the wearable devices are appended on the user’s body to acquire, their health status is studied [5].
Secondly, the useful fog computing technology that enables real-time and delay minimized health
services [6,7] should be examined. As a result of the fog enabled healthcare system, the data acquired
from the wearable devices are analyzed by the fog layer, which further minimizes the latency for
healthcare services.

In the wearable based physiological monitoring, fault data detection from biosensors is one of
the main issues [8]. Analyzing the fault data sensed by the wearable leads to inaccurate decision
making. As the health data must be more reliable, the adaptive neuro-fuzzy inference system (ANFIS)
is presented to diagnose health data [9]. A distributed similarity test has been introduced to detect
the sensor data fault [10]. Based on the sensor reading variations, the sensor fault is detected. Thus,
in a smart healthcare system, fault data diagnosis and elimination are the first and foremost process.
In recent times, deep learning is addressed as one of the effective solutions for classification and
prediction problems [11,12]. Deep learning algorithms are capable of handling and analyzing the
massive amount of data without minimum prediction errors [13,14]. When it comes to fog-enabled
smart healthcare, the faultless data need to be analyzed by the fog nodes. In most fog-based smart
healthcare systems, a deep learning approach is incorporated to detect the abnormalities in the user’s
health status [15,16]. The deep learning approaches analyze the user’s physiological data aggregated
from the wearable devices. The multi-classifier system works based on data fused from different
kinds of wearable sensors [17]. Both data fusion and multi-classifier methods offer better performance.
A transfer learning model is proposed to detect Parkinson’s disease from the wearable data [18].

In conventional healthcare systems, the data are analyzed in the cloud layer, which means the
latency is high. Thus, fog computing becomes an essential part of the smart healthcare system [19].
Although the smart healthcare system has potentiality worked in many applications; still, the fault
data detection has not yet been addressed. Firstly, while all works focus on the data analysis in the
fog layer, the major issue of fog computing (i.e., fog overloading) is not yet concentrated for the
healthcare environment. With the increase in users or patients in the healthcare system, there are
relatively increasing concerns about the overloading issue [20]. Secondly, most research works utilized
only biosensors or body sensors or wearable data to monitor the user’s health status. However,
environmental factors are also equally important to detect the user’s health status accurately [21].
Environmental data like environment temperature, noise level, pollution level have a direct impact on
the user’s health data generated by wearable devices [22]. Both of the issues, including fog offloading
and environmental data analysis, are not thoroughly analyzed in the prior research works from the
perspective of healthcare systems. Apart from these issues, another challenge is that the duplicate
data processing in fog or cloud layer leads to unnecessary resource consumption [23]. For example,
the sensors report the data for each fraction of seconds. But the temperature data may be the same for
a while. Thus, redundant data elimination will speed up the analysis process and also preserve the
resources of fog and cloud computing.
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1.1. Motivation and Inspiration

This research work is motivated by the existing problems in the smart healthcare system, such as
high latency for emergency health status, fault and duplicate data analysis, and fog overloading.
The brief summarization on research issues in our smart healthcare is provided here:

• Latency—High latency is introduced due to data processing in the cloud layer. In general,
healthcare services need on-time data transmission. Latency in healthcare applications directly
affects the patient’s or user’s health.

• Fault Data—Most wearable or biosensors are deployed in the open or mobile (on the human)
environment. It makes the sensors to generate erroneous data. Analyzing the inaccurate data
ultimately leads to incorrect prediction.

• Low Accuracy—Health status prediction accuracy is down due to improper algorithms and
attributes. All research works considered only wearable sensor data, which are unable to provide
accurate results. However, environmental data are also crucial for accurate prediction. As the
wearable data consists of duplicate data, it also affects the data processing accuracy.

• Fog Overloading—One of the best solutions for minimizing latency is to use fog computing.
However, when more users are connected in the same region, the fog will become overloaded.
This overloading problem is the major research issue in smart healthcare.

These research issues motivate us to design a novel smart healthcare system. This paper
concentrates on all these aspects to design an efficient smart healthcare system. For those, we formulate
the following research objectives:

• Design a family healthcare system by using wearable for monitoring physiological parameters.
• Accurately predict the user state through physiological parameters.
• Minimize latency and detect the user state promptly.

To achieve these objectives, we designed a novel tripartite fog-enabled healthcare (Tri-FogHealth)
architecture to monitor the health status of users through wearable physiological parameters.
Apart from this, we made the following contributions in Tri-FogHealth architecture:

• Erroneous data from the wearable is diagnosed by using a rapid kernel principal component
analysis (RK-PCA) algorithm. The RK-PCA algorithm is incorporated in a personal data assistant
(PDA) (i.e.,) the faulty data is detected and eliminated in the wearable layer.

• From the faultless data, the data deduplication process is carried by the data on-looker node.
To detect and eliminate duplicate data, we present a fuzzy assisted objective optimization by ratio
analysis (FaMOORA) algorithm. If no duplicate data is found, then the fog node predicts the
user’s health status through temporal features using the two-level health hidden Markov model
(2L-2HMM). The 2L-2HMM appends the severity level of the user’s health status and provides
apt action for severe cases.

• To prevent the fog layer from overloading the issue, we enable the health off procedure. The health
of works upon two states. In the first stage, the offloading decision is made based on two rules.
Then, an optimal node is selected for offloading by using the multi-objective spotted hyena
optimization (MoSHO) algorithm.

• Then, the user’s current health status is detected in the cloud layer based on behavioral,
biomedical, and environmental attributes. All these attributes are fed into the spiking quantum
neural network (SpikQ-Net) that accurately classifies the user’s health status into normal action
required, no action required, and immediate action required classes.

1.2. Paper Layout

The rest of this paper is organized as follows: Section 2 surveys existing research works held on
smart healthcare systems. In Section 3, we highlight the problem statement and the background
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of the problems considered in this work. Section 4 clearly explains the overall proposed work
with all algorithms. In Section 5, we describe the experimentation detail of the proposed work
with experimental setup and comparative analysis. Section 6 concludes the overall contributions of
this work.

2. Related Work

In this section, we present existing important research works proposed in the smart healthcare system.

2.1. Research Works on Cloud-Based Smart Healthcare System

A smart healthcare system is designed to monitor elderly peoples and optimal access control [24].
For providing access control, the Pearson correlation coefficient (PCC) algorithm is presented with
the Manhattan distance measure. Firstly, algorithms work in parallel to identify older people. Then,
the PCA algorithm is applied to reduce the dimensionality reduction for the collected elderly data.
Lately, the normalization cross-correlation (NCC) algorithm is utilized for final results. However,
the PCA and NCC algorithms are insufficient to process the large amount of data collected from elderly
peoples. In a smart healthcare system designed with multiple heterogeneous wearable sensors [25],
the proposed approach uses an analytical hierarchy process (AHP) with the VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method to make a proper decision on hospital selection
based on two steps. Firstly, the data from the wearable device was collected and analyzed. Then,
the hospital is selected by considering the user’s health status and multiple criteria. In this work,
the processing algorithm is only applied to determine the optimal hospital; however, a more intelligent
mechanism will make decisions based on the health data.

For reliable medical monitoring, fault data detection was performed by the threshold tuning
method [26]. The medical data is collected from wearable devices. As it could be corrupted from
the environmental factors and sensor faults, the fault detection using Bayesian neural network was
performed initially. Although fault data detection improves data reliability, health status monitoring
performance is still inefficient. The Bayesian neural network increases the complexity of the personal
devices of the patient.

As a result, a statistical approach was presented for patient monitoring [27]. The vital signs are
acquired from the wearable, and the data is processed to predict the patient’s health status. First,
gaussian process (GP) models are built for interpretive signs with varying complexity. For this purpose,
the covariance kernels and the fixed parameters are utilized. Then, the Bayesian model is proposed
to find the health status of the user based on two main hypotheses, such as (i) use of patient-specific
model and (ii) use of optimal hyperparameter values. Here, the selection of hyperparameters increases
the complexity of the system.

A new cloud digital twins (CloudDTH) framework was introduced for smart healthcare
monitoring [28]. The concept of digital twins is integrated multi-physics, multi-scale and probabilistic
simulation of a system. In CloudDTH, a virtual object is created for all users in the cloud environment.
The virtual object data was used for modelling, simulating, and evaluating the user data. From the
analysis of the virtual object, the healthcare status of the user was predicted. In general, digital twins
are hard to deploy and manage. In addition, to create a digital twin for each user is not scalable.

To further enhance the prediction accuracy, a complement naïve Bayesian (CNB) classifier was
deployed in the cloud environment to classify the user’s health data [29]. Firstly, the medical data
was acquired from the wearable and biosensors. Before classification, the preprocessing mechanism
was applied to handle the noisy data. The CNB classifier uses double learning processes to improve
classification accuracy. First, the naïve Bayes classifier was trained with the dataset. Then, the classifier
was tested by using the same dataset. It is known as double learning. Here the misclassified data was
used for original test data classification.
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2.2. Research Works on Fog-Enabled Healthcare System

The concept of edge computing is introduced to mitigate latency in healthcare applications [30].
The proposed system computed the criticality measure index (CMI) from the gathered wearable data.
Then the alert message was triggered in emergencies. Here, the CMI value is calculated for each data
without considering temporal and environmental data. It tends to inaccurate health status prediction.

The fog computing-based gateway design explores a geo-distributed intermediary layer of
intelligence [31]. This layer was introduced between the sensors and the cloud. In the fog enabled
healthcare systems, the fog node takes the responsibility of the sensors such as severity detection.
The highlight is that the use of the fog layer in the e-healthcare system improves energy efficiency,
scalability, and reliability problems and also supports user mobility. Therefore, fog computing plays a
pivotal role in e-healthcare applications.

However, the data analysis accuracy is low since there no intelligence algorithm is applied to the
collected health data. Therefore, a smart treatment for personalized healthcare (STPH) model was
presented with edge computing [32]. The STPH model provides the optimal treatment solution to
minimize the cost of the intelligent agent. This approach uses an intelligent agent (IA), which assists in
constructing a personalized treatment plan. Furthermore, the edge servers were introduced to help
the cloud server in the data processing. Here the treatment plan is optimally selected for emergencies.
However, optimal treatment plan selection without detecting the user’s current health status results in
low accuracy.

An edge of thins (EoT) driven ambient assisted living framework was proposed for e-healthcare
applications [33]. This framework uses a hybrid classifier to predict the health status of the user.
The hybrid classifier is made up of the hybrid ambient assisted living with naïve bayes classifier
and the firefly algorithm (HAAL-NBFA). The firefly algorithm is employed to select the optimal
features for classification. Upon optimal features chosen by the firefly algorithm, the naïve Bayes
classifier detects the state of the user. Before the imbalanced dataset is balanced by the synthetic
minority over-sampling technique (SMOTE), the naïve Bayes classifier has less accuracy due to the
class dependencies. This work fails when the incoming data has faulty reading.

A HealthFog framework was developed to monitor the heart diseases in the IoT environment to
minimize the latency and response time for personalized healthcare [34]. The HealthFog integrates
the ensemble deep learning algorithm with edge computing. Further, the fog-enabled framework
is defined as FogBus, which efficiently detects the health status of heart patients. At the same time,
real-time medical data is collected from the sensors of the wearable. The FogBus is designed using
the broker node, the worker node, and the cloud data center. The same data is analyzed in different
worker nodes, and the results are ensemble for final classification. Here the deep learning model is
trained in each worker node of each fog node; this increases the time consumption.

As fog overloading increases the latency for the emergency data, an ubiquitous cloud edge
enabled healthcare (UbeHealth) system was aimed to improve the quality of service (QoS) in the
healthcare system [35]. The healthcare data was processed in both the cloudlet and network layer.
In the cloudlet layer, the deep learning-based data prediction approach was applied, and in the network
layer, data classification by deep learning approach was proposed. Both deep learning approaches
use a recurrent neural network (RNN) for classification. In the cloudlet layer, the flow clustering and
analysis (FCA) process was employed with the density-based spatial clustring of application with
noise (DBSCAN) clustering algorithm. Consequently, using two deep learning algorithms increases
the time consumption.

2.3. Research Works on Fog Offloading

Load balancing in fog-based healthcare applications was focused on improving service quality [36].
The fog computing resources were consolidated in this work to balance the load among foglets.
Only critical resources were redirected to cloud computing, and the rest requests were scheduled to
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fog nodes locally. Although this work utilizes fog nodes to prevent overloading, a random selection of
fog nodes leads to that the fog nodes to become overloaded.

Multiple agents are deployed in the smart healthcare system to maintain load balancing among
fog nodes [37]. The primary aim of the multi-agent fog computing model was to serve critical tasks
within the given time. For this, optimal scheduling was enabled by the multiple agents to access the
fog resources. Here, the most suitable fog node was selected based on resource availability information.
However, numerous criteria are required to process critical and emergency tasks.

A novel four-tier fog architecture was presented to balance load among fog nodes [38]. A dual
fuzzy logic algorithm classified the tasks received from the IoT devices to assign priority levels for the
tasks. Then the tasks were scheduled based on an artificial neural network. Herein, the single objective
is considered for fog node selection, where the energy utility is inefficient.

An energy-efficient offloading strategy was presented for IoT applications [39]. The objective was
to achieve better QoS and energy efficiency. For this, a firefly algorithm based offloading scheme was
proposed. The firefly algorithm uses a weighted-sum method to determine fitness function. The firefly
algorithm is inefficient in local search as it is not suitable for optimal fog node selection.

Comment on Literature: In Table 1, we summarize the literature works with limitations.
The analyzes show a massive research gap that needed to be addressed while designing a smart
healthcare system.

Table 1. Summarization of literature survey.

Category Presented Works Research Issues

Cloud-Smart Healthcare

• PCC and NCC [24]
• AHP-VIKOR Model [25]
• Fault Monitoring [26]
• Statistical Approach [27]
• CloudDTH [28]
• CNB-Cloud [29]

• Health status detection time
is high

• Unable to process a large
amount of data

• Involvement of
inefficient algorithms

Fog-Smart Healthcare

• CMI-Fog [30]
• Fog-Gateway [31]
• STPH [32]
• EoT-Hybrid Classifier [33]
• HealthFog [34]
• UbeHealth [35]

• Low accuracy due to
ineffective algorithms

• Not able to support a large
number of users

• High processing time due to
the presence of
redundant data

Fog Offloading

• Health Load Balancing [36]
• Multi-Agent Fog Model [37]
• Four-Tier Fog Architecture [38]
• QoS Offloading [39]

• Nonoptimal fog selection
degrades the
offloading performance

• single objective is insufficient
to select optimum fog node

3. Problem Overview

In this section, we present the problem statement of this work with the background of
the problems.

3.1. Overall Problem Statement

In wearable-based smart healthcare, more research works have been presented in the view of a
clinical study, and non-clinical home-based health monitoring is concentrated less. The biomedical
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sensors have been used only for health monitoring, but environmental factors play a pivotal role in
healthcare monitoring. Furthermore, fault and duplicate data processing often results in inaccurate
outcomes and increases time consumption. Although fog-enabled IoT healthcare systems minimize the
latency, this depreciation is not sufficient for emergency events. Because the regional fog node where
the number of users is high or the environmental status is worst will become overloaded, it drastically
increases the latency for the particular region.

3.2. Background of the Problem

A cognitive dynamics (CDS) concept is presented for smart healthcare and disease diagnosis,
along with decision tree-based classification [40]. Here, the decision tree is unstable, i.e., a small change
in the data results in a massive change in the structure, which leads to wrong decisions. Further, it is
not suitable to handle streaming data like smart healthcare. The overall analysis is performed here in
the cloudlet layer, which will increase latency drastically. A structured Gaussian process is proposed
for patient-specific physiological monitoring based on its health trajectory [41]. The Gaussian method
is a highly parametric approach that considers all parameters known in prior while increasing the
complexity. This work finds a single vital sign for determining the health level of the patients.

Furthermore, this work is not suitable to handle mobile users since the cluster formation
become complex. Mobile-based physiological sensor system (MoPS) uses a smart shirt and wearable
technology [42]. Analysis of the massive data from wearable demands highly efficient algorithms and
methodologies. Here the data analysis is performed in a cloud server without using proper algorithms
and based on the conventional threshold. It leads to inaccurate classification and also increases the
time consumption.

Further, the user status is detected based on the current physiological sign only. But in general,
the health status of a user depends upon the time series data. The overall analysis considers a single
physiological sign which is insufficient for health status detection.

In a fog-assisted patient health monitoring, Bayesian belief network (BBN) was introduced in
the fog layer for health status prediction [43]. In the cloud layer, the temporal information is used to
compute the temporal health index (THI) for the patients. In this work, both fog and cloud layers work
upon the same attributes (environmental, medical, and behavior). This time consumption increasing
makes it not suitable for healthcare monitoring. Processing in the cloud layer increases the latency
of emergency events. This work is not appropriate to handle large-scale systems and also unable to
support mobile users. However, patients with chronic disease will have mobile nature instead of static.
This system is not suitable for real-time analysis. In addition, the BBN classifier is hard to construct
and also has low classification accuracy. A hierarchical data fusion method uses the complex event
processing (CPE) method for clinical patient monitoring [44]. In each level (sensor, fog, and cloud),
data fusion is performed based on a threshold value. All three levels consider biosensor reading only
for the patient’s health status monitoring. However, environmental factors also play a pivotal role in
healthcare monitoring. CPE, which is used in all three levels, uses some pre-defined rules to detect the
patient status. However, this is not suitable in the practical scenario since each user has different signs
and parameters. Thus, the CPE based analysis is not suitable for real-time analysis. In the fog-cloud
smart office healthcare system, the severity index is computed based on environmental, behavior,
and posture data [45]. The Bayesian classifier is complex and has less accuracy. Thus, data classification
by Bayesian classifiers often results in inaccurate outcomes. The final decision on the user’s health
status is determined at the cloud layer. It increases the latency considerably for emergency events.
Poor load management in the fog layer affects the overall processing ability of the fog layer.

4. Proposed Tri-Fog Health System

In this section, we discuss the proposed tri-fog healthcare system in detail. Each proposed
methodology is explained in each subsection.
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4.1. System Overview

The proposed tri-foghealth system is designed with three primary layers, such as the wearable
layer, the intelligent fog layer, and the cloud layer, as shown in Figure 1. The main intention of
the system is to enable remote health monitoring for wellbeing lifestyle. It also supports mobile
users. The first layer consists of n users (u1, u2, .; un) with wearable sensors (we consider a smart shirt
with biosensors) and a single PDA device and environmental sensors. The next layer comprises m
Data On-Looker nodes (Ol1, Ol2, .; Olm) and k fog nodes (F1, F2, .; Fk). The first layer is responsible for
collecting health data from the patients. The second layer involves two different entities, such as data
on-lookers and fog nodes. The data on-looker nodes are responsible for redundant data elimination
and health status prediction. The health status prediction is the process of the forecasting health status
of the user in the next time frame based on the collected time-series data. The result will be added with
the current data to increase the accuracy of classification. The fog nodes are responsible for classifying
the user’s current health status based on the wearable data and predicted report. The final cloud layer
consists of a cloud server. The detail of the three layers is provided in the Table 2.

Figure 1. Tri-FogHealth System Architecture.
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Table 2. Description of Three Layers in Tri-FogHealth.

Layer Entities Involved Functions Incorporated

Wearable Layer

• Users with smart shirts
• Wearable Devices with biosensors
• PDA

• Data Generation
and Aggregation

• Fault Data Detection and
Elimination by RK-PCA

Intelligent Fog Layer
• Data On-Looker Nodes
• Intelligent Fog Nodes

• Redundant Data Elimination
by FaMOORA

• Health Status Prediction by
Temporal Analysis
(2L-2HMM)

• Health Status Detection
by SpikQ-Net

• Alert Generation on
Emergency Cases

• Cloud Layer • Cloud Servers • Data Storage and Retrieval

As shown in the table, each layer works upon different algorithms. Each algorithm is intended for
a different process. Each process contributes to improving the quality and accuracy of the healthcare
system. On the proposed healthcare system, we make the following assumptions,

• All users have the same number of wearable devices to sense and generate health data;
• The number of fog nodes always equal or higher than the number of data on-looker nodes

(i.e.,) k ≥ m;

By considering the above two assumptions, we designed the tri-foghealth system.
Functions carried in each layer of the proposed system are explained in the consecutive subsections.

4.2. Fault Data Elimination in the Wearable Layer

In the device layer, the health data and environmental data are aggregated. The wearable smart
shirt is the primary source of health data for each user. Further, the environmental data is collected
in every region to detect the user’s health status accurately. As the main issue in wearable sensors
is fault data generation, the first layer designed in a way such that the fault data problem will be
overwhelmed. The fault data is detected and eliminated at the device layer for each user. For that,
we present the RK-PCA algorithm in PDA. A fault data in the healthcare system can be detected based
on the deviation with the normal data model and the variation with the other sensor data. For instance,
the heart rate is generally proportional to the respiratory rate. When there is conflict occurs, then any
one of those sensors reported fault data. Thus, the consideration of multiple sensor data models should
much support the fault data detection and elimination.

To improve accuracy and processing speed, we present the RK-PCA algorithm. Let ui wears a
smart shirt with w biosensors as S1, S2, . . . , Sw. Each biosensor senses the data and reports the data to
PDA in a regular time interval. RK-PCA has to find fault data by comparing the current data with
the normal data model. To this end, the normal data model is built for the sensor data received from
the wearable sensors. The sensor data can be denoted as {X = X1, X2, .; Xt}. The data is captured in
d dimensions in t time instances. The data model is represented as the Eigenvector. The Eigenvalue
equation is defined as ∑ϕ ei = αiei. In this, ei is estimated as;

ei =
t

∑
j=1

αi(j)ϕ(Xi(z)) (1)
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Here, Xi is the chosen data from the normal data model. Similarly, the eigenvalue is computed for
all normal data values. From the normal data model, the fault data is detected, as shown in Figure 2.

Figure 2. Fault Data Detection by Rapid Kernel Principal Component Analysis (RK-PCA).

As in the figure, the first step is to model the normal data by the RK-PCA algorithm. Here,
kernel selection is carried as follows,

Ker
(
Xi, Xj

)
= exp

(
1

2σ2

(
Xi − Xj

)TQ−1(Xi − Xj
))

(2)

The considered kernel is Mahalanobis Kernel (MK) since it supports the non-linear
transformations of the data points.

The next step is to compute the similarity between current data instance (SC) and normal data
model (Snor). The similarity is computed as Mahalanobis distance as follows,

dis(Sc, Snor) =

√
(SC − Snor)

TCM−1(SC − Snor) (3)

Here, CM defines the covariance matrix defined by the eigenvalues of the normal data model.
If the distance is low, then the data is normal. Otherwise, the data is a fault. The PDA carries this
process, and the fault data is suppressed in the PDA. In Algorithm 1, we provided a detailed algorithm
for RK-PCA algorithm-based fault data detection. The information with no fault is then transmitted to
the next layer (i.e.,) intelligent fog layer.
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Algorithm 1: RK-PCA for Fault Data Detection.

4.3. Redundant Data Elimination by Data Validation

In the fog layer, two primary functions are performed by the data on-looker nodes. The first
process is redundant data elimination, and the next process is the user’s health status prediction.
The faultless data from PDA is received by the data on-looker nodes in the region. The data on-looker
nodes are the special nodes that maintain the previous data records from the wearable devices
and environmental sensors. The data on-looker nodes are designed with data validation model
and prediction model. The data validation model is responsible for redundant data elimination by
comparing the current data with previous data instances. Then, the redundant free data is fed into the
prediction model to perform first-level health status prediction. The conceptual structure of the data
on-looker node is illustrated in Figure 3.

Figure 3. Structure of Data On-Looker Node.

4.3.1. Redundant Data Elimination

In this work, we intend to eliminate redundant data without affecting emergency data. In general,
the redundant data elimination is performed if any one of the instances in prior records is matched with
the current data. However, in the healthcare system, a redundant may also be emergency data. In this
case, the data analysis will be affected. Thus, the problem of redundant data elimination is formulated
as a decision-making problem and resolved by a hybrid multi-criteria decision-making algorithm.
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We present the FaMOORA algorithm that works upon three major criteria, such as similarity score
(Sim_Score), inter arrival time (IA_Time) and environmental status (En_Sta). Each criterion can be
defined as follows,

Sim_Score—The current data instance D1 is verified with prior data records from the same user.
D1 is the current data instance from the ith user. A data instance is made up of sensor readings sensed
by the biosensors incorporated on the user. Thus, D1={Sd1, Sd2, ; Sdw}. Then D1 is compared with
succeeding data D2, D3, . . . , Dq of the same sensor of the same user:

Sim_Score
(

D1, Dj
)
=

√
(x1 − x2)

2 +
(
y1 − yj

)2 (4)

The score is computed between all prior data instances.
IA_Time—The inter-arrival time is considered to find whether D1 is needed to be eliminated

or not. If the time between two similar data is relatively less, then the data is duplicate. If the time
difference is high, then the data is new, and it is essential for data analysis.

En_Sta—The difference in environmental status also plays a vital role in redundant data
elimination. It is because the biosensor data may be the same, but the environmental data may
be different. In the worst environmental scenario, the biosensor data will be necessary. In this scenario,
data must be preserved.

All three criteria are considered in the FaMOORA algorithm for making decisions on the current
data instance. The procedure of the FaMOORA algorithm is detailed below.

Firstly, the decision matrix (DM) is constructed with data upon three criteria as follows,

DM =

⎡⎢⎣ SS(1, 2) SS(1, 3) SS(1, q)
IA(1, 2) IA(1, 3) IA(1, q)
EN(1, 2) EN(1, 3) EN(1, q)

⎤⎥⎦ (5)

Then DM is normalized, taking the square root of the sum of all the squares of each alternative
per attribute. This ratio can be given as,

SS(1, q)∗ =
SS(1, q)√[

∑
q
q=2 SS(1, q)∗

] (6)

From the normalized DM, the attributes are weighted by using the fuzzy approach.
In conventional MOORA [46], the weight value is given for the characteristics based on the analytic
hierarchy process (AHP). However, it consumes a significant amount of time. Thus, we present a fuzzy
weighting scheme for the FaMOORA algorithm. The weight value of the attribute SS is given as,

nSSq =
g

∑
q=1

wqSS(1, q)∗ −
h

∑
q=g+1

wqSS(1, q)∗ (7)

Here, g denotes the number of attributes that need to be maximized (beneficial attributes), and h
indicates the number of attributes to be minimized (non-beneficial attributes). Further, nSSq is the
normalized attribute value. Then the fuzzy weight value is computed within the range of [0, 1].
The weight value calculated above will be in [r1, r2]. Then it can be mapped into fuzzy values as,

FW
(
nSSq

)
=

∣∣nSSq − r1
∣∣

|r1 − r2| (8)
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For each attribute value, the weight value is computed as above. Thus, the normalized DM
becomes the fuzzy weighted DM (FWDM) with the values of [0, 1]. From the FWDM, the decision on
the current data instance is made based on the following if-then rule,

If (SS(1, q) to (> 0.5) &IA(1, q)&&EN(1, q) to (< 0.5)
Then, D1 = Duplicate

By following the above rule, the data duplication decision is made, and the data on-looker nodes
suppress the duplicate data. Then, the redundant free data is fed into the nearby fog node for health
status prediction.

4.3.2. User Health Status Prediction by Temporal Analysis

The prediction model receives the user’s health data from the data on-looker node then analysis
the data based on temporal information. The prediction module carries the process of health status
prediction. In this section, we introduce the 2L-2HMM model that predicts the users’ health status.
In this stage, the data instance from biosensors is analyzed with time series. The proposed 2L-2HMM
works upon two levels. In the first level, the biosensor data is interpreted as in the HMM model. Let Di

be the data instance of ui. The fog node first extracts the time series data ui of the ui. The next status
of ui upon biosensor data is characterized by δi(t + 1) o f {π,A,B}. Here, A denotes the transition
probability matrix, and B is the observation probability matrix. The observation matrix is composed of
the data instances gathered by the biosensors. The initial state distribution is denoted as,

πi = P(H1 = 1), 1 ≤ i ≥ p (9)

where, P is the number of probability distributions, and H denotes the hidden state. The state transition
probability of transition from state x to state y is computed as,

�x,y = P(Ht = y|Ht−1), 1 ≤ y ≥ p, 1 ≤ k ≥ w (10)

The observation probability distribution defines the probability of state transition for the
observation lk as,

�k = P(lk|Ht = y), 1 ≤ y ≥ p, 1 ≤ k ≥ w (11)

In general, the observation variable lk depends on the hidden state Hk while the hidden state
depends on the previous hidden state Ht−1. The prediction of the next state of ui is performed based
on the Bayes assumption on observation distribution as follows,

P(lk|Ht = y) =
|Lk |
∏
w=1

P(lk|Ht = y) (12)

The user’s health status is determined as normal or emergency based on the time-series data.
In the second level, the location variations of the users are considered. For instance, the set of

locations of the user denotes = {L1, L2, . . . , Lt}. As the tri-foghealth works upon remote monitoring,
the user location may cover home, home surroundings, home long-distance. In this level, the user’s
current location is verified, whether it is frequent or non-frequent. Upon this information and the
status predicted from the first level, 2L-2HMM uses the following rules,

• When the user’s next status is emergency, and the location is not-frequent of the user, then the
user is in a critical situation (C1).

• When the user’s next status is emergency, and the location is a frequent location of the user,
then the user is in a near-critical situation (C2).

• When the user’s next status is normal, then the user is in the non-critical situation (C3).

41



Electronics 2020, 9, 2015

The user’s next health status is appended with the data to increase the accuracy in the fog
nodes. In addition, the health status prediction process assists in timely data analysis. In Algorithm 2,
we detailed the process carried by data on-looker nodes, including redundant data elimination and
user’s health status prediction. At the end of this algorithm, the data instance is appended with the
user’s next state to make health status detection accurate.

Algorithm 2: Process in Data On-Looker.

4.3.3. User’s Health Status Detection by Fog Nodes

After predicting the user’s health status by data on-looker, the health data is delivered to the
fog nodes. In fog nodes, health status detection is performed based on three categories of attributes
by using SpikQ-Net. The proposed SpikQ-Net combines a spiking neural network that mimics the
natural neural network [47] and a quantum neural network that works upon quantum mechanics [48].
The fusion of both neural networks results in better accuracy of the user’s health status detection
process. First, we clearly described the attributes detail in the Table 3.
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Table 3. Attributes Description.

Category Attributes Description

Behavior

• Cholesterol
• Smoke
• Cig/Day
• Height
• Weight
• Activity
• Chronic_Disease
• Location

Attributes are related to the user’s normal
behavior. We consider the static information like
smoke or not and dynamic information like
location to monitor the user’s health status

Biomedical

• Blood_Pressure
• Glucose_Level
• Heart_Rate
• Respiratory_Rate
• Temperature

We consider the data from wearable devices. All
data related to the biomedical data that shows
the user’s current health status

Environmental
• Room_Temperature
• Noise_Level
• Air_Quality

These data are collected from the regional
environmental sensors.

The SpikQ-Net gets the input of these three categories of attributes, such as behavioral, biomedical,
and environmental. Generally, the user’s health status is detected based on the biomedical data.
The reason for considering behavioral and environmental attributes is that both attributes have a
high impact on the biomedical sensor data. For example, the heart rate is increased when the user is
doing exercise and also in a noisy environment. In this case, the abnormal heart rate is reported by the
biomedical sensors due to the tenancy of environmental and behavioral attributes. Thus, we considered
all three categories of attributes in the user’s health status detection. All three types of attributes are
fed into the SpikQ-Net from the current data instance, as shown in Figure 4.

Let the current data instance be Di(t)={(BDi)(BMDi)(ENi)}. The data instance at time t is composed
of behavior (BDi) biomedical (BMi), and environmental (ENi) attributes at time instance t. For each
user, SpikQ-Net first extracts these attributes by learning the data received. Then, the weight value is
adjusted based on the fusion of these attributes to detect health status. Similarly, the instances from
various users are fed as input to the SpikQ-Net. The proposed SpikQ-Networks as follows,

1. The set of input functions (D1(t), D2(t), .; Di(t), . . . , Dn(t)) is fed into the input layer;
2. Each neuron learns the input to produce output vectors in the hidden layers;
3. The initial weight values (Wi) are initialized as the random numbers;
4. Then the weight values are updated according to the update rule of quantum mechanics;

Wi(t + 1) = Wi(t) + η(
∣∣ o〉−|y(t)〉)〈Dj

∣∣ (13)

5. Here o is the desired output provided for the training stage, η is step size, and it is set as 0 < η < 1;
6. At last, the out layer learns the output based on the weights learned from hidden layers.

The output of the quantum perceptron at the time t is,

|y(t)〉 =
n

∑
j=1

Wi(t)|Di〉 (14)
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Figure 4. SpikQ-Network for Health Status Detection.

In this procedure, we introduce spikes between quantum neurons. The current activation function
value is considered the neuron’s state, and the spikes increase its value to achieve better accuracy.
The introduction of spikes alters the weight update expression as follows,

Wi(t + 1) = Wi(t) + ηδi(t) + υΔWi(t − 1) (15)

Here, υ is the momentum parameter and ΔWi(t − 1) is the weight correction in the previous
iteration. In this manner, the weight values of each neuron are updated for each parameter, and the
output layer detects the user’s health status.

The main aim of this process is to detect the user’s health status as normal, critical, and non-critical
classes. As per the class, the necessary action is taken. The fog nodes take all the steps. That is,
the latency is relatively low for the users. In addition, emergency actions assist in the timely detection
of abnormalities as the process is performed in the fog layer.

4.3.4. Health Data Offloading

The data on-looker node assigns the data for analysis to random fog nodes. Thus, the fog nodes
become overloading. To overcome this issue, we present the health off procedure. Although data
processing in the fog layer minimizes latency, there has been a huge issue that is fog overloading.
Users within the same region often access the same fog node. In such a case, when user density is high
in a particular area, the fog node will become overloaded. Besides, if the environmental condition of a
specific region becomes worst, then many users in that region will require immediate action. Thus,
we present a fog offloading scheme in healthcare services. Each fog node has the stand-by manager
who monitors the load of the fog node regularly and makes a decision on fog overloading. The health
off decision is made in the following two cases,

Case 1: When the fog node becomes overloaded
Case 2: When the environmental condition becomes worst
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If the health off decision is made, the stand-by manager selects an optimal fog node for health data
offloading. For optimal fog node selection, we propose the MoSHO algorithm. Consider, fol becomes
overloaded, then it selects the optimal fog node (fopt) from the set of fog nodes. The spotted hyena
optimization algorithm is a bio-inspired optimization algorithm that works upon the social behavior
of spotted hyenas [49]. As single objective-based offloading is inefficient to maintain the load among
fog nodes, we formulate multiple objective functions in the MoSHO algorithm. The proposed MoSHO
algorithm works in three steps: searching prey, encircling, and attacking the target. The overall process
of the MoSHO algorithm is summarized below.

Fitness Evaluation—Initialize the spotted hyenas’ population. The initial population list consists
of a set of candidate fog nodes as IP ∈{F1, F2, .; Fk}. Then, the fitness value is computed for each
node in the IP set. In the MoSHO algorithm, multiple criteria are considered for the computation of
the fitness function of jth candidate search agent Fn

(
Fj
)
. The considered multiple criteria are load

value β, distance τ, and energy required ρ. The first objective function computes the current load
value of the candidate fog nodes in terms of the number of processing tasks and available resources.
The second objective function computes the distance between the current and candidate fog nodes.
Thus, the offloading is performed between two nearby fog nodes, which minimizes the offloading time.
The third objective function is formulated based on the energy required for offloading the current load
from the current fog node to the optimal fog node. Thus, the fitness value is expressed as follows,

Fn
(

Fj
)
=

1
∑
(

β j, τj, ρj
) (16)

The fitness function is computed for all fog nodes in the candidate set.
Hunting—From the candidate solutions, the search agent who has the highest fitness value is

selected to explore solutions in the given search space. The best search agent has the location of the
prey. Thus, the other search agents form a cluster to move towards the best search agent. The cluster
and the movement are expressed mathematically as follows,

Dh =
∣∣B.ωh1 − ωh2

∣∣ (17)

ωh2 = ωh1 − E.Dh (18)

Ch1 = ωh2 + ωh2+1 + . . . + ωh2+V (19)

Here, ωh2 defines the position of the first best-spotted hyena, ωh1 represents the position of other
spotted hyenas. In addition, V denotes the number of spotted hyenas, and it is computed as follows,

V = Countnos
(
ωh2 + ωh2+1 + . . . + (ωh2 + Ran)

)
(20)

where Ran defines the random vector [0.5, 1], nos represents several solutions and count all
candidate solutions.

Attacking Prey (Exploitation)—In this phase, the solutions are updated towards the best search
agent. This phase is known as attacking the prey. It can be mathematically formulated as,

ω(b + 1) =
Ch
V

(21)

The ω(b + 1) saves the best solution and updates the positions of other search agents. The position
updation is performed according to the best search agent. Next, the search agent fitness value is
updated towards the ideal solution. This process is iterated until the optimal fog node is selected.

In Algorithm 3, the procedure of MoSHO based health off is proposed. Then, the data is offloaded
to the optimal fog node selected by the MoSHO algorithm. The process of emptying prevents the fog
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nodes from overloading the problem. As offloading is performed between closest fog nodes, the latency
is minimized. All three functions are performed in the fog layer to achieve better performance.

Algorithm 3: Procedure of Health Off by MoSHO.

5. Experimental Evaluation

In this section, we present the experimental setup and comparative analysis of the proposed smart
healthcare system.

5.1. Experimental Setup

In this section, we illustrate the experimental model of the tri-foghealth system. The proposed
tri-foghealth is modelled in the iFogSim simulation tool. The iFogSim tool is best to model fog based
environments with the functionalities of CoreCloudSim on the top of the cloud layer. For the proposed
system, the code is written in Java language. All necessary packages and tools are installed on the
PC to make experiments on the proposed tri-foghealth system. The proper software and hardware
parameters are provided in the Table 4.

Table 4. Software and Hardware Description.

Software/Hardware Description

Simulation Tool iFogSim
Simulator Version 3.0.3
Operating System Windows 7 Ultimate

Programming Language Java
Development Kit JDK 1.8

IDE NetBeans 8.2
Database MySQL-5.1.36 (Wamp Server 2.0)

The MySQL database is used to store the healthcare data of users. The other simulation parameters
set in the experimentation is provided in the Table 5.

The proposed tri-foghealth system is built up based on the above simulation settings. At first,
the users are needed to register with the proposed method by reporting their behaviors in the initial
form. Then, the user data is stored in the cloud layer. Data from the same user is stored in a separate
database after analysis by the fog nodes. The proposed experimental setup and flow are illustrated in
Figure 5. As in Figure 5, we construct our fog topology for the smart healthcare system. The users and
the fog nodes are deployed in different regions. The proposed tri-foghealth system analyzes the data
from another region.
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Table 5. Experimental Settings.

Parameter Value

Number of users ∼= 50
Number of biosensors in each user 5

Number of data on-lookers 10
Number of fog nodes 10

Fog Node Configuration

Storage 1 GB
Bandwidth 1000 KBs

Resource Cost 3.0
Memory Cost 0.5

Cloud Configuration
MIPS 1000

Memory 10 MB
Bandwidth 1000 KBs

SpikQ-Net

Number of neurons 10
Number of hidden layers 3

Activation Function Sigmoid
Step Size 0.2

MoSHO
Initial Population 100

Ran 0.3
Iteration 100

Figure 5. Experimental Setup of Tri-FogHealth System.

47



Electronics 2020, 9, 2015

Data generation and analysis: in this work, we present a framework for monitoring the user’s
regular health status. Thus, we generate health data from the sensors. For each user, we create
health data as per the considered attributes. The sample data generated for the users in a given
time instance in a synchronized manner, as shown in the Figure 6b. In this way, we create nearly
1000 sample data with biomedical, behavior, and environmental attributes (i.e.,) each sample represents
the biomedical, behavior and ecological data. The data is generated from 50 users registered in the
system. The generated samples are sufficient to train the SpikeQ-Net neural network. Then, we use
this data to train our healthcare system. Figure 6c shows the data points classified by the 2L-2HMM
algorithm. Then, these data points are fed into SpikQ-Net, which is shown in the Figure 6d. Here,
we set the binary values for specific attributes. For instance, we set Activities as Sit_(0), Sleep_(1),
and Work_(2). Thus, the data contains either 0 or 1 or 2 at a given time instance. The proposed system
also supports a particular disease diagnosis if the proper dataset is used.

Figure 6. (a) User Registration in Tri-FogHealth, (b) Sample Data Generated, (c) Health Status
Prediction (2L-2HMM), (d) Health Status Detection (SpikQ-Net).

5.2. Application Scenario: Remote Quarantine Monitoring for Covid-19 Outbreak

The novel corona virus (Covid-19) outbreaks are the significant and severe outbreak that healthcare
systems handle. In Covid-19, it is impossible to treat all patients in the hospitals since the count is
increasing rapidly. In such cases, remote patient monitoring will be a practical solution [46]. It can be
achieved by our proposed tri-fog heath system, which focuses on remote monitoring. In Covid-19,
most of the affected peoples have mild external symptoms like fever, cough and throat pain but have
severe internal symptoms such as oxygen level reduction. As a result of these symptoms, the patient
suffers from respiratory problems. We can apply the proposed tri-fog health for monitoring the patients
who are in self-quarantine. The application setup is demonstrated in Figure 7.

48



Electronics 2020, 9, 2015

Figure 7. Covid-19 Remote Monitoring by Tri-FogHealth.

As shown in the setup, the patient who is quarantined in a room is equipped with biomedical
sensors such as BP, glucose, respiratory rate, and temperature. Additionally, the place is equipped
with environmental sensors to measure environmental changes. Before quarantine, the patient must
be registered in the system by providing health history, which is further helpful in analyzing health
status. The data collected from the quarantine room is sent to the data on-looker node through wireless
communication. There, the data is cleaned, and the health status is predicted. Then, the information is
fed into the fog nodes, which detect the health status by SpikQ-Net upon all three sets of attributes.
It is worth to mention that tri-fog health generates an immediate alert to hospitals and doctors if any
abnormality is detected in data. Corresponding government authorities can handle the fog and cloud
servers. Thus, patient monitoring will be easy and accurate. Above all, the patients will get timely
health services, which prevent early deaths due to Covid-19. In addition, the involvement of the
health off procedure assists in offloading data among regions if any one of the regions become more
congested. This prototype can be implemented by deploying wearable devices for quarantined patients.
Nowadays, the usage of wearable (smart watches) becomes interesting among many users same as
smartphones (can be used as PDA). Thus, data collection and analysis is easy in the proposed prototype.

5.3. Comparative Analysis

After setting up all necessary parameters, we generate data in the system to compare the
efficiency of the proposed method. The proposed tri-foghealth system is compared with prior
healthcare systems. For comparison, we consider fog based healthcare systems such as Fog-BBN [43],
Fog-CPE [44], Fog-Smart Office [45] and also cloud-based healthcare systems such as Cloud-CDS [40],
Cloud-Gaussian [41], and Cloud-MoPS [42]. We have summarized comparison between all these works
in the Table 6. In the considered results, attributes are also varying. Fog-BBN and Fog-Smart Office
works have considered all three sets of attributes, including biomedical, behavior, and environmental
attributes. The rest of the current research works consider a single set of attributes (i.e.,)
biomedical attributes. Besides, none of the existing healthcare works has concentrated on the offloading
procedure in fog computing. Thus, the health load among fog nodes is imbalanced, which affects the
overall performance.
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The proposed tri-foghealth system resolves the major issues encountered in the prior research
works. Thus, the proposed work achieves better results. The comparisons are made based on latency,
execution time, detection accuracy, and system stability.

5.3.1. Analysis of Latency

Latency is defined as the overall time taken by the system to respond to the user’s received data.
The latency includes propagation and processing time. Latency (α) is computed as follows,

α = αp + β (22)

Here, αP denotes the propagation time taken by the data to reach the fog layer and β indicates
execution time (i.e.,) processing time. In Figure 8, we compare the latency achieved by proposed and
prior works concerning the number of users.

Figure 8. 7 Comparison on Latency upon Number of Users.

The analysis shows that the proposed tri-foghealth system has minimum latency than other
cloud-based and fog-based systems. The cloud-based approaches like CDS, Gaussian, and MoPS
methods have latency up to 20 ms, which is twice the time higher than the fog-based systems.
Among the fog based systems, the proposed Tri-FogHealth system attains latency 6 ms even for
50 users. In the CDS system, a decision tree is used for classification. In general, the decision tree has
higher time consumption, which increases the latency for users.

Similarly, the Gaussian approach has high complexity, and the MoPS algorithm works upon a
static threshold, which can’t handle the massive amount of data. Besides, the cloud-based systems
relatively introduce high latency for users. Although BBN, Smart Office, and CPE methods decrease
latency better than the cloud systems, still latency is high due to inefficient algorithms.

In Figure 9, we compare the latency achieved by fog-based approaches based on the number of fog
nodes. Latency in fog-BBN is high since the second level THI computation is performed in the cloud
layer. Thus, the latency is high in fog-BBN. In fog-CPE, rule-based health status detection increases the
latency in the presence of a small number of fog nodes. In the fog-smart office, the Bayesian classifier
has higher time consumption. Each fog-based approach has some limitations, such as increasing the
latency and decreasing the efficiency of fog nodes. In proposed tri-foghealth, the system minimizes
the latency with the efficient algorithm. The tri-foghealth system has only 5 ms of latency, even with
two fog nodes. The main reason behind this high efficiency is that the tri-foghealth system follows
the health off procedure in cases of fog overloading. Therefore, the issue of fog overloading has been
overwhelmed. Thus, the proposed tri-foghealth system achieves much better efficiency.
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Figure 9. Comparison of Latency upon Number of Fog Nodes.

5.3.2. Analysis of Execution Time

Execution time is defined as the time taken by the healthcare system to predict the users’ health
status. The execution time measures the health status prediction and detection time.

In Figure 10, we compare the execution time achieved by the proposed tri-foghealth system.
And the analysis shows that the execution time performed by the proposed tri-health system is
lower. In comparison, the main reason for high execution time is the inefficiency of the algorithm.
In fog-BBN, the Bayesian classification and THI computation are performed based on the same
attributes (i.e.,) processing the same attributes increases the execution time. In the fog-CPE and smart
office, the conventional rule-based algorithms are incorporated. Thus, the execution time is high in
all these works. To mention that the Cloud-MoPS method takes 19 ms to process data from 50 users.
As MoPS incorporates no algorithm for data analysis, it takes much time, which is nearly thrice time
higher than the tri-foghealth system. In Figure 11, we analyzed execution time based on the number of
fog nodes.

The comparative analysis shows that all of the fog based approaches suffer from higher execution
time. Another leading cause for excessive execution time is that all works analyze fault and duplicate
data from wearable devices. This analysis increases the execution time for the user’s health data up to
15 ms. In addition, the curve shows that fog-smart office work has 8 ms of execution time, even in
10 fog nodes. The increase in the number of fog nodes alone is ineffective in achieving better efficiency.
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Figure 10. Comparison on Execution Time upon Number of Fog Nodes.

Figure 11. Comparison of Execution Time.

On the other hand, the proposed tri-foghealth system has only 3 ms of execution, even with two
fog nodes. And the execution time is 0.5 ms in the presence of 10 fog nodes. This analysis shows that
the fault data and redundant data elimination phases play a pivotal role in analyzing health data.
With both approaches, we achieve timely detection on the user’s health status.
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5.3.3. Analysis of Detection Accuracy

Detection accuracy is defined as the number of corrective actions taken by the fog layer
after analyzing the user’s health status. Accurate detection is the ultimate goal of any smart
healthcare system.

In Figure 12, the detection accuracy achieved by tri-foghealth work is compared with all prior
research works concerning the number of users. In Figure 13, the detection accuracy is compared
with fog based approach based on the number of fog nodes. In both analyzes, we can see that the
tri-foghealth system has only slight variations. It maintains the accuracy curve more significantly
than 95%.

Figure 12. Comparison of Detection Accuracy.

The other methods have lower detection accuracy when the number of users increases.
The existing accuracy curve shows that accuracy is decreased linearly. The main reason behind
this much accuracy degradation is the algorithms used by the existing works are inefficient. In most
cases, the Bayesian classifier is proposed, which has limitations in constructing the classifier model.
Besides, most of the current works use the biosensor data for the user’s health status detection.
For accurate detection, behavior and environmental data are required. Thus, the lack of these data in
existing works traps the detection accuracy to 30%. Even for 50 users, the tri-foghealth system achieves
94% in detection accuracy.

On the other hand, accuracy concerning the number of fog nodes shows that the proposed work
achieves better accuracy even with two fog nodes. As we suppressed fault data and redundant data
in the wearable layer, we make better accuracy greater than 90%, while other fog-based methods
acquire lower accuracy, lower than 60%. In addition, the data overloading of fog nodes is a major
problem in fog-based ways. Analyzing a massive amount of data in a single fog node makes the
fog node inefficient. The presence of the health off procedure in proposed work supports at a high
accuracy level.
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Figure 13. Comparison of Detection Accuracy.

5.3.4. System Stability

System stability is defined as the ability of the healthcare system to support a large number of
users without a reduction in its efficiency and accuracy. In precise terms, it validates the scalability of
the proposed healthcare system.

The comparative analysis of system stability is shown in Figure 14. Comparison is made for
fog-based systems since the cloud-based systems can support a more significant number of users due to
resource availability. The main drawback of cloud-based systems is high latency. Although fog-based
systems resolve these problems, the stability of the system is still a concern. Since the fog nodes
generally have resources lower than the cloud server and most of the users in the same region access
the same fog nodes. In this analysis, we consider 50 users in the system.

In the presence of two fog nodes, most of the works have nearly 75% of stability. The stability is
then increased linearly concerning the number of fog nodes. However, the highest stability achieved
by the existing works is lower than 80% because all these works have an imbalanced load among fog
nodes. As a result, the overloading fog nodes become unable to process data requests. On the other
hand, the proposed tri-foghealth system achieves 96% for users, even with two fog nodes. The main
reason behind these results is (i) fault data elimination by PDA, (ii) redundant data elimination by
data on-looker, and (iii) health off by using the MoSHO algorithm. Altogether, tri-foghealth achieves
system stability up to 98%. Form the comparison; we can conclude that the proposed tri-foghealth
system has much better efficiency.

In Figure 15, system stability is compared between fog based and cloud-based approaches
concerning the number of users. For a smart healthcare system, it is necessary to process many users
without compromising accuracy. The analysis shows that the proposed foghealth approach achieves
better stability regardless of the number of users (i.e.,) it reaches 96% and above strength for a varying
number of users. An increase in the number of users and amount of data does not affect the stability of
the proposed system. In this case, different fog based and cloud-based approaches achieve the same
level of stability, which lies between 65% to 80%.
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Figure 14. Comparison of System Stability.

Figure 15. Comparison of System Stability based on Number of Users.

Further, there is a gradual decrease in stability with an increase in the number of users. An increase
in the number of users increases the amount of data to be processed in fog and cloud layers.
Although the cloud is more scalable than fog nodes, algorithm design also matters in achieving
system stability. This analysis shows that the proposed tri-foghealth approach and the algorithms
involved are effectual in analyzing the user’s health status.
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5.3.5. Discussion on Results

In this subsection, we discuss our proposed system. First, we summarize the average results of the
proposed tri-foghealth system in Table 7. In this table, we have compared the proposed and existing
works based on the average values obtained for each metric. The comparison shows that the proposed
work achieves much better performance compared to existing research works. Mainly, the latency and
execution time is relatively low in the proposed system without loss in detection accuracy. It shows
that the proposed tri-foghealth system is suitable for real-time healthcare analysis.

Table 7. Numerical Comparison on Obtained Results.

Parameter
Cloud-CDS

[36]
Cloud-Gaussian

[37]
Cloud-MoPS

[38]

Fog-BBN [39] Fog-CPE [40] Fog-Smart Office [41] Tri-FogHealth

WRT n WRT m WRT n WRT m WRT n WRT m WRT n WRT m

Latency (ms) 18.52 17.4 16.4 7.8 6.96 9.98 7.92 11.2 9.02 3.44 2.9

Execution
Time (ms) 11.2 11.2 12.5 7.8 5.02 9.98 8.6 11.2 11 2.52 1.74

Detection
Accuracy (%) 61.6 58.6 50 72.4 75.3 68.8 68.4 64.6 66.7 95.44 97

System
Stability (%) 76.6 72 72.8 78.8 74.4 76 72.6 67 73 97 96

In this subsection, we discuss our proposed system. First, we summarize the average results of
the proposed tri-foghealth system in Table 7. The comparison shows that the proposed work achieves
much better performance compared to existing research works. Mainly, the latency and execution time
is relatively low in the proposed system without loss in detection accuracy. It shows that the proposed
tri-foghealth system is suitable for real-time healthcare analysis.

In Table 8, we summarize the overall contribution made in this work and its impact on results.
We can see that the proposed algorithm supports the system to achieve better results in terms of latency,
execution time, detection accuracy, and system stability. Although the proposed approach performs
better efficiency, it also achieves tolerable complexity.

Table 8. Summarization of Proposed System.

The Methodology Used in Tri-FogHealth Contribution in Results

RK-PCA Fault Detection

Eliminates fault data generated by wearable devices
Increases detection accuracy since it allows only proper
data for analysis
Minimizes execution time since a large amount of fault
data is suppressed

FaMOORA Redundant Data Elimination Eliminates redundant data generated by wearable devices
Minimizes execution time since the repeated data has been removed

2L-2HMM Health Status Prediction
Predicts user’s health status based on temporal variations
Increases detection accuracy since it predicts the user’s next state
Minimizes latency

SpikQ-Net Health Status Detection

Detect user’s current health status
Minimizes latency since the response is generated in the fog layer
Detection accuracy is high since it considers there
categories of attributes
Execution time is low as the SpikQ-Net which is a machine learning
technique that works faster than statistical approaches

MoSHO Health Off

Enable offloading procedure when the fog becomes overloaded
Minimizes latency by offloading data to optimal fog nodes
Increases system stability by maintaining a balanced load
among the fog

The complexity analysis of the proposed system is summarized as follows,

Complexity = nT + (n − FD)T + 2T + T
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As in the above, the complexity is also low in the proposed system. Here, n represents the
number of data instances, and FD defines fault data. When compared to Gaussian and BBN classifiers,
the complexity is low in the tri-foghealth system.

6. Conclusions

In this paper, we propose a novel tri-foghealth system for the smart healthcare system.
The tri-foghealth system has worked upon three main layers by using wearable technology.
The biomedical data generated from the wearable layer is processed in PDA to eliminate fault data
using the RK-PCA algorithm. Then, the faultless data is fed into the data on-looker node in the
intelligent fog layer; the data on-looker node is responsible for predicting the user’s health status.
For this, it uses temporal data in the 2L-2HMM algorithm. Before prediction, the current data instance
is subjected to redundant data elimination process by the FaMOORA algorithm. After health status
prediction, the data is processed by the fog nodes using SpikQ-Net, which works upon behavior,
biomedical, and environmental attributes. Based on the emergency level of data, the immediate action
is taken in the fog layer. Simultaneously, the health off procedure followed with the MOSHO algorithm
to prevent the intelligent fog layer from overloading. The experimental results show that the proposed
tri-foghealth system outperforms the current research works. In the future, we have planned to test
the tri-foghealth system for specific disease diagnosis as the present system is designed to find general
abnormalities. In addition, we intend to extend this healthcare system with trusted services as the
health data is relatively sensitive. Thus, security provisioning is also a better research direction to
extend the tri-foghealth system.
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Abstract: One of the objectives of the medicine is to modify patients’ ways of living. In this context, a key
role is played by the diagnosis. When dealing with acquisition systems consisting of multiple wireless
devices located in different parts of the body, it becomes fundamental to ensure synchronization
between the individual units. This task is truly a challenge, so one aims to limit the complexity of
the calculation and ensure long periods of operation. In fact, in the absence of synchronization, it is
impossible to relate all the measurements coming from the different subsystems on a single time
scale for the extraction of complex characteristics. In this paper, we first analyze in detail all the
possible causes that lead to have a system that is not synchronous and therefore not usable. Then, we
propose a firmware implementation strategy and a simple but effective protocol that guarantees
perfect synchrony between the devices while keeping computational complexity low. The employed
network has a star topology with a master/slave architecture. In this paper a new approach to
the synchronization problem is introduced to guarantee a precise but not necessarily accurate
synchronization between the units. In order to demonstrate the effectiveness of the proposed solution,
a platform consisting of two different types of units has been designed and built. In particular, a nine
Degrees of Freedom (DoF) Inertial Measurement Unit (IMU) is used in one unit while a nine-DoF
IMU and all circuits for the analysis of the superficial Electromyography (sEMG) are present on the
other unit. The system is completed by an Android app that acts as a user interface for starting and
stopping the logging operations. The paper experimentally demonstrates that the proposed solution
overcomes all the limits set out and it guarantees perfect synchronization of the single measurement,
even during long-duration acquisitions. In fact, a less than 30 μs time mismatch has been registered
for a 24 h test, and the possibility to perform complex post-processing on the acquired data with a
simple and effective system has been proven.

Keywords: IMU; gait analysis; sEMG; long-term monitoring; multi-unit; multi-sensor;
time synchronization; Internet of Medical Things; body area network; MIMU

1. Introduction

In many areas of research, medicine, and sport it is important to collect data on particular parameters
concerning a subject to obtain information on his/her health condition. Normally, detailed measurements
are performed for short periods and in a controlled laboratory environment. With the advent of
micro-electro-mechanical system (MEMS) technology and thanks to the non-invasiveness of the
equipment available today, a great step forward has been made, allowing acquisitions for long time
intervals, during individual procedures in normal daily life. An important task to perform in order to
make the procedural steps effective is to check whether the patient is correctly following the doctor’s
treatment instructions. Nowadays, Information and Communication Technologies’ (ICT) progress
allows the doctors to remotely follow their patients. Furthermore, thanks to the availability of new
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ICT tools, it is possible to study the long-term evolution of particular symptoms related to specific
diseases, without affecting patients’ everyday lives. They are real on-body laboratories that belong to
the field of the Internet of Medical Things (IoMT). For example, considering specific units equipped
with heartbeat sensors, it is possible to analyze a patient’s heart health in different time slots during
the day, monitoring for the presence or insurgence of anomalies [1].

Complex systems are usually needed when monitoring the symptoms of a disease requires
verification of several parameters and requires flow algorithms capable of taking into account the
evolution of data for recognizing changes in them [2,3], or efficiency optimization algorithms [4]
or systems that improve wireless communications [5]. A possible field of application of such a
complex system, for instance, could be the study of patients with precocious diagnoses of Parkinson’s
Disease (PD) [6,7]. Its main symptoms induce motor issues, such as tremor, rigidity, and instability.
Thus, a gait analysis or posture monitoring could be helpful to identify those symptoms’ progression
or regression. Gait analysis can be conducted in several ways [8]—for example, with video frame
analysis. The case of kinematic gait analysis is brought out using multiple sensor units. Thanks to
information coming from accelerometers and gyroscopes, it is possible to identify an object’s motion in
the space; in our case those pieces of information are related to an arm or a leg movement.

Advanced forms of PD involve the possibility for the patient to alternate phases in which motor
muscles are operative (ON) to phases in which they stop to work (OFF) [9]. This can be related to an
ineffective or changed drug therapy and only platforms for long-term monitoring of the patient can be
helpful for identifying these types of issues. Those platforms usually match the already mentioned set
of gyroscopes and accelerometers for gait characterization with sensors for the sEMG.

Many implementations rely on multiple units with a single sensor as an alternative to a single
unit equipped with the whole sensors set. Additionally, especially for sEMG, it is important to monitor
points that may be distant in space, so two or more units may be needed. We introduce, in this way,
the concept of the multi-unit acquisition system.

From the networking point of view, for a multi-board acquisition system, we talk about Body
Area Networks (BANs) [10], which are networks usually with a star topology and connected by
wireless protocols, whose coverage is of the order of 1–2 m [11] (that is, the necessary area to cover the
entire body).

The length of the time interval used to perform the analysis should be carefully considered.
In some cases, it is necessary to do real-time (online) monitoring while in other cases a posteriori (offline)
monitoring is required. In the first case, the central node (BAN coordinator) is in charge of collecting,
processing, and matching the data, before exposing them to the external network to the BAN—the
Internet. It is important to have a persistent connection between the BAN coordinator and the Internet.
According to [12], this may lead to a significant power consumption associated with the RF portion of
the sensing device. Since we are considering wearable motes, it is unfeasible for the devices to use
expensive batteries or overly heavy batteries. Additionally, it may be useless to expose very frequently
data on the Internet during long-term monitoring.

A better solution seems to be represented by offline processing, in which every mote saves the
results of its surveys on a persistent memory and after gathering the data from the whole set of
units the data collection is processed. This final step calls for the BAN coordinator to be in charge
of strict time synchronization between all motes. In this scenario, the timestamp of each measure
is crucial, since the possibility of correctly analyzing the measures by referring them to the same
instant depends on it. Some off-the-shelf solutions give the opportunity to store the measured data
in a memory. They usually require some extra non-portable and complex hardware, and either their
specified accuracy is too low [13] or no details are given regarding the accuracy itself [14].

The paper aims to present a time-synchronized multi-unit, multi-sensor, and multi-rate acquisition
system for kinematic and static analysis. The data are collected from different sensors, even using
different data rates, over a long time interval of observation during normal daily activities of the
patient. The system can be employed for many specific applications, depending on the virtually

62



Electronics 2020, 9, 1118

unlimited number of boards used, the sensors they are equipped with, and their positioning on
the body. Because of this, the experiments validating the proposed platform will aim to prove the
effectiveness of the approach, generalizing and not specifying a precise operating scenario.

The organization of this paper is as follows: Section 2 reviews related works, while Section 3
formulates the operating problems. Section 4 describes the platform developed, and in Section 5 some
experimental results, validating the system, are reported. Finally, conclusions are given in Section 6.

2. Related Work

2.1. Gait Analysis through sEMG

The EMG is the measurement of the electrical activity of a muscle. EMG actually gives only minor
information about the contraction of individual muscles, but it provides a visible indication of the
muscle activity. The information provided can be extremely interesting when considering the time
instance in which a muscle activates [8].

Many methods are available for EMG. The least invasive one, but also one of the most subject to
interference, is the surface EMG (sEMG). In fact, first of all, it is not always possible to distinguish one
muscle’s activity from that of the adjacent ones (the so-called "cross-talk" phenomenon [8]). Moreover,
since there is a thick layer of skin covering the muscle, the voltage signal arrives at the electrodes with
a significant attenuation that must be compensated with specific preamplification techniques.

However, the sEMG is the preferable way of performing gait activity monitoring over a long time
period as it only requires the patient to have some surface electrodes on specific parts of its body.

In the literature, it is possible to find some examples of gait characterization through sEMG-based
systems. For example, in [15], the authors propose a gait cadence analysis performed through sEMG.
The system is in charge of acquiring electrode signals and processes them according to a first-order
statistic, in order to characterize the periodicity of gait in healthy patients.

In [16], a more complicated analysis involving deep learning is presented. In fact, still employing
sEMG, the author provides a method to identify and classify two sub-phases of gait (proper stance
and swing phases) based on an artificial neural network approach.

In [17], another gait sub-phase recognition system is proposed, with an inferential algorithm
for studying and characterizing the sub-phases. The great advantage of this latter approach is its
reduced cost, since it is based on Arduino Mega 2560 for signal processing, and it is wearable, thereby
allowing one to perform non-invasive remote analysis of gait.

2.2. Multi-Board Acquisition Systems

This work presents a wearable multi-board acquisition system for offline activity monitoring.
In the literature, other systems with the same purpose are present, with similar characteristics but with
some issues that our design aims to mitigate.

In [9], a wearable system for long-term monitoring of gait is presented. The board has the
advantage of being an “add-on” to the patient, unlike others described in the literature that require
the patient to wear specific shoes or other specifically designed clothes. Salarian et al.’s work, instead,
allows one to equip the patient with the system and remove it when the monitoring is over. The board
employed for testing is equipped only by gyroscopes. Nevertheless, the authors claim to have reached
interesting results. Note that the proposed system works for offline monitoring, thanks to the fact that
the motes store their revelations on 8 MB memory cards.

Laerhoven et al. [18] focused their attention on how to reduce the power consumption for wearable
devices of this type. Toward that purpose, they first check for the presence of motion using a set of
tilt switches, and then activate an accelerometer to track the motion itself. This latter sensor, indeed,
drains far more current than a tilt switch. Moreover, since tilt switches furnish a binary output, it is
possible to reduce the computational power required to reveal the presence of motion. Actually, due to
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the nature of the tilt switches, this system does not guarantee a reduced number of false positive or
false negative events of motion, thereby preventing the achievement of high levels of accuracy.

In 2011, Cancela et al. [19] presented a distributed wearable system for online gait analysis in PD
made with five 3-axial accelerometers put on limbs and a gyroscope with accelerometer put on the belt.
Zigbee protocol is used as the telecommunications standard between the motes and to communicate
with a personal computer (PC) that receives and stores the data. The main issues of the approach arise
from the fact that online monitoring can be power hungry, as already discussed. Nevertheless, it is
useless to collect and process data immediately in long-term monitoring. Moreover, the proposed
system requires a PC that must be specifically equipped with algorithms and telecommunication
standards transceivers in order to work and collect data, and this may be an obstacle for doctors
and patients.

Finally, Oniga et al. [20] developed a solution for studying motion activity/inactivity for a
subject in the long term. Wearable motes equipped with only gyroscopes and 3-axis accelerometers are
considered and coordinated by a smartphone, in charge of receiving and processing data, before storing
them in a persistent online database. The proposed solution is an online monitoring system. It is still
capable of reducing some sources of power consumption, thanks to intelligent (triggered) activation
of the motes by the smartphone. Nevertheless, the patients must have a smartphone equipped
with a specific application and a persistent internet connection to store data on the remote database,
accessible to the doctor.

The system presented in this paper allows a more complete analysis of systems of the type
previously described in terms of completeness of the measurements that can be made thanks to the
variety of sensors used, and by the simplicity and versatility of use. The approach ensures a longer
battery life as it minimizes the computational complexity of the synchronization process. Moreover,
it allows an easy reconfiguration and expansion of the group of units without any change in the settings,
as the synchronization protocol is quite simple and does not involve any bidirectional communication.

2.3. Time Synchronization Protocols

The main issue when analyzing multi-unit (i.e., distributed) systems consists of the physical
clocks synchronization. The sub-elements themselves of a multi-board system are not synchronized.
It is mandatory that each and every subsystem has the same vision of the time domain, as the units are
meant to capture events that later must be cross-correlated. Even assuming the theoretical possibility
that every device turns on at at the same time, it is well known that the natural clock drift due to
environmental changes may lead to time mismatches in the run-time phase. As a consequence, the need
for a time synchronization algorithm arises.

Time synchronization protocols belong either to the distributed protocols (DPs) (consensus-based)
or to the centralized protocols (CPs) classes. In the DPs, the decision on the global system time is made
by specific algorithms aiming to solve the problem of consensus. The latter, in distributed systems, calls to
the single nodes to “agree” on a given property, decision, or quantity [21] (in our case, time). A consensus
algorithm has the following properties:

• Termination: after ending, every node makes a decision;
• Agreement: every couple of nodes agrees on the same decision;
• Validity: every decided value is a proposed one;
• Integrity: every node makes a decision at least once.

Obviously, a time synchronization algorithm based on consensus guarantees a high level of
accuracy, at the cost of long computation time needed to reach the consensus itself. As a consequence, a DP
could be unacceptably heavy in time-critical systems and in fast-changing-events observing systems.

In CPs, the decision is made by a single node, called the leader, that we will identify as the
BAN coordinator in our context. Note that backup-leaders can be considered to implement fault
tolerance. Some algorithmic solutions are directly inheritable from classical distributed systems theory,
while other techniques are specially designed for BANs and other kinds of ad-hoc networks.
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The simplest example is constituted by the algorithm proposed by Cristian in [22]. This algorithm
operates in two stages: first, the peer node N asks the coordinator C to be time-synchronized; then, after,
the coordinator sends a message containing its local time (that will become the network global time) TC.
Once the peer has received this message, it sets its local time to be:

TN = TC + τ̃ (1)

with τ̃ an estimation of the actual communication delay detailed in Section 3.2.2. The algorithm
furnishes a good approximation when the random components of τ are negligible when compared to
the deterministic ones.

Another solution is presented in [23], the so-called Berkeley algorithm, adopted in Unix 4.3 BSD.
Here, the coordinator observes message exchange containing local clock values Ti

N still to estimate
τi for each node i, as in the previous case. Then, it averages the clock values. Instead of sending the
decided time, the coordinator sends to each node how much it should increase or decrease its clock
according to the global decided time.

The presented algorithms are more suitable than the consensus-based synchronization algorithms,
but still, they face a time latency in which the event cannot be located in a precise global time instant,
that is, until the whole network agrees on a specific timestamp. This issue suggests the need for a new
class of algorithms, specifically designed for BANs, that is, more time bound. In fact, since BANs for
event sensing must cope with physical quantity measurements which can vary very rapidly, or have to
deal with strict energy constraints [24], it is necessary to introduce new strategies.

Let us consider the class of broadcast-based time synchronization algorithms. In this case, the BAN
coordinator periodically sends the same message to all the BAN nodes (i.e., a broadcast message).
Once each node has received the message, they adjust their internal time according to the specific
algorithm procedures.

The reference broadcast synchronization (RBS) algorithm proposed in [24] offers a solution in
which the leader sends a broadcast message to all the nodes. These latter register the time in which
they received the message as a function of their local clock and inform the other nodes about their local
time computation. A global time consensus is reached in a way similar to Berkeley algorithm—that
is, once the relative time difference computation in each node is known. Unfortunately, a simpler
approach with faster convergence would be needed in some applications.

A lightweight solution is represented by the Flooding Time Synchronization Protocol (FTSP) [25,26].
FTSP sends the MAC layer timestamp to all the nodes in the flooding mode. Each node that received
the message computes the local drift as a function of the global time and aligns its local time to it.
Linear regression is used for compensating clock skewing and drifting. The main con of the approach
is the large amount of exchanged information [26].

In this scenario, our algorithm is a simplified version of the fusion of RBS and FTSP protocols.
In fact, we eliminated the clock skewing and drifting compensations needed in FTSP. Furthermore,
the message sent in the broadcast will contain the value of the real-time clock (RTC) as payload, instead
of taking the time value from the MAC layer, as in the RBS protocol.

3. Problem Formulation

In this section the most important error sources for the time synchronization mismatch will be
discussed. They can be divided into two main categories: errors related to the hardware implementation
and errors related to other sources that we will call non-hardware implementation.

3.1. Hardware Implementation

3.1.1. RTC Mismatch

In most of the low-cost/low-power systems, the RTC accuracy is guaranteed by using a 32.768 kHz
crystal oscillator. Several aspects must be considered when choosing this component for the project;

65



Electronics 2020, 9, 1118

one of them is the frequency tolerance declared by the manufacturer. Low-cost 32.768 kHz crystals
usually have a frequency tolerance of about ±20 parts per million (ppm) that introduces an intrinsic
delay of ±10 min/year at its maximum.

Another source of frequency drift is the crystal capacitive loading mismatch. The effective load of a
PCB mounted crystal depends on the external loading capacitance tolerance, the PCB parasitics, and the
oscillator circuit parasitics. The difference from the load capacitance specified by the manufacturer
can lead to an error up to ±200 ppm [27], which introduces a further delay of ±100 min/year at
its maximum. Probably, this is the most important error source, so the design phase is very crucial;
a typical characteristic is shown in Figure 1.

Figure 1. Crystal frequency drift with load capacitance.

It is common for crystal manufacturers to specify the drift due to aging in the first year without
specifying the trend for subsequent years because it is unpredictable. This value is around ±3 ppm
which means about ±90 s/year at its maximum.

The last source of inaccuracy is represented by the temperature changes that, for quartz, have a
trend represented by a parabola whose vertex is the so-called turnover temperature (TOT). Figure 2
shows the graph for crystal ABS07-32.768KHZ-9-T [28] from Abracon (Spicewood, TX, USA) used in
the project. In this case, the turnover temperature is around 25 °C. The effect is that the oscillator slows
down when the temperature changes around the TOT. It is important to underline that the drift could
be significant. Let us consider a 55 °C temperature; the frequency drift is about ±26 ppm which means
a delay of about ±13 min/year.

All these aspects lead to the consideration that a calibration or synchronization technique
is mandatory. Many calibration techniques are present in literature [29] and producers’ data
sheets [30,31]. Even though those techniques compensate the clock drift with very little battery power
drain, they still require the presence of an external temperature sensor, and most of all, the final
accuracy is around ±3.5 ppm which means a delay of about ±0.2 ms/min.
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Figure 2. Crystal frequency drift with temperature.

We compared the performances of the RTCs of two identical boards for a 14 h log at a constant
temperature of 30 °C. As expected, the mismatch grows linearly and at the end of the observation
interval it is around 12 k milliseconds, as shown in Figure 3. That means a total mismatch between the
boards of about 238 ppm; that is a delay of about 119 min/year.

Figure 3. Real-time clock (RTC) difference between two identical boards.

3.1.2. IMUs Sampling Frequency Differences

IMUs with analog-to-digital converters (ADCs) for digitizing the gyroscope, accelerometer,
and magnetometer outputs, have several interesting features, such as the selection of the sampling rate,
the interrupt feature to alert the processor that a value is exceeding a user-programmable threshold
or that a new data are available to read. The sampling frequency of a typical low-cost unit is in the
range of a few Hz up to a few kHz. The right sampling frequency could be chosen as a function of the
application requirements [32]. Usually, for gait analysis, postural monitoring, or activity monitoring,
the frequency of 100 Hz is the right choice [33]. Even in this case, the clock accuracy is important since
timing errors directly affect the distance and angle calculations performed by the processor.
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In order to show this clock diversity, we use two identical units with a sampling frequency of
100 Hz and the interrupt feature enabled. The output pin is active low and is triggered as soon as the
processor reads the data. In Figure 4 it can be noticed that the mismatch is about 57 mHz, while the
time needed for the processor to read the data is about 80 μs. This means that the measured frequency
differences should be attributed only to the frequency clock tolerance, which is about ±2% for the IMU
used [34], and to the internal delays.

Figure 4. inertial measurement unit (IMU) clock misalignment for two different boards.

As a consequence, it cannot be used as a reference time generator, creating a serious problem.
In fact, let us consider the measured IMU clock of 100.12712 Hz as in Figure 4 and an ideal system
clock with a resolution of 10ms. In such a situation, every sample from the IMU is associated with a
system timestamp. Nevertheless every 7.88 s there is ambiguity and two samples are associated with
the same timestamp. The situation is shown in Figure 5. Instead, if the measured clock is smaller than
the ideal system clock, we have sampling events without a sample.

This issue can be overcome simply by imposing an oversampling at the IMUs, as discussed in the
next section.
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(a)

(b)
Figure 5. IMU timestamp error: (a) global view and (b) zoom.

3.2. Non-Hardware Implementation

This section will describe the problems that are not related to the hardware realization, but, rather,
to the firmware implementation or the network topology choice and so on.

3.2.1. Micro SD Card Speed Classes

In applications of the type described in this paper, it is necessary to provide a local data
storage system. The use of micro SD card memories represents the simplest and most economical
solution, due to their reduced cost and dimensions. In order to simplify the data analysis on a PC,
the FAT32 file system has been chosen. The drawback is that the writing process is slower than raw
writing without a file system. For example, in our tests, closing a file and opening a new one may
require several tens of seconds and it depends on the micro SD card speed class. The goal is not to
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miss any measurement coming from the IMU but at the same time to guarantee the right timestamp
for each measurement. Two simple actions allow one to reach the goal: the first, to put the writing on
micro SD card at a low priority, favoring the RTC and the communication with the IMU; the second,
to prefer burst writing, correctly sizing the vectors to store in the RAM for the temporary storage of
the values coming from the IMU or sensors in general while writing on the micro SD card.

3.2.2. Network Topology

The majority of time synchronization algorithms deal with message exchange. In particular,
since we are coping with a wireless connected system, along with the non-determinism coming with
clock drift, other sources of synchronization noise must be taken into account, directly depending on
the random nature of the radio medium.

In general, the time interval required for the synchronization message to be received from the
time instance in which it leaves its source (denoted as τ) can be decomposed into five parts [25]:

• Send time (tS): the time from the instant the message is composed to that in which it arrives to
the network interface;

• Access time (tA): waiting time for the shared communication channel to be free;
• Transmission time (tTX): time needed for the sender to put the message on the communication channel;
• Propagation time (tP): traveling time of the electromagnetic signal from the sender to the receiver.
• Reception time (tR): the dual time of tS

The overall delay can be expressed as in (2):

τ = tS + tA + tTX + tP + tR (2)

Recalling that in a BAN we are dealing with very short distances (in 1–2 m range), the propagation
time difference between two nodes can be neglected. Hence:

τ ≈ tS + tA + tTX + tR (3)

In this paper, we consider the class of broadcast-based time synchronization algorithms.
For these algorithms, the BAN coordinator sends, under some conditions, a message for triggering
the correct time setting. In this way, some terms of τ can be neglected. In fact, since we have only one
access to the channel, i.e., the one for sending the broadcast message, tA can be neglected. Additionally,
the message is equal for each node, so also tS can be neglected. Then, the expression (3) further reduces in:

τ ≈ tTX + tR (4)

Under these hypotheses, the greatest non-deterministic synchronization artefact is represented
by tR; it should be reduced as much as possible.

4. Platform Presentation

In this section, the synchronized multi-board wireless platform for long-term activity monitoring
is discussed. The general idea is to build a flexible and expandable system composed by a wireless
network of sensor nodes simultaneously providing multiple measures of different physiological
and environmental signals. The organization of the used units will be discussed at a block diagram
level as these were designed using standard commercial components configured according to the
producers’ recommendations. The core system is the synchronization mechanism which makes possible
the correlation of the offline post-processed measurements made by different units that are fused for
more complex analysis.
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It is important to underline that this solution does not necessarily guarantee an absolute timestamp
but guarantees an identical timestamp for all slaves. The accuracy of the entire system depends on
the accuracy of the RTC implemented on the master. This is because in many cases it is not important
to have an accurate absolute RTC system, but it is very important that for each sample of each unit
there is a common synchronized timestamp that allows an a posteriori perfect alignment of the samples.
For example, if we consider a 24 h long posture or step monitoring, an absolute delay of tens of seconds
is absolutely not a problem if and only if this delay is present on all the units that compose the system.
However, it is possible to change the precision of the system simply by acting on the master hardware
implementation, keeping the complexity and cost of the slaves low.

In the next subsections a complete description of the system is presented, starting from the two
different units used in this paper, through the architecture used for protocol implementation and the
Android app used for managing the execution of the measurements.

4.1. Hardware of IMU Board

The custom designed IMUboard-HW-1-0-0 allocates a nine degrees of freedom (DoF) MPU-9250
nine-axis MEMS MotionTracking™ device from TDK-InveSense (San Jose, CA, USA). The MPU-9250
integrates on the same chip, the TDK-INV 6-axis IMU MPU-6500 and the AKM magnetometer
AKM-8963 mutually connected using the AUX-I2C of the MPU-6500 [34]. The angular velocity ranges
from ±250 (deg/s) to ±2000 (deg/s), while the measurement range of the acceleration is from ±2 (g)
to ±16 (g). The measurement range of the magnetometer is about ±4800 (uT), the sampling rate
is up to 8 kHz, and the communication clock frequency is up to 20 MHz for the Serial Peripheral
Interface (SPI) reading protocol. The system core is the Nordic Semiconductor (Trondheim, Norway)
SoC nRF52832 that integrates a 64 MHz ARM®Cortex™-M4 CPU with 512 kB Flash memory and
64 kB RAM. The SoC manages a multiprotocol Bluetooth 5, ANT/ANT+, and proprietary 2.4 GHz.
The processor uses a micro SD card for data logging and it communicates with it in SPI bus mode using
the FAT32 file system to allow direct download of the data onto a PC. The user interface uses a couple
of LEDs (green and red), two push-button switches for user interaction, and one main power switch.
Finally, the power is supplied to the entire system either with a CR2450 coin cell battery, using a
proper battery holder on the board, or with an external battery, using the JST connector on the board.
The IMUboard-HW-1-0-0 unit is depicted in Figure 6 and the block diagram shown in Figure 7 depicts
its structure.

Figure 6. Top and bottom view of IMUboard-HW-1-0-0 unit.
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Figure 7. IMUboard-HW-1-0-0 unit block diagram.

4.2. Hardware of sEMG Board

The custom designed sEMG-HW-1-0-0 is an extension of the IMUboard-HW-1-0-0 previously
described. It has onboard the circuital part for detecting and conditioning the muscle activity signal.
The sEMG-HW-1-0-0 unit is depicted in Figure 8 and the block diagram is shown in Figure 9.

Figure 10 shows the circuit block schematic of the sEMG. The first stage is a differential
instrumentation amplifier with a gain of about 300 V/V. Its output can be routed to the ADC of
a processor to analyze the raw data. The second stage is a rectifier block. The signal, then, is fed
to a low-pass filter (LPF) with a cut-off frequency at 3 Hz to suppress the rapid muscle contraction.
The fourth stage is an amplifier with a variable gain controlled by the processor to equalize the signal
amplitude coming from different quality electrodes or different muscles. The final stage is a comparator
whose digital output is sampled at 50 Hz by the microprocessor and indicates that there is muscle
activity. The sampling frequency used for the sEMG is independent of the IMU sampling frequency.
In fact, two different threads are used for acquisitions and writing takes place on two different files.
It is important to underline that each measurement is referenced over time, thereby allowing the
correct temporal location of the stored measurements.

Figure 8. Top and bottom view of sEMG-HW-1-0-0 unit.
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Figure 9. sEMG-HW-1-0-0 unit block diagram.

The circuital simulation performed in Keysight Advanced Design System (ADS) is reported in
Figure 11. This circuit allows one to monitor the muscle activity and trigger a specific action without
using the microprocessor resources.

Instrumentation
Ampli�er

Low-Pass
Filter

Variable Gain
Ampli�erElectrodes

Comparator

Raw signal
(to the ADC of the
microcontroller)

Digital signal
(to the microcontroller)

sEMG circuit

Figure 10. Superficial electromyography (sEMG) circuit block diagram.

Figure 11. sEMG Advanced Design System (ADS) simulation.

4.3. Master–Slave Architecture

The protocol proposed in this work can be described as a simplified version of the fusion of RBS
and FTSP protocols described in Section 2.3. The architecture used is a master–slave architecture,
sketched in Figure 12, where the single master node acts as the BAN coordinator. Each BAN has
a unique two-byte network ID included in the packets and used for packet filtering. Two types of
messages are possible: broadcast messages with no acknowledgment feature which are used when the
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master needs to communicate with all the slaves in its sub-network and slaveID-oriented messages
with an acknowledgment feature for any other communication. The master uses a broadcast message
to send its own RTC value at predefined intervals depending on the actual hardware implementation,
as it will be discussed in the preceding sections. The slaves refresh their own RTC values according to
the values received by the master.

The advantage shared with the RBS protocol is that it eliminates any non-deterministic behavior
introduced by the transmitter tTX. The only critical issue is represented by the reception time tR,
defined in [25] as the time interval from the message reception up to the end of its processing.
Differently from FTSP protocol, a simple update of the RTC register is the only task to perform during
the receiving interval. Therefore, the firmware organization is quite critical because it must guarantee
that computational delays are reduced to the minimum possible value.

Figure 12. Master–slave architecture.

4.4. Android App

The Android app communicates with the master through Bluetooth Low Energy (BLE) protocol.
It represents the user interface for starting, pausing, and stopping the local data logging for the
entire system. Finally, it gives the actual RTC value at the start-up, as the units have no backup battery
for keeping track of the time when switched off.

4.5. Firmware Considerations

As stated in previous sections, the greatest non-deterministic synchronization artifact is
represented by tR. The firmware should be organized while striving to reduce the elaboration time of the
synchronization packet received by the slaves. The flowchart of the packet reception routine is illustrated
in Figure 13 where it can be noticed that the synchronization packet is immediately processed.

Further, the micro SD card R/W interrupt level is lower than the one of the RTC module.
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Figure 13. Flowchart of the packet reception routine.

Finally, in order to overcome the issue explained in the Section 3.1.2, the sampling frequency
imposed at the IMU is about 200 Hz.

5. Experimental Results

In order to validate the platform performance, different tests were carried out in several
application contexts. The hardware settings were: 200 Hz IMU sampling frequency; ≈5 ms RTC resolution;
10 ms IMU sample interval storage in the micro SD card (100 Hz equivalent sampling frequency); 20 s
synchronization packet rate; ±250 dps gyroscope sensitivity; ±2 g accelerometer sensitivity.

5.1. Rotating Platform

The first setup is shown in Figure 14 where a total of four slaves, two IMUs, and two sEMGs,
were mounted on a rotating platform. A microcontroller drives a stepper motor that rotates the disc
according to very specific routines quasi-randomly alternating movements and pauses.

Figure 14. Experimental arrangement on a rotating platform.

Figure 15 reports the analysis of the variance (ANOVA) of the delays for each slave. To that
end, the firmware has been modified, lowering the RTC resolution to 10 μs and introducing a routine
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for memorizing the time difference between the local and the received timestamp. The test lasted
24 h. The figure evidences that the error distribution is comparable for the four slaves used, its mean
value being around 25–30 μs, and the 25th and 75th percentiles are about 15 μs and 40 μs, respectively.
The reported results demonstrate that the proposed system can be used in applications with much
more stringent synchronization requirements.

Figure 15. Analysis of the variance (ANOVA) test.

Figure 16 shows the raw values along the z-axis for each unit after about 2.5 h. Each waveform
is shifted along the y-axis to improve visibility. Perfect synchronization was noticed along the
x-axis, as expected. Even in this case the synchronization was perfect, and duplicate samples
were not generated, nor was any missing sample reported, demonstrating the effectiveness of the
proposed strategy.

Figure 16. Gyroscope raw data.

5.2. Walking

As stated in the introduction, the proposed system gives the main advantage of cross-relating
not only the signals coming from different similar units but even signals coming from units equipped
with different sensors, allowing one, thus, to correlate heterogeneous signals and perform more
complex processing.

In this configuration, one sEMG unit (slave 1) was placed on the tibia of the right leg and one
IMU unit (slave 2) on the tibia of the left leg; the IMU orientation for both legs is shown in Figure 17.
The electrodes were positioned, as an exercise, as in Figure 17 to analyze the relationship between
muscle activity in the area of the Achilles tendon rather than that of a single muscle. Finally, the master
is worn by the user in his pocket. For sake of clarity, an extract of the elaborations made on the data
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of a walk of a healthy individual during a 24 h logging of his daily activities will be reported and
discussed below.

Figure 17. Units placement, achilles tendon area detail, electrode placement, and IMU orientation.

Figure 18 reports the data coming from the gyroscopes, filtered with a bandpass filter with the
upper and lower cut-off frequencies of 100 Hz and 2 Hz respectively, along with the electromyography.
The figure evidences both the symmetry in the movements of the two lower limbs and the presence
of a periodicity in the muscles’ activity in the examined region. In particular, the symmetry can be
noticed in the regular zero-crossing moment distribution and in the maximum/minimum values of
the measured angular speed. The sEMG ON curve has been normalized to the maximum absolute
value of the other waveforms reported in the figure to better visualize it.

Figure 18. Gyroscope x-axis filtered data for slaves 1 and 2.

The analysis of the angles formed by the tibia in relation to electromyographic data is
more relevant. In Figure 19 it is evident that in the analyzed area there is brief muscle activity
both in the heel strike and midstance. In this representation the almost-perfect symmetry of the
movements of the two limbs is more evident; meanwhile, the measured muscular activity is slightly
variable, as it is associated with the walk of a healthy individual during his/her normal day-life, and
thus not necessarily following a straight path. This implies that several distinct muscles are involved
in the movements. The figure reports the overall activity in the Achille’s tendon area.

Finally, as a last example, Figure 20 shows the raw data of the z-axes of the accelerometers
with muscle activity. As in the previous case, the figure evidences the symmetry in the two limbs’
movements. Much more interesting is the difference in the waveform reporting the accelerations along
the z-axis that implies a different intensity of the two foot rests.
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Figure 19. Roll angles for slaves 1 and 2.

Figure 20. Accelerometer z-axis raw data for slaves 1 and 2.

6. Conclusions

The paper described a platform composed by different units and sensors to be used for long
duration monitoring of daily activities. The currently installed and tested sensors are an IMU with
nine DoF and a unit for sEMG capable of storing raw data or ON/OFF muscle activation information.
The system uses an extremely simple synchronization protocol based on a master–slave architecture,
in which the master regularly transmits the reference timestamp. Each slave of the same subnet uses
the reference timestamp to avoid time-mismatches.

The reported results aim to demonstrate that all the error sources due to the time synchronization
mismatch presented in Section 3 are resolved and overcome. In fact, the synchrony error is below
30 μs, a value that is far beyond the real needs in this type of application related to human activities.

It is important to underline that the measured time mismatch quantifies the slaves’ ability to align
with the master timestamp. We reiterate once again that it is not necessary that the master timestamp
has absolute accuracy, but as demonstrated by the reported experiments, it can itself be affected by all
the errors exposed in the Section 3.
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The reported results demonstrated the effectiveness of the proposed approach, and most of
all, its enormous potential, as it allows one to obtain even more complex processing by correlating
apparently unrelated measurements by inserting different sensor types.

As a matter of fact, different in-depth analyses are possible by varying the unit number,
the sensor types, the positions, and the post-processing of the measurements, allowing one to correlate
apparently uncorrelated parameters. The proposed approach allows the use of non-invasive wearable
units for long time periods that could evidence any possible anomaly. Usually, it is quite difficult to
observe them in a regular laboratory visit where such anomalies are not detected both due to their their
sporadic insurgency and the unconscious attitude to correct them while the patient focuses his/her
attention on them.

An important evolution of the platform currently under analysis elects the master unit to decision
hub rank, appointing him a real-time analysis of a subset of data arriving from the sensor nodes. In this
scenario, the master acts as a time coordinator and decision hub. The evolution does not greatly affect
the slave units moving the computational complexity to the master.
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Abstract: Correctly identifying gait phases is a prerequisite to achieve a spatial/temporal characterization
of muscular recruitment during walking. Recent approaches have addressed this issue by applying
machine learning techniques to treadmill-walking data. We propose a deep learning approach for
surface electromyographic (sEMG)-based classification of stance/swing phases and prediction of
the foot–floor-contact signal in more natural walking conditions (similar to everyday walking ones),
overcoming constraints of a controlled environment, such as treadmill walking. To this aim, sEMG
signals were acquired from eight lower-limb muscles in about 10.000 strides from 23 healthy adults
during level ground walking, following an eight-shaped path including natural deceleration, reversing,
curve, and acceleration. By means of an extensive evaluation, we show that using a multi layer
perceptron to learn hidden features provides state of the art performances while avoiding features
engineering. Results, indeed, showed an average classification accuracy of 94.9 for learned subjects
and 93.4 for unlearned ones, while mean absolute difference (±SD) between phase transitions timing
predictions and footswitch data was 21.6 ms and 38.1 ms for heel-strike and toe off, respectively. The
suitable performance achieved by the proposed method suggests that it could be successfully used to
automatically classify gait phases and predict foot–floor-contact signal from sEMG signals during level
ground walking.

Keywords: sEMG; deep learning; neural networks; gait phase; classification; everyday walking

1. Introduction

Electromyography is a widely-accepted tool able to provide an essential and original contribution
to the characterization of the neuromuscular system [1]. In particular, surface electromyography
(sEMG) is acknowledged as a non-invasive approach, specifically suitable to monitor muscle activity
during dynamic tasks, such as walking [2–4]. In order to achieve a spatial/temporal characterization
of muscular recruitment during walking, gait events, such as the instant of foot-floor contact and
ground clearance, need to be assessed. This process starts from the identification of the two main
gait phases, stance and swing. The stance phase designates the entire period during which the foot
is on the ground, while the swing phase is characterized by the time the foot is in the air for limb
advancement. The transitions between a swing and the subsequent stance phase is commonly referred
to as heel-strike (HS), while the transition between a stance and the subsequent swing phases is referred
to as toe-off (TO). Stance and swing identify the functional subdivisions of total limb activity within
the gait cycle [2], thus precisely identifying HS and TO events is important to analyze the gait activity.
For this reason, sEMG signals are typically coupled with signals able to provide the synchronization of
the gait cycle, such as signals from foot-switch sensors [5], pressure mats [6], stereo-photogrammetric
systems [7], and inertial measurements units (accelerometers and gyroscopes) [8].
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Stereo–photogrammetric systems and pressure mats are affected by different relevant issues: high
costs of the instrumentation, limited number of cycles observed, and/or invasiveness of experimental
set-up. The use of wearable sensors seems to mitigate the impact of the costs and to allow the
identification of gait events in a suitable number of cycles. Even so, the problems of encumbrance
and time-consuming experimental set-up are still relevant, especially for applications in pathology.
Moreover, wearable sensors can require particular care for the correct placement and the need of
specific calibration procedures, not consistent with the timing of clinical practice. Thus, the idea of
overcoming all these limitations developing novel techniques able to detect and classify gait events
from sEMG signal alone is indeed starting to catch on. This kind of approach may involve machine
learning and deep learning techniques.

1.1. Aim of the Study

Classifying gait events is a typical task which could be addressed by machine learning and deep
learning techniques. Many examples were reported in literature [9–12]. However, only few reports
addressed the issue of gait-phase classification from sEMG signal only [13–15]. These very recent
approaches were based on hand-crafted features extracted from sEMG signals during treadmill walking
and were evaluated on a relatively small number of subjects (up to eight). Walking on a treadmill
is known to affect gait performance, resulting in increased number of steps and cadence, decreased
preferred walking speed, stride and stance-phase length, slightly decreased joint range of motion,
and changes in EMG activation with respect to level ground walking [16–19]. Thus, the reliability
of the above mentioned EMG-based classifiers of stance and swing phases [13–15] is limited to
treadmill data and is not tested on ground-walking data. In addition, treadmill walking occurs in
very controlled conditions, characterized by a high repeatability of spatial/temporal parameters
(including stance and swing duration). In contrast, everyday walking is characterized by a wider
variability of spatial/temporal parameters and sEMG signals introduced by deceleration, reversing,
curves and acceleration [16–19]. This variability is expected to affect the performance of a possible
stance/swing classification and the consequent prediction of temporal parameters, such as heel-strike
and toe-off timing.

Therefore, the aim of the present study is to propose an artificial neural network (ANN)-based
approach to classify gait events (proper stance and swing phases) and to predict foot-floor-contact
signal from sEMG signals, in conditions similar to everyday walking. With “conditions similar to
everyday walking” we mean that, differently from previous study where gait phases were classified in
the very controlled conditions of treadmill walking [13–15], in the present study each subject walked on
level ground following an eight-shaped path (Figure 1) which includes natural deceleration, reversing,
curve, and acceleration.

Figure 1. Illustration of the eight-shaped path used in our experiments.
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1.2. Contributions

The main contributions of the present study are three:

• first, providing a classification of stance and swing phases and the prediction of foot-floor-contact
signal in more natural walking conditions (similar to everyday walking), overcoming the
limitations and the constraints of a controlled environment, such as treadmill walking;

• second, proposing a different approach to process the sEMG signal used to train deep neural
networks: while previous studies [13–15] processed sEMG signals to extract time/frequency
domain features which were used to feed the neural networks, the present study directly used
the envelopes of the EMG signal to train the networks, attempting to automatically learn relevant
higher level (hidden) features;

• third, improving the reliability of the prediction of gait events (HS and TO) in unseen subjects
reported in literature [13], despite the challenging condition of everyday walking. This has been
achieved by both enlarging the testing data (four-minute ground walking of 23 different subjects)
and decreasing the average error in the prediction of HS and TO timing.

The remainder of this paper is organized as follows. Section 2 reports a brief review of the related
works. Section 3 describes the dataset, the acquisition and the pre-processing of the signals, and the
gait- phase classification by deep learning. Section 4 reports and discusses the results. Section 5
concludes the present study.

2. Related Works

Machine learning techniques, such as ANNs, are typically used for analyzing and classifying
large amount of data and complex signals. Many applications of machine learning approaches in
health care were reported [20–22]. Similar approaches were proven to be reliable also in classifying
EMG signals during different tasks. Wavelet neural network and multi-layer perceptrons were
used to handle EMG signals in order to identify neuromuscular disorders [23,24]. Learning vector
quantization, support vector machine, and Levenberg–Marquardt-based networks were applied to
EMG signals for classifying hand-motion patterns [25–27]. EMG-based unsupervised competitive
learning techniques were employed for the identification of the muscle activity during pregnancy [28].
Efforts have been made to adapt these techniques for walking-task characterization: different machine
learning approaches were applied to gait analysis data by Joyseeree et al. for disease identification [9].
Kaczmarczyk et al. [11] applied ANNs for gait classification in post stroke patients. Wang and
Zieliska [12] designed an EMG-based method for detecting the variability in gait features depending
on footwear, by applying vector quantization classifying networks and clustering competitive networks.
Zou et al. [10] performed gait recognition analyzing inertial sensor data by means of deep convolutional
neural network (and deep recurrent neural network approaches

In particular, literature reports only few attempts to provide a machine learning approach which
used the sEMG signal only for the classification of stance and swing phases [13–15]. In [15] a set of
time-domain features is extracted from EMG signal segments and hidden Markov models are used
to individuate stance and swing phases. Evaluation is performed on a single subject walking on a
treadmill, reporting a maximum classification accuracy of 91.08%. In [14] a novel bilateral feature is
extracted from the EMG signal and is used to classify stance and swing phases by training a support
vector classifier. The method is evaluated on two subjects walking on a treadmill at different speeds.
The best reported accuracy (96%) corresponds to the case where a subset of the gait cycles from a
subject are used to classify the entire walk of the same subject. In [13] a set of time-domain features are
extracted from EMG signals and fed to a single hidden layer neural network to classify gait phases.
This study is the most similar to ours, as it explicitly targets unlearned subjects, i.e., subjects not used
as inputs during the training phase and attempts to predict timing of phase transitions. However,
the data used is derived from 8 subjects walking on a treadmill and the evaluation of phase transition
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detection is performed on only 5 s of the walking of a single unlearned subject, reporting a mean
average error of 35 ± 25 ms for HS and 49 ± 15 ms for TO. All these recent approaches were based on
hand-crafted features extracted from sEMG signals during treadmill walking and were evaluated on
relatively small populations of subjects (up to eight).

3. Materials and Methods

3.1. Dataset

The dataset included signals recorded from 23 healthy adults (12 females and 11 males), acquired
in the Movement Analysis Laboratory of Università Politecnica delle Marche, Ancona, Italy. Mean
(±SD) characteristics were: age = 23.8 ± 1.9 years; height = 173 ± 10 cm; mass = 63.3 ± 12.4 kg; body
mass index (BMI) = 20.8 ± 2.1 kg/m2. None of the subjects presented any pathological condition or
had undergone orthopedic surgery that might have affected lower limb mechanics. Therefore, subjects
with joint pain, neurological pathologies, orthopedic surgery, abnormal gait or a body mass index
(BMI) higher than 25 (overweight and obese) were not recruited. The research was undertaken in
compliance with the ethical principles of the Helsinki Declaration and was approved by an institutional
expert committee. Participants signed informed consent prior to the beginning of the test.

3.2. Signal Acquisition

The multichannel recording system, Step 32 (Medical Technology, Italy, Version PCI-32 ch2.0.1.
DV, resolution: 12 bit; sampling rate: 2 kHz) was used to acquire surface electromyographic (sEMG)
and basographic signals (i.e., the signals from footswitches). Each lower limb was instrumented with
three foot-switches and four sEMG probes. Foot-switches (surface: 1.21 cm2, activation force: 3 N),
were pasted beneath the heel, the first and the fifth metatarsal heads of the foot. Single differential
sEMG probes with fixed geometry (Ag/Ag-Cl disk; electrode diameter: 0.4 cm; inter-electrode distance:
0.8 cm; gain: 1000; high-pass filter: 10 Hz; input impedance: 1.5 G; CMRR > 126 dB; input referred noise:
1 Vrms) and with variable geometry (Ag/Ag-Cl disks; minimum inter-electrode distance: 12 mm, gain:
1000, high-pass filter: 10 Hz, input impedance >1.5 G, CMRR >126 dB, input referred noise 200 nVrms)
were placed on the belly muscle to detect the sEMG signals. Skin was shaved, cleansed with abrasive
paste and wet with a damp cloth. Probes were placed over tibialis anterior, gastrocnemius lateralis,
hamstrings, and vastus lateralis, following the recommendations provided by the European concerted
action SENIAM (surface EMG for a non-invasive assessment of muscles) for electrodes location with
respect to tendons, motor points and fiber orientation [29]. Each volunteer walked barefoot on the
floor at her/his own chosen pace for about 5 min, following an eight-shaped path [30], which includes
natural deceleration, reversing, curve and acceleration (Figure 1).

3.3. Pre-Processing

Footswitch signals were converted and processed so as to identify the different gait cycles and
phases (stance and swing), according to the approach discussed in details in [31].

Electromyographic signals were processed by a high-pass, linear-phase FIR filter (cut-off
frequency: 20 Hz), in order to avoid phase distortion effects and by a low-pass, linear-phase FIR
filter (cut-off frequency: 450 Hz). Then, sEMG signals were full-wave rectified and the envelope was
extracted (second-order Butterworth low-pass filter, cut-off frequency: 5 Hz). Figures 2 and 3 showed,
respectively, the raw EMG signals recorded for the right leg and the envelope obtained as a result of
the pre-processing step.

The sEMG and basographic data analyzed in the present study are going to be published in a
public dataset, and are currently available for research purposes by contacting the authors.
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Figure 2. Raw electromyographic (EMG) signals recorded from the four muscles of the right leg.
Corresponding heel-strike (HS) and toe-off (TO) timing are highlighted.

Figure 3. The envelope resulting from the pre-processing of the raw EMG signals recorded from the
four muscles of the right leg. Corresponding HS and TO timing are highlighted.
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3.4. Gait Phase Classification

3.4.1. Data Preparation

Before feeding data into the classifier, a min-max normalization of each muscle signal was
performed within each subject, thus mapping the values in the [0–1] interval. In order to train the
classifier, we split the signals into 20 data samples windows (corresponding to 10 milliseconds) for
both stance and swing phases.

We then aggregated the synchronized EMG-signal segments corresponding to the eight muscles
(four for each leg) into a single vector of 160 elements. Each EMG vector was composed of 20 sequences
of eight elements. Each element represents the EMG-signal values of the eight muscles in that single
time-sample. Thus, the first eight elements of the vector were the EMG signal values of the eight
muscles computed in the first sample of the segment. The following eight elements of the vector are
the EMG signal values of the eight muscles computed in the second sample of the segment, and so
on up to the twentieth sample. The structure of the input vector is illustrated in Figure 4. L1i, L2i,
L3i, and L4i were the values of EMG signals in the sample i corresponding to the muscles of the left
leg, respectively: tibialis anterior, gastrocnemius lateralis, hamstring, vastus lateralis. R1i, R2i, R3i,
and R4i represented the correspondent for the right leg. Each input vector was assigned to the label
0 if the corresponding signals belong to a stance phase, and to 1 if the corresponding signals belong
to a swing phase. After removing the segments before the first swing phase, to avoid considering
muscle activation recorded in non-walking conditions, we obtained 522.936 labelled segments from
the 23 subjects.

Figure 4. The structure of EMG vectors fed as input to the artificial neural networks (ANNs).

In our study we attempted to classify gait phases and to detect the timing of phase transitions
(HS and TO events). In particular we are targeting previously unseen subjects, i.e., subjects whose gait
recordings were not used in the training phase.

Accordingly, we performed a cross-validation using 23 folds, each of which uses data from
22 subjects (LS set) in training and 1 in test (US set). At each fold, a different subject is used as the test
subject (unseen). In order to measure the phase classification performances also for learned subjects,
we further split the LS set into training set (LS-train) and test set (LS-test). More precisely, LS-train
includes the first 90% of the each subject strands (approximately 3 min and 30 s, 180 gait cycles) and
LS-test the remaining 10% (approximately 30 s, 20 gait cycles).

3.4.2. Neural Networks

We experimented with different multi layer perceptron (MLP) architectures. In Table 1 we
summarize the different architectures for which we report the results in the following section. The first
model (MLP1) was a shallow network with one single hidden layer composed of 128 units (neurons)
and had a one-dimensional output. The output was fed to a sigmoid function and a 0.5 threshold
is used to obtain a binary output: when the output of the sigmoid was >0.5 we assigned the label
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1, otherwise we assigned the label 0. We then experimented with deeper networks, composed of
2–5 hidden layers (Table 1). In all the architectures we used rectified linear units (ReLU) to provide
non-linearity between hidden layers. As an example, in Figure 5 we illustrate the structure of the
MLP4 architecture.

In our experiments, we used stochastic gradient descent (SGD) as the optimization algorithm and
binary cross entropy as the loss function (BCE).

The value 0.1 was experimentally identified as the optimal learning rate for all the tested models
and thus adopted in all the experiments. Finally, all ANN models were trained using an early stop
technique, according to the following procedure. The networks were trained for a maximum of
100 epochs, stopping when the accuracy on the validation set did not increase for 10 consecutive
epochs. The best-performing learned parameters were adopted to evaluate the model performances
over LS-test and US sets and the basographic signal was used as ground truth.

Table 1. Overview of the multi layer perceptron (MLP) architectures.

Model Name Model Structure

MLP1 mlp(128)
MLP2 mlp(256, 128)
MLP3 mlp(512, 256, 128)
MLP4 mlp(1024, 512, 256 ,128)
MLP5 mlp(1024, 1024, 512, 256 ,128)

Figure 5. The architecture of multi layer perceptron (MLP)4.

3.5. Gait Events Timing Detection

The predicted foot–floor-contact signal was reconstructed by chronologically arranging the binary
output of the network. Thus, a vector was obtained, composed of sequences of 0 (stance phase)
alternating with sequences of 1 (swing phase). This vector was chronologically scanned in order
to detect the transitions between gait phases: from swing to stance phase (HS) and from stance to
swing phase (TO). HS was identified as the sample where the transition from 1 to 0 occurred. TO was
identified as the sample where the transition from 0 to 1 occurred.

Then, the predicted signal was cleaned by removing those phases that were too short according
to physiological constraints, probably due to classification errors. We adopted the following procedure.
Starting from the first HS, the following 500 samples (250 ms) were scanned to find out and remove
those having a value of 1. Then, the following HS was identified, the process was repeated and so on.
In the same way, starting from the first TO, the following 500 samples were scanned to find out and
remove the samples which assumed the value of 0. Then, the following TO was identified, the process
was repeated and so on. Eventually, the cleaned vector was chronologically scanned again in order
to detect the transitions between gait phases (from 0 to 1 and from 1 to 0) and thus the timing of the
gait events.
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3.6. Evaluation Measures

In this work, a EMG signal’s segment classifier is ultimately used to predict a biographic signal,
that is predicting the precise timing of gait phase transition. We first evaluate the performance of the
classifier in assigning the correct label (0 for stance and 1 for swing) to single EMG segments. This
is done using standard classification metrics, by calculating accuracy, precision, recall and F1 score,
as the harmonic average of the precision and recall. However, this measure does not provide enough
information to evaluate the performances of the basographic signal prediction. In fact, even a high
accuracy, if errors are concentrated in proximity of transitions, may lead to unsatisfactory results in
terms of time error of transition instants. Furthermore, we apply a post processing to the classifier
output, to remove false prediction and improve performances, thus we need to explicitly evaluate the
predicted basographic.

For that purpose, we adopt the following procedure, used in literature to evaluate gait events
prediction, e.g., in [32,33]. We first chose a temporal tolerance T, which we set to 600 milliseconds.
Then we consider as true positive each predicted TO or HS event at time tp if an event of the same
type exists in the ground truth signal at time tg such that |tg − tp| < T. Otherwise we consider the
predicted event a False Positive. We then measure the precision, recall and F1 score and, for all the
true positives, we calculate the mean average error (MAE) as the average time distance between the
predicted event and the one, of the same type, in the ground truth signal.

We adopted this evaluation strategy to measure the performances of our approach and comparing
it with a feature-based one.

4. Results and Discussion

To the best of our knowledge, this study is the first attempt to provide a reliable binary classification
of level ground walking into stance and swing phases, by means of the application of deep learning
techniques to sEMG signal. Starting from gait-phase classification, the study achieves also a prediction
of foot-floor-contact signal and a consequent identification of heel-strike and toe-off timing.

4.1. Gait-Phase Classification

Mean classification accuracy (±SD) obtained over the 23 folds with different MLP architectures
for both learned subjects (LS-test set) and unlearned ones (US set) is shown in Table 2, where the best
results are in bold. The same convention is used in all the tables.

Table 2. Gait phase classification accuracy (± standard deviation (SD)) averaged over the 23 folds for
each considered network.

Accuracy on US Accuracy on LS-Test

MLP1 92.62 ± 2.3 93.83 ± 0.28
MLP2 93.01 ± 2.1 94.41 ± 0.23
MLP3 93.41 ± 2.3 94.83 ± 0.2
MLP4 93.25 ± 2.9 94.94 ± 0.3
MLP5 93.03 ± 2.8 94.93 ± 0.2

As expected, classification accuracy for learned subjects was higher than for unseen ones.
However, the limited gap (around 1–2 percent) suggests that all the networks succeed in learning
signal patterns that generalize well to unseen subjects. The best accuracy on unlearned subjects
was obtained with MLP3. By looking at the standard deviation reported in Table 2, one can notice
that, while for learned subjects the accuracy was uniform across the different folders, there was a
higher variability when considering unseen subjects. This is partially due to the fact that there were
22 unlearned subjects in the LS-test in each folder, while the US set was composed of a single subject.
Such a variability also suggests that walking patterns might be very different from subject to subject,
especially in everyday walking conditions, making the classification harder if a subject had never
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been seen before. However, looking at results on US sets over the 23 folds, as shown in Figure 6,
the accuracy does not fall below 87.6% (subject 13) and reaches the highest value of 97.3% (subject
20). Such results are, in our opinion, promising and suggest that the variability could be reduced,
and mean accuracy increased, by considering a larger number of subjects to learn from. Tables 3 and 4
report precision, recall and F1 score of the classification of Stance and Swing phases for, respectively,
unlearned (US set) and learned (LS-test set) subjects. Results are averaged over the 23 folds. It is worth
noticing that, in line with what was reported in literature [2], the segments belonging to a stance phase
were more frequent (around 60%) than those belonging to a swing phase. This is because in normal
walking the stance phase duration was 60% of the gait cycle (while the swing phase duration was the
remaining 40%) on average. Despite this, results obtained for swing labelled segments are better than
those obtained for stance labeled ones, both in unlearned and learned data.

Table 3. Gait phase classification performances for stance and swing phases in unlearned subjects (set
US). Precision, recall and F1 scores are averaged over the 23 folds.

Stance Phase

Precision Recall F1 Score

MLP1 92.99 ± 4.5 90.50 ± 5.9 91.49 ± 2.9
MLP2 93.15 ± 4.4 91.22 ± 4.9 91.99 ± 2.4
MLP3 93.68 ± 3.9 91.57 ± 5.0 92.46 ± 2.7
MLP4 93.29 ± 2.9 91.78 ± 5.3 92.35 ± 3.2
MLP5 92.89 ± 4.7 91.53 ± 5.2 92.04 ± 3.4

Swing Phase

Precision Recall F1 Score

MLP1 92.49 ± 4.8 94.74 ± 3.2 93.45 ± 2.0
MLP2 92.97 ± 4.3 94.84 ± 3.1 93.77 ± 1.9
MLP3 93.24 ± 4.3 95.21 ± 2.9 94.11 ± 2.1
MLP4 93.32 ± 4.7 94.80 ± 3.6 93.93 ± 2.7
MLP5 93.29 ± 4.0 94.47 ± 3.7 93.77 ± 2.5

Table 4. Gait phase classification performances for stance and swing phases in learned subjects (set
LS-test). Precision, recall and F1 scores are averaged over the 23 folds.

Stance Phase

Precision Recall F1 Score

MLP1 94.15 ± 0.3 91.72 ± 0.8 92.92 ± 0.3
MLP2 94.48 ± 0.6 92.75 ± 0.8 93.60 ± 0.3
MLP3 94.63 ± 0.5 93.59 ± 0.5 94.11 ± 0.2
MLP4 94.80 ± 0.5 93.67 ± 0.9 94.22 ± 0.4
MLP5 94.50 ± 0.5 93.99 ± 0.6 94.24 ± 0.3

Swing phase

Precision Recall F1 Score

MLP1 93.60 ± 0.5 95.50 ± 0.3 94.54 ± 0.2
MLP2 94.37 ± 0.5 95.72 ± 0.6 95.04 ± 0.2
MLP3 94.99 ± 0.3 95.81 ± 0.4 95.40 ± 0.2
MLP4 95.06 ± 0.7 95.94 ± 0.4 95.50 ± 0.2
MLP5 95.28 ± 0.5 95.68 ± 0.4 95.48 ± 0.2
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Figure 6. Classification accuracy over the 23 folds for the unlearned subjects (US set).

4.2. Comparison with Feature-Based Approach

Classification of EMG signals from lower-limb muscles is usually based on time/frequency
domain features extraction [34]. In order to provide a comparison with a feature-based method,
we implemented a classifier following the approach described in [13]. We used a window size of
200 samples and for each sEMG signal we calculated the following features: standard deviation (SD),
root mean square (RMS), mean absolute value (MAV), integrated EMG (IEMG) and waveform length
(WL). They correspond to the group 2 features used in [13], which provide the best classification
accuracy. We then concatenated the features obtaining a 40 length input vector (five features for each
of the eight muscles). This was fed into a multi layer perceptron to train a gait phase classifier. A single
hidden layer with 10 units is used in [13], where the input vector length was 10. We ran classification
experiments over the 23 folds training a single layer network with 10 units, a single layer network
with 40 units (corresponding to the size of our input vector) and all the networks in Table 1. The best
average classification accuracy of 87.69 ± 5.9 for unlearned subjects was achieved with MLP3, while
accuracy for LS was 88.03 ± 2.7, thus we used MLP3 for predicting HS an TO timing, adopting the
same procedure applied to our approach and described in Section 3.5. In the following sections we
refer to such a feature based method as FB.

4.3. Gait Events Detection

The analysis of the results identified MLP3 as the best model for the classification of unlearned
data, obtaining an accuracy of 93.41% (Table 2), a F1 score of 92.46% for stance phases and of 94.11%
for swing phases (Tables 3 and 4). Thus, MLP3 has been adopted to predict foot-floor-contact signal
and identify HS and TO timing in unlearned subjects, following the procedure described in Section 3.5.
The prediction was tested by comparing HS and TO timing provided by the present approach vs.
heel-strike and toe-off timing measured from the basographic signal. Examples of prediction of
foot–floor-contact signal provided by the present approach in US subjects (blue line) vs. the ground
truth (red line) are depicted in Figure 7. As one can see, our method provides good predictions also
in the presence of an irregular walking activity, i.e., non uniform gait phases duration, due to the
everyday walking conditions addressed in this study.

90



Electronics 2019, 8, 894

Figure 7. Examples of TO and HS predictions on six random subjects.

Purely data-driven approaches for gait-phase identification have been shown to achieve lower
performance in less controlled scenarios, such as conditions similar to everyday walking [32]. Adapting
to the larger variability of sEMG signals collected from dynamic environments and activities is more
challenging for the classifiers. This could be due to the reported differences [16–19] between treadmill
and straight ground walking (i.e., increased number of steps and cadence, decreased preferred walking
speed, stride and stance-phase length and changes in sEMG activation) and to the further variability
of spatial and temporal parameters and sEMG signals introduced by deceleration, reversing, curve
and acceleration typical of everyday walking [16]. Despite this, the accuracy of MLP3 classification
is good for both LS-test subjects and US subjects (93.41%). The high classification accuracy and the
effective post-processing of model output allowed to achieve an average absolute prediction error
over unlearned subjects of 21.42 ± 7.0 ms for HS and 38.1 ± 15.2 ms for TO (Table 5). Both HS and TO
predictions may be considered reasonably suitable, since they show an average absolute error <1% and
<2% of a gait cycle duration, respectively. The present approach shows better performance in detecting
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heel-strikes rather than toe-offs. This result matches previous EMG-based and accelerometer-based
reports [13,32].

Table 5. Performance of toe-off (TO) and heel-strike (HS) detection for unlearend subjects over 23 folds.

HS

MAE Precision Recall F1

MLP3 21.6 ± 7.0 99.67 ± 0.5 99.50 ± 2.9 99.04 ± 2.6
FB 56.7 ± 31.9 99.19 ± 1.5 96.40 ± 9.4 97.56 ± 2.6

TO

MAE Precision Recall F1

MLP3 38.1 ± 15.2 99.07 ± 1.5 97.90 ± 3.5 98.40 ± 2.4
FB 64.4 ± 42.7 98.45 ± 2.6 95.67 ± 9.9 96.84 ± 6.9

To test the reliability of HS and TO prediction, results provided by our approach have been
compared with the results achieved by feature-based (FB) approach. Comparison is reported in
Table 5. Our approach outperformed the FB one, suggesting that the neural network succeeded in
learning latent features that are better suited for the task at hand if compared to the ones used in
previous studies [13]. Besides the above reported direct comparison with the FB approach in the
same population, an idea of the quality of the present results could be given also through the analysis
of the results reported in [13] in their own population, during treadmill walking. The classification
accuracy reported in [13] was 87.5% on learned subjects and 77% for unlearned ones. The associated
average prediction error computed in unlearned subjects was 35 ± 25 ms for HS and 49 ± 15 ms for TO.
Compared with those performances, results provided by the present study are encouraging, despite
the challenging conditions of everyday walking. Besides the different approach (different neural
network and different processing of the input signal), the elevated classification-accuracy values and
the satisfactory HS/TO-prediction achieved here are supposed to be due also to the characteristics of
the experimental set-up: high number of strides acquired per subject (about 500) associated with quite
a large number of subjects (23); four different muscles per leg for every subject involved in training
process. Moreover, foot-switches [31,35] represent the gold standard in gait segmentation since each
gait phase can be associated with a specific value of the sensor output [36]. Finally, in the present study,
data from three foot-switches was considered, in line with what reported in literature [31]. Using three
foot-switches, instead of the two used in [13], probably improved the reliability of basographic signals
as ground truth as well as the reliability of performance evaluation.

5. Conclusions

The present study proposed a suitable approach for classifying stance vs. swing and predicting
the occurrence of the transition between phases, such as heel strike and toe off. The main contribution
of the study is to provide reliable performances in gait-phase classification and gait-event prediction
in natural walking conditions (similar to everyday walking), overcoming the constraints associated
to the controlled environment (such as treadmill walking) used by previous studies to address this
kind of task. A further methodological contribution consists of proposing a different pre-processing of
sEMG-signal in order to better train the neural networks; the direct use of linear envelopes proposed
here allows the network to automatically learn relevant higher level (hidden) features, avoiding hand
crafting ad-hoc features and contributing to improve the performances.

From the clinical point of view, a relevant contribution is the fact that the present approach is
based on sEMG signals only. This could considerably help reduce the number of sensors necessary for
a complete gait protocol, limiting the clinical encumbrance, time-consumption, and cost. Thus, one of
the main application domains of the present methodology should be in the field of neuromuscular
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diseases, such as spastic cerebral palsy, where the acquisition and then the analysis of sEMG signals
are essential and special care should be exercised in the treatment of the patients.

Moreover, the present classifier may also support the process of gait phase detection in
EMG-driven assistive devices [37], such as hip–knee, ankle–foot, and knee–ankle–foot orthoses and
exoskeletons, as the identification of gait events is a continuing concern in the use of these devices.
Evaluating the performance of the classifier after reducing the complexity of experimental protocol (i.e.,
the number of monitored muscles) could also be valuable. At the time of writing, all these applications
are beyond the goals of the present work. However, future efforts will point in that direction.
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Abstract: Recent advances in neuroimaging techniques, such as diffusion tensor imaging (DTI),
represent a crucial resource for structural brain analysis and allow the identification of alterations
related to severe neurodegenerative disorders, such as Alzheimer’s disease (AD). At the same time,
machine-learning-based computational tools for early diagnosis and decision support systems are
adopted to uncover hidden patterns in data for phenotype stratification and to identify pathological
scenarios. In this landscape, ensemble learning approaches, conceived to simulate human behavior
in making decisions, are suitable methods in healthcare prediction tasks, generally improving classi-
fication performances. In this work, we propose a novel technique for the automatic discrimination
between healthy controls and AD patients, using DTI measures as predicting features and a soft-
voting ensemble approach for the classification. We show that this approach, efficiently combining
single classifiers trained on specific groups of features, is able to improve classification performances
with respect to the comprehensive approach of the concatenation of global features (with an increase
of up to 9% on average) and the use of individual groups of features (with a notable enhancement in
sensitivity of up to 11%). Ultimately, the feature selection phase in similar classification tasks can
take advantage of this kind of strategy, allowing one to exploit the information content of data and at
the same time reducing the dimensionality of the feature space, and in turn the computational effort.

Keywords: diffusion tensor imaging; ensemble learning; decision support systems; healthcare;
machine learning; computational intelligence; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is the most common type of neurodegenerative disorder
causing dementia, generally characterized by loss of memory and a progressive decline
of cognitive functions. AD affects millions of people worldwide, and according to the
World Alzheimer’s report 2015 [1], people affected by dementia will reach 131.5 million in
2050. The in vivo diagnosis of AD is still a hard task because of the diversity of symptoms
manifested by patients. In this context, a very challenging goal is the development of
innovative computational-intelligence-based diagnostic tools that can support physicians
and specialists in the early identification of the pathology and in therapeutic plan decisions.
Advances in neuroimaging techniques have been fundamental for structural and functional
brain analysis allowing the identification of AD-related brain alterations [2–4]. Due to the
difficulty of integrating data on a large scale, machine learning methods (ML) allowing pa-
tient classification driven by large amounts of data are gaining increasing interest in recent
years in the field of digital healthcare [5,6]. ML algorithms are a collection of computational
and statistical models that can learn through experience and make predictions based on
new data [7]. Machine learning approaches are able to uncover patterns in the data for
differentiating diagnostic groups and identifying pathological scenarios [8,9]. Several
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recent studies have analyzed the potential of applying ML-based analytical frameworks
to MRI data for the characterization and the automatic diagnosis of AD [10–13]. Indeed,
the biological hypothesis that the cognitive decline due to AD is related to a connectivity
disruption between brain regions caused by white matter degeneration (WM) has been
widely investigated in literature [14,15]. In this context, diffusion tensor imaging (DTI)
has emerged in the last fifteen years as a promising technique that measures the diffusion
of water along WM fibers, providing information on their integrity [16]. The trajectory
and the integrity of the main WM fiber bundles in the brain can be evaluated by tracing
the highly anisotropic diffusion of water along axons [17]. Since DTI is a neuroimaging
technique capable of characterizing white matter fiber trajectories and of highlighting mi-
croscopic WM lesions in these bundles, it can be exploited to uncover signs of connectivity
impairment not detectable by means of standard anatomical MRI. Among the different
measures that can be calculated from the diffusion tensor [17], fractional anisotropy (FA)
and mean diffusivity (MD) have played major roles as AD biomarkers [18]. As a matter of
fact, in a healthy axon water diffusion is highly anisotropic, because it is almost completely
bound in one direction; consequently, large values of FA paired to small MD measures
usually describe non-pathological scenarios. From this perspective, DTI allows to investi-
gate microstructural disease-related changes complementary to the information on brain
atrophy highlighted by anatomical MRI.

Recent applications of DTI techniques, together with ML algorithms for the classifica-
tion of AD, use three possible methods for feature extraction: region of interest (ROI)-based,
voxel-based and tractography-based approaches. In a ROI-based approach, the brain is
parceled into regions of interest, and the mean of the DTI measures is then calculated for
each ROI. The DTI scalar indexes averaged over each ROI are then used as features for
feeding ML algorithms to classify AD subjects also at early stages of the disease and for
investigating WM integrity alterations [19,20]. Several studies based on this approach
have been conducted with multimodal analysis [21]. In tractography-based approaches,
DTI fiber tracking algorithms together with a parcelation scheme are used to model the
brain as a network and to study its connectivity through graph theory. Network mea-
sures turned out to be effective variables to characterize the connectivity alterations due
to AD [22–24], and valid features from which to build classification models [25–27]. In
voxel-based approaches, starting from fractional anisotropy maps and using the tract-based
spatial statistics, a white matter “skeleton” is obtained, containing WM tracts common to
all subjects. The diffusion maps of each subject are projected onto the average fractional
anisotropy skeleton; hence, all diffusivity measures of the voxels belonging to that skeleton
can be exploited for feeding classification algorithms and for performing voxel-wise statis-
tical analyses aimed at localizing brain changes related to the onset and development of
the pathology.

Machine learning methods for the identification of AD phenotypes are typically
based on individual classifiers [28–30] or ensembles of different classifiers trained on the
same set of features [25,31]. Ensemble learning is a ML approach—generally improving
classification performances [32,33]—that integrates multiple classifiers fed with the same
group of features or with several vectors of variables describing different representations
of the same physical phenomenon [34]. Ensemble learning was conceived to simulate
human behavior in making decisions, and for this reason it can be a suitable approach in
the medical diagnosis context, where humans usually ask the opinions of various doctors
to increase the reliability of a diagnosis.

In this paper, we propose a novel classification framework based on ensemble learning
for the automatic discrimination between healthy controls (HC) and AD cases, relying on
DTI measures as predicting variables. This kind of ensemble method is able to conveniently
exploit the informative contents of individual maps, associated with specific aspects of
microstructural fiber integrity, and to enhance the generalization ability, taking into account
the peculiarities of different classifiers related to each set of features. Moreover, this
methodology is aimed at enhancing computational efficiency, focusing in particular on

98



Electronics 2021, 10, 249

combinations of single groups of variables instead of considering the usual approach of
global feature concatenation. The paper is organized as follows. Section 2 introduces the
diffusion tensor imaging (DTI) techniques able to investigate white matter fiber integrity
through measurement of anisotropy of WM tracts and water diffusion along them. In
Section 3 after a brief description of feature extraction procedures and classification models
adopted in the present work, a learning experiment is detailed. Finally, Section 4 reports
the results of the experiment and Section 5 discusses the main findings together with future
research directions.

2. Diffusion Tensor Imaging

Diffusion, also known as Brownian motion, is the process of the random constant
microscopic molecular motion caused by heat. In an anisotropic mean, like WM, diffusion
is characterized by a tensor, called the effective diffusion tensor Deff, which fully describes
the molecular mobility along the three spatial directions and the correlations between these
directions. In the framework of MRI-based neuroimaging, diffusion tensor imaging (DTI)
is a technique which evaluates the location, orientation and anisotropy of the brain’s WM
tracts, providing the estimation of the diffusion tensor for each voxel of the 3D image.

From a geometric point of view, the diffusion tensor completely characterizes the
shape of an ellipsoid by means of six variables describing the diffusion coefficient of
water molecules at a specific time in each direction. In the case of isotropic diffusion,
the diffusion coefficient is equal in every direction and the ellipsoid turns into a sphere.
Instead, in the case of anisotropic diffusion the greater mean diffusion along the longest
axis of the ellipsoid is described by an elongated ellipsoid. The tensor matrix is symmetric
according to a property describing the antipodal symmetry of Brownian motion that is
called “conjugate symmetry”. The diagonal terms of the diffusion tensor quantify the
intensity of diffusivity in each of three orthogonal directions. The off-diagonal terms
(vanishing in case of isotropy) indicate the magnitude of diffusion along one direction
arising from a concentration gradient in an orthogonal direction.

Therefore, diffusion data are crucial in order to gain information on tissue microstruc-
ture and architecture for each voxel [16,17]. In particular, the three eigenvectors and the
eigenvalues λ1, λ2 and λ3 of Deff describe the directions and lengths of the three diffusion
ellipsoid axes, respectively, in descending order of magnitude. The largest (primary) eigen-
vector and the related eigenvalue λ1 represent the direction and magnitude of greatest
water diffusion, respectively. The primary eigenvector provides an important contribu-
tion to the fiber tractography algorithms, since it indicates the orientation of axonal fiber
bundles. Eigenvalue λ1, called “longitudinal diffusivity” (LD), indicates the diffusion rate
along the fibers’ orientation. Eigenvalues λ2 and λ3, associated with second and third
eigenvectors orthogonal to the primary one, represent the magnitude of diffusion in the
plane transverse to the axonal bundles. The mean value,

RD =
λ2 + λ3

2
, (1)

is called “radial diffusivity” (RD). The mean diffusivity (MD) indicates the mean dis-
placement of molecules (average ellipsoid size) and describes the directionally averaged
diffusivity of water within a voxel. It is defined as the mean of the three eigenvalues:

MD =
λ1 + λ2 + λ3

3
(2)

The fractional anisotropy (FA) measures the degree of directionality of intravoxel
diffusivity, i.e., the fraction of the diffusion that is anisotropic:

FA =

√
1
2
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2

λ2
1 + λ2

2 + λ2
3

(3)
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This measure basically represents a distance between the tensor ellipsoidal shape from
a perfect sphere. Values of the fractional anisotropy range from zero, meaning an isotropic
diffusion, to 1, in case of a linear diffusion occurring only along the primary eigenvector.
When λ1 	 λ2, λ3, the fractional anisotropy measure is close to 1, indicating a preferred
direction of diffusion.

3. Materials and Methods

3.1. Data Collection

Real-world data have been gathered from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) which has the primary goal of testing whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessments can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD) (for up-to-date
information, see www.adni-info.org) [35].

The dataset is made of diffusion-weighted scans from a cohort of 92 subjects of
both genders, with age ranging from 55 to 90, from the ADNI-GO and ADNI-2 phases.
According to their diagnoses, the subjects were grouped into 49 HC and 43 AD patients.
Pre-processed FA, MD, RD and LD maps, available in ADNI databases, were randomly
selected from baseline and follow-up study visits. It is worth mentioning that healthy
subjects did not report symptoms of mild cognitive impairment, dementia, or depression;
subjects with AD were those who met the NINCDS/ADRDA criteria for probable AD. The
acquisition of diffusion-weighted scans was carried out through a 3-T GE Medical Systems
scanner. In particular, for each subject 46 distinct images were collected articulated in 41
diffusion-weighted images (b = 1000 s/mm2) and 5 scans with negligible diffusion effects
(b0 images).

3.2. Image Processing and Feature Extraction

The first step of the image processing is a double registration step. It consists of
aligning the maps of all subjects so that the same microstructural areas of the anatomical
regions correspond to the same voxels in the images. Then the maps are transformed into
an existing standard space template image (in this case the MNI152 standard space [36] is
used). After the registration, the voxels belonging to the white matter main fiber tracts are
extracted from each map.

Following the acquisition of general diffusivity maps (including FA, MD, RD and LD),
for each subject, all image processing steps were performed with FMRIB Software Library
(FSL) [37], and in particular its diffusion toolkit FDT. In order to carefully align FA, MD, RD
and LD maps to a group-wise space and to focus the analysis only on voxels that belong
to the WM fiber bundles, a tract-based spatial statistics (TBSS) [38] standard procedure,
included in FSL, was performed according to the following steps:

1. Application of a nonlinear registration for the alignment of all fractional anisotropy
maps to a common registration template: in the present analysis, we used the mean
FMRIB58_FA standard target, available with the software, obtained as the average of
58 FA images in the MNI152 standard space. This step was performed for MD, RD
and LD maps too.

2. Affine transformation of the entire aligned dataset to a 1 × 1 × 1 mm3 standard space:
the aligned maps were transformed into the standard space template MNI152.

3. Extraction of the white matter skeleton: by averaging all the FA maps of the dataset, a
mean FA image was obtained, and this result was used to create a mean FA skeleton of
WM fiber tracts that were common to all subjects (see Figure 1). A threshold was ap-
plied to the mean FA skeleton in order to exclude gray matter and cerebrospinal fluid
voxels, and the voxels of the zones characterized by greater inter-subject variability
belonging to the outermost part of the cortex.
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4. Projection of all FA maps onto the mean FA skeleton: this allowed us to achieve
an alignment among all subjects in the direction orthogonal to the fiber bundle
orientation. The same elaboration steps were applied to RD, MD and LD maps.

Figure 1. Coronal, sagittal and axial views of the brain obtained in the FSLeyes image viewer: the mean fractional anisotropy
(FA) skeleton (green) is overlaid with the mean FA map. For the following analysis all maps were projected onto the white
matter skeleton.

The TBSS procedure generates, for each subject and for each diffusivity metric (FA, MD,
RD, LD), approximately 9 × 104 voxels, belonging to the WM skeleton and representing
the features of our classification task.

3.3. Classification Methods

Supervised learning methods are statistical learning techniques aimed to the classifica-
tion of instances based on labeled training data. In the present paper, in order to build the
ensemble approach, we investigate the most commonly used ML algorithms for medical
classification tasks: support vector machine, random forest and multi-layer perceptron.

Support vector machine (SVM) [39] is a supervised learning algorithm based on the
concept of an optimal hyper-plane that separates observations belonging to two different
classes. In the case of a linear classification problem, given n data points belonging to two
linearly separable sets in a p−dimensional space, the task is to find a (p − 1)−dimensional
hyper-plane that can classify two classes with the largest margins, i.e., the largest distance
to the boundary from the closest points in each set. In cases when data are not linearly
separable, a possible solution is to map the original data onto a higher-dimensional feature
space in order to favor a more effective separation. Support vector classifiers are then
generalizations of the linear classifier approach to an “augmented” feature space with
significantly high dimensionality (see left panel in Figure 2). Assuming that the trans-
formed feature vectors are given by the function h(x), the optimization problem can be
conveniently recast as a quadratic programming problem using Lagrange multipliers in
which the transformed vectors h(x) are involved in the form of scalar products. Thanks
to this trick, it is not important to know the transformation, but only the type of the ker-
nel function K(x, x′) = 〈h(x), h(x′)〉. Consequently, the configuration of a SVM classifier
is completely characterized by the regularization parameter C and the choice of kernel
function. In the present work, for the hyper-parameter tuning phase, the chosen functions
are: (1) d−degree polynomial: K(x, x′) = (1 + 〈x, x′〉)d; (2) radial basis function (RBF):
K(x, x′) = exp(−γ||x − x′||2), where values of parameters d, γ, κ1 and κ2 span spe-
cific ranges.

Random forest (RF) is a supervised learning algorithm based on the construction of a
collection of decision trees, known to be one of the best classifiers in terms of prediction
accuracy and efficiency for high-dimensional datasets [40,41]. RF models operate by
constructing a multitude of decision trees in the training phase and returning as a prediction
the class predicted most frequently by each tree composing the forest, with the aim of
reducing the variance of the final result. The RF training algorithm is based on the general
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technique of bootstrap aggregating to the trees under training. Let (X, Y) be the pair of
training set X and target vector Y where X = {x1, . . . , xn} and Y = y1, . . . , yn. The strategy
applies repeated (B times) extraction with the replacement of a random sample from X and
a fit of the trees to this sample. In particular, for b = 1, . . . , B, the procedure is the following:
(1) Random sampling with replacement of n observation from training set X obtaining the
subsets (Xb, Yb). Generally, for a classification problem with p features, the cardinality of
the subset is of order

√
p in order to reduce the correlation between trees originated by

bagging. (2) Training of the b-th tree fb on (Xb, Yb). (3) Out-of-sample prediction on unseen
dataset x∗ is the response outcome obtained from the majority of the results generated
by each single tree. The number of trees B in a forest is the free parameter of the model,
usually set at an order of magnitude of at least 102.

(a) (b)

Figure 2. (a) Cartoon picture of a SVM classifier with nonlinear kernel: dots of different colors represent instances of
two different classes; dotted lines represent the decision boundaries. (b) Example of a multi-layer perceptron with two
hidden layers.

Multi-layer perceptron (MLP) [42] is a supervised learning algorithm using a feed-
forward neural network technique. An MLP is composed of an input layer, one or more
hidden layers of threshold logic units (TLUs) and an output layer. Each hidden layer is fully
connected with the next one, and each TLU computes a weighted sum of its inputs then
applies an activation function to provide a result that will be used as input for the next layer
(see right panel in Figure 2). The activation function is in general nonlinear and is selected
to be C1-differentiable. The learning process is based on the back-propagation algorithm
that can be summarized as follows [43]: for each training instance, the algorithm generates
a prediction and measures the performance (error). Consequently, each layer in reverse is
analyzed in order to evaluate the contribution to the error from each connection; then edge
weights are tuned in order to improve the performance. In this study, the hyper-parameter
tuning phase of MLP is driven by the choice of an activation function and the number of
hidden layers. Classification algorithms and performance metrics analyzed refer to the
Python scikit-learn library [44].

3.4. Learning Experiment

Once the image processing and feature extraction procedure was completed, each
subject was represented by different feature groups associated with diffusivity metrics
(FA, MD, RD and LD) each with dimensions in the order of 105. These groups can be
used separately or combined in a single high-dimensional feature vector to feed a learning
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algorithm for the classification of patients with AD. The learning experiment proposed in
the present work consists of comparing these two procedures with an ensemble learning
approach in which each feature group is used to feed a classification algorithm and all
the models are then combined through a voting scheme (see Figure 3). The idea is that
different models trained independently can take into account different aspects of the data,
and consequently a combination of algorithms can improve the predictions obtained with
the single models in the ensemble. The ensemble configurations analyzed in this work are
listed in Table 1.

Table 1. List of all ensemble configurations.

Label Configuration Label Configuration

1-1 E(MFA) 2-5 E(MLD, MRD)
1-2 E(MMD) 2-6 E(MMD, MRD)
1-3 E(MRD) 3-1 E(MFA, MLD, MMD)
1-4 E(MLD) 3-2 E(MFA, MLD, MRD)
2-1 E(MFA, MLD) 3-3 E(MFA, MMD, MRD)
2-2 E(MFA, MMD) 3-4 E(MLD, MMD, MRD)
2-3 E(MFA, MRD) 4-1 E(MFA, MMD, MRD, MLD)
2-4 E(MLD, MMD) 5-1 E(MFA,MD,RD,LD)

Mi is the best classification method associated with the i-th feature group and E(M1, M2, . . . , Mj) is the ensemble
learning method based on the combination of best classifiers M1, M2, . . . , Mj. The ensemble of a singleton
corresponds to the best classifier, i.e., E(Mi) ≡ Mi . Finally, configuration 5-1 refers to the best classifier trained on
a single high-dimensional vector concatenating all feature groups.

Figure 3. Classification framework based on ensemble learning with a soft-voting strategy.

The learning experiment consists of three steps.

1. For each group of features in (FA, MD, RD, LD) and their combined feature vector,
find the best associated classifier among the three algorithms SVM, RF and MLP, as
described in Section 3.3. A 5-fold cross validation grid search procedure should be
performed to tune the hyperparameters and evaluate the best performer for each
configuration, as shown in Table 2.
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Table 2. Best model selection procedure.

1-1 1-2 1-3 1-4 5-1

5-fold SVM best SVM1-1
b SVM1-2

b SVM1-3
b SVM1-4

b SVM5-1
b

5-fold RF best RF1-1
b RF1-2

b RF1-3
b RF1-4

b RF5-1
b

5-fold MLP best MLP1-1
b MLP1-2

b MLP1-3
b MLP1-4

b MLP5-1
b

Best Classifier MFA MMD MRD MLD M5-1

For instance, for configuration 1-1 the model MFA is chosen among SVM1-1
b , RF1-1

b and
MLP1-1

b .
2. For each possible configuration listed in Table 1, evaluate the performance of the

ensemble learning algorithm, based on the combination of the best classifier selected
in step 1. The voting scheme is a soft-voting procedure which is based on averaging
the probability scores given by the individual classifiers according to the follow-
ing equation:

ŷ = argmax
i

n

∑
j=1

wj pij (4)

where ŷ is the ensemble predicted label, n is the number of classifiers, wj is the weight
that can be assigned to the jth classifier (in the present analysis we consider uniform
weights) and pij is the probability score assigned to the ith class from the jth classifier.
In the case of binary classification i ∈ {0, 1}. The ensemble algorithm analyzed in the
present work refers to the ensemble.VotingClassifier method of Python scikit-learn
library [44]. The choice of this scheme is due to the fact that it is more flexible than
the hard one, since it takes into account the classifiers’ uncertainty about the final
decision, which is more informative than the simple binary prediction.

3. Repeat steps 1 and 2 on a balanced dataset obtained from the original one (43 AD vs.
49 HC), removing 6 healthy controls using the instance hardness threshold method
(IHT) of Smith et al. [45]. IHT is an under-sampling method for reducing class
imbalance based on the removal of the “hard” instances (where instance hardness is
the likelihood of being misclassified), while focusing on the majority class samples
that overlap the minority class sample space. The balanced dataset is then composed
of 43 diseased cases and 43 healthy controls.

The classification performances in step 2 are evaluated through a 10-fold stratified
cross-validation (CV) such that each fold is composed of approximately the same number
of patients associated with each diagnostic group. This CV procedure was repeated ten
times with different permutations of the training and test samples, in order to make the per-
formance evaluation more robust and generalized. The metrics used for the performance
assessment were accuracy, precision, recall and area under the ROC curve (AUC). For the
comparison among ensemble combinations, statistically significant differences between
the performances of classification configurations were assessed through non-parametric
one-tailed Mann–Whitney U-test (MWU) [46]. Given F as the distribution function corre-
sponding to population A and G as the distribution function corresponding to population
B, MWU tested the null hypothesis H0 : F(t) = G(t), for every t (i.e., X and Y random
variables have the same probability distribution) against the alternative hypothesis that
Y is larger (or smaller) than X [47]. In order to address the problem of multiple compar-
ison, p-values were corrected for multiple testing using the Benjamini–Hockberg (BH)
procedure, summarized as follows: (1) Let H1, H2, . . . , HN be the sequence of the null
hypotheses to test with p1, p2, . . . , pN as the associated p-values. (2) Rank p-values such
that p(1) ≤ p(2) ≤ p(3) ≤ · · · ≤ p(N). (3) Given the level q∗, find the largest k such that
p(k) ≤ k · q∗/N. (4) Reject all the null hypotheses H(j) with j = 1, 2, . . . , k. The theorem of
Benjamini–Hochberg states that the above procedure controls the false discovery rate with
level q∗ [48].
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4. Results

In this section, we outline the results of the experiment. Firstly, we discuss the effects
of ensemble learning in terms of performances on the original imbalanced dataset; then
we show the results for the balanced dataset obtained via instance hardness threshold
method. Finally, we discuss the outcomes of nonparametric statistical tests carried out
to compare the different configurations and to obtain an overview of the efficacy of the
ensemble approach.

The results associated with the imbalanced case (49 HC, 43 AD) are reported in
Figure 4. In panel (a), the performance average values are plotted as a function of the
possible configurations. Each point in the plot represents the average over the 100 estimates
of the performance metrics, obtained from the 10-times repeated, 10-fold stratified cross
validations. The best configuration, according to the overall metrics, is the configuration
3-3 corresponding to the ensemble E(MFA, MMD, MRD). In terms of accuracy, precision
and AUC, the singleton E(MFA) outperformed the other individual configurations 1-2, 1-3,
1-4 and all other ensembles that did not contain fractional anisotropy as a feature group.
On the other hand, in the case of recall, the ensemble strategy is crucial for enhancing
the performances: almost all the ensemble configurations outperformed the single feature
set configurations, and the best recall value was obtained for the most complex ensemble
E(MFA, MMD, MRD, MLD) (configuration 4-1). The performance comparisons among all
possible configurations were performed through a Mann–Whitney (MWU) test. The
outcomes of MWU tests, for each performance measure, are reported in Panel (b-c-d-
e). Each square of the heatmap represents the one-tailed MWU test between samples
Y and X, where Y and X are given by 100 performance measures of the configurations
on the y-axis and x-axis, respectively. The null hypothesis is that X and Y have the
same probability distribution against the alternative hypothesis that Y is larger than X.
The colors of heatmaps are related to the p-values of the test ranging from 0 (red) to 1
(blue). Levels shown in the maps refer to p-values corrected for multiple testing using
the Benjamini–Hockberg procedure. Panel (b) shows that recall is generally enhanced by
ensemble learning approaches and that ensemble configuration with n groups of features
has higher sensitivity that those with n − 1 groups. This behavior occurs in the other
performance comparisons, with the exception that ensemble methods without fractional
anisotropy are not affected by significant improvement. Finally, in order to test whether
the balancing effects on the dataset can impact the performances of ensemble methods,
due to the instance hardness threshold procedure, we performed the same comparisons
of the imbalanced case on a fair ground of 43 diseased cases versus 43 healthy controls.
The results associated with the balanced case are reported in Figure 5. As expected, we
notice in panel (a) that the average performance values as a function of configurations
are generally shifted upwards. Indeed, as shown by Wei et al. in [49] the use of balanced
training data can provide the highest balanced performances in classifiers based on support
vector machines, neural networks and decision trees. Conversely, the balancing procedure
attenuates the ensemble effects in the enhancement of recall and predicting accuracy. From
panels (b-c-d-e), the ensemble E(MFA, MMD) emerges as the best configuration over all
performance measures, and all the methods that contain fractional anisotropy and mean
diffusivity outperformed the E(MFA,MD,RD,LD) method that concatenates all features in a
high-dimensional single vector.
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(a)

(b) (c)

(d) (e)

Figure 4. The case of an imbalanced dataset. (a) Average performance values for each configuration. (b–e) Heatmaps of
Mann–Whitney tests. Each square represents the p-value outcome of a one-tail Mann–Whitney test between a configuration
on the y-axis and the other on the x-axis. Each p-value in the heatmap was corrected for multiple tests using the Benjamini–
Hochberg procedure.
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(a)

(b) (c)

(d) (e)

Figure 5. The case of a balanced dataset. (a) Average performance values for each configuration. (b–e) Heatmaps of
Mann–Whitney tests. Each square represents the p-value outcome of a one-tail Mann–Whitney test between a configuration
on the y-axis and the other on the x-axis. Each p-value in a heatmap has been corrected for multiple tests using the
Benjamini–Hochberg procedure.
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5. Discussion and Conclusions

Computational systems aimed at the automatic classification of Alzheimer’s disease
patients through voxel-based diffusivity measures have been widely investigated but
mainly focused on the exploitation of individual learning methods. The authors of [18,50]
used anisotropy and diffusivity voxels values of WM main tracts as features for HC/MCI
discrimination with a single support vector machine, showing very high classification
performances. However, as pointed out in [28], the key shortcoming of these approaches is
given by a bias due to a non-nested feature selection method affecting the learning proce-
dure. On the other hand, a recent study [30] based on an individual SVM classifier with
Fisher score feature selection has reported valid performances focusing only on anisotropy
measures of specific brain areas with well known AD-related connectivity abnormalities.
Consequently, the idea of this work is to circumvent the problem of restricting the proce-
dure to a single classifier or to an a priori selected group of features by exploiting all the
information power of diffusion imaging techniques, through a computationally efficient
learning strategy based on combinations of several feature groups and different classifiers.
As a matter of fact, the simple concatenation of all feature groups (FA, MD, RD, LD) in
a single high-dimensional vector would not be convenient in terms of time complexity
and machinery efforts. Therefore, this approach addresses the problem of handling and
selecting variables in the conditions where the feature dimensions are much larger than
sample sizes typically available in medical classification tasks. In this framework, we
presented a novel approach based on an ensemble learning strategy which combines clas-
sifiers that take into account different perspectives of the microstructural white matter
integrity associated with each feature group. The work in [51] applied a similar ensemble
methodology, feeding an a priori specified classifier with different tractography network
measures describing specific aspects of brain connectivity.

We have investigated the validity of this ensemble learning procedure in the classi-
fication of HC vs. AD patients, in both cases of the original imbalanced dataset and a
balanced dataset obtained by the instance hardness threshold under-sampling method. In
particular, in the imbalanced case we found that all the ensemble combinations, including
FA invariants, outperformed the singletons E(MMD), E(MRD) and E(MLD), and also the
single vector containing all the feature groups. These results show the crucial contribution
of fractional anisotropy in the correct classification of diseased subjects. In fact, fractional
anisotropy, defined from diffusion tensor fitting as the degree of directionality of intravoxel
diffusivity, has a behavior heavily related to variations in fiber density, axonal diameter
and myelination in white matter in the presence of the onset of neurodegenerative diseases.
According to Pierpaoli et al. [52], a hallmark of damage in white matter is the generalized
loss of fiber tract integrity. Interestingly, further studies have shown that FA-associated
voxel values have been able to uncover voxel microstructural alterations in the brains
of AD patients at early stages too [18,28,53,54]. Moreover, while for AUC, accuracy and
precision, the ensemble method did not significantly improve the performances of the
single FA, the ensemble strategy was crucial for enhancing the recall of the classification
framework. Furthermore, it is worth mentioning that, in terms of accuracy and sensitivity,
the use of ensembles of classifiers associated with the diffusion measures not only turned
out to be better than considering all measures concatenated in a single feature vector, but
also provided higher performances as the combinations’ dimensions increased. In the
balanced scenario, mean diffusivity emerged as the second most informative measure
for pathology discrimination. This evidence is supported by the fact that MD represents
the overall mean squared displacement of molecules in the non-collinear directions of
free diffusion. Consequently, a variation of mean diffusivity is a signal of an increase
in free water diffusion and in turn of a loss of anisotropy of molecular mobility [52]. In
literature there is evidence supporting the hypothesis that the microstructural alterations
in molecular diffusivity along white matter fiber bundles, described by MD, may be of
higher predictive value compared to FA microstructural changes [55,56]. In the balanced
case, the effects on the improvement of accuracy and recall of the ensemble procedure were
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attenuated. However, ensemble combinations that included FA and MD performed better
than other variable sets considered individually and than the feature vector concatenating
all groups together.

Based on results emerging in the present analysis, we can conclude that our en-
semble classification framework, based on DTI features, is effective to improve HC/AD
classification performances, and that ensembles including FA and MD are the best per-
forming, confirming their role in the literature as most effective DTI measures for AD
detection [57–60]. Moreover, although artificial data balancing attenuates the benefits of
ensemble learning, the ensemble-based strategy generates significant improvements in
the classification sensitivity and accuracy with respect to the general concatenation of
all features into a high-dimensional vector. For this reason, the feature selection phase
in similar classification tasks can take advantage of this kind of strategy, allowing one
to exploit as much information as possible, but at the same time reducing the dimen-
sionality of the feature space, and in turn the computational effort. Hence, the ensemble
learning can be a promising approach to combining different types of features derived for
DTI data, extending the application to DTI tractography network measures and diffusion
voxel-based features.

Future advancements of the present work will consider firstly an extension of dataset
size in order to ensure more robust procedures of algorithms calibration and validation. In
this scenario, one would be enabled to analyze feature selection methods together with
several families of classifiers in more extensive ensemble strategies. Indeed, the possibility
of comparisons on a wider base between pairs of feature selectors and classifiers could lead
to the identification of efficient methods for discriminating between diseased cases and
healthy controls (for a thorough review of this kind of approach, see the large comparative
study performed by Parmar et al. in [61]). Moreover, the availability of a larger number
of observations would allow the application of state-of-the-art deep learning methods
that could give important contributions in the uncovering of signatures and biomarkers
of neurodegenerative disorders for highlighting hidden patterns. The key advantage of
deep learning architectures with respect to standard learning approaches is given by the
evidence that high values of classification performance can be optimally achieved without
feature selection steps that are embedded in the process, yielding more computationally
efficient frameworks (for an application of deep convolutional neural networks to MRI
data, see the work of Basaia et al. in [62], and for a review of deep learning methods
and applications in neuroimaging data in psychiatric and neurologica disorders, see [63]).
Future investigations may also take into account not only diffusion-derived features, but
also additional variables, such as clinical information, morphological measures and other
features related to different image processing modalities and methodologies, such as
functional and anatomical magnetic resonance imaging. As a matter of fact, a diversified
plethora of biological information generated by different diagnostic modalities can provide
not only a holistic view of the pathological condition, but can be exploited in the pre-clinical
stage for the early detection of dementia precursors in presymptomatic conditions [64–66].
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Abstract: Segmenting an image of a nucleus is one of the most essential tasks in a leukemia diagnostic
system. Accurate and rapid segmentation methods help the physicians identify the diseases and
provide better treatment at the appropriate time. Recently, hybrid clustering algorithms have started
being widely used for image segmentation in medical image processing. In this article, a novel hybrid
histogram-based soft covering rough k-means clustering (HSCRKM) algorithm for leukemia nucleus
image segmentation is discussed. This algorithm combines the strengths of a soft covering rough set
and rough k-means clustering. The histogram method was utilized to identify the number of clusters
to avoid random initialization. Different types of features such as gray level co-occurrence matrix
(GLCM), color, and shape-based features were extracted from the segmented image of the nucleus.
Machine learning prediction algorithms were applied to classify the cancerous and non-cancerous
cells. The proposed strategy is compared with an existing clustering algorithm, and the efficiency is
evaluated based on the prediction metrics. The experimental results show that the HSCRKM method
efficiently segments the nucleus, and it is also inferred that logistic regression and neural network
perform better than other prediction algorithms.

Keywords: leukemia nucleus image; segmentation; soft covering rough set; clustering; machine
learning algorithm; soft computing

1. Introduction

Due to the growth of advanced medical imaging modalities, it is very difficult to analyze the
medical images manually. For this reason, an advanced and efficient computer-aided system is needed
to diagnose the diseases. This will help the hematologist to begin the treatment at the right time and
increase the patient’s survival rate. Leukemia is a cancer of blood-forming tissues that affects the bone
marrow. Leukemia is caused by the proliferation of abnormal white blood cells in the body. Leukemia
is mostly affected by people living in developed countries and children aged 14 or under. As per
the National Cancer Institute (NCI) statistics, in the United States, it is expected that there will be
62,130 persons as new cases for cancer treatment and 245,000 cases that are fatal or very serious [1]. In
India, leukemia stands at ninth position among diseases (tumors) among children [2,3]. Leukemia is
identified into two broad categories such as acute and chronic. Acute forms of leukemia occur when
the number of immature blood cells increases, and it is the most common type of leukemia in children.
Segmenting an image of a nucleus is one of the major challenging tasks in leukemia diagnosis. Recently,
soft computing plays an important role in many research areas such as medical image processing,
pattern recognition, big data analytics, Internet of Things (IoT) analysis, bioinformatics, and so on.

Electronics 2020, 9, 188; doi:10.3390/electronics9010188 www.mdpi.com/journal/electronics113



Electronics 2020, 9, 188

The rough set theory [4] was proposed by Pawlak in 1982. This concept is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete information. This
classical rough set theory is based on equivalence relations, but it can also be extended to covering based
rough sets [5–7]. In 1999, Molodtsov [8] proposed the concept of a soft set, which can be seen as a new
mathematical approach to vagueness. The absence of any restrictions on the approximate description in
soft set theory makes this theory very versatile and easily applicable in practice. Maji et al. [9] improved
Molodtsov’s idea by introducing several operations in soft set theory. In [10], the researcher investigated
a soft covering-based rough set as a new kind of soft rough set. This method is a combination of a
covering soft set and rough set. In [11], a covering-based rough k-means clustering approach is applied
to segment the leukemia nucleus. The advantage of covering-based subsets is that they generate upper
and lower approximations by using the covering feature, which brings about more roughness. Since
different clusters give rise to different results, determination of the number of clusters is a difficult
task in clustering-based segmentation. To overcome this limitation, the hybrid histogram-based soft
covering rough k-means clustering algorithm (HSCRKM) is introduced to segment the image of the
leukemia nucleus. In this algorithm, the peak values of the histogram of an image are identified
and the number of clusters is initialized. This will avoid the random initialization of a number of
clusters. Here, soft covering approximation space is also included. The term ‘covering soft set’ is more
accurate than ‘soft rough set.’ It also combines the strengths of covering soft set theory and the rough
k-means clustering algorithm to effectively segment the image of the nucleus. Soft covering rough
approximation is utilized to find the lower and upper approximation values. The performance of the
HSCRKM algorithm is evaluated using existing algorithms such as k-means clustering, fuzzy c-means
clustering, and particle swarm optimization (PSO)-based clustering. Different types of features such
as GLCM-0, GLCM-45, GLCM-90, GLCM-135, and shape color-based features are extracted from the
segmented leukemia nucleus image. Nowadays, a lot of machine learning algorithms are applied to
predict the degree of sickness. The state-of-art machine learning prediction algorithms such as neural
networks (NN) [12], logistic regression (LR) [13], support vector machine (SVM) [14], naive Bayes
(NB) [15], k-nearest neighborhood (KNN) [13], decision tree (DT) [13], and random forest (RF) [16] are
applied to classify the cancerous and non-cancerous leukemia cells. The empirical results show that
logistic regression and neural network efficiently predict the blast and non-blast cells when compared
with other prediction algorithms.

The main objective of this research work is to develop a diagnostic approach for the identification
of acute lymphoblastic leukemia blast cells using image processing and computational intelligence
techniques. In experimental analysis, relevant image processing and computational intelligence
techniques are applied in order to select the most suitable approach for the delineation of acute
lymphoblastic leukemia cells. The following objectives have been formulated in order to predict
leukemia: to apply computational intelligence-based algorithms for the segmentation of acute
lymphoblastic leukemia blast cells in images and to apply machine learning algorithms to evaluate the
performance of the proposed method.

The contribution of this study is summarized as follows. To find the number of clusters using
the peak value of a histogram image and compute the lower and upper approximation values based
on the soft covering approximation space, three clustering methods—k-means, FCM, and PSO-based
clustering—are preferred for segmentation comparison. Through these methods, different kinds of
features are extracted, and the efficiency of the proposed algorithm is assessed using machine learning
prediction algorithms. The HSCRKM achieves the successful results i.e., above 80% when compared
with the existing clustering algorithms. Therefore, it can be concluded that the HSCRKM clustering
algorithm works effectively with the other clustering algorithms.

In the clustering algorithm, defining the number of clusters is a very difficult task. To overcome
this limitation, the proposed algorithm identifies the peak values of the histogram of an image and
initializes the number of clusters. This is one of the advantages of our proposed method, which avoids
the random initialization of a number of clusters. The next advantage of the HSCRKM algorithm is
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that it combines the strengths of covering soft set theory and the rough k-means clustering algorithm
to effectively segment the image of the nucleus. Based on a literature review, the term ‘covering soft
set’ is more accurate than ‘soft rough set’, since it gives a better result than the soft rough set for several
applications. In covering rough sets, the lower and upper approximation values are computed based
on the soft covering approximation space.

Morphologically, a lymphoblast consists of a massive nucleus of irregular shape and size. In blood
sample images, it is difficult to identify the cytoplasm, because it appears rarely and even if it does, it
looks intensely colored. The nucleus and cytoplasm of lymphoblast cells reflect the morphological and
functional changes. Feature extraction plays a main role in the assessment of leukemia in blood samples.
After segmenting the nucleus using the proposed HSCRKM algorithm, salient features are extracted.
It reduces the amount of data space and the working time of an image. In this research, different
kinds of features are extracted such as gray level co-occurrence matrix (GLCM), color, and shape-based
features. These were measured from every channel of the segmented nucleus image. The efficiency of
the proposed algorithm is assessed using machine learning prediction algorithms. The performance of
the segmentation algorithms was analyzed in the light of different machine learning (ML) prediction
methods. With respect to HSCRKM clustering algorithms, most of the ML methods (except naive
Bayes) achieved greater than 80% prediction accuracy compared with the existing clustering algorithms,
viz., k-means clustering, fuzzy c-means clustering, and rough k-means clustering. It is inferred that the
proposed clustering algorithms are more effective in segmenting the nucleus image. Due to the effective
segmentation process, the extracted features have increased the prediction accuracy. To evaluate the
experimental results, we have empirically set the best accuracy to be greater than 80%. The outline of
the proposed system is shown in Figure 1.

 

Input Image Preprocessing

Nucleus Segmentation

Classification Feature Extraction

Figure 1. Outline of the proposed image segmentation process.

The rest of the research report is organized as follows. Section 2 reviews the related literature on
clustering-based segmentation algorithms. Section 3 describes the methods of the proposed algorithm
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and its results. The empirical results are discussed in Section 4. Section 5 states the conclusion and
indicates the future direction of this research.

2. Related Literature

In recent years, a lot of clustering algorithms have been developed for segmenting medical images.
Petal [17] applied k-means clustering for segmentation and the Zack algorithm for clustered

white blood cells (WBCs). The features—namely, the mean, standard deviation, area, elongation,
perimeter, color etc.—are extracted, and support vector machine (SVM) was used to classify the
cells. The proposed algorithm effectively segmented the WBCs, which produced 93.57% accuracy.
For this experiment, 27 images from the Acute Lymphoblastic Leukemia Image Database (ALL-IDB)
were utilized.

Two bare-bones particle swarm optimization (BBPSO) algorithms with and without subswarms
were introduced by Srisukkham et al. in 2017 [18] to diagnosis the leukemia cells. A stimulating
discriminant measure (SDM)-based clustering algorithm that combined with the genetic algorithm
(GA) was employed to segment the nucleus, cytoplasm, and background regions. The relevant features
were extracted; then, various feature selection methods such as particle swarm optimization (PSO),
cuckoo search (CS), and dragonfly algorithm (DA) were applied to select the optimal features and
reduce the dimensions. An average geometric mean was computed with different sizes of training and
test samples to evaluate the performance of the proposed methods. The BBPSO and binary BBPSO
algorithms produced 91% to 96% of the geometric mean value.

Su [19] developed two stages of segmentation process using k-means clustering and HMRF
(hidden Markov random field), which are used to group the six different types of AML cells from
the bone marrow images. The segmentation algorithm achieved an accuracy of 96% to 98% (average)
when compared with other existing segmentation methods.

In [20], k-means and fuzzy c-means clustering algorithms were applied to segment the brain tumor
images. Various feature reduction algorithms, namely probabilistic principal component analysis
(PPCA), expectation maximization-based principal component analysis (EM-PCA), the generalized
Hebbian algorithm (GHA), and adaptive principal component extraction (APEX) were employed to
reduce the dimensions of the feature set. The produced coefficient of variance (CV) values for k-means
and Fuzzy C-mean (FCM) are 0.4582 and 0.1224, respectively.

In [21], potential field segmentation was employed to segment the MRI brain tumor images.
This method achieved the standard deviation of 0.283, the average value of 0.517, and the median
values of 0.644. From the experimental results, it was observed that ensemble methods generated
better segmentations.

Küçükkülahlı [22] and Namburu [23] identified the number of cluster values in the clustering
algorithm using the peak value of the histogram of an image. In [22], the automatic segmentation
method using the histogram-based k-means clustering algorithm was developed. In [23], the soft
fuzzy rough c-means clustering algorithm (SFRCM) was used to segment the MRI brain tumor images.
The proposed SRFCM algorithm achieved a better Jaccard coefficient value of 0.97 for without noise
and 0.79 for with 9% Gaussian noise when compared with the existing clustering algorithms namely,
k-means, rough k-means (RKM), rough fuzzy c-means (RFCM), and generalized rough c-means
(GFCM).

Ali [24] introduced a new clustering algorithm based on neutrosophic orthogonal matrices
(CANOM) to segment the dental X-ray images. The experimental results show that the CANOM
simplified silhouette width criterion (SSWC) index is 0.941 and the FCM is 0.02. CANOM is also better
than Otsu and eSFCM with the values being 0.657 and 0.647, respectively. The value of CANOM is 47
times larger than that of FCM and 1.43 times larger than those of Otsu and eSFCM.

In [25], the unsupervised fuzzy c-means (FCM) clustering technique was employed for prostate
cancer MRI images. The derived average dice similarity, Jaccard index, sensitivity, specificity, mean
absolute difference, and Hausdorff distance is 88.68, 81.26, 90.71, 88.09, 88.09, 3.5, and 4.1 respectively.
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In [26], the proposed multi-Otsu thresholding-based segmentation method can successfully
segmented the CT image stacks. In addition, it sows the distribution characteristics of different
components in three dimensions.

In [27], the enhanced adaptive fuzzy k-means (AFKM) algorithm was used to detect the three
regions such as white matter (WM), gray matter (GM), and cerebrospinal fluid spaces (CSF) in the
brain images. AFKM performed better than FCM, which produced a minimum mean square error
(MSE) value of 2.2441.

In [28], the clustering method intuitionistic fuzzy c-means (IFCM) was applied for medical image
segmentation. It is observed from the experimental results that the proposed method outperformed
other algorithms that achieved the average quantitative index 0.95. The chronic wound region was
detected using fuzzy spectral clustering in [29]. The proposed method produced 91.5% segmentation
accuracy, an 86.7% Dice index, a Jaccard score of 79.0%, 87.3% sensitivity, and 95.7% specificity.

In [30], the convolutional neural networks (CNN) approach is applied to identify the subtypes
of leukemia. It is observed from the experimental results that the CNN model achieves 88.25% and
81.74% accuracy for leukemia and healthy cells, respectively. From the literature review, it is inferred
that the clustering-based algorithms were applied to segment the tumor region. A brief review of the
literature on various clustering methods in image segmentation and their performances appears in
Table 1.

117



Electronics 2020, 9, 188

T
a

b
le

1
.

O
ve

rv
ie

w
of

th
e

lit
er

at
ur

e
on

cl
us

te
ri

ng
al

go
ri

th
m

s.

A
u

th
o

r
U

se
d

M
e
th

o
d

s
O

b
je

ct
iv

e
T

y
p

e
o

f
D

is
e
a
se

s
Im

a
g

in
g

M
o

d
a
li

ti
e
s/

D
a
ta

se
t

U
se

d
N

o
.

o
f

IM
A

G
E

S
P

e
rf

o
rm

a
n

ce
M

e
tr

ic
s

a
n

d
A

cc
u

ra
cy

%

Pa
te

le
ta

l.,
20

15
[1

7]
K

-m
ea

n
cl

us
te

ri
ng

Z
ac

k
al

go
ri

th
m

,S
up

po
rt

ve
ct

or
m

ac
hi

ne
s

(S
V

M
)

Th
e

K
-m

ea
ns

cl
us

te
ri

ng
al

go
ri

th
m

w
as

us
ed

to
de

te
ct

th
e

w
hi

te
bl

oo
d

ce
lls

an
d

th
e

Z
ac

k
al

go
ri

th
m

w
as

ap
pl

ie
d

to
ca

te
go

ri
ze

th
e

ce
lls

.

Le
uk

em
ia

M
ic

ro
sc

op
ic

im
ag

e
(A

LL
-I

D
B)

27
C

la
ss

ifi
ca

ti
on

ac
cu

ra
cy

93
.5

7%

Sr
is

uk
kh

am
et

al
.,

20
17

[1
8]

Sp
at

ia
lD

at
a

M
in

in
g

(S
D

M
)-

ba
se

d
cl

us
te

ri
ng

,
G

en
et

ic
A

lg
or

it
hm

(G
A

),
pa

rt
ic

le
sw

ar
m

op
ti

m
iz

at
io

n
(P

SO
),

Ba
re

Bo
ne

s
PS

O
(B

BP
SO

)

Th
is

op
ti

m
iz

at
io

n
m

et
ho

d
w

as
ut

ili
ze

d
to

di
ag

no
se

le
uk

em
ia

.

A
cu

te
ly

m
ph

ob
la

st
ic

le
uk

em
ia

(A
LL

)

M
ic

ro
sc

op
ic

im
ag

e
(A

LL
-I

D
B)

18
0

G
eo

m
et

ri
c

m
ea

n
91

to
96

%

Su
et

al
.,

20
17

[1
9]

K
-m

ea
ns

,H
id

de
n

M
ar

ko
v

ra
nd

om
fie

ld

Th
is

al
go

ri
th

m
se

gm
en

te
d

th
e

nu
cl

eu
s

fr
om

th
e

ba
ck

gr
ou

nd
,e

xt
ra

ct
ed

th
e

fe
at

ur
es

,a
nd

th
en

cl
as

si
fie

d
th

e
bl

as
t

ce
lls

.

A
cu

te
m

ye
lo

id
le

uk
em

ia
M

ic
ro

sc
op

ic
im

ag
e

(A
M

L
Pa

ti
en

t)
61

Se
gm

en
ta

tio
n

ac
cu

ra
cy

96
to

98
%

(a
ve

ra
ge

)

K
ay

a
et

al
.,

20
17

[2
0]

K
-m

ea
ns

,f
uz

zy
c-

m
ea

ns

C
om

pa
ra

tiv
e

an
al

ys
is

of
va

ri
ou

s
ty

pe
s

of
PC

A
al

go
ri

th
m

s
on

M
R

Is
fo

r
tw

o
cl

us
te

r
m

et
ho

ds
.

Br
ai

n
tu

m
or

M
R

I(
H

os
pi

ta
l)

-

A
ve

ra
ge

re
co

ns
tr

uc
ti

on
er

ro
r

ra
te

s,
Eu

cl
id

ea
n

di
st

an
ce

er
ro

r
ra

te
,C

V
of

K
-M

ea
ns
=

0.
45

82
FC

M
=

0.
12

24

C
ab

ri
a

et
al

.,
20

17
[2

1]
Po

te
nt

ia
lfi

el
d

cl
us

te
ri

ng

Th
e

al
go

ri
th

m
is

ba
se

d
on

an
an

al
og

y
w

it
h

th
e

co
nc

ep
to

fp
ot

en
ti

al
fie

ld
in

ph
ys

ic
s

an
d

vi
ew

s
th

e
in

te
ns

ity
of

a
pi

xe
l

in
an

M
R

Ia
s

a
“m

as
s”

th
at

cr
ea

te
s

a
po

te
nt

ia
lfi

el
d.

Br
ai

n
tu

m
or

M
R

I(
BR

A
T

S)
30

SD
=

0.
28

3,
A

ve
ra

ge
=

0.
51

7,
M

ed
ia

n
=

0.
64

4.

K
üç

ük
kü

la
hl

ıe
ta

l.,
20

16
[2

2]
H

is
to

gr
am

-b
as

ed
k-

m
ea

ns
cl

us
te

ri
ng

Th
is

m
et

ho
d

to
fin

d
th

e
op

tim
um

cl
us

te
r

nu
m

be
r

ba
se

d
on

th
e

hi
st

og
ra

m
of

an
im

ag
e.

M
A

TL
A

B
m

ed
ia

Im
ag

e
D

at
as

et
10

-1
5

D
er

iv
ed

m
et

ri
cs

A
li

et
al

.,
20

17
[2

3]
Fu

zz
y

cl
us

te
ri

ng
ba

se
d

on
ne

ut
ro

so
ph

ic
or

th
og

on
al

m
at

ri
x

Th
is

al
go

ri
th

m
tr

an
sf

or
m

s
im

ag
e

da
ta

in
to

a
ne

ut
ro

so
ph

ic
se

ta
nd

co
m

pu
te

s
th

e
in

ne
r

pr
od

uc
ts

of
th

e
cu

tt
in

g
m

at
ri

x
of

in
pu

t.
Th

en
,p

ix
el

s
ar

e
se

gm
en

te
d

us
in

g
th

e
or

th
og

on
al

pr
in

ci
pl

e
to

fo
rm

cl
us

te
rs

.

D
en

ta
l

X
-R

ay
(H

os
pi

ta
l)

22
D

B
in

de
x

Si
lh

ou
et

te
in

de
x

=
0.

94
1

118



Electronics 2020, 9, 188

T
a

b
le

1
.

C
on

t.

A
u

th
o

r
U

se
d

M
e
th

o
d

s
O

b
je

ct
iv

e
T

y
p

e
o

f
D

is
e
a
se

s
Im

a
g

in
g

M
o

d
a
li

ti
e
s/

D
a
ta

se
t

U
se

d
N

o
.

o
f

IM
A

G
E

S
P

e
rf

o
rm

a
n

ce
M

e
tr

ic
s

a
n

d
A

cc
u

ra
cy

%

R
un

do
et

al
.,

20
18

[2
4]

Fu
zz

y
c-

m
ea

ns
(F

C
M

)
Th

is
ap

pr
oa

ch
au

to
m

at
ic

al
ly

se
gm

en
ts

th
e

pr
os

ta
te

an
d

im
ag

e
co

m
pu

te
s

th
e

gl
an

d
vo

lu
m

e.
Pr

os
ta

te
ca

nc
er

M
R

I(
H

os
pi

ta
l)

7
(P

at
ie

nt
s)

D
ic

e
Si

m
ila

ri
ty
=

88
.6

8,
Ja

cc
ar

d
in

de
x
=

81
.2

6,
Se

ns
it

iv
it

y
=

90
.7

1,
Sp

ec
ifi

ci
ty
=

88
.0

9,
M

ea
n

A
bs

ol
ut

e
D

iff
er

en
ce
=

3.
5,

H
au

sd
or
ff

di
st

an
ce
=

4.
1

Z
ha

ng
et

al
.,

20
17

[2
5]

M
ul

ti
-O

ts
u

th
re

sh
ol

di
ng

al
go

ri
th

m

Th
is

se
gm

en
ta

ti
on

m
et

ho
d

ca
n

su
cc

es
sf

ul
ly

se
gm

en
tC

T
im

ag
e

st
ac

ks
.

In
ad

di
ti

on
,i

ts
ow

s
th

e
di

st
ri

bu
ti

on
ch

ar
ac

te
ri

st
ic

s
of

di
ff

er
en

tc
om

po
ne

nt
s

in
th

re
e

di
m

en
si

on
s.

Ba
ck

sc
at

te
re

d
el

ec
tr

on
im

ag
es

X
-r

ay
C

T
(H

os
pi

ta
l)

15
71

(S
lic

e)
D

er
iv

ed
m

et
ri

cs

N
am

bu
ru

et
al

.,
20

17
[2

6]

cl
as

si
ca

lk
-m

ea
ns

(K
M

),
ro

ug
h

k-
m

ea
ns

(R
K

M
),

ro
ug

h
fu

zz
y

c-
m

ea
ns

(R
FC

M
),

an
d

ge
ne

ra
liz

ed
ro

ug
h

c-
m

ea
ns

(G
FC

M
).

In
th

is
m

et
ho

d,
so

ft
fu

zz
y

ro
ug

h
ap

pr
ox

im
at

io
ns

ar
e

ap
pl

ie
d

to
ob

ta
in

th
e

ro
ug

h
re

gi
on

s
of

an
im

ag
e

an
d

co
m

pu
te

th
e

si
m

ila
ri

ty
of

th
e

cl
us

te
rs

us
in

g
so

ft
se

ts
im

ila
ri

ty
co

effi
ci

en
t.

Br
ai

n
tu

m
or

M
R

I(
BR

A
T

S)
20

Ja
cc

ar
d’

s
co

effi
ci

en
t=

0.
97

A
cc

ur
ac

y

G
an

es
h

et
al

.,
20

17
[2

7]

En
ha

nc
ed

ad
ap

ti
ve

fu
zz

y
k-

m
ea

ns
al

go
ri

th
m

Th
is

ap
pr

oa
ch

is
us

ed
to

cl
as

si
fy

th
e

th
re

e
im

po
rt

an
tr

eg
io

ns
in

br
ai

n:
na

m
el

y,
w

hi
te

m
at

te
r,

gr
ay

m
at

te
r,

an
d

ce
re

br
os

pi
na

lfl
ui

d
sp

ac
es

.

Br
ai

n
tu

m
or

M
R

I(
Br

ai
n

Im
ag

e)
3

M
SE

2.
24

41

K
au

r
20

17
[2

8]

In
tu

it
io

ni
st

ic
fu

zz
y

se
ts

-b
as

ed
cr

ed
ib

ili
st

ic
fu

zz
y

c-
m

ea
ns

cl
us

te
ri

ng

In
th

is
m

et
ho

d,
th

e
he

si
ta

ti
on

fa
ct

or
an

d
fu

zz
y

en
tr

op
y

w
er

e
ut

ili
ze

d
to

im
pr

ov
e

th
e

no
is

e
se

ns
it

iv
it

y
of

fu
zz

y
c-

m
ea

ns
.

Br
ai

n
tu

m
or

M
R

I(
br

ai
nw

eb
)

3
Q

ua
nt

it
at

iv
e

in
de

x
0.

95

D
ha

ne
et

al
.,

20
17

[2
9]

Fu
zz

y
sp

ec
tr

al
cl

us
te

ri
ng

gr
ay

-b
as

ed
fu

zz
y

si
m

ila
ri

ty
m

ea
su

re

Th
is

ap
pr

oa
ch

is
ad

op
te

d
to

co
m

pu
te

th
e

ul
ce

r
bo

un
da

ry
de

m
ar

ca
ti

on
an

d
es

ti
m

at
io

n.
C

hr
on

ic
w

ou
nd

D
ig

it
al

C
am

er
a

70

Se
ns

it
iv

it
y
=

87
.3

%
Sp

ec
ifi

ci
ty
=

95
.7

%
A

cc
ur

ac
y
=

91
.5

%
D

ic
e

in
de

x
=

86
.7

%
Ja

cc
ar

d
sc

or
e
=

79
.0

%

A
hm

ed
et

al
.,

20
19

[3
0]

C
on

vo
lu

ti
on

al
ne

ur
al

ne
tw

or
k

(C
N

N
)

Th
is

ap
pr

oa
ch

is
id

en
tif

y
th

e
su

bt
yp

es
of

le
uk

em
ia

.
Le

uk
em

ia
M

ic
ro

sc
op

ic
im

ag
e

(A
LL

-I
D

B)
A

SH
Im

ag
e

Ba
nk

90
3

A
cc

ur
ac

y
=

88
.2

5%
(L

eu
ke

m
ia

)A
cc

ur
ac

y
=

81
.7

4%
(H

ea
lt

hy
ce

ll)

119



Electronics 2020, 9, 188

3. Methods

3.1. Basics of Soft Covering Based Rough Set

This section describes the basic properties of soft covering-based rough approximation [11].

Definition 1. Let CG = (F, A) be a covering soft set over U if F(a) � ∅, ∀a ∈ A. The pair S = (U, CG) is
known as soft covering approximation space. For a set X ⊆ U, the soft covering lower and upper approximations
are, respectively, defined as

S∗(X) = ∪a∈A
{
F(a) : F(a) ⊆ X

}
(1)

S
∗
(X) = ∪{MdS(x) : x ∈ X

}
. (2)

In addition,
Spos (X) = S∗(X) (3)

Sneg(X) = U − S
∗
(X) (4)

Sbon (X) = S
∗
(X) − S∗(X) (5)

are called the soft covering positive, negative, and boundary regions of X, respectively [11].

Definition 2. Let S = (U, CG) be a soft covering approximation space. If S
∗
(X) = S∗(X), then subset X ⊆ U

is called soft covering. X is said to be a soft covering based rough set if S
∗
(X) � S∗(X).

The soft covering based rough set can be applied to image segmentation with the following
considerations.

• The set of pixels in the input image is denoted as U U = X = {xi/xi is the value of the ith pixel
in the image}.

• Let CG = (F, A) be the covering soft set to be constructed containing the pixels belonging
to clusters.

• The set of parameter A is considered as the number of clusters ClG {i = 1, 2, 3, . . . , k} to which
the pixels fit.

• For example, let a set of pixels in an image be denoted as U = {x1, x2, x3, x4,} and the parameter
set A be denoted as number of clusters {ClG1, ClG2, ClG3} to which the pixels belong. The distance
between each pixel and the centroids are calculated. Based on the minimum distance, the pixels
are grouped to the clusters. Assume that the input pixels are grouped in one cluster or more than
one clusters as follows.

F(ClG1) = {x2, x3, x4}
F(ClG2) = {x1, x4,}
F(ClG3) = {x1, x3}

Let (F, A) be represented as (F, A) = {F (ClG) | ClG ∈ A}. The soft covering based rough set
representation of the above example is given by

(F, A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ClG1 = {x2, x3, x4}

ClG2 = {x1, x4,}
ClG3 = {x1, x3}

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

A tabular presentation of soft sets appears in Table 2. If xi ∈ F(ClGi), then the value is one; else, it
is zero.

120



Electronics 2020, 9, 188

Table 2. Soft covering-based rough set representation of an image.

U ClG1 ClG2 ClG3

x1 0 1 1
x2 1 0 0
x3 1 0 1
x4 1 1 0

3.2. The Proposed Histogram-Based Soft Covering Rough K-Means Clustering

The proposed histogram-based soft covering rough k-means clustering is summarized in Algorithm
1. The combination of the covering soft set and rough set gives rise to a new kind of soft rough sets.
Based on the covering soft sets, soft covering rough approximation was proposed by Yüksel et al.
in 2014 [11,31], which is more accurate than the soft rough set. Here, we establish a rough k-means
clustering using soft covering-based rough approximation to segment the image of the leukemia
nucleus. Let S∗(X), S

∗
(X) be denoted as soft covering lower and upper approximation, and for

S∗(X) ∈ S
∗
(X) i.e., in soft covering-based rough k-means clustering, the lower approximation is a subset

of the upper approximation. The pixel data Xn = (x1, x2, . . . . . . .xn) of the lower approximation surely
belong to the cluster; in this way, they can not have a place with some other cluster. The pixel data
Xn = (x1, x2, . . . . . . .xn) in an upper approximation may belong to the cluster. Since their participation
is dubious, they should be an individual set from an upper approximation of at least another cluster.
The distance between the pixel data Xn and the mean smk is defined as [32]

d(Xn, smk) = ‖Xn − smk‖. (6)

The cluster center smk i.e., the mean, is computed using the following equation:

smk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
wlow

∑
Xn∈S∗

Xn∣∣∣S∗k
∣∣∣ + wupp

∑
Xn∈ S

∗
Xn∣∣∣∣S∗k

∣∣∣∣ f or S∗ � φ
∑

Xn∈ S
∗

Xn∣∣∣∣S∗k
∣∣∣∣ otherwise,

(7)

where
∣∣∣S∗k

∣∣∣ indicates the numbers of pixels in the lower approximation of the cluster k and
∣∣∣∣S∗k

∣∣∣∣ is the
number of pixels in the upper approximation of the cluster k. The weight parameters wlow and wupp

stress the significance of the lower and upper approximation of the cluster.
Explanation: In this algorithm, identify the peak value of a histogram image and use it to

define the number of clusters k. Initially, assign each pixel Xn = (x1, x2, . . . . . . .xn) to exactly one
lower approximation. Here, soft covering-based rough approximation is applied instead of rough
approximation. Determine the new means smk using Equation (7). Assign each pixel data to its
closest mean using Equation (6). Compute the distance between each pixel Xn with centroid smk
i.e., d(Xn, smk). For each pixel, compute the relative distance (RD). If it is greater than the threshold,
then the pixel is put into the upper approximation of the cluster k; otherwise, put it into the lower
approximation of the cluster h. This algorithm is continued until all the data objects close to the cluster
remain unchanged. Finally, the clustered image is labeled by the cluster index, and the segmented
image of the nucleus is extracted.
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Algorithm 1 : Based Soft Covering Rough K−Means Clustering Algorithm

Input : Img (Xn), k, wlow, wupp, δ
Output : Segmented Nucleus Image

(
Segneu

)
Initialization :

Xn = (x1, x2, . . . . . . .xn) // n = no. o f pixels in an image
K = hist(Img(Xn)) No. o f Clusters f ound using the peak value o f a histogram image
wlow = Lower Approximation Weight
wupp = Upper Approximation Weight
δ = Threshold Value
Randomly assign each pixel into exactly one lower approximation.
Procedure :
Step1 : Randomly assign each pixel′s data to the so f t covering approximations
Step2 : Compute cluster centers smk using Equation (7)
Step3 : Assign the pixels to the approximations.

The pixel data Xn determine its closest mean smh.
sdmin

n,h = d(Xn, smh) =
min
k=1,2,...K d(Xn, smk)

Assign Xn to the upper approximation o f the cluster h : Xn ∈ S
∗
h.

Step4 : The relative distance is de f ined as
RD = d(Xn, smk) − d(Xn, smh)

ST = {t : RD ≤ δ ∪ h � k}.
I f ST � φ then XnεS

∗
t ∀t ∈ T.

Else, XnεS∗h.
Step5 : Check the convergence o f the algorithm; i f not, make it converge, and then continue

with Step 1.
Step6 : Lable the image by cluster index and extract the leukemia nucleus (Segneu).

3.3. Performance Assessment for Segmentation Algorithms

After preprocessing, a novel HSCRKM algorithm is applied for leukemia nucleus image
segmentation. The peak values of histogram are identified, and these values will automatically
be assigned the number of clusters (K). In each iteration, the k value will change. The range of weight
of the lower and boundary region in rough k-means algorithms is (0.0 <= wlow, wbon <= 1.0).
The relative threshold in the HSCRKM algorithm is defined as δ <= 1.0. The parameters’ values
are assigned as wlow = 0.7, wbon = 0.3, and δ = 0.5. These values give possible stable results
in rough k-means [30]. Figure 2 illustrates the segmentation results produced by the proposed
HSCRKM algorithm.

Original image Image historgam Segmented image Nucelus extraction 

K=2 

Figure 2. Cont.

122



Electronics 2020, 9, 188

K=3 

K=4 

K=3 

K=4 

Figure 2. Segmentation results produced by the proposed histogram-based soft covering rough k-means
clustering (HSCRKM) algorithm.

In Figure 2, the first column displays the original image, the second column shows the histogram
of an image that helps find the number of clusters (K), the third column displays the clustered image,
and the last column displays the extracted nucleus. It is observed that if the k value is at its minimum,
we get a better segmentation result. This helps reduce the processing time. The parameters utilized in
the clustering algorithms are presented in Figure 3.

Figure 3. Parameters utilized in clustering algorithms.

Figure 4 shows the sample output of leukemia image segmentation using existing clustering
algorithms such as k-means clustering, FCM clustering, and PSO-based clustering algorithms. Here,
the number of clusters k is assigned as three using the elbow method.
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Original image K-means FCM PSO 

Figure 4. Segmentation results by k-means, FCM, and particle swarm optimization (PSO) algorithms.

4. Results and Discussion

4.1. Dataset

The Acute Lymphoblastic Leukemia Image Database (ALL-IDB) datasets were used for this
experiment. These data were downloaded from the website www.dti.unimi.it/fscotti/all/ [33–36].
There were 368 images—175 benign and 193 malignant—taken for this experimental analysis. Digital
microscopes are not suitable, since they are usually designed to work in the RGB color space. In the
preprocessing step, all the RGB input images are converted into a LAB color space.

4.2. Feature Extraction

The segmented image data were too large, and it was very difficult to process them. Feature
extraction is a technique to extract the relevant informative data of a segmented image. This will reduce
the processing speed, time, and dimensionality of an image. In this research, 21 shape and color-based
features—namely, the area, perimeter, roundness, elongation, form_factor, length_to_diameter_ratio,
compactness, discrete_fourier_transform, mean_of_harra_coefficient, h_coefficient, v_coefficient,
variance_of_harra_coefficient, h_coefficient, v_coefficient, mean_colour_intensity for red,
green, and blue, hue, saturation, value component, and class attribute—were extracted [37].
Twenty-three texture-based features—namely, angular_second_moment, entropy, dissimilarity,
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contrast, inverse_difference, correlation, homogeneity, autocorrelation, cluster_shade,
cluster_prominence, maximum_probability, sum_of_squares, sum_average, sum_variance,
sum_entropy, difference_variance, difference_entropy, information_measures_correlation1,
information_measures_correlation2, maximal_correlation_ coefficient, inverse_difference_normalized,
inverse_difference_moment_normalized, and class attribute were extracted. These features are derived
from the gray level co-occurrence matrix (GLCM) in directions 0◦, 45◦, 90◦, and 135◦ [38,39]. From the
literature review, we found that these features are widely used for leukemia image analysis.

4.3. Performance Assessments of Segmentation Algorithms

The empirical results are interpreted in two ways. First, we analyze the efficiency of various
clustering-based segmentation algorithms through state-of-the-art machine learning algorithms.
Secondly, we compare the machine learning methods using some evaluation measures such as receiver
operating characteristic (ROC) curve analysis and kappa statistics. The extracted feature set was fed
into the machine learning (ML) prediction algorithms to classify the segments indicating the tumor
and non-tumor leukemia in the image. In this experiment, there were seven ML algorithms—namely,
logistic regression (LR), naive Bayes (NB), support vector machine (SVM), k-nearest neighborhood
(KNN), neural network (NN), random forest (RF), and decision tree (DT)—were used to evaluate the
performance of the clustering algorithms.

The performance of the machine learning prediction algorithm was analyzed using various
evaluation metrics such as accuracy (A), precision (P), recall (R), F1 measure, area under the ROC
Curve (AUC), mean absolute error (MAE), and coefficient of determination (R2) [40,41]. It is noted that
the prediction value of R2 lies between 0 and 1 for no-fit and perfect fit, respectively.

The classification results of k-means clustering, FCM clustering, PSO-based clustering, and the
proposed HSCRKM clustering algorithms are presented in Tables 3–6, respectively. The performance
of the segmentation algorithms was analyzed through different machine learning prediction methods.
The experimental results show that the proposed method HSCRKM clustering algorithm performs
better than the existing algorithms. On a closer look at the overall performance of the proposed
method, it is believed that logistic regression and neural network perform well when compared to
other prediction algorithms and also produce the highest classification accuracy i.e., 93%. It is also
observed that the naive Bayes method produces the lowest classification accuracy rate i.e., 58%.

Table 3 presents the performance analysis of k-means clustering. The LR, NN, and RF algorithms
produce the highest classification accuracy of 79%. The NB algorithm gives the minimum accuracy of
65%. KNN and DT produce 72% accuracy and SVM produces 74% accuracy. The overall performance
of k-means clustering was 69%, which is computed by the average accuracy of all the datasets with all
the ML algorithms.

Table 5 presents the performance analysis of FCM clustering. The LR, DT, and RF algorithms
achieve the maximum accuracy value of 88%. Obviously, it gives the lowest mean absolute error
(MAE) value. Similar to k-means clustering, the NB algorithm gives the lowest accuracy value of 81%
when compared to other algorithms. The SVM and NN give the accuracy of 83% and 84%, respectively.
The overall accuracy of FCM clustering is 77%.
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Table 3. Performance analysis of k-means clustering. A: accuracy, AUC: area under the receiver
operating characteristic curve, DT: decision tree, KNN: k-nearest neighborhood, LR: logistic regression,
MAE: mean absolute error, NB: naive Bayes, NN: neural network, P: precision, R: recall, RF:
random forest.

ML Algorithms Dataset P R F1 AUC MAE R2 A

LR

GLCM-0 81.00 77.00 78.00 0.821 0.134 0.195 76.74
GLCM045 79.00 79.00 78.00 0.660 0.087 0.076 79.07
GLCM-90 60.00 66.00 68.00 0.706 0.112 0.097 65.17
GLCM-135 70.00 66.00 67.00 0.805 0.128 0.159 67.44

SC 76.00 74.00 75.00 0.805 0.115 0.152 74.42

NB

GLCM-0 61.00 60.00 61.00 0.738 0.082 0.193 60.47
GLCM045 62.00 61.00 58.00 0.880 0.093 0.068 60.60
GLCM-90 54.00 51.00 50.00 0.799 0.128 0.162 51.16
GLCM-135 60.00 56.00 57.00 0.710 0.088 0.132 55.81

SC 68.00 65.00 65.00 0.618 0.110 0.047 65.11

SVM

GLCM-0 77.00 74.00 71.00 0.805 0.073 0.106 74.41
GLCM045 80.00 72.00 72.00 0.871 0.113 0.323 72.09
GLCM-90 82.00 70.00 73.00 0.792 0.032 0.143 69.77
GLCM-135 65.00 65.00 65.00 0.750 0.130 0.372 65.11

SC 73.00 70.00 67.00 0.692 0.113 0.090 69.78

KNN

GLCM-0 71.00 72.00 72.00 0.928 0.119 0.083 72.09
GLCM045 71.00 67.00 39.00 0.819 0.062 0.169 67.44
GLCM-90 69.00 67.00 67.00 0.817 0.138 0.162 67.44
GLCM-135 63.00 63.00 63.00 0.787 0.135 0.162 62.79

SC 67.00 67.00 67.00 0.839 0.112 0.135 67.44

NN

GLCM-0 79.00 79.00 76.00 0.821 0.077 0.274 79.06
GLCM045 77.00 77.00 77.00 0.806 0.139 0.348 76.74
GLCM-90 66.00 67.00 69.00 0.859 0.094 0.079 66.66
GLCM-135 72.00 70.00 71.00 0.817 0.105 0.052 69.69

SC 65.00 65.00 64.00 0.853 0.116 0.090 65.11

RF

GLCM-0 74.00 72.00 72.00 0.777 0.158 0.288 72.09
GLCM045 70.00 70.00 69.00 0.761 0.127 0.275 69.77
GLCM-90 69.00 65.00 65.00 0.798 0.106 0.182 65.11
GLCM-135 79.00 79.00 79.00 0.805 0.126 0.186 79.06

SC 67.00 67.00 67.00 0.472 0.131 0.342 67.42

DT

GLCM-0 66.00 70.00 66.00 0.865 0.073 0.192 69.76
GLCM045 80.00 79.00 76.00 0.549 0.093 0.101 79.06
GLCM-90 71.00 70.00 67.00 0.664 0.118 0.250 69.79
GLCM-135 72.00 72.00 71.00 0.852 0.118 0.250 72.09

SC 72.00 70.00 71.00 0.817 0.105 0.052 69.69

Average Overall Accuracy 69%

Table 4. Performance analysis of FCM clustering.

ML Algorithms Dataset P R F1 AUC MAE Rˆ2 A

LR

GLCM-0 79.00 79.00 76.00 0.802 0.089 0.098 79.06
GLCM045 89.00 88.00 89.00 0.950 0.080 0.401 88.37
GLCM-90 71.00 72.00 71.00 0.816 0.105 0.185 72.09
GLCM-135 88.00 86.00 82.00 0.792 0.058 0.156 86.04

SC 81.00 77.00 78.00 0.821 0.134 0.195 76.74

NB

GLCM-0 75.00 60.00 62.00 0.767 0.076 0.135 60.64
GLCM045 60.00 60.00 60.00 0.716 0.113 0.143 60.45
GLCM-90 63.00 63.00 63.00 0.787 0.135 0.162 62.79
GLCM-135 67.00 67.00 67.00 0.926 0.112 0.135 67.44

SC 84.00 81.00 81.00 0.825 0.145 0.132 81.39
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Table 4. Cont.

ML Algorithms Dataset P R F1 AUC MAE Rˆ2 A

SVM

GLCM-0 77.00 74.00 71.00 0.805 0.073 0.106 74.41
GLCM045 73.00 72.00 72.00 0.655 0.195 0.269 72.09
GLCM-90 75.00 74.00 73.00 0.822 0.176 0.265 74.41
GLCM-135 72.00 72.00 72.00 0.766 0.128 0.161 72.09

SC 83.00 84.00 83.00 0.849 0.053 0.167 83.72

KNN

GLCM-0 79.00 79.00 79.00 0.821 0.077 0.274 79.06
GLCM045 76.00 74.00 74.00 0.812 0.151 0.048 74.41
GLCM-90 83.00 83.00 84.00 0.893 0.122 0.368 83.72
GLCM-135 85.00 84.00 85.00 0.866 0.098 0.312 85.31

SC 79.00 80.00 79.00 0.910 0.079 0.171 79.07

NN

GLCM-0 84.00 84.00 84.00 0.745 0.125 0.349 83.72
GLCM045 87.00 85.00 82.00 0.773 0.148 0.238 84.84
GLCM-90 76.00 74.00 75.00 0.805 0.115 0.152 74.42
GLCM-135 79.00 79.00 79.00 0.805 0.126 0.186 79.07

SC 80.00 77.00 77.00 0.771 0.101 0.156 77.18

RF

GLCM-0 77.00 77.00 75.00 0.785 0.080 0.186 76.74
GLCM045 81.00 86.00 71.00 0.852 0.158 0.437 68.76
GLCM-90 80.00 77.00 77.00 0.839 0.155 0.248 76.74
GLCM-135 88.00 88.00 88.00 0.899 0.073 0.114 88.37

SC 86.00 79.00 78.00 0.795 0.086 0.090 79.06

DT

GLCM-0 84.00 83.00 83.00 0.929 0.159 0.265 82.75
GLCM045 88.00 88.00 88.00 0.953 0.050 0.138 88.37
GLCM-90 81.00 81.00 81.00 0.793 0.115 0.049 81.39
GLCM-135 87.00 86.00 86.00 0.938 0.064 0.053 86.04

SC 85.00 81.00 76.00 0.813 0.131 0.095 81.39

Average Overall Accuracy 77%

Table 5 shows the efficiency of the algorithm for PSO-based clustering. In this table, it is noted
that the NN method attains 90% accuracy. The LR, SVM, KNN, and RF methods give above 80% of the
classification accuracy. The NB algorithm again provides the minimum accuracy of 67%. The overall
classification accuracy of PSO-based clustering is 78%.

Table 5. Performance analysis of PSO-based clustering.

ML Algorithms Dataset P R F1 AUC MAE R2 A

LR

GLCM-0 86.00 81.00 82.00 0.717 0.141 0.279 81.39
GLCM045 88.00 86.00 85.00 0.741 0.150 0.060 86.04
GLCM-90 84.00 79.00 76.00 0.739 0.143 0.095 79.06
GLCM-135 90.00 86.00 86.00 0.963 0.065 0.093 86.04

SC 86.00 81.00 82.00 0.793 0.092 0.334 81.39

NB

GLCM-0 69.00 67.00 68.00 0.833 0.082 0.098 67.44
GLCM045 60.00 64.00 66.00 0.713 0.118 0.129 63.63
GLCM-90 56.00 61.00 58.00 0.880 0.093 0.068 60.61
GLCM-135 64.00 64.00 65.00 0.764 0.012 0.165 63.63

SC 61.00 62.00 62.00 0.876 0.118 0.148 62.69

SVM

GLCM-0 84.00 79.00 76.00 0.739 0.143 0.095 79.07
GLCM045 79.00 79.00 78.00 0.827 0.085 0.142 79.06
GLCM-90 71.00 72.00 71.00 0.816 0.105 0.185 72.09
GLCM-135 76.00 77.00 72.00 0.807 0.086 0.192 76.74

SC 81.00 81.00 79.00 0.801 0.120 0.167 81.39
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Table 5. Cont.

ML Algorithms Dataset P R F1 AUC MAE R2 A

KNN

GLCM-0 82.00 79.00 80.00 0.811 0.123 0.017 79.06
GLCM045 71.00 73.00 71.00 0.864 0.082 0.108 72.72
GLCM-90 70.00 67.00 68.00 0.816 0.141 0.526 67.44
GLCM-135 75.00 74.00 73.00 0.822 0.176 0.265 74.41

SC 82.00 81.00 81.00 0.788 0.118 0.147 80.66

NN

GLCM-0 62.00 76.00 68.00 0.726 0.075 0.448 75.44
GLCM045 61.00 73.00 66.00 0.848 0.123 0.261 72.12
GLCM-90 88.00 84.00 83.00 0.849 0.053 0.167 83.72
GLCM-135 91.00 91.00 91.00 0.929 0.062 0.210 90.67

SC 86.00 86.00 86.00 0.950 0.070 0.070 86.12

RF

GLCM-0 84.00 81.00 81.00 0.825 0.145 0.135 81.39
GLCM045 74.00 79.00 74.00 0.885 0.114 0.264 78.77
GLCM-90 79.00 70.00 79.00 0.747 0.139 0.102 79.65
GLCM-135 78.00 78.00 77.00 0.917 0.082 0.538 77.47

SC 81.00 81.00 81.00 0.841 0.097 0.056 81.39

DT

GLCM-0 87.00 84.00 80.00 0.717 0.115 0.207 83.72
GLCM045 89.00 88.00 89.00 0.929 0.081 0.229 88.37
GLCM-90 87.00 85.00 82.00 0.662 0.086 0.125 84.84
GLCM-135 82.00 82.00 82.00 0.950 0.102 0.214 81.82

SC 90.00 88.00 88.00 0.926 0.103 0.221 88.37

Average Overall Accuracy 78%

The performance analysis of the HSCRKM algorithm is shown in Table 6. The LR, NN, and DT
algorithms achieve 93% classification accuracy. NB, KNN, and RF give accuracy values of 84%,
85%, and 86%, respectively. It is also interesting to note that the SVM gives the minimum accuracy,
i.e., 84%. The overall accuracy of the HSCRKM algorithm is 82%. The proposed method leads the
accuracy of 13% for k-means clustering, 5% for FCM, and 4% for PSO-based clustering. It means that
the accurate segmentation produces the best performance. The experimental results show that the
HSCRKM algorithm accurately segments the nucleus. From the literature review report, the various
authors produce above 90% accuracy. However, they are using a very small number of images for the
experiments. In this research, around 350 images are used to evaluate the performance of the proposed
HSCRKM algorithm.

Table 6. Performance analysis of the HSCRKM algorithm.

ML Algorithms Dataset P R F1 AUC MAE R2 A

LR

GLCM-0 84.00 84.00 85.00 0.848 0.017 0.214 84.72
GLCM045 93.00 93.00 93.00 0.944 0.072 0.584 93.02
GLCM-90 87.00 86.00 86.00 0.825 0.032 0.219 87.65
GLCM-135 89.00 88.00 88.00 0.899 0.112 0.427 88.37

SC 86.00 85.00 85.00 0.965 0.047 0.138 85.65

NB

GLCM-0 70.00 70.00 70.00 0.848 0.190 0.133 69.76
GLCM045 67.00 65.00 65.00 0.782 0.128 0.171 65.11
GLCM-90 67.00 65.00 65.00 0.782 0.128 0.171 65.11
GLCM-135 61.00 58.00 56.00 0.750 0.152 0.131 58.13

SC 84.00 84.00 85.00 0.848 0.017 0.214 84.72

SVM

GLCM-0 84.00 81.00 81.00 0.760 0.140 0.206 81.39
GLCM045 84.00 81.00 81.00 0.760 0.140 0.206 81.36
GLCM-90 79.00 79.00 79.00 0.768 0.321 0.341 79.06
GLCM-135 80.00 74.00 73.00 0.780 0.132 0.122 74.41

SC 86.00 84.00 84.00 0.967 0.089 0.312 83.92
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Table 6. Cont.

ML Algorithms Dataset P R F1 AUC MAE R2 A

KNN

GLCM-0 86.00 84.00 84.00 0.967 0.072 0.309 83.92
GLCM045 82.00 81.00 81.00 0.952 0.097 0.291 81.39
GLCM-90 75.00 72.00 71.00 0.727 0.127 0.102 72.09
GLCM-135 77.00 77.00 76.00 0.911 0.101 0.151 76.74

SC 86.00 85.00 85.00 0965 0.047 0.138 85.65

NN

GLCM-0 86.00 86.00 86.00 0.982 0.070 0.135 86.04
GLCM045 91.00 91.00 90.00 0.950 0.054 0.274 90.69
GLCM-90 84.00 84.00 85.00 0.848 0.017 0.138 84.72
GLCM-135 93.00 93.00 93.00 0.939 0.074 0.526 93.02

SC 86.00 87.00 86.00 0.965 0.047 0.138 85.65

RF

GLCM-0 82.00 81.00 81.00 0.860 0.174 0.331 81.39
GLCM045 86.00 85.00 85.00 0.965 0.047 0.138 85.65
GLCM-90 82.00 81.00 81.00 0.890 0.441 0.321 81.39
GLCM-135 84.00 84.00 85.00 0.848 0.017 0.214 84.72

SC 86.00 87.00 86.00 0.913 0.144 0.225 86.05

DT

GLCM-0 84.00 84.00 85.00 0.848 0.017 0.214 84.72
GLCM045 93.00 93.00 93.00 0.944 0.072 0.584 93.02
GLCM-90 86.00 84.00 84.00 0.967 0.072 0.309 83.72
GLCM-135 89.00 88.00 88.00 0.899 0.112 0.427 88.72

SC 91.00 91.00 90.00 0.930 0.072 0.297 90.69

Average Overall Accuracy 82%

Figure 5 shows the overall prediction accuracy for various machine learning algorithms. With
respect to k-means clustering, all the machine learning algorithms produce the lowest prediction
accuracy i.e., below 80%. It is noted that with respect to PSO and FCM, some of the ML methods
(i.e., logistic regression, random forest, and decision tree) attain above 80% prediction accuracy. With
respect to the HSCRKM clustering algorithm, most of the ML methods (except naive Bayes) achieve
above 80% prediction accuracy. It can also be inferred that the proposed HSCRKM clustering algorithm
efficiently segment the nucleus, and the extracted features (based on the segments) probably increase
the prediction accuracy. To interpret the experimental results, we are manually preserving the best
accuracy range as above 80%.

Figure 5. Overall prediction accuracy.
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4.4. Performance Assessments of Machine Learning Algorithms

4.4.1. Kappa Statistics

Figure 6 shows a comparison of the performances for various prediction algorithms and the
proposed HSCRKM algorithm in terms of Cohen’s kappa value [42], which is a statistical measure used
to evaluate the inter-rater reliability of the classifier. The reliability rate lies on a 0 to 1 scale, where
“1” means perfect agreement and less than “1” means less than perfect agreement. With respect to
the shape and color-based feature dataset, the proposed algorithm produces a substantial agreement
range [43] (i.e., 0.61 to 0.80) amidst all the existing prediction algorithms taken up for study. Compared
with other machine learning algorithms, neural networks have the capability to learn and model
nonlinear and complex relationships. It also has the ability to perceive all possible interactions between
predictor variables and the availability of multiple training algorithms. From the figure, it is noted that
the neural network algorithm produces the highest kappa value (i.e., 0.67 to 0.85), which means perfect
agreement for prediction. It also produces the highest classification accuracy when compared with
other machine learning algorithms.

Figure 6. Kappa value for HSCRKM clustering.

4.4.2. ROC Curve Analysis

Receiver operating characteristic (ROC) curve analysis is a widely used validation method to
evaluate the diagnostic ability of the various prediction algorithms [44]. It can be generated by plotting
the cumulative distribution function of the true positive rate versus the false positive rate. If the ROC
curve of the prediction algorithm appears in the top left corner, then the algorithm accurately predicts
disease. If it is closer to the diagonal line, then the performance of the prediction algorithm is less
accurate. Figure 7 depicts the ROC curve analysis for the proposed algorithm HSCRKM. The ROC
curve is generated for all the extracted datasets, namely GLCM_0, GLCM_45, GLCM_90, GLCM_135,
and Shape_Colour. From Figure 6, we inferred that the shape and color-based feature datasets produce
the highest accuracy values when compared to another dataset. It is noted that decision tree, random
forest, and SVM attain similar prediction accuracy. So, the curves appear in the same orientation. It is
also noted that the neural network (NN) and logistic regression (LR) algorithms performed better than
the other machine learning algorithms. Those algorithms curve lines almost appeared in the top left
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corner of the graph. The naive Bayes algorithm curve line is executed near the diagonal line. So, this
method probably attains minimum accuracy compared to the other ML algorithms.

(a) GLCM_0 

(b) GLCM_45 

(c) GLCM_90 

Figure 7. Cont.
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(d) GLCM_135 

(e) Shape 

Figure 7. ROC curve analysis for HSCRKM clustering.

5. Conclusions and Future Work

Clustering is an unsupervised classification method that is widely employed for image
segmentation. Throughout the present research, a hybrid histogram-based soft covering rough
k-means clustering algorithm is proposed to segment the image of the leukemia nucleus. In this
method, the histogram is used to initialize the number of clusters. The main advantage of this method
is that it applies the soft covering rough approximation instead of rough approximation. It is a new kind
of soft rough set that efficiently deals with uncertainties. The results are interpreted in the following
two ways. (1) The efficiency of the proposed technique is compared with the popular and frequently
used clustering algorithms such as k-means clustering, FCM, and PSO-based clustering. (2) The
state-of-the-art prediction techniques in machine learning (ML) were compared using evolution metrics.

From the experimental results, it is inferred that the HSCRKM clustering algorithm and all of
the ML methods (except for naive Bayes) achieve above 80% prediction accuracy. It is also noted that
logistic regression and neural network provide on average above 90% accuracy, which performs better
than other prediction methods. The limitation of this method is that when we go for multiple color
images such as satellite images, agricultural images, photographs etc., the number of peak values in
the histogram is increased, and consequently the processing time is also increased. This method is
more suitable for the segmentation of medical images and the extraction of specific portions with high
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clarity (for deep study). In the future, bio-inspired algorithms could be used to optimize the number
of clusters.
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Abstract: Diabetic Retinopathy (DR) is one of the major causes of visual impairment and blindness
across the world. It is usually found in patients who suffer from diabetes for a long period. The major
focus of this work is to derive optimal representation of retinal images that further helps to improve
the performance of DR recognition models. To extract optimal representation, features extracted
from multiple pre-trained ConvNet models are blended using proposed multi-modal fusion module.
These final representations are used to train a Deep Neural Network (DNN) used for DR identification
and severity level prediction. As each ConvNet extracts different features, fusing them using 1D
pooling and cross pooling leads to better representation than using features extracted from a single
ConvNet. Experimental studies on benchmark Kaggle APTOS 2019 contest dataset reveals that
the model trained on proposed blended feature representations is superior to the existing methods.
In addition, we notice that cross average pooling based fusion of features from Xception and VGG16
is the most appropriate for DR recognition. With the proposed model, we achieve an accuracy of
97.41%, and a kappa statistic of 94.82 for DR identification and an accuracy of 81.7% and a kappa
statistic of 71.1% for severity level prediction. Another interesting observation is that DNN with
dropout at input layer converges more quickly when trained using blended features, compared to
the same model trained using uni-modal deep features.

Keywords: diabetic retinopathy (DR); pre-trained deep ConvNet; uni-modal deep features; multi-modal
deep features; transfer learning; 1D pooling; cross pooling

1. Introduction

Diabetic Retinopathy (DR) is an adverse effect of Diabetes Mellitus (DM) [1] that leads to permanent
blindness in humans. It is usually caused by the damage to blood vessels that provide nourishment to
light-sensitive tissue called the retina. As per statistics [2], DR is the fifth leading cause for blindness
across the globe. According to the World Health Organization (WHO), in 2013, around 382 million
people were suffering from DR, and this number may rise to 592 million by 2025. It is possible to save
many people from going blind if DR is identified in the early stages. Small lesions are formed in the
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eyes of DR-affected people and the type of lesions formed decides the level of severity of DR. Figure 1a
shows types of lesions that include Micro Aneurysms (MA), exudates, hemorrhages, cotton wool spots,
and improperly grown blood vessels on the retina.

(a) (b)
Figure 1. Samples of DR-affected fundus images: (a) types of lesions formed; and (b) levels of severity.

DR can be categorized into five different stages [3]: no DR (Class 0), mild DR (Class 1),
moderate DR (Class 2), severe DR (Class 3), and proliferative DR (Class 4). Sample retinal images with
different severity levels of DR are shown in Figure 1b. Mild DR is the early stage during which the
formation of Micro Aneurysms (MA) can be observed. As the disease progresses to moderate stage,
swelling of blood vessels can be found, which leads to blurred vision. During the later non-proliferative
DR (NPDR) stage, abnormal growth of blood vessels can be noticed. This stage is severe due to the
blockage of a large number of blood vessels. Proliferative DR (PDR) is the advanced stage of DR;
during this stage, retinal detachment along with large retinal break can be observed that leads to
complete vision loss [4].

In traditional DR diagnosis approaches, manual grading of the retinal scan is required to identify the
presence or absence of retinopathy. If DR is confirmed as positive, further diagnosis is recommended to
identify severity level of the disease. This kind of diagnosis is quite expensive and time consuming as
it demands human expertise. If DR identification is automated, then diagnosis of the disease becomes
affordable to many people. In the recent past, several machine learning tools have been introduced to
address this problem.

Early approaches to DR identification, where the presence or absence of DR is revealed, focuses
on spotting the Hard Exudates (HEs). A dynamic threshold based Support Vector Machine (SVM) is
used to segment HE in the retinal images [5]. Fuzzy C-means is used to detect HE and SVM is used to
identify severity level of the disease to make the system more sophisticated [6]. SVM-based classifiers
are adapted to find cotton wool spots in the retinal images.

With the introduction of deep learning, the focus of researchers has shifted from spotting HEs to
MAs. A two-step CNN has been introduced to segment MAs in the given retinal scans [7]. Another CNN
architecture that is trained using selective sampling approach is proposed to detect hemorrhages [8].
A max-out activation is introduced to improve the performance of a DNN model, for which DR is used as
an application to find MA [9]. Recently, a bounding box based approach has been introduced to identify the
region of interest in the retinal images [10]. Although many methods are available in the literature, they are
either sub-optimal or complex. Hence, there is a need for a solution that is simple and robust.

The objective of this work is to design a simple and robust deep learning-based approach to
recognize DR from the given retinal images. The major focus of this work is to obtain a better feature
representation of the retinal images, which ultimately leads to a better model. To accomplish this,
we propose uni- and multi-modal approaches. Initially, for the given retinal images, deep features
are extracted from different pre-trained ConvNets such as VGG16, NASNet, Xception, and Inception
ResNetV2. In the uni-modal approach, features extracted from a single pre-trained ConvNet gives the
final feature representation. In the multi-modal approach, our idea is to blend the deep features extracted
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from multiple ConvNets to get the final feature representation. We propose different pooling-based
approaches to blend multiple deep features. To check the efficiency of our feature representation, a Deep
Neural Network (DNN) architecture is proposed for identification of DR (Task 1) and to recognize
severity level of DR (Task 2). We observe that, in the multi-modal approach, blending deep features from
Xception and Inception ResNet V2 outperforms others in both tasks. Another interesting observation is
that there is a drop in the number of false positives, which is most desirable. Experimental studies on the
benchmark APTOS 2019 dataset revealed that our blended feature representations trained using DNN
model give superior performance compared to the existing methods.

The following are the major contributions of the proposed work:

• Effectiveness of the uni-modal feature representation is verified.
• A blended multi-modal feature representation approach is introduced
• Different pool-based approaches are proposed to blend deep features.
• A DNN architecture with dropout at the input layer is proposed to test the efficiency of the

proposed uni-modal and blended multi-modal feature representations.
• APTOS 2019 benchmark dataset was used to compare the performance of the proposed approach

with existing models.

2. Related Work

Recently, machine learning models are very popular to solve various problems such as image
classification [11], text processing [12], real-time fault diagnosis [13], and healthcare tasks [14,15]. It is
very common to use ML algorithms to address disease prediction [16–18].

In this section, we report various conventional models available in the literature for the task
of DR recognition. In [19], an easy to remember scientific approach is introduced for DR severity
identification. In [20], the authors presented a hybrid classifier by using both GMM and SVM as an
ensemble model to improve the accuracy of the model. The same approach has been modified by
augmenting the feature set with shape, intensity, and statistics of the affected region [21]. A random
forest-based approach is proposed in [22,23] and segmentation-based approaches are proposed in [24].
In [25], a genetic algorithm-based feature extraction method is introduced. Different shallow classifiers
such as GMM, KNN, SVM, and AdaBoost have been analyzed [26] to differentiate lesions from
non-lesions. A hybrid feature extraction based approach is used in [27].

In the next few lines, deep learning models available in the literature for the task of DR severity
identification are introduced. A large dataset consisting of 1,28,175 retinal images is used and trained
using deep CNN. In [28], data augmentation method is used to generate the data on CNN architecture.
Fuzzy models are used in [29]; a hybrid model that is designed based on fuzzy logic, Hough Transform,
and numerous extraction methods are implemented as part of their system. A combination of fuzzy
C-means and deep CNN architectures are used in [30]. A Siamese convolutional neural network is
used in [31] to detect diabetic retinopathy.

With the introduction of deep learning models, focus has shifted to deep feature-based models.
In [32], used features extracted from different layers of pre-trained ConvNets such as VGG19 and
further applied PCA and SVD on those features for dimension reduction [33] to avoid overfitting.
In the case of former models, the model is not robust, and, in the latter case, the models are robust,
but large datasets are needed to train them. A PCA based fire-fly model [34] along with deep neural
network is used for DR detection in [35], and the UCI repository is used for the experiments.

The performance of any ML algorithm is subject to the features extracted from the given data.
Conventional ML models need a separate algorithm (GIST, HOG, and SIFT) for feature learning and
give a global or local representation of the images and the features. Features extracted in this process
are known as handcrafted features. Until the entry of deep learning models, these handcrafted features
were dominant and being widely used for feature extraction.
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Deep ConvNets for Feature Extraction and Transfer Learning

Deep learning models [36–38] learn the essential characteristics of the input images. This exceptional
capability of the deep models make them representation models, as they can represent the data efficiently
and reduce the use of the additional feature extraction phase where features are handcrafted. Deeper layers
of the CNN models can represent the entire given input more efficiently than the early layers.

The downside of the deep learning models is that they need enormous amounts of data for
training, which is usually scarce for most real-time applications. This problem can be addressed by
the introduction of transfer learning, where the knowledge gained by a deep learning model can
be transferred to other models. To achieve this, deep pre-trained CNN models such as VGG16 and
ResNet152 are available for transfer learning. Pre-trained models are the models that are trained on
large amounts of data, and the weights updated during the training of the complex model can be
applied to similar kinds of tasks.

There are different types of pre-trained models which are trained on large scale datasets, such as
ImageNet that consists of more than a million images. Popular pre-trained deep CNN models such as
VGG16, VGG19, ResNet152, InceptionV3, Xception, NASNet, Inception ResNet V2 and DarkNet are
briefly described below:

• Visual Geometric Group (VGG 16): VGG16 is a deep ConvNet trained on 14 million images
belonging to 1000 different classes and topped the leader board in ILSVR (ImageNet) challenge.
In this architecture, 2 × 2 filters are used with stride 1 for convolution operation, and 2 × 2 filters
with stride two and the same padding are used for max-pooling operation across the network. At the
end of architecture, two fully connected dense layers of 4096 neurons are connected followed by
soft-max layer.

• Neural Architecture Search Network (NASNet): This is a special kind of deep CNN which searches
for a better architectural building block on small datasets such as CIFAR10 and transfers it to
larger datasets such as ImageNet. It has a better regularization mechanism called scheduled drop
path, which significantly improves generalization.

• Xception: Xception is another deep ConvNet architecture that supports depth-wise separable
convolution operations and outperformed ResNet and InceptionV3 in the ILSVR challenge.

• Inception ResNetV2: This is popularly known as InceptionV4, as it combines two different
architectures: InceptionV3 and ResNet152. It has both inception and residual connections,
which boost the performance of the model.

Deep neural networks give excellent performance only when trained with extensive data. If the
data used to train are not sufficient, then the DNN models tend to overfit. Deep, convolutional neural
networks are introduced in [39] for the task of scalable image recognition. Xception, a deep CNN,
is developed using depth-wise separable convolutions to improve the performance [40]. A flexible
architecture is defined in [41], which can search for a better convolutional cell with better regularization
mechanism. All these models are trained on ImageNet Dataset for ILSVR challenge.

Our objective is to create a robust and efficient model to recognize DR with limited datasets and
with limited computational resources. To achieve our objective of creating a robust model with small
datasets, we seek the help of transfer learning and use various pre-trained ConvNets to extract deep
features. We use the knowledge of these models to extract the most prominent features of color fundus
images. A deep neural network with dropout introduced at early layers is trained to detect and classify
the severity levels of diabetic retinopathy. As we introduced dropout at the input layer, deep neural
network is immune to overfitting.

3. Proposed Methodology

In this work, our objective is to develop a robust and efficient model to automate DR diagnosis.
We focus on the extraction of deep features that are most descriptive and discriminate, which ultimately
improves the performance of DR recognition. To get an optimal representation, features are extracted from
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multiple pre-trained CNN architectures and are blended using pooling-based approaches. These final
representations are used to train a deep neural network with a dropout at the input layer. The proposed
model has three different modules: feature extraction, model training, and evaluation module.

3.1. Feature Extraction

Performance of any machine learning model is highly influenced by the feature representations and
the same is applicable to models used for DR recognition. With this motivation, we propose two different
approaches (uni-modal and multi-modal) to extract optimal features from the given retinal images.

In the proposed work, initial representations of the retinal images are obtained from the pre-trained
VGG16, NASNet, Xception Net, and Inception ResNetV2. As each of the pre-trained models expects
input images of varying sizes, the given retinal images are reshaped according to the input dimensions
accepted by these models. For example, when VGG16 is used, images are reshaped to 224 × 224 × 3.
These reshaped retinal images are fed to the pre-trained models after removing the soft-max layer
and freezing the rest of the layers. Activation outputs from the penultimate layers form the basis for
the proposed feature extraction module. For each retinal image, deep features are extracted from the
pre-trained ConvNets and the details are as follows:

• Each of the first (fc1) and second (fc2) fully connected layers of VGG16 produces a feature vector
of 4096 dimensions.

• The final global average pooling layer of NASNet, Xception, and InceptionResNetV2 gives feature
vectors of size 4032, 2048, and 1536, respectively.

Figure 2 gives the architectural details of the pre-trained VGG16, NASNet, Xception,
and InceptionResNetV2 and pointers are marked at the feature extraction layers. These features
form the input to the proposed uni-modal and blended multi-modal approaches to obtain the optimal
feature representations of the retinal images.
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Figure 2. Architectures of various pre-trained models along with an indication of layers from which
features are extracted.

3.2. Uni-Modal Deep Feature Extraction

In this approach, deep features are extracted from the final layers of one of the pre-trained
ConvNets (VGG16, NASNet, Xception, or ResNet V2) to get the global representation of the retinal
images. These deep features are fed to classification models for DR identification and recognition.
We propose to use DNN architecture with a dropout at the input layer for DR identification and
classification. Figure 3 gives the details of different stages involved in DR recognition process that uses
uni-modal deep ConvNet features.

Figure 3. Stages involved in uni-modal deep feature based DR recognition.

3.3. Blended (Multi-Modal) Deep Feature Extraction

Unlike uni-modal approaches, multi-modal approaches use deep features extracted from multiple
ConvNets and are blended using fusion techniques. The features obtained from different pre-trained
models provide a different representation of the retinal images as they follow different architectures
and are trained on different datasets. A stronger representation can be obtained by blending features
from multiple ConvNets, as features of one ConvNet complement the features from other ConvNets
involved in the process.

We propose various pooling approaches to fuse the deep features extracted from multiple
pre-trained ConvNets. The final blended deep features provide better descriptive and discriminate
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representation of the retinal images. These blended features are fed to the classification models for
DR identification or severity recognition. Figure 4 gives the details of different stages involved in DR
recognition process that uses blended multi-modal deep ConvNet features. The proposed blended
multi-modal feature extraction module uses features from both the fully connected layers of VGG16
(fc1 and fc2) and global average poling layer of Xception as input. The rationale behind choosing
features of VGG16 and Xception over the others is two fold. In VGG16, each feature map of the
final convolution block learns the presence of different lesions from the retinal images. Xception Net
learns correlations across the 2D space; as a result, each feature map provides the comprehensive
representation of the entire retinal scan. Figure 5 visualizes the feature maps obtained from the final
convolution blocks of VGG16 and Xception models when a retinal image is passed to these models.

Figure 4. Stages involved in blended deep feature based DR recognition.

Figure 5. Visualization of the feature maps of the final convolution blocks of VGG16 and Xception
models on passing retinal image as input.

Approaches to Blend Deep Features from Multiple ConvNets

In this work, two different pooling-based approaches (1D pooling and cross pooling) are proposed
to fuse multi-modal deep features that are extracted from VGG16 (fc1 and fc2) and Xception. 1D pooling
is used to select prominent local features from each region of VGG16, whereas cross pooling allows
aggregating the prominent features obtained by 1D pooling with global representation of Xception.

1D pooling-based fusion takes one feature vector U as input and produces another feature vector
Û, where U ∈ Rd1, Û ∈ Rd2, and d2 ≤ d1. Û is a reduced representation of U, where U = {u1, u2...ud1}
and Û = {û1, û2...ûd2}. Each feature element ûi, of the output vector Û, is computed using one of the
following three approaches:

1D Max pooling:ûi = max(ui∗2, ui∗2+1) ∀i ∈ {1, 2...d2} (1)

1D Min pooling: ûi = min(ui∗2, ui∗2+1); ∀i ∈ {1, 2...d2} (2)

1D Average pooling: ûi = mean(ui∗2, ui∗2+1); ∀i ∈ {1, 2...d2} (3)

1D Sum pooling:ûi = ui∗2 + ui∗2+1; ∀i ∈ {1, 2...d2} (4)

In cross pooling-based feature fusion, two different feature vectors X and Y are passed as input
and another feature vector Z is produced, where X, Y, Z ∈ Rd. Each feature element zi, of the output
vector Z, is computed using one of the following three approaches:

Cross Max pooling: zi = max(xi, yi) ∀i ∈ {1, 2...d} (5)
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Cross Min pooling:zi = min(xi, yi) ∀i ∈ {1, 2...d} (6)

Cross Average pooling:zi = mean(xi, yi+1)∀i ∈ {1, 2...d} (7)

Cross Sum pooling: yi = xi + yi ∀i ∈ {1, 2...d} (8)

1D pooling is applied independently on features extracted from fc1 and fc2 layers of VGG16.
Then, the cross pooling approach is applied on the resultant pooled features. This feature vector is
merged with the features extracted from the Xception using cross pooling. Fusion module produces
deep blended features, which are used to train the proposed DNN model. Figure 6 shows the proposed
architecture of the deep feature fusion approach used to blend features from different ConvNets.
As the final feature vector is a blended version of the local and global representations of the retinal
images, it provides strong features. Algorithm 1 gives the sequence of steps involved in the blended
multi-modal feature fusion-based DR recognition.

Figure 6. Approaches for fusion of features extracted from Deep ConvNets.

142



Electronics 2020, 9, 914

Algorithm 1: Blended multi-modal deep feature fusion based DR recognition task.

Input: Let DTr and DTst be the train and test datasets of fundus images, respectively, where
DTr = {(xi, yi)

NTr
i=1} and DTst = {(xi)

NTst
i=1 }. xi represents ith color fundus image in the

dataset and yi is the severity level of DR associated with xi. In the case of DR
identification task, yi ∈ {0, 1}, whereas, in the case of DR severity classification, task
yi ∈ {0, 1, 2, 3}.

Output: yi for each xi ∈ DTst

Step 1: Preprocess each image xi in the dataset.
Step 2: Feature Extraction

For each preprocessed image xi three different features (Vi, Ui, Wi) are extracted.
Vi ← Features extracted from fc1 layer of VGG16
Ui ← Features extracted from fc2 layer of VGG16
Wi ← Features extracted from global avg pool layer of Xception

Where Vi ∈ d1, U − i ∈ d2 and Wi ∈ d3
Step 3: Deep feature fusion

Apply feature feature fusion on the deep features extracted from each image
V̂i ← max(Vi∗2, Vi∗2+1); ∀i ∈ {1, 2...d1} (1D max pooling)
Ûi ← max(Ui∗2, Ui∗2+1); ∀i ∈ {1, 2...d2} (1D max pooling)

ÛVi ← (V̂i+Ûi)
2 ; ∀i ∈ {1, 2...d2} (Average Cross pooling)

x̂i ← ( ˆ̂UVi+Wi)
2 ; ∀i ∈ {1, 2...d3} (Average Cross pooling)

x̂i : blended feature vector corresponding to xi
Step 4: Model Training

Training dataset is prepared using the blended features DTr = {(x̂i, yi)}NTr
i=1

Train a deep neural network (DNN) using DTr

Step 5: Model evaluation
Test dataset is prepared using the blended features DTst = {(x̂i)}NTst

i=1
Evaluate the performance of DTstusing the DNN trained in Step 4

3.4. Model Training and Evaluation

During this phase, we trained the ML model with deep blended pre-trained features. We preferred to
use Deep Neural Network (DNN) model for training. For DR identification task, as it is a simple binary
classification task, a DNN with two hidden layers with 256 and 128 units, respectively, with ReLU
activation was used.

For DR severity classification task, a DNN with three hidden layers with 512, 256, and 128 units,
respectively, using ReLU activation was used. For both the DNNs with the input layer, we applied
0.2 dropout to avoid the model from overfitting. This helped the model to become robust. Figure 7
represents the architecture of proposed approach for model training and evaluation.

Figure 7. Training and Evaluation of DNN model for identification and recognition of DR.
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4. Experimental Results

In this section, we provide details of experimental studies that were carried out to understand the
efficiency of the proposed blended multi-modal deep features representation.

4.1. Dataset Summary

For the experimental studies, the APTOS 2019 kaggle benchmark dataset available as part of
the blindness detection challenge was used [42]. This is a large dataset of retinal images taken using
fundus photography under a variety of imaging conditions. The images are graded manually on a
scale of 0 to 4 (0, no DR; 1, mild; 2, moderate; 3, severe; and 4, proliferative DR) to indicate different
severity levels.

Table 1 gives the number of retinal images available in the dataset under each level of severity.
We can observe that the dataset has an imbalance with more normal images and very few images in
Class 3. In all experiments, 80% of the data were used for training and the remaining 20% were used
for validation.

Table 1. Dataset summary of APTOS 2019 dataset.

Severity Level # Samples

Class 0 (Normal) 1805
Class 1 (Mild Stage) 370
Class 2 (Moderate Stage) 999
Class 3 (Severe Stage) 193
Class 4 (Proliferative Stage) 295
Total 3662

4.2. Performance Measures

For the evaluation of the proposed model, we report different measures: accuracy, precision,
recall, and F1 score. In addition, we used an additional metric called lappa statistic to compare an
observed accuracy with an expected accuracy. Kappa Statistic is calculated as

Kappa Score =
(Observed Accuracy − Expected Accuracy)

(1 − Expected Accuracy)

Observed accuracy is defined as the number of samples that are correctly classified. Expected
accuracy is defined as the accuracy that a classifier would be expected to achieve, which is directly
related to the number of examples of each class, along with the number of examples that the predicted
value satisfied with the correct label.

4.3. DR Identification and Severity Level Prediction

The experiments carried out in this work were divided into two different tasks. In Task 1, presence
or absence of DR was identified, whereas, in Task 2, the severity level was predicted for the given
retinal image.

4.3.1. Task 1—DR Identification

In this task, given the DR image of a diabetic patient, we need to check whether the person
is affected by retinopathy or not. DR identification is a binary classification task, thus binary cross
entropy loss was used to measure the loss, and Adam optimizer was used to optimize the objective
function. The dataset contains images belonging to five different classes, as shown in Table 1, and is
not suitable for binary classification task. Merging all the DR-affected images into a single class gives
1857 positively labeled images and the remaining 1805 normal images are labeled as negative.
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4.3.2. Task 2—Severity Level Prediction

The objective of Task 1 is to identify the presence or absence of DR, given a retinal image.
While treating the DR-affected patients, mere identification of DR would not be sufficient and
understanding the level of severity would be helpful for better treatment. Hence, we treat severity
level identification as a separate task that categorizes the given retinal image into one of the five severity
levels. Categorical cross entropy loss was used to represent loss and Adam optimizer was used to optimize
the objective function.

4.4. Experimental Studies to Show the Representative Nature of Uni-Modal Features for Task 1

This experiment was carried out to understand how efficiently retinal images are represented using
uni-modal features that are directly obtained from single pre-trained ConvNet. Models such as VGG16,
Xception, NASNET, and ResNetV2 were considered to extract uni-modal features. For classification,
models such as Naïve Bayes classifier, logistic regression, decision tree, k-Nearest Neighborhood (KNN)
classifier, Multi Layered Perceptron (MLP), Support Vector Machine (SVM), and Deep Neural Network
(DNN) were used.

Tables 2 and 3 show the performance of DR identification task using different ML models when
the retinal images are represented with the features extracted from the first fully connected layer (fc2)
of VGG16 and Xception, respectively. Based on these results, we concluded that DNN outperforms the
rest of the ML models irrespective of the models. Hence, we decided to use DNN model alone in the
rest of the experiments.

Table 2. Performance of ML algorithms on Task 1 using features from fc2 layer of VGG16.

Model Accuracy Precision Recall F1 Score Kappa Statistic

Logistic Regression 97.13 97 97 97 94.27
KNN 95.36 96 95 95 90.73

Naive Bayes 77.08 82 77 76 54.45
Decision Tree 91.27 91 91 91 82.52

MLP 96.45 97 96 96 92.91
SVM (linear) 96.58 97 97 97 93.17
SVM (RBF) 96.86 97 97 97 93.73

DNN 97.32 98 98 98 94.63

Table 3. Performance of ML algorithms on Task 1 using features from Xception.

Model Accuracy Precision Recall F1 Score Kappa Statistic

Logistic Regression 96.45 96 96 96 93
KNN 95.5 96 95 95 91

Naive Bayes 82.95 84 83 83 65.9
Decision Tree 87.59 88 88 88 75.17

MLP 96 96 96 96 91.89
SVM (linear) 96.18 96 96 96 92.36
SVM (RBF) 97.4 97 97 97 94.82

DNN 97.41 97 97 97 94.82

Table 4 shows the representative power of uni-modal features that are extracted from different
pre-trained models. It is clear from the results that the performance of the DNN model varies
depending on the uni-modal features used. This experiment gives a clue that each pre-trained model
extracts a different set of features from retinal images. The features extracted from Xception yield
better performance in terms of accuracy for the diabetic retinopathy identification task. A nominal
difference in terms of accuracy and kappa score can be observed between the models trained using
different uni-modal features.
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Table 4. Task 1 performance using DNN trained on different uni-modal features.

Model Accuracy Precision Recall F1 Score Kappa Statistic

VGG16-fc1 97.27 97 98 97 95.12
VGG16-fc2 97.32 98 98 98 94.63

NASNet 97.14 97 97 97 94.27
Xception 97.41 97 97 97 94.82

Inception ResNetV2 97.34 97 97 97 94.54

To better understand the representative nature of different uni-modal features, loss and number
of epochs taken to converge by the DNN models are reported in Table 5. We can observe that the
model trained using VGG16-Fc1 reaches minimum loss compared to the rest of the models. In terms
of convergence, Xception takes only 16 epochs, whereas the Inception ResNetV2 outperforms the
other models.

Table 5. Task 1: Comparison of DNN model (trained on uni-modal features) in terms of loss and number
of epochs when trained on different uni-modal features.

Model # Epochs Loss Accuracy

VGG16-fc1 65 0.0024 97.27
VGG16-fc2 67 0.0139 97.32
NASNet 37 0.0310 97.14
Xception 16 0.0213 97.41
Inception ResNet V2 19 0.0815 97.34

To summarize the experiments on DR identification task, features extracted from Xception,
VGG16-fc2, and Inception ResnetV2 yields the same accuracy with nominal differences. However,
models trained on the VGG16-fc1 features give better kappa scores compared to others. We can also
observe that models trained on the VGG16-fc2 features give better performance in terms of precision,
recall, and F1 scores. Regardless of the type of uni-modal features used, DNN consistently outperforms
the rest of the models, especially in terms of kappa scores. The reason for the superior performance of
the models trained using VGG16 and Xception features is that these models are good at extracting the
lesion information that is useful to discriminate the DR-affected images from those that are not affected.

4.5. Experimental Studies to Show the Representative Nature of Uni-Modal Features for Task 2

We ran a set of experiments to understand the nature of uni-modal features for severity prediction
of DR. Task 2 is more challenging compared to Task 1 as it involves multiple classes. DNN model with
dropout at the input layer was used with different uni-modal features.

Based on the results reported in Table 6, we can observe the same trend that was observed in
Task 1. The scores obtained for Task 2 show the complexity of severity prediction. The model trained
on VGG-16+fc1 features shows superior performance to rest of the models. The same can be observed
in terms of all the metrics.

Table 6. Task 2 performance using DNN trained on different uni-modal features.

Type of Uni-Modal Features Accuracy Precision Recall F1 Score Kappa Statistic

VGG16-fc1 80.06 80 81 80 70.02
VGG16-fc2 79.81 79 80 79 68.88
NASNET 76.4 75 76 75 63.87
Xception 78.99 78 79 78 67.67

Inception ResNetV2 79.73 78 78 78 67.67

In Table 7, it is clear that, among all the pre-trained features, VGG16-fc1 yields superior performance
with minimum loss. However, Xception converges in fewer epochs compared to other models.
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Table 7. Task 2: Comparison of DNN model (trained on uni-modal features) in terms of loss and
number of epochs when trained on different uni-modal features.

Model # Epochs Loss Accuracy

VGG16-fc1 76 0.3623 80.06
VGG16-fc2 79 0.3986 79.81
NASNet 37 0.5612 76.39
Xception 23 0.4175 78.99
Inception ResNet V2 89 0.382 79.73

4.6. Performance Evaluation of the Proposed Blended Multi-Modal Features

A clue from the experiments on uni-modal features is that different uni-modal features extract
different sets of features from the retinal images. If we can use multiple deep features extracted
from different models, they complement each other and help to improve the scores. To benefit from
more than one set of uni-modal features, we propose a blended multi-modal feature representation.
This section is dedicated to show the representative power of the proposed feature representation with
an application to DR identification and severity level prediction.

In addition, we applied the proposed pooling methods to blend the features from multiple
pre-trained models. Initially, we blended features from the first and second fully connected layers
of VGG16. Then, we extended this to the fusion of three different features from fc1 and fc2 layers of
VGG16 and Xception.

4.6.1. Blended Multi-Modal Deep Features for Task 1

We experimented on the effect of blending deep features extracted from multiple pre-trained
models on DR identification task. In addition, we verified the proposed maximum, sum, and average
pooling approaches to blend multiple deep features.

In Table 8, we can observe that average pooling based fusion works better for DR Detection
compared to other models. Using average fusion the models trained on multi-modal features leads to
superior performance in terms of accuracy and kappa static. In addition, the model converges more
quickly, in less than 50 epochs, and attains minimum loss. The accuracy obtained by model trained
using multi-modal features is significantly better compared with to those trained on uni-modal features.

Table 8. DNN with blended multi-modal features with different fusions for Task 1.

Modalities Pooling Accuracy Kappa Statistic Epochs Loss

VGG16-fc1 and VGG16-fc2
Max-pooling 96.12 91.89 68 0.0352
Avg-pooling 97.39 94.61 51 0.0293
Sum-pooling 95.5 91 64 0.0419

VGG16-fc1, VGG16-fc2 and Xception
Max-pooling 96.85 92.6 69 0.0314
Avg-pooling 97.92 94.93 43 0.0201
Sum-pooling 96.1 92.31 56 0.0396

4.6.2. Blended Multi-Modal Deep Features for Task 2

From the previous experiments, we understand that the models trained on multi-modal features give
better performance compared to those trained on uni-modal features in the context of DR identification
which is simple binary task. To understand that the proposed blended performs efficiently for more
complex multi-class classification task, we applied the proposed feature representation for the severity
prediction task shown in Table 9.
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Table 9. DNN with blended multi-modal features with different fusions for Task 2.

Modalities Pooling Accuracy Kappa Statistic Epochs Loss

VGG16-fc1 and VGG16-fc2
Maximum 78.06 66.87 72 0.4176
Average 80.34 69.21 62 0.2987
Sum 76.8 65.64 68 0.5693

VGG16-fc1, VGG16-fc2 and Xception
Maximum 79.25 67.29 74 0.3986
Average 80.96 70.9 54 0.2619
Sum 77.12 66.42 61 0.4782

In Table 10, we can see that average pooling based fusion of multiple deep features works better
for diabetic severity prediction. Compared to the blended features from VGG16-fc1 and VGG16-fc2,
the blended features from VGG16-fc1, VGG16-fc2, and Xception gives better representation. For severity
prediction as well, the model that uses average pooling approach for fusion converges more quickly
with better accuracy and kappa score when compared with the other approaches for fusion.

4.7. Comparison of Proposed Blended Feature Extraction with Existing Methods

In this experiment, we showed the effectiveness of the proposed DNN with dropout at the
input layer trained using the proposed blended multi-modal deep feature representation and with
the existing models in the literature for DR prediction. We compared the proposed model with the
performances of the models used in [43,44]. In Table 10, we can see that the proposed method gives an
accuracy of 80.96%, which is significantly better than existing models in the literature. When compared
to the existing models, the proposed DNN model is simple with only three hidden layers with 512,
256 and 128 units each hidden layer. The confusion matrix in Figure 8 shows the mis-classifications
produced by the proposed model when applied for DR severity prediction task. In the figure, we can
see that most of the proliferate DR type images are predicted as moderate.

Figure 8. Confusion matrix for the severity prediction task.

As the final feature vector is a blended version of the local and global representations of the
retinal images the final representation provides strong features. The reason for improvement in the
performance of the proposed model is that each feature map of the final convolution block of VGG16
learns the presence of different lesions from the retinal images and Xception Net comprehensive
representation of the entire retinal scan. When we combine the deep features from VGG16 and
Xception gives a compact representation that gives the wholistic representation of DR images.

148



Electronics 2020, 9, 914

Table 10. Comparison of Proposed method using with existing methods.

Model Accuracy

DR detection using Deep Learning [43] 57.2%
DR Classification Using Xception [44] 79.59
DR Classification Using InceptionV3 [44] 78.72
DR Classification Using MobileNet [44] 79.01
DR Classification Using ResNet50 [44] 74.64
Blended features + DNN (proposed) 80.96

5. Conclusions

The major objective of this work is to acquire a compact and comprehensive representation of
retinal images as the feature representations extracted from retinal images significantly influence
the performance of DR prediction. Initially, we extract features from deep pre-trained VGG16-fc1,
CGG16-fc2 and Xception models. VGG16 model learns the lesions and Xception learns the global
representation of the images. Then, the features from multiple ConvNets are blended to get final
prominent representation of color fundus images. The final representation is obtained by pooling the
representations from VGG16 and Xception features. A DNN model was trained using these blended
features for the task of diabetic retinopathy severity level prediction. The proposed DNN model with
dropout at the input avoids overfitting and converges more quickly. Our experiments on benchmark
APTOS 2019 dataset showed the superiority of the proposed model when compared to the existing
models. Among the proposed pooling approaches, average pooling used to fuse the features extracted
from the penultimate layers of multiple pre-trained ConvNets gives better performance with minimum
loss in fewer epochs compared to others.
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Abstract: In recent times, several machine learning models have been built to aid in the prediction of
diverse diseases and to minimize diagnostic errors made by clinicians. However, since most medical
datasets seem to be imbalanced, conventional machine learning algorithms tend to underperform
when trained with such data, especially in the prediction of the minority class. To address this challenge
and proffer a robust model for the prediction of diseases, this paper introduces an approach that
comprises of feature learning and classification stages that integrate an enhanced sparse autoencoder
(SAE) and Softmax regression, respectively. In the SAE network, sparsity is achieved by penalizing
the weights of the network, unlike conventional SAEs that penalize the activations within the hidden
layers. For the classification task, the Softmax classifier is further optimized to achieve excellent
performance. Hence, the proposed approach has the advantage of effective feature learning and
robust classification performance. When employed for the prediction of three diseases, the proposed
method obtained test accuracies of 98%, 97%, and 91% for chronic kidney disease, cervical cancer, and
heart disease, respectively, which shows superior performance compared to other machine learning
algorithms. The proposed approach also achieves comparable performance with other methods
available in the recent literature.

Keywords: sparse autoencoder; unsupervised learning; Softmax regression; medical diagnosis;
machine learning; artificial neural network; e-health

1. Introduction

Medical diagnosis is the process of deducing the disease affecting an individual [1]. This is usually
done by clinicians, who analyze the patient’s medical record, conduct laboratory tests, and physical
examinations, etc. Accurate diagnosis is essential and quite challenging, as certain diseases have similar
symptoms. A good diagnosis should meet some requirements: it should be accurate, communicated,
and timely. Misdiagnosis occurs regularly and can be life-threatening; in fact, over 12 million people
get misdiagnosed every year in the United States alone [2]. Machine learning (ML) is progressively
being applied in medical diagnosis and has achieved significant success so far.

In contrast to the shortfall of clinicians in most countries and expensive manual diagnosis,
ML-based diagnosis can significantly improve the healthcare system and reduce misdiagnosis caused
by clinicians, which can be due to stress, fatigue, and inexperience, etc. Machine learning models
can also ensure that patient data are examined in more detail and results are obtained quickly [3].
Hence, several researchers and industry experts have developed numerous medical diagnosis models
using machine learning [4]. However, some factors are hindering the growth of ML in the medical
domain, i.e., the imbalanced nature of medical data and the high cost of labeling data. Imbalanced data
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are a classification problem in which the number of instances per class is not uniformly distributed.
Recently, unsupervised feature learning methods have received massive attention since they do not
entirely rely on labeled data [5], and are suitable for training models when the data are imbalanced.

There are various methods used to achieve feature learning, including supervised learning
techniques such as dictionary learning and multilayer perceptron (MLP), and unsupervised
learning techniques which include independent component analysis, matrix factorization, clustering,
unsupervised dictionary learning, and autoencoders. An autoencoder is a neural network used for
unsupervised feature learning. It is composed of input, hidden, and output layers [6]. The basic
architecture of a three-layer autoencoder (AE) is shown in Figure 1. When given an input
data, autoencoders (AEs) are helpful to automatically discover the features that lead to optimal
classification [7]. There are diverse forms of autoencoders, including variational and regularized
autoencoders. The regularized autoencoders have been mostly used in solving problems where optimal
feature learning is needed for subsequent classification, which is the focus of this research. Examples
of regularized autoencoders include denoising, contractive, and sparse autoencoders. We aim to
implement a sparse autoencoder (SAE) to learn representations more efficiently from raw data in order
to ease the classification process and ultimately, improve the prediction performance of the classifier.

Figure 1. The structure of an autoencoder.

Usually, the sparsity penalty in the sparse autoencoder network is achieved using either of these
two methods: L1 regularization or Kullback–Leibler (KL) divergence. It is noteworthy that the SAE
does not regularize the weights of the network; rather, the regularization is imposed on the activations.
Consequently, suboptimal performances are obtained with this type of structure where the sparsity
makes it challenging for the network to approximate a near-zero cost function [8]. Therefore, in this
paper, we integrate an improved SAE and a Softmax classifier for application in medical diagnosis.
The SAE imposes regularization on the weights, instead of the activations as in conventional SAE,
and the Softmax classifier is used for performing the classification task.

To demonstrate the effectiveness of the approach, three publicly available medical datasets are
used, i.e., the chronic kidney disease (CKD) dataset [9], cervical cancer risk factors dataset [10],
and Framingham heart study dataset [11]. We also aim to use diverse performance evaluation metrics
to assess the performance of the proposed method and compare it with some techniques available in the
recent literature and other machine learning algorithms such as logistic regression (LR), classification and
regression tree (CART), support vector machine (SVM), k-nearest neighbor (KNN), linear discriminant
analysis (LDA), and conventional Softmax classifier. The rest of the paper is structured as follows:
Section 2 reviews some related works, while Section 3 introduces the methodology and provides
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a detail background of the methods applied. The results are tabulated and discussed in Section 4,
while Section 5 concludes the paper.

2. Related Works

This section discusses some recent applications of machine learning in medical diagnosis.
Glaucoma is a vision condition that develops gradually and can lead to permanent vision loss.
This condition destroys the optic nerve, the health of which is essential for good vision and is usually
caused by too much pressure inside one or both eyes. There are diverse forms of glaucoma, and they
have no warning signs; hence, early detection is difficult yet crucial. Recently, a method was developed
for the early detection of glaucoma using a two-layer sparse autoencoder [7]. The SAE was trained using
1426 fundus images to identify salient features from the data and differentiate a normal eye from an
affected eye. The structure of the network comprises of two cascaded autoencoders and a Softmax layer.
The autoencoder network performed unsupervised feature learning, while the Softmax was trained in
a supervised fashion. The proposed method obtained excellent performance with an F-measure of 0.95.

In another research, a two-stage approach was proposed for the prediction of heart disease using
a sparse autoencoder and artificial neural network (ANN) [12]. Unsupervised feature learning was
performed with the help of the sparse autoencoder, which was optimized using the adaptive moment
estimation (Adam) algorithm, whereas the ANN was used as the classifier. The method achieved
an accuracy of 90% on the Framingham heart disease dataset and 98% on the cervical cancer risk factors
dataset, which outperformed some ML algorithms. In a similar research, Verma et al. [13] proposed
a hybrid technique for the classification of heart disease, where optimal features were selected via
the particle swarm optimization (PSO) search technique and k-means clustering. Several supervised
learning methods, including decision tree, MLP, and Softmax regression, were then utilized for the
classification task. The method was tested using a dataset containing 335 cases and 26 attributes,
and the experimental results revealed that the hybrid model enhanced the accuracy of the various
classifiers, with the Softmax regression model obtaining the best performance with 88.4% accuracy.

Tama et al. [14] implemented an ensemble learning method for the diagnosis of heart disease.
The ensemble method was developed via a stacked structure, whereby the base learners were also
ensembles. The base learners include gradient boosting, random forest (RF), and extreme gradient
boosting (XGBoost). Additionally, feature ranking and selection were conducted using correlation-based
feature selection and PSO, respectively. When tested on different heart disease datasets, the proposed
method outperformed the conventional ensemble methods. Furthermore, Ahishakiye et al. [15]
developed an ensemble learning classifier to detect cervical cancer risk. The model comprised of CART,
KNN, SVM, and naïve Bayes (NB) as base learners, and the ensemble model achieved an accuracy of 87%.

The application of sparse autoencoders in the medical domain has been widely studied, especially
for disease prediction [12]. Furthermore, sparse autoencoders have been utilized for classifying
Parkinson’s disease (PD). Recently, Xiong and Lu [16] proposed an approach which involved a feature
extraction step using a sparse autoencoder, to classify PD efficiently. Prior to the feature extraction,
the data were preprocessed and an appropriate input subset was selected from the vocal features via
the adaptive grey wolf optimization method. After feature extraction by the SAE, six ML classifiers
were then applied to perform the classification task, and the experimental results signaled improved
performance compared to other related works.

From the above-related works, we observed that most of the studies have some limitations: firstly,
most of the authors utilized a single medical dataset to validate the performance of their models and
not many studies experimented on more than two different diseases. By training and testing the model
on two or more datasets, appropriate and more reliable conclusions can be drawn, and this can further
validate the generalization ability of the ML method. Secondly, some recent research works have
implemented sparse autoencoders for feature learning; however, most of these methods achieved
sparsity by regularizing the activations [17], which is the norm. However, in this paper, sparsity is
achieved via weight regularization. Additionally, poor generalization of ML algorithms resulting from
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imbalanced datasets, which is common in medical data, can be easily addressed using an effective
feature learning method such as this.

3. Methodology

The sparse autoencoder (SAE) is an unsupervised learning method which is used to automatically
learn features from unlabeled data [14]. In this type of autoencoder, the training criterion involves
a sparsity penalty. Generally, the loss function of an SAE is constructed by penalizing activations
within the hidden layers. For any particular sample, the network is encouraged to learn an encoding
by activating only a small number of nodes. By introducing sparsity constraints on the network,
such as limiting the number of hidden units, the algorithm can learn better relationships from the
data [18]. An autoencoder consists of two functions: an encoder and decoder function. The encoder
maps the d-dimensional input data to obtain a hidden representation. In contrast, the decoder maps
the hidden representation back to a d-dimensional vector that is as close as possible to the encoder
input [12,19]. Assuming m denotes the input features and n represents the neurons of the hidden layer,
the encoding and decoding process can be represented with the following equations:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1

1
...

b1
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

a2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
1

a2
2
...

a2
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w2

1,1 · · · w2
1,n

...
. . .

...
w2

m,1 · · · w2
m,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1

1
...

a1
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2
1
...

b2
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where w1 ∈ Rn,m and w2 ∈ Rm,n represent the weight matrices of the hidden layer and output layer,
respectively; b1 ∈ Rn,1 and b2 ∈ Rm,1 denotes the bias matrices of the hidden layer and output layer,
respectively; the vector a1 ∈ Rn,1 denotes the inputs of the output layer; the vector a2 ∈ Rm,1 represents
the output of the sparse autoencoder, which is fed into the Softmax classifier for classification. The mean
squared error function EMSE is used as the reconstruction error function between the input xi and
reconstructed input a2

i . Additionally, we introduce a regularization function Ωsparsity to the error
function in order to achieve sparsity by penalizing the weights w1 ∈ Rn,m and w2 ∈ Rm,n. Therefore,
the cost function ESAE of the sparse autoencoder can be represented as:

ESAE = EMSE + Ωsparsity, (3)

The mean squared error function and the regularization function can be expressed as:

EMSE =
1
m

m∑
i=1

(
xi − a2

i

)2
, (4)

Ωsparsity =
1
m

m∑
i=1

⎛⎜⎜⎜⎜⎝(xi + 10)log
xi + 10
a2

i + 10
+ (10− xi)log

10− xi

10− a2
i

⎞⎟⎟⎟⎟⎠, (5)

Once the data have been transmitted from input to output of the sparse autoencoder, the next stage
involves evaluating the cost function and fine-tuning the model parameters for optimal performance.
Meanwhile, the cost function ESAE does not explicitly relate the weights and bias of the network; hence,
it is necessary to define a sensitivity measure to sensitize the changes in ESAE and transmit the changes
backwards via the backpropagation learning method [8]. To achieve this, and iteratively optimize the
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loss function, stochastic gradient descent is employed. The stochastic gradient descent to update the
bias and weights of the output layer can be written as:

b2 = b2 − η2 ∂ESAE

∂b2 , (6)

w2 = w2 − η2 ∂ESAE

∂w2 , (7)

where η2 represents the learning rate in relation to the output layer. The derivative of the loss function
ESAE measures the sensitivity to change of the function value with respect to a change in its input value.
Furthermore, the gradient indicates the extent to which the input parameter needs to change to
minimize the loss function. Meanwhile, the gradients are computed using the chain rule. Therefore,
(6) and (7) can be rewritten as:

b2 = b2 − η2 ∂ESAE

∂a2 × ∂a
2

∂b2 , (8)

w2 = w2 − η2 ∂ESAE

∂a2 × ∂a
2

∂w2 , (9)

The sensitivity at the output layer of the SAE is represented and defined as S2 =
∂ESAE
∂a2 . Therefore,

(8) and (9) can be rewritten as:
b2 = b2 − η2s2, (10)

w2 = w2 − η2s2
(
a1

)T
, (11)

where

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2
1

s2
2
...

s2
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(x1+10)
log(10)(a2

1+10)
+

(10−x1)

log(10)(10−a2
1)
−

(
x1 − a2

1

)
−(x2+10)

log(10)(a2
2+10)

+
(10−x2)

log(10)(10−a2
2)
−

(
x2 − a2

2

)
...

−(xm+10)
log(10)(a2

m+10)
+

(10−xm)

log(10)(10−a2
m)
−

(
xm − a2

m

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

Using the same method for computing S2, the sensitivities can be transmitted back to the
hidden layer

b1 = b1 − η1s1, (13)

w1 = w1 − η1s1(x)T, (14)

where η1 denotes the learning rate with respect to the hidden layer, whereas s1 is defined as:

s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1

1
...

s1
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2
1w2

1,1 + s2
2w2

2,1 + · · ·+ s2
mw2

m,1
...

s2
1w2

1,n + s2
2w2

2,n + . . .+ s2
mw2

m,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (15)

Furthermore, the Softmax classifier is employed for the classification task. The learned features
from the proposed SAE are used to train the classifier. Though, Softmax regression, otherwise called
multinomial logistic regression (MLR), is a generalization of logistic regression that can be utilized for
multi-class classification [20]. However, in the literature, the Softmax classifier has been applied for
several binary classification tasks and has obtained excellent performance [21]. The Softmax function
provides a method to interpret the outputs as probabilities and is expressed as:

f (xi) =
exi∑k

j=1 exj
(i = 1, 2, . . . , N), (16)
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where x1, x2, . . . , xN represent the input values and the output f (xi) is the probability that the sample
belongs to the ith label [22]. For N input samples, the error at the Softmax layer is measured using the
cross-entropy loss function:

L(w) =
1
N

N∑
n=1

H(pn, qn) = − 1
N

N∑
n=1

[ynlogŷn + (1− yn) log(1− ŷn)], (17)

where the true probability pn is the actual label and qn is the predicted value. H(pn, qn) is a measure of the
dissimilarity between pn and qn. Furthermore, neural networks can easily become stuck in local minima,
whereby the algorithm assumes it has reached the global minima, thereby resulting in non-optimal
performance. To prevent the local minima problem and further enhance classifier performance,
the mini-batch gradient descent with momentum is applied to optimize the cross-entropy loss of the
Softmax classifier. This optimization algorithm splits the training data into small batches which are
then used to compute the model error and update the model parameters [23]. The momentum [24]
ensures better convergence is obtained.

The flowchart to visualize the proposed methodology is shown in Figure 2. The initial dataset is
preprocessed; then, it is divided into training and testing sets. The training set is utilized for training the
sparse autoencoder in an unsupervised manner. Meanwhile, the testing set is transformed and inputted
into the trained model to obtain the low-dimensional representation dataset. The low-dimensional
training set is used to train the Softmax classifier, and its performance is tested using the low-dimensional
test set. Hence, there is no possible data leakage since the classifier sees only the low-dimensional
training set.

Figure 2. Flowchart of the methodology.
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4. Results and Discussion

The proposed method is applied for the prediction of three diseases in order to show its
performance in diverse medical diagnosis situations. The datasets include the Framingham heart
study [11], which was obtained from the Kaggle website, and it contains 4238 samples and 16 features.
The second dataset is the cervical cancer risk factors dataset [10], which was obtained from the
University of California, Irvine (UCI) ML repository, and it contains 858 instances and 36 attributes.
Thirdly, the CKD dataset [9] was also obtained from the UCI ML repository, and it contains 400 samples
and 25 features. We used mean imputation to handle missing variables in the datasets.

The training parameters of the SAE include: η1 = 0.01, η2 = 0.1, n = 25, and number of
epochs = 200. The hyperparameters of the Softmax classifier include learning rate = 0.01, number of
samples in mini batches = 32, momentum value = 0.9, and number of epochs = 200. These parameters
were obtained from the literature [12,23], as they have led to optimal performance in diverse neural
network applications.

The effectiveness of the proposed method is evaluated using the following performance metrics:
accuracy, precision, recall, and F1 score. Accuracy is the ratio of the correctly classified instances to the
total number of instances in the test set, and precision measures the fraction of correctly predicted
instances among the ones predicted to have the disease, i.e., positive [25]. Meanwhile, recall measures
the proportion of sick people that are predicted correctly, and F1 score is a measure of the balance
between precision and recall [26]. The following equations are used to determine these metrics:

Classi f ication accuracy =
TP + TN

TP + TN + FP + FN
, (18)

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
, (20)

F1 score =
2 ∗ Precision ∗Recall
Precision + Recall

=
2TP

2TP + FP + FN
, (21)

where

• True positive (TP): Sick people correctly predicted as sick.
• False-positive (FP): Healthy people wrongly predicted as sick.
• True negative (TN): Healthy people rightly predicted as healthy.
• False-negative (FN): Sick people wrongly predicted as healthy.

To demonstrate the efficacy of the proposed method, it is benchmarked with other algorithms,
such as LR, CART, SVM, KNN, LDA, and conventional Softmax regression. In order to show the
improved performance of the proposed method, no parameter tuning was performed on these
algorithms; hence, their default parameter values in scikit-learn were used, which are adequate for
most machine learning problems. The K-fold cross-validation technique was used to evaluate all
the models. Tables 1–3 show the experimental results when the proposed method is tested on the
Framingham heart study, cervical cancer risk factors, and CKD datasets, respectively. Meanwhile,
Figures 3–5 show the receiver operating characteristic (ROC) curves comparing the performance of the
conventional Softmax classifier and the proposed approach for the various disease prediction models.
The ROC curve illustrates the diagnostic ability of binary classifiers, and it is obtained by plotting the
true positive rate (TPR) against the false positive rate (FPR).
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Table 1. Performance of the proposed method and other classifiers on the Framingham dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 83 84 86 84
CART 75 74 75 74
SVM 82 78 82 80
KNN 81 75 81 77
LDA 83 81 83 82

Softmax classifier 86 84 88 86
Proposed SAE + Softmax 91 93 90 92

Table 2. Performance of the proposed method and other classifiers on the cervical cancer dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 94 96 91 93
CART 90 93 96 94
SVM 94 90 93 91
KNN 93 98 95 96
LDA 95 93 91 92

Softmax classifier 94 97 91 94
Proposed SAE + Softmax 97 98 95 97

Table 3. Performance of the proposed method and other classifiers on the chronic kidney disease
(CKD) dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 98 93 97 95
CART 95 97 95 96
SVM 96 94 96 95
KNN 94 93 89 91
LDA 96 97 93 95

Softmax classifier 96 95 97 96
Proposed SAE + Softmax 98 97 97 97

Figure 3. Receiver operating characteristic (ROC) curve of the heart disease model.
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Figure 4. ROC curve of the cervical cancer model.

Figure 5. ROC curve of the CKD model.

From the experimental results, it can be seen that the sparse autoencoder improves the performance
of the Softmax classifier, which is further validated by the ROC curves of the various models.
The proposed method also performed better than the other machine learning algorithms. Furthermore,
the misclassifications obtained by the model in the various disease predictions are also considered.
For the prediction of heart disease, the proposed method recorded an FPR of 7% and a false-negative
rate (FNR) of 10%. In addition, the model specificity, which is the true negative rate (TNR), is 93%,
and the TPR is 90%. For the cervical cancer dataset, the following were obtained: FPR = 3%, FNR = 5%,
TNR = 97%, and TPR = 95%. For the CKD prediction: FPR = 0, FNR = 3%, TNR = 100%, and TPR = 97%.

Additionally, to further validate the performance of the proposed method, we compare it with
some models for heart disease prediction available in the recent literature, including a feature selection
method using PSO and Softmax regression [13], a two-tier ensemble method with PSO-based feature
selection [14], an ensemble classifier comprising of the following base learners: NB, Bayes Net (BN), RF,
and MLP [27], a hybrid method of NB and LR [28], and a hybrid RF with a linear model (HRFLM) [29].
The other techniques include a combination of LR and Lasso regression [30], an intelligent heart disease
detection method based on NB and advanced encryption standard (AES) [31], a combination of ANN
and Fuzzy analytic hierarchy method (Fuzzy-AHP) [32], and a sparse autoencoder feature learning
method combined ANN classifier [12]. This comparison is tabulated in Table 4. Meanwhile, in order to
give a fair comparison, only the accuracies of the various techniques were considered because some
authors did not report the values for other performance metrics.
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Table 4. Comparison of the proposed method with the recent literature that used the heart disease dataset.

Algorithm Method Accuracy (%)

Verma et al. [13] PSO and Softmax regression 88.4
Tama et al. [14] Ensemble and PSO 85.71

Latha and Jeeva [27] An Ensemble of NB, BN, RF, and MLP 85.48
Amin et al. [28] A hybrid NB and LR 87.4

Mohan et al. [29] HRFLM 88.4
Haq et al. [30] LASSO-LR Model 89

Repaka et al. [31] NB-AES 89.77
Samuel et al. [32] ANN-Fuzzy-AHP 91
Mienye et al. [12] SAE+ANN 90

Our approach Improved SAE + Softmax 91

In Table 5, we compare the proposed approach with some recent scholarly works that used the
cervical cancer dataset, including principal component analysis (PCA)-based SVM [33], a research
work where the dataset was preprocessed and classified using numerous algorithms, in which LR and
SVM had the best accuracy [34], a C5.0 decision tree [35]. The other methods include a multistage
classification process which combined isolation forest (iForest), synthetic minority over-sampling
technique (SMOTE), and RF [36], a sparse autoencoder feature learning method combined ANN
classifier [12], and a feature selection method combined with C5.0 and RF [37].

Table 5. Comparison of the proposed method with the recent literature that used the cervical cancer dataset.

Algorithm Method Accuracy (%)

Wu and Zhou [33] SVM-PCA 94.03

Abdullah et al. [34] SVM
LR

93.4884
93.4884

Chang et al. [35] C5.0 96
Ijaz et al. [36] iForest+SMOTE+RF 98.925

Mienye et al. [12] SAE+ANN 98

Nithya and Ilango [37] C5.0
RF

97
96.9

Our approach Improved SAE + Softmax 97

In Table 6, we compare the proposed method with other recent CKD prediction research works,
including an optimized XGBoost method [38], a probabilistic neural network (PNN) [39], and a method
using adaptive boosting (AdaBoost) [40]. The other research works include a hybrid classifier of NB
and decision tree (NBTree) [41], XGBoost [42], and a 7-7-1 MLP neural network [43].

Table 6. Comparison of the proposed method with the recent literature that used the cervical CKD dataset.

Algorithm Method Accuracy (%)

Ogunleye and Qing-Guo [38] Optimized XGBoost 100
Rady and Anwar [39] PNN 96.7

Gupta et al. [40] AdaBoost 88.66
Khan et al. [33] NBTree 98.75
Raju et al. [42] XGBoost 99.29

Aljaaf et al. [43] MLP 98.1
Our approach Improved SAE + Softmax 98

From the tabulated comparisons, the proposed sparse autoencoder with Softmax regression
obtained comparable performance with the state-of-the-art methods in various disease predictions.
Additionally, the experimental results show an improved performance obtained due to efficient
feature representation by the sparse autoencoder. This further demonstrates the importance of training
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classifiers with relevant data, since they can significantly affect the performance of the prediction
model. Lastly, this research also showed that excellent classification performance could be obtained not
only by performing hyperparameter tuning of algorithms but also by employing appropriate feature
learning techniques.

5. Conclusions

In this paper, we developed an approach for improved prediction of diseases based on an enhanced
sparse autoencoder and Softmax regression. Usually, autoencoders achieve sparsity by penalizing
the activations within the hidden layers, but in the proposed method, the weights were penalized
instead. This is necessary because by penalizing the activations, it makes approximating near-zero loss
function challenging for the network. The proposed method was tested on three different diseases,
including heart disease, cervical cancer, and chronic kidney disease, and it achieved accuracies of
91%, 97%, and 98%, respectively, which outperformed conventional Softmax regression and other
algorithms. By experimenting with different datasets, we aimed to demonstrate the effectiveness of the
method in diverse conditions. We also conducted a comparative study with some prediction models
available in the recent literature, and the proposed approach obtained comparable performance in
terms of accuracy. Thus, it can be concluded that the proposed approach is a promising method
for the detection of diseases and can be further developed into a clinical decision support system to
assist health professionals as in [44]. Meanwhile, future research will apply the method studied in this
paper for the prediction of more diseases, and also employ other performance metrics such as training
time, classification time, computational speed, and other metrics, which could be beneficial for the
performance evaluation of the model.
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Abstract: The presented research faces the problem of early detection of sepsis for patients in
the Intensive Care Unit. The PhysioNet/Computing in Cardiology Challenge 2019 facilitated the
development of automated, open-source algorithms for the early detection of sepsis from clinical
data. A labeled clinical records dataset for training and verification of the algorithms was provided
by the challenge organizers. However, a relatively small number of records with sepsis, supported by
Sepsis-3 clinical criteria, led to highly unbalanced dataset (only 2% records with sepsis label). A high
number of unbalanced data records is a great challenge for machine learning model training and is
not suitable for training classical classifiers. To address these issues, a method taking into the account
the amount of time the patients spent in the intensive care unit (ICU) was proposed. The proposed
method uses two separate ensemble models, one trained on patient records under 56 h in the ICU,
and another for patients who stayed longer than 56 h. A solution including feature selection and
weighting based training on imbalanced data was proposed in this paper. In addition, several
performance metrics were investigated. Results show, that for successful prediction, a particular
model having few or more predictors based on the length of stay in the Intensive Care Unit should
be applied.

Keywords: early detection; sepsis; evaluation metrics; machine learning; medical informatics; feature
extraction; physionet challenge

1. Introduction

Sepsis is a syndrome of physiological, pathological, and biochemical abnormalities induced
by infection [1]. The conservative estimates indicate that sepsis is a leading cause of mortality and
critical illness worldwide [2,3]. World Health Organization concerned that sepsis continues to cause
approximately six million deaths worldwide every year, most of which are preventable [4]. In their
study, the Department of Health in Ireland reported that survival from sepsis-induced hypotension is
over 75% if it is recognized promptly, but that every delay by an hour causes that figure to fall by over
7%, implying that the mortality increases by about 30%.

In this paper, we present our solution for the early detection of sepsis by joining the
PhysioNet/Computing in Cardiology Challenge 2019 [5]. Here, a detailed explanation of the Challenge
data, participant evaluation metrics, and primary results are provided, and therefore, we will not
explain it in this paper. However, a few important findings we should share in this paper in order to
better explain the motivation to construct our algorithm in a particular way.

According to the requirements of the Challenge, our open-source algorithm works on clinical data
provided on a real-time basis by giving a positive or negative prediction of sepsis for every single hour.
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The algorithm predicts sepsis development for the patient using a pre-trained mathematical model.
Therefore, not only the appropriate model should be used but also the training should be performed in
the right way.

Data used in the competition was collected from intensive care unit (ICU) patients in three separate
hospital systems. However, data from two hospital systems only were publicly available for
training (40,336 patients in total). Another set of records (24,819 patients in total), obtained from all
three different hospital systems was hidden and used for official scoring only by challenges organizers.
Such separation of the data prevented participants from over-fitting their models. Taking into account
that the trained model may learn not only dependencies in the clinical records but also hospital
system-related behavior, for our approach, we have tested different data selection strategies for
training. Models trained on hospital system A data we tested on data from hospital system B and
vice versa.

The most challenging issue in the available data records was a high number of unbalanced
records. Only 2932 septic patients were included in the dataset, together with 37,404 non-septic
patients. From the perspective of mathematical model training, the data balance is much worse.
Since the sepsis prediction had to be made on an hourly basis, 6 h in advance to the onset time of
sepsis, specified according to Sepsis-3 clinical criteria, a number of non-sepsis examples we also
took from the septic patient early records. After such reorganization of training data, only 2% from
1,484,384 [1,424,171] events (16,933 from 752,946 [739,663] in set A and 10,557 from 73,438 [684,508] in
set B) had to be classified as an early prediction of sepsis.

The imbalance of the data can be treated in different ways. Nemati et al. successfully used
random subsampling to train deep cancer subtype classifier [6]. Vicar et al. used special cost
function—Generalized Dice Loss [7]. Sweetly et al. created 54 datasets using the same sepsis data and
different non-sepsis data records [8]. He et al. have applied a random subsampling to this Challenge
data [9]. Although the rank of their solution was quite high in the Challenge, the model was highly
overfitted on hospital systems A and B when comparing to the model performance on hidden hospital
system C data. An interesting approach was proposed by Li et al., where they decided to divide data
into three stages (1–9, 10–49 and above 50 h stay in ICU) [10].

Dealing with missing values is another decision to be taken and it also may have an influence
to the selected model training and overall performance. Forward-fill method [8,11–15]. Singh at al.
found in their study, that mean imputation model gave worst results [16]. Other authors successfully
used mean calculation over whole dataset [15,17].

Our proposed algorithm was scored on a censored data set, dedicated for scoring and using utility
function that rewards early predictions and penalizes late predictions as well as false alarms.

2. Materials and Methods

In this section, we address the challenges regarding the problem of early sepsis detection and
propose a methodology to overcome them. A labeled clinical records dataset for training and
verification of the algorithms was provided by the PhysioNet/Computing in Cardiology Challenge
2019 organizers [5].

2.1. The Data

Data contained records of 40,336 ICU patients with up to 40 clinical variables divided into
two datasets, based on hospital systems A and B. For each patient, the data were recorded at every
hour during the stay in ICU. The records were labeled (on an hourly basis) according to Sepsis-3
clinical criteria. A total of 1,407,716 h of data was collected and labeled. Data labels included
vital signs, laboratory values, and demographic values of the patients. Eight vital signs were a
heart rate (HR), pulse oximetry (O2sat), temperature (Temp), systolic blood pressure (SBP), mean
arterial pressure (MAP), diastolic blood pressure (DBP), respiration rate (Resp) and end-tidal carbon
dioxide (EtCO2). A total of 26 laboratory values were included in the dataset. Demographic values
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include age, gender, hospital identifiers, the time between hospital and ICU admission (Hosp), and ICU
length of stay (ICULOS). Data were labeled as positive 12 h before and 3 h after the onset time of sepsis.
Positive labels of sepsis were found in 2932 of the 40,336 records, which is 7.27% of the data. Labels
consisting of positive (sepsis) labels were found in 27,916 rows, which is only 1.98% of all data.

Investigation of the data showed large numbers of missing values. The percentage of missing
rows of vital signs is shown in Figure 1. Missing values of vital signs make about 10% of the data,
with the exception of Temp ( 66% missing data) and EtCO2 (100% and 92% missing data, for dataset A
and dataset B, respectively). Therefore, EtCO2 was not used as a feature for the model. The percentage
of missing rows of laboratory measurements is shown in Figure 2. Missing data of laboratory values
makes from 78% to 100% for all values. We did not use laboratory values to develop our model.
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Figure 1. Missing vital values in the data.
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Figure 2. Missing laboratory values in the data.
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Average values of vitals are shown in Table 1. Measured SBP, MAP and DBP values are higher
in dataset B. Also, the measured HR is slightly lower in dataset B. Having two datasets collected in
separate hospitals allowed us to develop models that are robust to measurement errors rising from
the specificity of electronic medical record systems. Thus, the nature of data increases the difficulty
of predicting sepsis. During the development of the model, we had to take into account the high
unbalance of positive and negative cases, large amounts of missing values, and the fact that data was
recorded using two different measurement systems.

Table 1. Average values of vitals and their standard error.

Measures Dataset A Dataset B

HR 84.6 ± 0.100 83.1 ± 0.106
O2sat 97.2 ± 0.016 97.1 ± 0.014
Temp 36.9 ± 0.004 36.8 ± 0.004
SBP 120.3 ± 0.115 126.4 ± 0.132
MAP 78.5 ± 0.076 86.7 ± 0.091
DBP 60.2 ± 0.070 66.6 ± 0.076
Resp 18.6 ± 0.026 18.5 ± 0.022
EtCO2 NaN 33.1 ± 0.072

2.2. Feature Extraction

A solution proposed in this paper to the early sepsis prediction problem employs information of
the ICU length of stay, hospitalization time, age, and seven vital signs—HR, O2sat, Temp, SBP, MAP,
DBP, and Resp. We did not use EtCO2 for feature extraction due to a large number of missing values.

We have calculated the mean, standard deviation, and the max-min difference for the vital sign
data. We took those values from the whole duration of the record. Additionally, we have considered
some other measures for our approach, such as kurtosis, entropy, and the standard error. However,
after further analysis, we decided to discard these features. Kurtosis can only be calculated for four or
more variables, not including the missing values. Additionally, kurtosis is not a representative statistic
estimate for sample sizes less than 200 [18]. The entropy value is proportional to the sample size. In the
problem we have investigated in this paper, the sample size changes each hour of the patient stay
and can be reduced with missing values for some patients [19]. Therefore, in this case, the entropy
just represents a number of samples used for its calculation. Thus, it is unlikely that entropy can
carry useful information for the model training. The standard error is calculated by a division by
the sample size, and it is inversely proportional to the sample size. Therefore, results can lead to a
reduction of standard error for larger data sample sizes, which in its order increases unwanted load
model training [20].

After our theoretical investigation, we have calculated 21 features for each hour. Missing values
of the data were removed when calculating features. In some cases, features could not be calculated
due to a small set of available data (e.g., during the first few hours of ICU stay, or due to a large
number of missing values). In such cases, we set the value of the feature to ‘−1’. Finally, we have
assembled a feature set of 24 features for model training: 21 calculated featured from vital signs and
three demographic values (Hosp, age, ICULOS). Obtained data had different measurement units,
measurement errors, and scales. Therefore, we have applied data standardization to have zero mean
and standard deviation ‘1’. The sample mean and sample standard deviation were used the same for
each patient, obtained from all sample data of both datasets containing 40,336 patients in total.

2.3. Data Balancing

The data from the experiment were strongly unbalanced, as discussed in Section 2.1. The balancing
of the data can be performed using various oversampling or subsampling techniques that change
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the data in the dataset before the model is trained. In our investigation, we followed the alternative
approach by setting different weights for the individual data points according to their class.

During our investigation of possible data balancing approaches, we surveyed various sampling
methods, also used in the Challenge by other authors. The challengers applied undersampling,
subsampling methods and some oversampling. The immensity of the imbalance problem is very great;
the ratio of the labels is 1:50. Additionally, clinical data is very contextual. Oversampling methods
haven’t shown good results in the Challenge. Undersampling methods possibly removed valuable
information of non-septic patients. Most of the subsampling methods overtrained showed high Utility
scores on known datasets and poor scores on hidden datasets. The variability of the clinical (ICU) data
is very high. Non-septic cases have various other conditions and unknown prescribed medications.
We think that adjustment of classification cost is a more robust and effective way to address this issue
of data imbalance. The highest rank in the 2019 Challenge was received by a solution, where the
classification cost was calculated using Utility function value differences between correct and incorrect
classification [13]. In our solution, we used simple weighting and investigated the behavior of the
model training with differently selected weighs.

We have weighed the positive and negative predictions in accordance with the duration before
or after the onset time of sepsis. Positive values, with various weights, make only 1.98% of the data.
For this reason, the investigated models were trained with uneven classification costs. We have
addressed the data balance issue by utilizing and modifying the classification cost function:

loss = −
N

∑
i=1

ci |ti − yi| , (1)

where N is the number of observations, ti is the target output for observation i, yi is the predicted
value for observation i, and ci is the classification cost for the observation i.

To investigate the influence of the selected weight on the model’s behavior during training,
we trained our models using different classification costs. A misclassified non-septic observations
were weighted by 1 (c1), and a misclassified septic observation weighted selecting different c2 (1, 10,
20, 30, 100). Classification cost was selected based on the amount of “unbalance”. As it was expected,
since the positive values make only 1.98% of the data, the most effective value should be found when
the classification cost c2 is between 20 and 30. Models with c2 parameter lower than 20 tend to predict
most of the data as non-septic, while models with higher c2 tend to predict all data as septic.

2.4. Model Training

In our investigation, we have used models based on Decision trees, naive Gaussian Bayes,
Support Vector Machines (SVM), and Ensemble learners. All models were trained using stratified
5-fold cross validation. Decision trees based models were important in this stage of the problem
solution. The Decision tree models give insights about the relevance of selected features. However,
they tend to overfit the data [21]. Less over-fitting can be expected when using Ensemble learner
models [22]. We have trained the ensemble learning-based models using hyperparameter optimization
among Bag, GentleBoost, LogitBoost, AdaBoost, and RUSBoost methods. Hyperparameter tuning
was performed for the number of decision tree splits, number of learners used in the model, learning
rate, number of features in the ensemble. The number of decision tree splits search scaled in the
range from 1 to 500. Many branches tend to overfit the data, while simpler trees can be more robust,
which is especially important for the clinical data. The number of learners used in the search was from
10 to 100. A high number of learners can produce higher accuracy but can be time-consuming to train.
We changed the learning rate in the ranged from 0.0001 to 1, and the number of features in ensemble
hyperparameter tuning scaled from 1 to 24.

Gaussian naive Bayes based models are known for their simplicity, high bias, and low overfit.
Typically good results using Naive Bayes are achieved using low variance data. These models are

171



Electronics 2020, 9, 1133

not recommended for high variance data [23]. Models trained using SVM tends to overfit data less.
However, they are not very successful in problems with a high number of missing values in data [24].

We have trained each model separately using features estimated on an hourly basis in random
order. In order to avoid over-fitting and increase robustness, we have trained the models on records
taken from a single hospital system (dataset A) and tested on records from another hospital (dataset
B, hidden during the training). We trained models on the dataset A using 5-fold cross-validation.
Using our selected approach, only half of the available data was used for training. However, as it was
shown in the results of the challenge [5], proposed solutions to the problem performed well on known
datasets, even if scoring was done on a hidden part of the same set, and performed marginally worse
on new hospital system C, hidden from challenge contestants. Additionally, the advantage of this
approach to train and evaluate models is supported by Biglarbeigi [25].

Based on the results of the trained models and insights into the data, we proposed a method that
takes into account the amount of time the patients have already spent in the ICU. The first model used
AdaBoost ensemble method with a decision tree to evaluate features of patients extracted during the
first 56 h (11,146 sepsis labels and 654,866 non-sepsis labels; it makes approximate imbalance ratio of
1:59). The second model is applied for patients with ICULOS time greater than 56 (5990 sepsis labels
and 118,213 non-sepsis labels; it makes an approximate imbalance ratio of 1:20). The second model was
developed using the discriminant subspace-based ensemble method. The method generates decision
trees using pseudorandomly selected feature components. Decisions of the trees are then combined
by averaging the estimates. As this method is based on decision trees, it is fast to train and easy to
interpret [26]. Both models were using features described in Section 2.2. Additionally, our proposed
model was trained on both datasets, 75% of the data used for training. This allowed us to investigate
how much model overtrains on known hospital systems.

2.5. Model Scoring

Models, proposed in this paper for Sepsis prediction, were evaluated using several different
metrics. Traditional scoring metrics, such as the area under the receiver operating characteristics
(AUROC), the area under the precision-recall curve (AUPRC), accuracy, F-measure, and Matthews
correlation coefficient (MCC) were used. Additionally, investigated models were scored using a specific
scoring function developed by the authors of the dataset, called Utility score. Performance of the
investigated models was based on the Utility score metric. Additionally, using different scoring metrics
allowed us a better comparison of investigated models. AUPRC is recommended for imbalanced data
over the AUROC measure [27,28]. F-measure is a harmonic mean of precision and recall [29]. Lately,
MCC measure was shown to be more advantageous over F-measure in the binary classification of
imbalanced data [30].

The utility score metric was proposed by the authors of the dataset for the 2019 physionet
Challenge [5]. This metric was recently proposed. The utility score metric reward algorithms that
facilitate early sepsis detection and treatment. Additionally, it addresses the problem of infrequent
events and sequential prediction tasks. It is designed to capture the clinical utility of early sepsis
detection by weighting early and late predictions. Moreover, decision threshold metrics (AUROC
and AUPRC) have problems evaluating unbalanced datasets. Additionally, other challengers
evaluated their models using the Utility score, therefore, it is easier to compare the results. However,
the experimental results showed that Utility score correlates with two traditional metrics F-measure
and MCC.

Utility score—a specifically designed scoring function rewards algorithms for early predictions
and penalizes them for late or missed predictions and false alarms. Scoring was conducted by
predicting each hourly label for each patient. Each positive label had a defined score depending on
correct prediction time to sepsis. Scoring function awarded models for correct prediction at most 12 h
before and 3 h after the onset time of sepsis. Scoring function penalized models who predicted septic
state 12 h before onset time of sepsis and slightly penalized models with false-positive predictions.
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True negative predictions were not penalized or rewarded by the function. Best Utility score the
most optimal model could achieve would be 1. Thus, a better model would have higher Utility score.
A more detailed scoring description can be found in the original paper. The utility score was a reference
metric. Using it, we evaluated the performance of our investigated models. AUROC, AUPRC, accuracy,
F-measure, and MCC scores were used to gain insight into the models (e.g., if they correlate with any
other parameter of the experiment, such as classification cost, feature reduction, model configuration,
or Utility score).

Our investigated and proposed models were compared with five challengers who received the
highest Utility score on hidden test C. Additionally, a result of three baseline models was generated.
Baseline models were scored using all positive, all negative and random performance to clearly show
the unbalance of the data and the difficulty of the challenge.

3. Results

As it was noted in Section 2.4, decision trees, naive Gaussian Bayes, SVM and ensemble learners
were investigated in our experiment. Various parameters of the models were adjusted. Additionally,
the effect of classification cost and feature reduction was investigated. The performance of developed
models was evaluated using Utility score as a reference metric. To complement, several other metrics,
such as AUROC, AUPRC, accuracy, F-measure, and MCC were calculated to compare investigated
models. Models were trained using dataset A, and scored using dataset B. Results of the experiment
are given in Table 2. Models, based on decision trees, are labeled from 1 to 14. Models, based on
the Naive Bayes algorithm, are labeled from 21 to 25. SVM based models are labeled from 31 to 34.
Models from 41 to 44 were using an optimizable ensemble method for searching the best model for
the problem.

The random guess of the sepsis with an accuracy of 50% showed −0.529 Utility score and
0.125 AUROC. By labeling all cases as positive, the Utility score was reduced to −1.059 and AUROC
was 0, F-measure—0.029. Labeling all cases as negative increased the Utility score to 0, AUROC was
0.5 and F-measure—0. AUROC was generally expected to be equal or above 0.5 when the dataset is
balanced. In Table 2, the third row indicates the AUROC value of a random performance, having an
accuracy of 50%). The AUROC value in such a case is 0.125 (for balanced datasets it would be 0.5). It is
a direct insight into the importance of the problem.

Based on the results of the Physionet challenge 2019 on the hidden dataset, several of the
highest Utility scores were from 0.017 to 0.193. The highest Utility score (0.193) was achieved by
Hong et al. using deep recurrent reinforcement learners [31]. Murugesan et al. applied XGBoost
algorithm and achieved 0.182 Utility score on hidden test set [32]. Our proposed method was developed
based on the results of further described investigations and results. The proposed method predicted
3753 true positive, 707,606 true negative, 7027 false positive and 43,309 false negative observations of
dataset B. The precision of the method was 34.82%, recall—7.98%. Our proposed method achieved
0.306 AUROC, 0.009 AUPROC, 0.934 accuracy, 0.129 F-measure, 0.142 MCC and 0.245 Utility scores.
Additionally, this model was trained on both datasets (70% of the data used for training) achieved
0.276 Utility score.

Decision trees are fast to train and to evaluate. We started our investigation using these models.
The baseline score of Model1, with default parameters, gave a Utility score of 0.01. Secondly, a feature
reduction using principal component analysis (PCA) was applied. Six features to explain 95% variance
was kept. Model2 gave Utility score of 0.004. For Model3, increasing feature set to 14 (out of 24)
increased Utility score to 0.0124. Forth model used 14 features and a modified classification cost ratio
of 1:10. Model4 obtained Utility score of 0.1236. Further increasing classification (Model5) ratio to
1:100 Utility score decreased to −0.296. Using all available features in the set (24 features) Utility score
was slightly improved to −0.242, for Model6. Using 24 features and classification cost 1:10 obtained
Utility score was 0.184 for Model7. For Model8 we modified classification cost to 1:20, obtained Utility
score was 0.22. Further increasing classification cost to 1:30 (Model9) decreased Utility score to 0.216.
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Model10, having a modified classification cost of 1:20, and a reduced feature set to 20 got Utility score
decreased to 0.157. Next, we limited the tree split criterion to 50. Model11 achieved Utility score
of 0.232. Higher Utility score was achieved by reducing split criterion to 4, it was 0.233 (Model12).
Reducing split criterion to 2 for Model13 got a similar Utility score of 0.233. Model14, with a further
reduced split criterion to 1, achieved the highest Utility score of 0.242. Only 1 tree branch was used
for this model. A feature that was used for this model was ICULOS. Features used for Model12 and
Model14 also included ICULOS, and also mean SBP and Resp.

Models labeled from 21 to 25 were based on the Naive Bayes algorithm. Model21 without feature
reduction and using classification cost 1:20 achieved Utility score of 0.1334. For Model23, using PCA,
the number of features was reduced to 14, achieved Utility score was 0.129. Further reducing the
number of features to 6 (95% explained variance using PCA) improved Utility score to 0.150, as shown
in Table 2 Model24 row. Adjusting the classification cost led to a reduced score—Model22 and Model25
used a reduced feature set and a modified classification cost of 1:10 and 1:30; they yielded Utility scores
of 0.097 and 0.143, respectively. SVM models were computed using the Gaussian kernel function.
Results of the SVM models are shown in Table 2, under Model31 to Model34. Model31, using a
classification cost ratio of 1:20 and 24 features for training, achieved a 0.151 Utility score. Model32,
using 6 features to explain 95% variance, achieved a 0.144 Utility score. Model33 and Model34, using
classification costs 1:30 and 1:10, respectively, achieved 0.1294 and 0.1302 Utility scores.

Models labeled from 41 to 44 were trained using ensemble methods, searching between
Bag, GentleBoost, LogitBoost, AdaBoost, and RUSBoost methods and other hyperparameters.
The classification cost for all investigated models were set to 1:20. Model41 using a full feature
set achieved Utility score of 0.082. Reducing the tree split criterion to 10 (Model42) gave an improved
Utility score of—0.124. Ensemble model (Model43) using bagged decision trees, having 29 learners,
4 splits and using 24 features achieved a Utility score of 0.173, further reducing split criterion to 1 did
not improve the Utility score—0.173. Using principal component analysis (95%) reduced the Utility
score to 0.008 (Model44).

High AUROC, AUPRC and accuracy scores using decision tree models were achieved when
classification cost was 1:1, for example, 0.492, 0.497, 0.491 AUROC score for Model1, Model2, Model3,
respectively. Model12 and Model14 with high Utility scores gave low AUROC (0.313 and 0.309,
respectively), AUPRC (0.009, both) and accuracy (0.931 and 0.937, respectively) scores.

High AUROC, AUPRC, and accuracy scores using ensemble learners were achieved using
Model41: 0.413, 0.012, and 0.955, respectively. However, this ensemble model achieved low Utility
(0.082). In the same manner, low AUROC (0.347), AUPRC (0.01), and accuracy (0.939) scores, and
the highest Utility score (0.173) was achieved using Model43. Other investigated models performed
similarly, high AUROC, AUPRC and accuracy, and low Utility score; or low AUROC, AUPRC and
accuracy, and higher Utility score was observed in all investigated models, namely decision trees, SVM,
naive Bayes, and ensemble-based models.

Highest F-measure and MCC scores using decision tree models were achieved for models that
showed the highest Utility scores. F-measure score of Model14 was 0.133 (Utility—0.242), score of
Model11 was 0.131 (Utility—0.232). MCC score of Model14 was 0.143; the score of Model11 was 0.14.
Lowest F-measure and MCC scores were achieved using Model2: F-measure—0.011, MCC—0.018.
However, the lowest Utility score (−0.296) using decision tree models was achieved using Model5.
F-measure score of Model5 was 0.04, MCC—0.057.

Naive Gaussian Bayes models achieved lowest F-measure (0.062) and MCC (0.085) scores when
Model22 (Utility score—0.097) was scored, highest F-measure (0.099) and MCC (0.122) scores using
Model24 (Utility score—0.15).

Model32 trained using SVM achieved F-measure (0.108) and MCC (0.104) score, and scored
0.144 using Utility performance metric. However, Model31’s Utility score (0.1515) was slightly higher,
while F-measure (0.099) and MCC (0.1) score lower. Low F-measure (0.081) and MCC (0.087) scores
also showed low Utility scores—0.129, for Model33.
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Comparably low F-measure (0.025) and MCC (0.02) scores using ensemble learners were achieved
using Model44 (Utility score—0.008). Model43 with a high Utility score (0.173) demonstrated a high
F-measure (0.115) and MCC (0.113) scores.

Table 2. Results of the investigated models, baseline scores, and five highest Utility scores on hidden
test set from the challenge. Our Investigated models labeled from 1 to 14 were based on decision trees.
Models labeled from 21 to 25 were based on naive Bayes algorithm. SVM based models were labeled
from 31 to 34. Models labeled from 41 to 44 were using ensemble methods with hyperparameter search.
Best performing models, having the highest Utility score, were highlighted.

Model AUROC AUPRC Accuracy F-Measure MCC Utility

All positive 0.000 0.000 0.014 0.029 0.000 −1.059
All negative 0.500 0.014 0.986 0.000 0.000 0.000

Random performance 0.125 0.007 0.500 0.027 0.000 −0.529

Hong et al. [31] 0.060 0.003 0.937 0.094 N/A 0.193
Murugesan et al. [32] 0.256 0.006 0.962 0.113 N/A 0.182

Narayanaswamy et al. [33] 0.701 0.069 0.881 0.059 N/A 0.062
Alfaras et al. [34] 0.702 0.078 0.877 0.058 N/A 0.055

Deogire [35] 0.586 0.016 0.984 0.048 N/A 0.017

Proposed method 0.307 0.009 0.934 0.130 0.143 0.245
when trained on both datasets 0.291 0.009 0.934 0.140 0.158 0.276

Model1 0.492 0.014 0.984 0.024 0.028 0.010
Model2 0.497 0.014 0.985 0.011 0.018 0.004
Model3 0.491 0.014 0.984 0.028 0.033 0.012
Model4 0.379 0.011 0.945 0.095 0.090 0.124
Model5 0.058 0.003 0.486 0.040 0.057 −0.296
Model6 0.097 0.005 0.562 0.040 0.051 −0.242
Model7 0.357 0.011 0.950 0.126 0.125 0.184
Model8 0.314 0.010 0.930 0.118 0.129 0.220
Model9 0.278 0.009 0.901 0.100 0.119 0.216
Model10 0.321 0.010 0.914 0.091 0.098 0.157
Model11 0.321 0.010 0.940 0.131 0.140 0.232
Model12 0.309 0.009 0.931 0.124 0.136 0.233
Model13 0.309 0.009 0.931 0.124 0.136 0.233
Model14 0.313 0.009 0.937 0.133 0.143 0.242

Model21 0.226 0.008 0.828 0.070 0.092 0.133
Model22 0.241 0.009 0.874 0.062 0.085 0.097
Model23 0.23 0.008 0.831 0.069 0.090 0.129
Model24 0.201 0.006 0.785 0.099 0.122 0.150
Model25 0.202 0.006 0.790 0.092 0.118 0.143

Model31 0.353 0.011 0.935 0.099 0.100 0.151
Model32 0.375 0.011 0.949 0.108 0.104 0.144
Model33 0.320 0.010 0.904 0.081 0.087 0.129
Model34 0.392 0.012 0.956 0.109 0.101 0.130

Model41 0.413 0.012 0.955 0.084 0.072 0.082
Model42 0.358 0.011 0.937 0.100 0.099 0.124
Model43 0.347 0.010 0.939 0.115 0.113 0.173
Model44 0.489 0.014 0.981 0.025 0.020 0.008

4. Discussion

The highest Utility score was achieved using our proposed method, which divided patients based
on their length of stay and then the appropriate model was applied. Additionally, decision trees
with a low number of nodes achieved high Utility scores when ICU length of stay was included as
a branch of decision tree. Therefore, we believe that future models should be developed based on
ICU-stay time. For example, one model predicting recently hospitalized ICU patients, another would
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be used if a patient’s ICU length of stay reaches a certain length of time. Also, this approach can be
implemented using three or more temporal divisions. This finding of our investigation is supported
by Lauritsen [36], Vincent [37] and Shimabukuro [38] papers. Each intervention, vital measurement,
intravenous therapy, and duration of stay in general increases a chance of infection—a direct cause
of sepsis.

Regarding the dataset, other papers tackled this problem and proposed methods, which were
trained on both datasets, and officially scored on hidden set C. Dataset C is not available anymore.
Therefore, one must find other means to compare the results with the challenge score. Most of the
challengers performed well on known hospital systems, obtaining Utility scores of about 0.4. However,
Utility scores for the hidden hospital systems were low [5]. One author suggested evaluating the
proposed methodology using one dataset and testing it on another [25]. Our achieved Utility score
was for the known dataset, but the hidden percentage of data was 0.276 when trained on 75% of the
records. This shows that our proposed model is robust to overtrain.

We assume that the Utility score can be improved a little by finding better value for classification
cost, where a true positive prediction reward would be multiplied somewhere between 20 and 30.
However, this would fit the data and would not solve the general problem of the Challenge. Therefore,
we recommend using an arbitrary value between 20 and 30 to increases the robustness of the system.

MCC and F-measure scores gave similar results, which increases and decreases with the Utility
score. However, the bounds of MCC are from −1 to 1, while the F-measure is from 0 to 1. The bounds
of the Utility score are from −2 to 1. We support the idea of using the Utility score as a metric
for this dataset. Moreover, we showed that the MCC and F-measure are effective metrics for this
problem, while other traditional metrics AUROC, AURRC and Accuracy are misleading for a highly
unbalanced dataset. Additionally, due to the nature of the Utility score, results can be difficult to
interpret, as Roussel et al. pointed out in their work [39].

Investigated decision trees achieved Utility score of 0.242, AUROC score of 0.313, and MCC
score of 0.143 on hidden set. Models with such results are far from applicable to the clinical
setting. Additionally, our investigation showed that increasing AUROC and accuracy usually leads to
decreased Utility, F-measure, and MCC scores. Moreover, accuracy is high for all investigated models.
Accuracy can be miss-leading when interpreting models, results for this kind of highly unbalanced
data, and a large number of negatives [22]. When developing methods for this kind of problem,
one needs to be careful; the accuracy of 98.2% can be achieved just by guessing all rows as negative.
We showed that balancing data reduces AUROC, accuracy scores and improves F-measure, MCC,
and Utility scores.

There are many models to experiment with, for example, k-Nearest Neighbor (kNN) and Long
Short-Term Memory (LSTM) models were not tested in our work. LSTM models are more difficult
to configure to use them effectively. Additionally, LSTM tends to overfit the data. Moreover, even
if one successfully tackles the overfitting problem, there is still another downside, which is more
important in the current state of the early sepsis prediction problem. The developed model may be
hard to interpret and would not reveal much insight into data [40]. The clustering of unbalanced
data (including Sepsis-related records) may give promising results for sepsis prediction. However,
kNN overfits data with large variances [41]. On the other hand, a trained kNN model having 1000
or 2000 clusters to represent the data can be expected to be robust. In general, we believe results
using these models can be promising, and we encourage future works exploring LSTM and kNN
model capabilities.

It is notable that investigated models do not differ significantly in Utility score if a number
of features is reduced. This shows that some features are not useful for the model. On the other
hand, our proposed features were relatively simple. We believe that more advanced features are
needed to solve the early detection of the sepsis problem. Using advanced features should improve
the score. However, feature engineering is a difficult, time-consuming process, which also requires
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understanding the nature of the data. In this paper, we provide many insights into the nature of the
data, different scoring metrics, advantages of various models, and feature combinations.

We believe that the results of our investigation presented in this paper will benefit the fundamental
need of early sepsis prediction and will answer some basic questions about the limits of early detection.
Our results should benefit the search for advanced combinations of features, ease the use of machine
learning tools. With meaningful insights peer researchers can apply advanced feature engineering
techniques and develop more sophisticated and robust models in order to reach reliable results.
Reaching better results is available through the use of combined models and handcrafted features [42],
thus, further contributing to this field. The main challenges of this problem, as we revealed, are—the
highly unbalanced dataset, the high number of missing data, simple features calculated using vitals
does not have enough predictive power, proposed solutions are prone to overtrain. Adjusting
the classification cost function helps to address the latter problem. In addition, the insights and
conclusions of our experiment may benefit not only machine learning specialists, researchers, but also
ICU personnel and scientists in the medical field.

5. Conclusions

In this study, we provide a comparison of several alternative methods for early sepsis prediction.
The performance of the investigated models was based on the Utility score metric. Our selected models
and insights show how to deal with unbalanced data and with a large number of missing values.

The results, obtained during an experimental investigation, are based on publicly available data
containing 40,336 records with 1,407,716 of rows and 40 dimensions. Results showed:

1. Our proposed method, using two separate ensemble models, based on length of stay in the ICU,
performed better than other tested models when using vital and demographic data to calculate
simple features.

2. Adjusting classification cost function improves the Utility score of the tested models. Best results,
on the investigated dataset, were achieved when the reward of true positive prediction was
increased 20 times.

3. Feature ranking, using PCA, applied for our proposed features does not always improve Utility
score. Utility score changes, when reducing the number of features based on the investigated
model. In some models, such as Naive Gaussian, reducing the number of features improved the
Utility score.

4. Performance metrics AUROC, AUPRC, and accuracy are not suitable for this highly unbalanced
dataset. Additionally, these metrics do not reflect the Utility score. These metrics can be high for
models with low Utility scores. Dealing with the early sepsis prediction problem, one should not
apply these performance metrics. On the contrary, F-measure and MCC performance metrics
reflect the Utility score.

5. High Utility score was obtained using decision tree models limited to 50 and fewer splits.
All investigated decision trees chose ICULOS—ICU length of stay, as an important feature.
Additionally, reducing the number of tree splits up to 4, and 1 further increased the Utility
score. Utility score of 0.242 was achieved using only ICULOS as a single feature for the decision
tree model.

Author Contributions: Conceptualization and methodology, all authors; validation, V.A. and D.T.; Analysis,
A.S. and V.A.; writing—original draft preparation, A.S. and V.A.; project administration, A.S.; supervision,
D.P.; writing—review and editing, all authors. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

177



Electronics 2020, 9, 1133

References

1. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.;
Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis
and septic shock (sepsis-3). JAMA 2008, 10, 142–149. [CrossRef]

2. Vincent, J.L.; Marshall, J.C.; Ñamendys-Silva, S.A.; François, B.; Martin-Loeches, I.; Lipman, J.; Reinhart, K.;
Antonelli, M.; Pickkers, P.; Njimi, H.; et al. Assessment of the worldwide burden of critical illness:
The intensive care over nations (icon) audit. Lancet Respir. Med. 2014, 2, 380–386. [CrossRef]

3. Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.;
Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and
limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [CrossRef]

4. Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global
health priority—A who resolution. N. Engl. J. Med. 2017, 377, 414–417. [CrossRef]

5. Reyna, M.A.; Josef, C.S.; Jeter, R.; Shashikumar, S.P.; Westover, M.B.; Nemati, S.; Clifford, G.D.; Sharma, A.
Early prediction of sepsis from clinical data: The PhysioNet/Computing in Cardiology Challenge 2019.
Crit. Care Med. 2020, 48, 210–217. [CrossRef]

6. Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine
Learning Model for Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [CrossRef]
[PubMed]

7. Vicar, T.; Hejc, J.; Novotna, P.; Ronzhina, M.; Smisek, R. Sepsis Detection in Sparse Clinical Data Using Long
Short-Term Memory Network with Dice Loss. In Proceedings of the 2019 Computing in Cardiology (CinC),
Singapore, 8–11 September 2019.

8. Sweely, B.; Park, A.; Winter, L.; Liu, L.; Zhao, X. Time-Padded Random Forest Ensemble to Capture Changes
in Physiology Leading to Sepsis Development. In Proceedings of the 2019 Computing in Cardiology (CinC),
Singapore, 8–11 September 2019.

9. He, Z.; Chen, X.; Fang, Z.; Yi, W.; Wang, C.; Jiang, L.; Pan, Y. Early Sepsis Prediction Using Ensemble Learning
with Features Extracted from LSTM Recurrent Neural Network. In Proceedings of the 2019 Computing in
Cardiology (CinC), Singapore, 8–11 September 2019.

10. Li, X.; Kang, Y.; Jia, X.; Wang, J.; Xie, G. TASP: A Time-Phased Model for Sepsis Prediction. In Proceedings of
the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

11. Nejedly, P.; Plesinger, F.; Viscor, I.; Halamek, J.; Jurak, P. Prediction of Sepsis Using LSTM with
Hyperparameter Optimization with a Genetic Algorithm. In Proceedings of the 2019 Computing in
Cardiology (CinC), Singapore, 8–11 September 2019.

12. Yang, M.; Wang, X.; Gao, H.; Li, Y.; Liu, X.; Li, J.; Liu, C. Early Prediction of Sepsis Using Multi-Feature
Fusion Based XGBoost Learning and Bayesian Optimization. In Proceedings of the 2019 Computing in
Cardiology (CinC), Singapore, 8–11 September 2019.

13. Morrill, J.; Kormilitzin, A.; Nevado-Holgado, A.; Swaminathan, S.; Howison, S.; Lyons, T.
The Signature-Based Model for Early Detection of Sepsis from Electronic Health Records in the Intensive
Care Unit. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

14. Anda Du, J.; Sadr, N.; de Chazal, P. Automated Prediction of Sepsis Onset Using Gradient Boosted Decision
Trees. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

15. Hammoud, I.; Ramakrishnan, I.; Henry, M. Early Prediction of Sepsis Using Gradient Boosting Decision Trees
with Optimal Sample Weighting. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore,
8–11 September 2019.

16. Singh, J.; Oshiro, K.; Krishnan, R.; Sato, M.; Ohkuma, T.; Kato, N. Utilizing Informative Missingness
for Early Prediction of Sepsis. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore,
8–11 September 2019.

17. Tran, L.; Shahabi, C.; Nguyen, M. Representation Learning for Early Sepsis Prediction. In Proceedings of the
2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

178



Electronics 2020, 9, 1133

18. DeCarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods 1997, 2, 292. [CrossRef]
19. Dehmer, M. Information processing in complex networks: Graph entropy and information functionals.

Appl. Math. Comput. 2008, 201, 82–94. [CrossRef]
20. Hamaker, E.L.; Ryan, O. A squared standard error is not a measure of individual differences. Proc. Natl.

Acad. Sci. USA 2019, 116, 6544–6545. [CrossRef]
21. Tanha, J.; van Someren, M.; Afsarmanesh, H. Semi-supervised self-training for decision tree classifiers. Int. J.

Mach. Learn. Cybern. 2017, 8, 355–370. [CrossRef]
22. Hu, B.; Wang, J.; Zhu, Y.; Yang, T. Dynamic Deep Forest: An Ensemble Classification Method for Network

Intrusion Detection. Electronics 2019, 8, 968. [CrossRef]
23. Chen, Y.; Lu, L.; Yu, X.; Li, X. Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher.

Electronics 2019, 8, 134. [CrossRef]
24. Gu, B.; Quan, X.; Gu, Y.; Sheng, V.S.; Zheng, G.S. Chunk incremental learning for cost-sensitive hinge loss

support vector machine. Pattern Recognit. 2018, 83, 196–208. [CrossRef]
25. Biglarbeigi, P.; McLaughlin, D.; Rjoob, K.; Abdullah, A.; McCallan, N.; Jasinska-Piadlo, A.; Bond, R.;

Finlay, D.; Ng, K.Y.; Kennedy, A.; et al. Early Prediction of Sepsis Considering Early Warning Scoring
Systems. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

26. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell.
1998, 20, 832–844.

27. Boyd, K.; Eng, K.H.; Page, C.D. Area under the precision-recall curve: Point estimates and confidence
intervals. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer:
Berlin/Heidelberg, Germany, 2013.

28. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating
binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]

29. Rousseau, R. The F-measure for research priority. J. Data Inf. Sci. 2018, 3, 1–18. [CrossRef]
30. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
31. Hong, S.; Shang, J.; Wu, M.; Zhou, Y.; Sun, Y.; Chou, Y.H.; Song, M.; Li, H. Early Sepsis

Prediction with Deep Recurrent Reinforcement Learning. Physionet Chall. 2019. Available online:
https://docs.google.com/spreadsheets/d/1PPQY0SdguwCx_CxbR1BYlkh0dwpINlhEFxejc10xwgM/
edit?fbclid=IwAR3psdL1QQ_PxlukPT89fE-v0ZVFgLdax11mrAeQwkdCO9WXeEKFfn8ek2o#gid=0
(accessed on 5 May 2020).

32. Murugesan, I.; Murugesan, K.; Balasubramanian, L.; Arumugam, M. Interpretation of Artificial Intelligence
Algorithms in the Prediction of Sepsis. In Proceedings of the 2019 Computing in Cardiology (CinC),
Singapore, 8–11 September 2019.

33. Narayanaswamy, L.; Garg, D.; Narra, B.; Narayanswamy, R. Machine Learning Algorithmic and System
Level Considerations for Early Prediction of Sepsis. In Proceedings of the 2019 Computing in Cardiology
(CinC), Singapore, 8–11 September 2019.

34. Alfaras, M.; Varandas, R.; Gamboa, H. Ring-Topology Echo State Networks for ICU Sepsis Classification.
In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

35. Deogire, A. A Low Dimensional Algorithm for Detection of Sepsis From Electronic Medical Record Data.
In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

36. Lauritsen, S.M.; Kalør, M.E.; Kongsgaard, E.L.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Early
detection of sepsis utilizing deep learning on electronic health record event sequences. Early Detect. Sepsis
Util. Deep Learn. Electron. Health Rec. Event Seq. 2020, 104, 101820. [CrossRef]

37. Vincent, J.L. The clinical challenge of sepsis identification and monitoring. PLoS Med. 2016, 13, e1002022.
[CrossRef]

38. Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a machine learning-based
severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical
trial. BMJ Open Respir. Res. 2017, 4, e000234. [CrossRef] [PubMed]

39. Roussel, B.; Behar, J.; Oster, J. A Recurrent Neural Network for the Prediction of Vital Sign Evolution and
Sepsis in ICU. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019.

40. Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural
networks approach for multivariate time series forecasting. Electronics 2019, 8, 876. [CrossRef]

179



Electronics 2020, 9, 1133

41. Mullick, S.S.; Datta, S.; Das, S. Daptive Learning-Based k-Nearest Neighbor Classifiers With Resilience to
Class Imbalance. IEEE Trans. Neural Networks Learn. Syst. 2018, 29, 5713–5725.

42. Sawada, Y.; Sato, Y.; Nakada, T.; Yamaguchi, S.; Ujimoto, K.; Hayashi, N. Improvement in Classification
Performance Based on Target Vector Modification for All-Transfer Deep Learning. Appl. Sci. 2019, 9, 128.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

180



electronics

Article

Searching for Premature Ventricular Contraction from
Electrocardiogram by Using One-Dimensional
Convolutional Neural Network

Junsheng Yu 1, Xiangqing Wang 1,*, Xiaodong Chen 2 and Jinglin Guo 1

1 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
jsyu@bupt.edu.cn (J.Y.); jinglinguo@126.com (J.G.)

2 Queen Mary University of London, London E1 4NS, UK; xiaodong.chen@qmul.ac.uk
* Correspondence: wangxiangqing@bupt.edu.cn

Received: 21 September 2020; Accepted: 27 October 2020; Published: 28 October 2020

Abstract: Premature ventricular contraction (PVC) is a common cardiac arrhythmia that can occur
in ordinary healthy people and various heart disease patients. Clinically, cardiologists usually use
a long-term electrocardiogram (ECG) as a medium to detect PVC. However, it is time-consuming
and labor-intensive for cardiologists to analyze the long-term ECG accurately. To this end, this paper
suggests a simple but effective approach to search for PVC from the long-term ECG. The recommended
method first extracts each heartbeat from the long-term ECG by applying a fixed time window.
Subsequently, the model based on the one-dimensional convolutional neural network (CNN) tags
these heartbeats without any preprocessing, such as denoise. Unlike previous PVC detection methods
that use hand-crafted features, the proposed plan rationally and automatically extracts features and
identify PVC with supervised learning. The proposed PVC detection algorithm acquires 99.64%
accuracy, 96.97% sensitivity, and 99.84% specificity for the MIT-BIH arrhythmia database. Besides,
when the number of samples in the training set is 3.3 times that of the test set, the proposed method
does not misjudge any heartbeat from the test set. The simulation results show that it is reliable to
use one-dimensional CNN for PVC recognition. More importantly, the overall system does not rely
on complex and cumbersome preprocessing.

Keywords: electrocardiogram; deep learning; convolutional neural network; Premature
ventricular contraction

1. Introduction

The heart is a vital organ of the human body and has four chambers: right atrium, right ventricle,
left atrium, left ventricle. These four chambers cooperate in providing power for blood flow in the
blood vessel. First, the oxygen-poor blood flows through the right atrium and right ventricle in turn,
and finally reaches the lungs. Then the oxygen-poor blood absorbs oxygen from the air in the alveoli.
With the left atrium and left ventricle’s work, the rest organ and tissue will receive the oxygenated
blood. The most intuitive feeling of this process is the heartbeat. Every heartbeat moves blood forward
through the arteries. Heart rhythm, which is the heartbeat pattern, is a critical clinical indicator to assess
whether the heart is working correctly. Healthy heart rhythm is orderly and uniform. Abnormal heart
rhythm, also called arrhythmia, is usually closely related to cardiovascular disease (CVD). According to
the World Health Organization (WHO), CVD is widespread globally. Taking America and China as
examples, ten people die every 6 min in America from CVD, and nearly 20.7% of China residents suffer
from CVD [1].

Although there are many origins of the arrhythmia, premature ventricular contraction (PVC)
caused by an ectopic cardiac pacemaker located in the ventricle is the most common cause. Moreover,
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PVC is also related to multiple conditions, such as myocardial infarction (MI), left ventricular
dysfunction (LVD) [2,3]. Electrocardiogram (ECG), which can record the heart’s electrical signals, is a
non-invasive and effective visualization tool widely used by cardiologists [4]. A normal heartbeat
generates four entities with different shapes in ECG—a P wave, a QRS complex, a T wave, and a U
wave, as shown in Figure 1.

Figure 1. There is a normal heartbeat in electrocardiogram (ECG). The atria’s depolarization caused
the P wave; the ventricles’ depolarization caused the QRS complex; the repolarization of the ventricles
caused the T wave; the repolarization of the Purkinje fibers caused the U wave.

It is worth mentioning that the long-term ECG is more clinically significant for the diagnosis of
PVC. However, it is time-consuming and arduous for cardiologists to analyze many long-term ECGs.
Therefore, accurate and automatic searching for PVC from the long-term ECG is crucial for improving
cardiology workflow efficiency.

In recent years, many researchers have developed various algorithms to search for PVC from ECG,
as summarized in Table 1. Most of the algorithms manually extract morphological-based features.
Manikandan et al. designed a set of temporal characteristics and proposed a decision-rule-based
detection algorithm. The suggested method achieved an average sensitivity of 89.69% and specificity
of 99.63% based on the MIT-BIH arrhythmia database [5]. Jun et al. extracted six features from the
ECG signal and developed a classification algorithm on TensorFlow [6], an open-source machine
learning platform. This algorithm used an optimized deep neural network (DNN) whose input is
the six features, as the classifier. These six characteristics are R-peak amplitude, R-R interval time,
QRS duration time, ventricular activation time, Q-peak, and S-peak amplitude. The experimental
results based on the MIT-BIH arrhythmia database achieved 99.41% accuracy [7].

Hadia et al. not only summarized a feature extraction procedure based on the Principal Component
Analysis (PCA) and waveform estimation but also combined the extracted features and k-nearest
neighbor (KNN) algorithm. The classification sensitivity of this model is 93.45% [8]. Atanasoski et al.
presented an unsupervised clustering method based on the R-R intervals and morphological rule.
This algorithm does not rely on pre-existing labels and has an excellent overall accuracy above 99.5%
and specificity above 99.6% [9]. Junior et al. developed a system based on threshold adaptive algorithm
and wavelet transform for PVC detection. The result validated on the MIT-BIH arrhythmia database
reported that Daubechies 2 wavelet mother is more indicated compared with Coiflets and Symlets [10].
Oliveira et al. proposed a simplified set of features extracted from geometric figures constructed
over QRS complexes and selected the most suitable classifiers based on the analytic hierarchy process
(AHP). The results of this method indicated that the artificial immune system (AIS) classifier with the
geometrical features is the best suggestion for PVC recognition [11].

Considering that labeled ECG data is rare and precious, Lynggaarda suggested a multivariate
statistical classifier that used robust designed features and a regularization mechanism. Even though
this classifier’s input is a very sparse amount of expert annotated ECG data, this model’s average
accuracy, specificity, and sensitivity are above 96% by using the MIT-BIH arrhythmia database [12].
Sokolova et al. recommended a set of weighted shape parameters from the different QRS shape
metrics and designed a two-stage PVC detection rule. All these shape parameters are in the time
and frequency domains. It is worth noting that this method achieved good results on the multi-lead
ECG database: the St. Petersburg INCART 12-lead Arrhythmia Database [13]. Rizal and Wijayanto
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proposed a simple and low computation method. This method only used six characteristics obtained
by the multi-order Rényi entropy and chose the support vector machine (SVM) with six kernels to
detect PVC. The simulation results obtained 95.8% accuracy [14]. Chen et al. designed an algorithm
to distinguish the QRS complex’s peak points and proposed a PVC identification system based on
the back-propagation neural network (BPNN). The system’s input is a set of features obtained from
the QRS complex peak points. The simulation result’s average accuracy attains 97.46% on the China
Physiological Signal Challenge 2018 (CPSC2018) Database [15].

Mazidi et al. evaluated three sets of ECG features and two classifiers on the field programable
gate arrays (FPGAs). These three groups of characteristics come from time-domain based on the
reconfiguration Pan–Tompkins algorithm, frequency-domain based on the Haar wavelet algorithm,
and time-domain combination of frequency-domain based on the above two. The two classifiers are
the SVM and the Naive Bayes [16]. Besides, Mazidi et al. introduced six robust features extracted
by morphological assessment, polynomial curve fitting, discrete wavelet transform, and nonlinear
analysis. Moreover, this literature used an SVM with a linear kernel to recognize PVC. This algorithm
acquires the overall accuracy of 99.78%, with a sensitivity of 99.91% and 99.37% specificity for the
MIT-BIH arrhythmia database [17]. Allami applied an artificial neural network (ANN) to classify the
features extracted through morphological and statistical methods. The proposed method resulted
in a sensitivity and accuracy of 98.7% and 98.6%, respectively, on the MIT-BIH arrhythmia database.
Additionally, this method is computationally simple and suitable for real-time patient monitoring. [18].
Chen et al. extracted three features and provided these to a classifier based on the perceptron model.
The three characteristics are the ratio of the QRS areas, the previous R-R interval, and the last R-R
interval ratio to the next RR-interval. The experiments applied to the MIT-BIH arrhythmia database
achieved high accuracy with a sensitivity of 98.7%. Moreover, this method’s logic resources and power
consumption are low, so it is suited for wearable monitoring [19]. Jeon et al. designed a model based on
the error backpropagation algorithm and used four characteristics to detect PVC. These features are R-R
interval, Q-S interval, Q-R amplitude, and R-S amplitude. The proposed approach’s overall accuracy
was above 90%, with testing on the MIT-BIH arrhythmia database [20].

With the popularity of deep learning and outstanding performance in other fields, researchers use
deep learning to monitor PVC. Many experts used deep learning to detect PVC. Zhou et al. developed a
reliable ECG analysis program to detect PVC. This system consists of two parts: data preprocessing and
a recurrent neural network (RNN) with long short-term memory (LSTM). The accuracy of this method
based on the MIT-BIH arrhythmia database is 96–99% since the RNN is good at processing time-series
signals [21]. Zhao et al. combined the Modified Frequency Slice Wavelet Transform (MFSWT) and CNN,
which has 25 layers, to search for PVC from 12-lead ECG data provided by the CPSC2018 Database.
The MFSWT can transform one-dimensional time-series signals into two-dimensional time-frequency
images as the input of the CNN. The test results of this method achieved a high accuracy of 97.89% [22].

Li et al. used three types of wavelets to convert single-channel ECG signals to wavelet power
spectrums and constructed a CNN consisting of three convolutional layers, two max-pooling layers,
and a rectified linear unit layer, a fully connected layer. These three wavelets are Morlet wavelet,
Paul wavelet, and Gaussian derivative. The CNN receives and processes the transformed wavelet
power spectrums, then labels it. It is commendable that the generalization ability of this method
is excellent. The validation results on the American Heart Association (AHA) database achieved
an overall F1 score of 84.96% and an accuracy of 97.36% with the training data from the MIT-BIH
arrhythmia database [23]. Gordon and Williams developed a PVC detection algorithm based on
autoencoder and random forest classifier. The proposed autoencoder consists of two parts. The first
part is an encoder with two convolutional layers used for encoding the ECG to a latent space
representation, which is low-dimensional and effective. The second part is a decoder with transposed
convolutional layers for decoding the latent space representation to recover the ECG. The random forest
classifier composed of 10 decision trees takes the latent space representation as input and annotate
it. This algorithm achieved an overall accuracy above 97% on the MIT-BIH arrhythmia database [24].
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Rahhal et al. report a model based on the Stacked Denoising Autoencoders (SDAs) networks and DNN
to search PVC from the multi-lead ECG signals. The SDAs networks have the function of extracting
features. The DNN classifies the ECG according to the obtained features. In the experiments with
St. Petersburg INCART 12-lead Arrhythmia Database, the results are 98.6% and 91.4% respectively for
accuracy and sensitivity [25]. Hoang et al. proposed a PVC detection algorithm for the multi-leads
ECG and deployed it on wearable devices. The algorithm includes the Wavelet fusion method,
Tucker-decomposition, and CNN, which has six layers: two convolutional layers, two max-pooling
layers, a fully connected layer, and a dropout layer. Although this algorithm’s accuracy is 90.84% on
the 12 lead ECG St. Petersburg Arrhythmias Database, the proposed method is scalable to analyze
3-Lead to 16-Lead ECG systems [26]. Liu et al. applied deep learning to develop models that can
search PVC from children’s ECG. The children’s ECG used in the experiment are JPEG images from
the hospital. This study’s experimental results show that the Inception-V3 with waveform images
and one-dimensional CNN with time-series data extracted from waveform images can detect PVC in
children [27].

According to Table 1, various algorithms for detecting PVC in recent years, we can quickly
obtain the following conclusions. First, the amount of morphological-based literature is more than
Deep Learning. Secondly, relevant researchers prefer these three classifiers: DNN, SVM, and Pattern
matching. Third, the R-R interval is recognized by most research as a useful feature, but the other
features do not seem to be unanimously recognized by most research. Finally, the model’s performance
based on morphology is slightly better than that of Deep Learning, thanks to the expertise of the person
who designed the feature.

Although the morphological-based methods have achieved good results, they still have some
limitations. First of all, these methods rely heavily on professional knowledge about ECG and signal
processing to design the rules for extracting features. Second, these features extracted manually are
biased and varies from person to person. Finally, most morphological-based methods are also limited
by each wave’s positioning algorithm in a heartbeat. For example, the inaccurate positioning of Q
wave and S wave will directly affect the performance of detecting PVC, in literature 20.

Fortunately, some methods based on deep learning mostly avoid these limitations. The approach
based on deep learning has the following three characteristics: first, it can automatically extract features,
such as by convolution kernels; second, it can continuously optimize and select features during the
training process to make the features non-redundant, such as by max-pooling; third, it can directly
analyze the preprocessed heartbeats.

However, these existing methods based on the Deep Learning require preprocessing of the
original ECG or the cooperation of other classifiers. The method proposed in the literature [21]
has many preprocessing steps, such as resampling, denoising, signature detection, normalize.
The studies [22,23,26] performed wavelet transform on the ECG to obtain 2-D time-frequency images.
Moreover, the research [24,25] used the features extracted by a trained autoencoder to recognize PVC.
There is no doubt that the above methods are computationally intensive.

Furthermore, identifying PVC is very complicated because the PVC waveform is quite uncertain,
even for the same patient. Figure 2 shows some PVC waveforms from the same person. Therefore,
achieving a real-time classifier with high accuracy and sensitivity is a challenging problem to address.
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Figure 2. There are some PVC waveforms from the same person. The waveforms of these PVCs in the
picture are different, especially the second and third.

In summary, considering the limitations of manually extracted features and the advantage that deep
learning can automatically extract features, this study proposed a method based on one-dimensional
CNN. This method can autonomously learn features from the labeled ECG data with supervised learning
to avoid the manually extracted features’ bias. Secondly, this method does not rely on professional
knowledge that is used to design features. Third, this method does not have to preprocessing steps
such as denoising and can directly process and analyze heartbeats, which will improve the efficiency of
searching for PVC from ECG. Notably, the MIT-BIH arrhythmia database [28,29] will assess the validity
of our proposed method. The following is the arrangement of the remainder: Section 2 describes the
dataset, proposed framework, and evaluation measures; Section 3 presents and discusses the results;
finally, Section 4 gives the conclusion and directions.

2. Materials and Methods

2.1. Materials

The MIT-BIH arrhythmia database is the first generally available benchmark database for the
evaluation of arrhythmia detectors. The database contains 48 long-term Holter recordings obtained
from 25 men subjects and 22 women subjects. Each of the 48 records numbered from 100 to 234
inclusive with some numbers missing, is slightly over half an hour-long and has two leads (the upper
signal and lower signal). The upper signal in most records is a modified limb lead II (MLII), but the
lower signal is occasionally V1, V2, V4, or V5. It is worth noting that recordings 201 and 202 came from
the same male subject and the rest records are from a different subject. Furthermore, all records in this
database are annotated by two or more cardiologists independently. Detailed annotations and a large
number of records have made most researchers admire this database.

To effectively use this database, the Association for the Advancement of Medical Instrumentation
(AAMI) recommends that records 102, 104, 107, and 217 are discarded because of the pacemaker or
presenting complete heart block. Besides, this study designed three schemes to divide the remaining
ECG records for evaluating the proposed method’s effectiveness. Table 2. Splitting data into training and
test sets. and Figure 3 showed the grouping schemes. It is worth mentioning that blind cross-validation
cannot reasonably evaluate the performance of the model and comes with risks associated with
label leakage.

Taking Scheme 1 in Table 2, splitting data into training and test sets, and Figure 3, splitting data
into training and test sets, the information in Figure 3 is the same as in Table 2. As an example:
the “DS1” and “DS2” represent the training set and the test set. The “101” represents the records
number in the MIT-BIH arrhythmia database. The “N” and “V” respectively represent the number of
the regular beat and PVC in the dataset. The “Ratio” means the ratio of the samples’ number in the
training set and the test set, such as (35640 + 2851)/(33868 + 2548) = 0.9778. Notably, most researchers
adopt Scheme 1, which AAMI suggested and can also guarantee a reasonable comparison between our
proposed method and other studies. Scheme 2 and Scheme 3 can evaluate the proposed method’s
performance in the situation that the number of samples in the training set is higher than the test set.
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Table 2. Splitting data into training and test sets.

Scheme Dataset Records N V Ratio

Scheme 1

Training set
(DS1)

101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230 35,640 2851

0.9778Test set
(DS2)

100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 33,868 2548

Scheme 2

Training set
(DS3)

100, 103, 105, 106, 108, 109, 111, 113, 114, 116, 118, 119,
121, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210,
212, 213, 214, 215, 219, 222, 223, 228, 230, 231, 232, 234

53,279 4277
3.3172

Test set
(DS4) 101, 112, 115, 117, 122, 220, 221, 233 16,229 1122

Scheme 3

Training set
(DS5)

100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114,
115, 117, 118, 119, 121, 122, 123, 124, 200, 201, 202,
203, 207, 208, 209, 210, 212, 213, 214, 215, 219, 220,

222, 223, 228, 230, 231, 232, 233, 234

62,706 4862
9.2067

Test set
(DS6) 116, 205, 221 6802 537

In this table, the ‘Scheme’ represents the name of the scheme for splitting data; the ‘Dataset’ represents the name of
the training set or test set; the ‘Records’ represents ECG recordings in each ‘Dataset’; the ‘N’ and ‘V’ respectively
represent the number of the regular heartbeat and PVC in each ‘Dataset’; the ‘Ratio’ means the ratio of the samples’
number in the training set and the test set of each scheme.

 

Figure 3. Splitting data into training and test sets. The information in this figure is the same as in
Table 2. Splitting data into training and test sets.

2.2. Methodology

Figure 4 shows a block diagram of the proposed study, with a view showing the proposed method’s
flow. Initially, this research divided each ECG signal from the modified limb lead II (MLII) into separate
heartbeats according to a fixed time window and an R peak detection algorithm. The duration of
each heartbeat composed of 433 sampling points is 1.2 s. Then the proposed model based on the
one-dimensional CNN takes these heartbeats as input to search PVC.
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Figure 4. Block diagram of the proposed study.

2.2.1. Generate Input Data

Since the MIT-BIH arrhythmia database provides detailed annotations, including R-peak locations
and rhythms’ label, input data is the raw signal directly corresponding to each heartbeat without any
preprocessing. We use a fixed-size window to extract the heartbeat from the MLII ECG lead since
each heartbeat’s dimension must be the same as the proposed classification model’s input dimension.
The window’s size is 433, and the window’s center is the location of R-peak. Because R-peak detection
algorithms [30–33], such as Pan–Tompkins algorithm, can accurately find the R-peak point. We use the
R-peak location in the database directly without developing a novel method to detect R-peak location.

2.2.2. Classifier Structure

First, the proposed model uses the Tanh function to transform the input data. The Tanh function
can normalize the input data between –1 and 1, which is conducive to the training of the model.
Equation (1) is the definition of the Tanh function.

Tanh(x) =
Sinh(x)
Cosh(x)

=
ex − e−x

ex + e−x (1)

Secondly, the proposed model has three convolutional groups, as shown in Figure 4.
Each convolutional group contains five layers. A one-dimensional convolutional layer is a powerful
tool that results in a feature map representing a detected feature’s positions and intensity in an input.
Convolution is a simple operation:

(1) Flip the convolution kernel;
(2) Move the convolution kernel one data point at a time along the input vector;
(3) Calculate the dot product of two corresponding points at each position;
(4) The generated sequence is the convolution of the convolution kernel with the input vector.
For example, specifying the input vector and the convolution kernel are discrete sequences,

then the definition of convolution is as follows.

yj =
∞∑

i=−∞
xi × hj−i (2)
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The batch normalization layer allows the neural network to complete training faster and more
stably by normalizing the feature map and does the following during training time [34]:

(1) Compute the mean and variance of the layer’s input;

Batch mean μB =
1
m

m∑
i=1

xi (3)

Batch variance σ2
B =

1
m

m∑
i=1

(xi − μB)
2 (4)

(2) Normalize the layer’s input using the mean and variance;

xi =
xi − μB√
σ2

B + ε
(5)

(3) Obtain the output with scaling and shifting;

yi = γxi + β (6)

Notice that m is the number of samples per batch, ε is a small constant for numerical stability.
Additionally, γ and β are learnable parameters.

The Parametric Rectified Linear Unit (PReLU) is an excellent activation function and has become
the default activation function for many neural networks [35]. Although PReLU will introduce slope
parameters, the increase in training costs is negligible. The mathematical definition of PReLU is
as follows.

f (yi) = max(0, yi) + ai ×min(0, yi) (7)

The max-pooling layer can reduce the computational cost and effectively cope with the over-fitting
phenomenon by down-sampling and summarizing in the feature map. Additionally, the max-pooling
layer provides fundamental translation invariance.

Take ‘Group_1 32@33’ in the Figure 4 block diagram of the proposed study as an example
to comprehend the convolution group. ‘Group _1’ is the convolution group’s name; ‘32@33’
represents the number and size of the one-dimensional convolutional layer’s convolution kernels in
the convolution group.

The proposed model also includes the Flatten layer, the Dropout layer, and the Dense layer.
The Flatten layer collapses the spatial dimensions to make the multidimensional input one-dimensional.
The Dropout layer refers to ignoring some neurons during a forward or backward pass to prevent
over-fitting [34]. The Dense layer is a basic neural network layer and functions as a ‘classifier.’

Tables 3 and 4 give the necessary parameters and the dimensional change of the proposed model’s
input data. The random seed in this study is 0, which can ensure that the experimental results are
reproducible. Dropout in Table 3 refers to the probability of an element to be zeroed.

Table 3. Parameters of the proposed model.

Parameter Type The Proposed Model

Batch size 512
Loss function cross-entropy

Optimizer Adam
Regularization rate 1

Epoch 100
Random seed 0

Dropout 0.7
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Table 4. The dimensional change of the input data in the proposed model.

Layer Name Input Shape Out Shape

Input None (1, 433)
Tanh (1, 433) (1, 433)

Group_1 (1, 433) (32, 216)
Group_2 (32, 216) (32, 108)
Group_3 (32, 108) (32, 54)
Flatten (32, 54) (1728)

Dropout (1728) (1728)
Dense (1728) (2)

‘Batch size’ refers to the number of training examples utilized in one iteration; ‘Loss function’
represents the category of loss function; ‘Optimizer’ represents how to change the parameters of the
model; ‘Regularization rate’ means the regularization coefficient; ‘Epoch’ means the number of times
each sample participated in training; ‘Random seed’ is a number used to initialize a pseudorandom
number generator; ‘Dropout’ refers to the probability of an element to be zeroed.

2.3. Evaluation Measures

We chose five metrics, which have also been used in the literature [11], to measure the
recognition performance of our proposed method: Accuracy (ACC), Sensitivity (Se), Specificity (Sp),
Positive prediction (P+), Negative prediction (P−). The confusion matrix is the basis of these five
metrics which can be expressed as Equation (8). Where TN, FN, TP, and FP respectively represent
true negatives, false negatives, true positives, false positives. In this work, negative samples are those
belonging to the regular class labeled ‘N.’ Additionally, this study also used the Youden’s index to
evaluate classification performance.

Confusion Matrix =

[
TN FP
FN TP

]
(8)

Accuracy Acc =
TP + TN

TP + TN + FN + FP
(9)

Sensitivity Se =
TP

TP + FN
(10)

Specificity Sp =
TN

TN + FP
(11)

Positive prediction P+ =
TP

TP + FP
(12)

Negative prediction P− =
TN

TN + FN
(13)

J = Se + Sp− 1 (14)

3. Results and Discussion

The size and number of kernels, number of layers, and batch size are the essential hyper-parameters
in CNN. The kernels are the convolutional filters. In a convolution, the filters slide over all the points
of the signal taking their dot product, which can extract some features from the input data. To quickly
abstract the useful features, it is necessary to choose the size and number of kernels. The number of
layers has a significant influence on the performance of CNN. Generally speaking, CNN’s ability to
detect PVC and the numbers of layers are positive correlations. However, more layers mean longer
training time and more learnable parameters, which is very likely to cause overfitting. The batch size
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is the number of signals used to train a single forward and backward pass. The larger batch size can
speed up the training and verification of the CNN but does not usually achieve high accuracy.

In this section, this study performed experiments on three different schemes, according to Table 2.
Before anything else, we assessed the impact of varying size and number of kernels on recognizing
PVC with CNN. Secondly, we evaluated the performance of CNN with a different number of layers on
distinguishing PVC and regular rhythm. Immediately afterward, we tested the batch size’s effect in
detecting PVC. To improve the performance of the proposed model, we tried two activation functions
(Sigmoid, Tanh) to normalize the input data. The data for training and verifying the above four
experiments are all from Scheme 1. Finally, we checked the capabilities of the adjusted CNN to detect
PVC with Scheme 2 and Scheme 3. Ubuntu 16.04.6 LTS operating system with an Nvidia GeForce RTX
2070 GPU, 32GB RAM, and Python programming language are the basis for the simulation process.

3.1. Experiment 1: Assess the Impact of Varying Size and Number of Kernels

The kernel size is usually related to the receptive field (RF), the size of the region in the input that
generates the feature. In many outstanding image classification or detection algorithms, the kernel
size is usually 3 × 3, 5 × 5, or 7 × 7 and decreases gradually. In this experiment, we tried multiple
combinations of the size and number of kernels. The data for training and verifying are both from
Scheme 1. Besides, the experimental environment is also the same. The strategy for adjusting the
learning rate is multiplying the learning rate by 0.1 when the network reaches the 20th and 80th
epoch. Moreover, Table 5 shows specific details and results. Figure 5 displays the receiver operating
characteristic (ROC) curve about this experiment.

Table 5. The details and results of the varying size and number of kernels.

Group_1 Group_2 Group_3 Acc (%) Se (%) Sp (%) P+ (%) P− (%) J (%) Time 1

32@43 32@11 32@5 99.47 96.35 99.71 96.12 99.73 96.06 9.68
32@33 32@11 32@5 99.64 96.98 99.84 97.86 99.77 96.82 9.30
32@23 32@11 32@5 99.54 97.25 99.72 96.27 99.79 96.97 8.82
32@33 32@7 32@5 99.62 96.94 99.82 97.63 99.77 96.76 9.15
32@11 32@7 32@5 99.54 97.25 99.71 96.16 99.79 96.96 8.20
32@7 32@5 32@3 99.37 94.31 99.75 96.66 99.57 94.06 7.80

64@33 64@11 64@5 99.52 96.74 99.73 96.48 99.75 96.47 14.92
16@33 16@11 16@5 99.57 96.31 99.82 97.57 99.72 96.13 7.88

1 ‘Time’ refers to the duration of the training, in minutes.

(a) (b) 

Figure 5. Receiver operating characteristic (ROC) curve about this experiment: (a) original ROC curve;
(b) zoomed ROC curve.

It is not difficult to find from Table 5 that although these results are not much different,
the larger-sized convolution kernel’s performance is slightly better in the first convolution group.
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The convolution kernel size is different; the receptive field of the convolution kernel is also other.
For the data used in this experiment, a larger size convolution kernel is more suitable for this task than
a smaller size convolution kernel.

On the other hand, when the number of convolution kernels in each layer is 64 or 16, the model’s
performance has declined somewhat. The reason for this experimental phenomenon is that the number
of convolution kernels is positively correlated with the learnable parameters in the model. The fewer
the number of convolution kernels, the fewer the model’s learnable parameters, which leads to the
model not being able to extract features effectively. Also known as the underfitting state.

Furthermore, the number of convolution kernels also has a positive correlation with the time spent
training the model. Especially when the number of convolution kernels in each layer is 64, the time
spent training the model is nearly 15 min. Considering the accuracy, sensitivity, and Youden’s index,
the better combinations are the second to the fifth set of records in Table 5.

Moreover, from the ROC curves Figure 5, we can quickly know that the better combinations are
the second combination in this experiment. Coincidentally, the receptive field of the convolution kernel
is about 0.1 s of ECG signal when the kernel size is 33 because the sampling rate of the ECG is 360,
and the QRS complexes of PVC are unusually long (typically >120 ms). In future work, we will study
whether there is a relationship between the kernel size and the QRS duration of PVC.

3.2. Experiment 2: The Performance of CNN with a Different Number of Layers

With the popularity of CNN, the number of convolutional layers in each network is continually
increasing, such as AlexNet (5), VGGNet16(13), ResNet50(49). The emergence of batch normalization
and residual structure solves the vanishing gradient problem that makes the previous CNN challenging.
Considering the marginal effects and the efficiency of the proposed model, we performed three tests.
Figure 6 illustrates the basic structure of the model used in the three experiments. The configuration in
this experiment is the same as the previous experiment. Moreover, Table 6 gives the results.

Table 6. The details and results of the varying size and number of kernels.

Structure Acc (%) Se (%) Sp (%) P+ (%) P− (%) J (%) Time 1 (m) 1

a 99.54 96.39 99.78 97.04 99.73 96.17 5.17
b 99.64 96.98 99.84 97.86 99.77 96.82 9.30
c 99.46 94.90 99.81 97.34 99.62 94.71 13.58

1 ‘Time 1’ refers to the duration of the training.

The experimental records in Table 6 illustrate that the number of convolutional layers is not as
significant as possible, which is the same as the existing prior knowledge. For example, the network
with the first structure requires shorter training time than the third structure and better in some index,
such as accuracy.

Besides, the number of layers is usually an essential factor that affects the complexity of the
model. High-complexity models may have over-fitting problems during the training process,
while low-complexity models may have under-fitting questions. Those models with too high or
too low complexity have difficulty and time-consuming training. Therefore, choosing a moderately
complex model can speed up the training process and make training easier.

To balance the model’s efficiency and effectiveness, we choose the second structure described in
Figure 6 to build the model according to the experimental results in Table 6.
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(a) 

 
(b) 

 
(c) 

Figure 6. The basic structure of the models in experiment 2: (a) A convolutional layer in each
convolutional; (b) two convolutional layers in each convolutional; (c) three convolutional layers in
each convolutional.

3.3. Experiment 3: Test the Batch Size’s Effect on Detecting PVC

Batch size is a very critical parameter and affects the performance of the neural networks. Too large
or too small batch size is not appropriate. The larger batch size can reduce the training time and
improve the stability of the structure. However, the smaller batch size can enhance the generalization
ability of the model. To balance the generalization ability of the model and training time, we tested a
series of batch sizes. Table 7 shows the results of this experiment.

Table 7. Test the batch size’s effect in detecting PVC.

Batch Size Acc (%) Se (%) Sp (%) P+ (%) P− (%) J (%) Time (m)1

64 99.46 95.02 99.79 97.15 99.63 94.81 22.17
128 99.43 94.82 99.78 96.95 99.61 94.60 13.63
512 99.64 96.98 99.84 97.86 99.77 96.82 9.30
1024 99.51 95.45 99.81 97.47 99.66 95.26 8.8
2048 99.47 94.86 99.82 97.54 99.61 94.68 8.68

1 ‘Time 1’ refers to the duration of the training.

According to the experimental results in Table 7, we can find this rule that the relationship
between training time and batch size is negatively correlated. Further, as the batch size keeps getting
bigger, the training time is decreasing more and more slowly. Considering the training time, accuracy,
and other indicators, we set the batch size in subsequent experiments to 512. After deploying the
trained model, increasing the batch size can predict multiple heartbeats at the same time within the
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allowable range of video memory. This characteristic can significantly improve the efficiency of PVC
detection in practical applications.

3.4. Experiment 4: Test the Activation Functions (Sigmoid, Tanh) Used to Normalize the Input Data

Considering the waveform of the ECG, normalizing the input data can improve the performance
of the proposed model. Because the amplitude of the R wave is several times that of the other waves,
we adopted the Sigmoid and Tanh function to normalize the input data. The Tanh function can
normalize the input data between –1 and 1. The Sigmoid function can normalize the input data
between 0 and 1. The difference is that the overall slope of Tanh is greater. Table 8 shows the results of
this experiment.

Table 8. Test the activation functions.

Activation Function Acc (%) Se (%) Sp (%) P+ (%) P− (%) J (%)

None 99.56 96.74 99.77 96.97 99.75 96.51
Sigmoid 99.56 96.15 99.82 97.57 99.71 95.97

Tanh 99.64 96.98 99.84 97.86 99.77 96.82

The waveform of the ECG is very special. The amplitude of QRS complexes usually is much
higher than the remaining wave. As shown in Figure 7, the points on the unnormalized waveform
are mostly near the straight line with y = –1.0, and only a few moments deviate seriously. To solve
this problem, we tried two activation functions (Tanh and Sigmoid) to normalize the input ECG.
Figure 7 shows the normalized waveform of the ECG. The experimental results in Table 8 show that
the suitable activation functions (Tanh) used to normalize the input ECG can slightly improve the
model’s performance. Nevertheless, inappropriate activation functions (Sigmoid) have a negative
impact. The advantage of the Tanh function is that the value range of the normalized data is between
–1 and 1, and the average is 0, unlike sigmoid, which is 0.5.

 
(a) (b) 

Figure 7. Tanh and Sigmoid normalize the waveform of a normal heartbeat and PVC.

3.5. Experiment 5: Employ CNN to Identify PVC with Scheme 2 and Scheme 3

As we all know, it is a common practice to distribute training and test sets in the proportion of 9:1
or 4:1 in deep learning. This experiment re-divides the data set according to Scheme 2 and Scheme
3, described in Table 2. After obtaining the training set and test set, this experiment employs the
proposed model. Figure 8 shows the confusion matrix of each scheme. Table 9 shows the results of this
experiment and comparisons with the consequence of Scheme 1 and previous studies.
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(a) 

 
(b) 

 
(c) 

Figure 8. The confusion matrix of each scheme: (a) confusion matrix of Scheme 1; (b) confusion matrix
of Scheme 2; (c) confusion matrix of Scheme 3.

Table 9. Employ the proposed model with Scheme 2 and Scheme 3.

Method Acc (%) Se (%) Sp (%) P+ (%) P− (%) J (%)

Scheme 1 1 99.64 96.98 99.84 97.86 99.77 96.82
Scheme 2 1 100.00 100.00 100.00 100.00 100.00 100.00

Scheme 3 1 99.99 99.81 100.00 100.00 99.99 99.81
Atanasoski et al. [9] 99.5% 94.7% 99.6% - - 94.8
Oliveira et al. [11] 98.04 91.08 98.65 85.68 99.21 89.73

Lynggaard [12] - 96.00 99.00 93.00 99.00 95.00
Sokolova et al. [13] - 82.70 98.82 82.97 - 81.52
Mazidi et al. [17] 99.78 99.91 99.37 - - 99.5

Li et al. [23] 97.96 82.60 99.11 87.42 - 81.71
Gordon et al. [24] 97.61 77.81 99.02 - - 76.83
Rahhal et al. [25] 98.6 91.4 93.9 - - 86.7

1 The performance of the proposed method in each Scheme.

The above experiments 1–4 confirmed the architecture and parameters of our proposed model.
In Experiment 5, to evaluate the proposed model’s performance in this situation: the number of
samples in the training set is more than the test set. We employed the proposed model with Scheme 2
and 3. According to Table 9 and Figure 8, the proposed model’s performance is unexpected, and the
indicators are full marks with Scheme 2. The convolutional neural network is a class of deep learning
technology. In deep learning, the number of samples used to train is generally more than that used for
testing. In this case, the performance of the proposed method is remarkable.

Compared with the literature 9, 11, 12, and 13, the performance of the proposed method in
Scheme 1 is better in all indicators. Additionally, the proposed method does not rely on professional
knowledge to manually extract features. Next, the proposed method can directly predict the heartbeats’
category in the MIT-BIH arrhythmia database without denoising.

For literature 17, the performance of the proposed method in Scheme 1 is bleak in all indicators.
The literature 17 is based on a patient-independent separation approach to divide the training set
and test set. This separation approach follows a principle that the same subject’s heartbeats cannot
appear in both training and test sets. The experiment in literature 17 considered 10% of heartbeat in the
MIT-BIH arrhythmia database for training and 90% as the test set, similar to Scheme 3. The proposed
method’s performance in Scheme 3 is almost close to full marks and is better than literature 17.

Compared with the literature 23, 24, and 25, the proposed method’s results are better.
In the proposed plan, the process of extracting features and recognizing heartbeats are performed
simultaneously. Finally, the proposed model can directly identify heartbeats in the MIT-BIH arrhythmia
database. On the contrary, literature 23 used wavelet function to transform the heartbeat before training
the model; before training the classifier model, literature 24 and 25 must first train the feature extraction
network. In summary, our method has reached the most advanced level compared with other studies.
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4. Conclusions

In this study, we successfully apply a model based on the one-dimensional convolutional neural
network to recognize PVC and worked highly efficiently by using the raw ECG data without complex
signal preprocessing such as denoising. The experimental results show that the classification effect
achieved by the proposed method is significantly better than the morphological-based method and other
methods. Additionally, according to Table 9, applying more ECG data can improve the performance of
the proposed method. However, the annotated ECG data is hard to come by. In future works, we plan
to use the generative adversarial networks (GAN) to deal with insufficient data. Next, we hope to tap
the potential of our approach to classify many different types of heartbeats simultaneously. Lastly,
we plan to deploy our proposed method on cloud servers or wearables to help doctors and patients in
developing countries or remote regions.
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Abstract: Unipolar depression (UD), also referred to as clinical depression, appears to be a widespread
mental disorder around the world. Further, this is a vital state related to a person’s health that
influences his/her daily routine. Besides, this state also influences the person’s frame of mind, behavior,
and several body functionalities like sleep, appetite, and also it can cause a scenario where a person
could harm himself/herself or others. In several cases, it becomes an arduous task to detect UD, since,
it is a state of comorbidity. For that reason, this research proposes a more convenient approach for the
physicians to detect the state of clinical depression at an initial phase using an integrated multistage
support vector machine model. Initially, the dataset is preprocessed using multiple imputation by
chained equations (MICE) technique. Then, for selecting the appropriate features, the support vector
machine-based recursive feature elimination (SVM RFE) is deployed. Subsequently, the integrated
multistage support vector machine classifier is built by employing the bagging random sampling
technique. Finally, the experimental outcomes indicate that the proposed integrated multistage
support vector machine model surpasses methods such as logistic regression, multilayer perceptron,
random forest, and bagging SVM (majority voting), in terms of overall performance.

Keywords: multistage support vector machine model; multiple imputation by chained equations;
SVM-based recursive feature elimination; unipolar depression

1. Introduction

In recent years, depression seems to be a very prevalent disorder around the globe, having a
presence among approximately 264 million individuals. Psychiatrists usually claim that this disorder
is unique, and it is unlike mood swings or ephemeral emotions and their reactions. Usually, when
such a depressive condition is prevalent for a long duration among individuals, it might be a somber
state of health. Additionally, the causes and effects of such cases are severe, and it critically rescinds
the day to day functioning of individuals. In the worst scenario, it might stimulate suicidal tendencies
in an individual.

In the millennial (born 1981–1996) era, depression is found to be on the rise; the reason is not
apparent. Research shows that depression is greater among the younger Millennials, which results in
many risk factors such as substance abuse and behavioral failures [1]. It is found that the depression
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symptoms have gone to 15 percent from 9 percent between 2005 and 2015, which is very shocking [1].
The three main parts of the brain that are affected by depression are the hypothalamus, the prefrontal
cortex, and the amygdala. Some of the common reasons for being depressed are hormonal imbalance,
stress, or genetic [2]. The symptoms of depression involve prolonged feelings of regret, sadness and
hopelessness, irregular appetite, weight gain or weight loss, and many others. These days, more than
the physical health issues, mental health issues are increasing exponentially [3]. It seems like almost
everyone is affected by stress, anxiety, and depression [4].

More than physical health, mental health is essential, as it would directly affect physical health
too. It will be easier if we have proper techniques to identify mental health as well [5]. There are few
significant issues in diagnosing and treating the individual affected with unipolar depression such as,
it is not easy for a depressed individual to seek expert help due to motivation and cost, and in some
cases, the individual fails to take the mental health seriously [6].

In order to treat the depressed individuals better, we have proposed a machine learning
classification algorithm, integrated multistage support vector machine model. It is an ensemble-based
classification algorithm, where the support vector machine (SVM) classifiers are integrated with the
help of the SVR-based weighted voting method to produce the outcome. Machine learning techniques
are the best in identifying the patterns in the dataset and predict the outcome. We gathered data with
the help of a questionnaire and preprocessed it to handle the missing values. The preprocessed data is
then processed with a feature selection technique to select the relevant features.

The key contributions of this work include the following:

• The multiple imputation by chained equations (MICE) method is deployed for preprocessing and
cleaning the gathered dataset

• The feature selection process is accomplished by employing the support vector machine-based
recursive feature elimination (SVM RFE).

• The UD classification is performed using the proposed integrated multistage support vector
machine classifier, which is built by employing the bagging random sampling approach.

The significant motivation of this research is to devise a random sampling-based integrated
multistage SVM model for classifying the unipolar depression dataset, and we also attempt to enhance
the overall performance of the proposed model. The rest of this research work is organized as follows.
Section 2 elucidates the methodology formulation process and provides a detailed outlook into the
individual modules of the proposed integrated multistage SVM model. Section 3 focuses on the
experimental results. Section 4 provides information regarding the conclusion and future work.

2. Materials and Methods

2.1. Utilized Dataset

The dataset we used in this study was collected from various individuals with an average age of
30. We framed a questionnaire based on the “Hamilton Depression Rating Scale” [7] and prepared
a self-rating report. The dataset collected had 3040 samples with 22 features, including the target
variable. The features are the demographic attributes and symptom scores. For processing, we split
the dataset into training and testing sets (75-25 rule). The model was trained with the training set
then tested with the test set and evaluated with specific performance metrics. Essential features are
portrayed in Table 1.
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Table 1. The portrayal of essential features.

Features Description

Age Average Age 30.
Gender Male/Female.

Sleep Quotient Time taken to fall asleep.
Early Wake-Up The irregular waking uptime.

Sleeping excessively Irregular sleep hours.

Gloomy Prolonged feelings of sadness, sometimes in the day
or all the time.

Exasperation Prolonged feelings of irritation, sometimes in the day
or all the time.

Apprehensive or Nervous Prolonged feelings of anxiousness or tension,
sometimes in the day or all the time.

Response of the Individual to Preferred Happenings Reactions, mood-wise to the events happening in life.
Relation between an Individual’s Mood and Time Moods at different time of the day.

Mood Quality If the individual is sad, is it because of something
happened or sad for no reason.

Reduced Desire for food Not eating enough food.
Augmented Desire for food Eating more than enough food.

Weight Reduction Losing more weight in two weeks without any reason.
Weight Increase Gaining weight at a specific time.

Ability to make Decisions/Attentiveness Failure in making decisions and losing focus.
Future Perspective Positive and Negative thoughts about the future.

Suicidal Contemplations Attempting to harm oneself.

Happiness Quotient Feeling good or extremely annoyed with pleasure
and enjoyment in life.

Fidgety Constant pacing and difficulty in concentrating.

Physical Indications Sweating, increased heartbeat, blurred vision,
shivering, chest pain or none at all.

Paranoid Signs Constant panic attacks or none at all.
Result Depressed or Not Depressed.

2.2. Data Cleaning and Preprocessing

The data cleaning and preprocessing were performed by utilizing the multivariate imputation by
chained equations (MICE) [8]. MICE is a flexible, advanced method in handling the missing values [9].
This technique handles the missing values by imputing multiple values [10]. The primary assumption
in MICE is that the imputation variables were from the observed values, not from the unobserved
values [11]. The process of chained equations involves various steps as follows,

Step 1: For every missing value in the dataset, the mean imputation technique was performed.
These mean imputations were considered as placeholders.

Step 2: The mean imputation placeholder for any one of the variables say “var” was set back to null.
Step 3: In Step 2, the values that were observed for the “var” variable, which was made null, were

regressed with other variables present in the imputation model and might or might not have all the
variables from the dataset. In simpler terms, in this regression model, “var” was considered to be the
dependent variable, and the other variables were considered to be independent.

Step 4: The variable “var”, which was made as null, was now replaced with the actual imputations
or predictions from the regression model. In the later stages, when “var” was used as an independent
variable for other variables in the regression model, the observed values, as well as the imputed values,
were used.

Step 5: For every missing value in the dataset, steps 2–4 were repeated to impute values.
This process was continued to one iteration or one cycle. At the end of the first cycle, all the missing
values would have been handled and imputed with the predictions from the regression model that can
be seen in the observed data.

Step 6: Steps 2–4 were repeated for several cycles; the iterations depend on one’s requirement.
The imputation values would be updated at the end of each cycle. The final imputation values were
retained at the end, which formed an imputed dataset. The most common number of cycles used
was ten.
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2.3. Selection of Features

In the dataset we collected the Hamilton Depression Rating Scale based self-rating report, there
were about 22 features, including the target variable with 3040 samples. In the dataset, we found that
there were features that interacted with each other. The features that were dependent on each other
directly affected the accuracy of the model. In order to reduce the interaction between the features
and remove the irrelevant or redundant variables, we implemented a wrapper based feature selection
algorithm, support vector machine-based recursive feature elimination (SVM RFE).

Using this approach, nine features were selected. Alternatively, it has to be witnessed that choosing
extra features will not assure higher accuracy levels in classification scenarios. Table 2 demonstrates
the selected features and their indices for UD classification.

Table 2. Selected features and their indices for unipolar depression (UD) classification.

Selected Features Index

Gloomy 1
Exasperation 2

Apprehensive or Nervous 3
Response of the Individual to Preferred Happenings 4

Relation between an Individual’s Mood and Time 5
Suicidal Contemplations 6

Happiness Quotient 7
Physical Indications 8

Paranoid Signs 9

2.4. Machine Learning Approaches Considered

2.4.1. Logistic Regression Approach

Logistic regression (LR) is a statistical approach, borrowed by machine learning in predictive
analysis. This approach is mainly used when the dependent or the target variable is categorical.
In logistic regression, the dependent variable must be dichotomous (i.e., Binary, Yes or No) [12].
The main assumptions made in logistic regression are that there are no outliers in the data, and that
there is no multicollinearity between the predictor variables. Logistic regression is an extension of
linear regression when the target variable seems to be categorical [13]. In this work, the penalized
logistic regression uses a Glmnet in RStudio for predicting the unipolar depression. Table 3 presents
the parameter settings for the logistic regression approach. Logistic regression is calculated through
the probability of event occurrence with the help of the following the logistic function.

logit(p) = log
(

p(z = 1)
1− (p = 1)

)
= α0 + α1yj2 + · · · αxyjn (1)

where, p is the probability of event occurrence, for j = 1, . . . , n.

Table 3. Logistic regression approach—parameter settings.

Parameters Settings

fdev 0.00001
devmax 0.999

eps 0.000001
big 9.9 × 1035

mnlam 5
pmin 0.00001
exmx 250
prec 0.0000000001
mxit 100

factory FALSE
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2.4.2. Multilayer Perceptron Approach

Usually, when there is an increase in the complexity of the problem, the complexity of the
theoretical understanding of the problem also upsurges. In that case, traditional statistical approaches
are sought after. Currently, the studies show that neural networks, multilayered perceptron (MLP) in
particular, seem to be replacing traditional statistical approaches. Multilayered perceptron does not
make any prior assumptions about the data distribution, unlike the statistical models, and it can model
even a highly non-linear function to accuracy by training it with new unseen data [14]. Multilayered
perceptron is a model with interconnected nodes or neurons, which are connected by connection
links with weights and the output signals [14]. We implemented the MLP in RStudio by deploying
the RSNNS package. Table 4 shows the parameter settings for the multilayer perceptron approach.
The input and the output signals are connected with the help of these neurons and connection links.
The net input is calculated by,

PA =
n∑

k=1

WtkIk + b (2)

where,

PA—preactivation function or Net input;
Wtk—the weight associated with the connection link;
Ik—inputs (I1, I2, . . . , In);
B—bias.

Based on the error rate at every iteration, the weights of the neurons can be adjusted. The perceptron
weight adjustment is calculated by,

ΔWt = L× P× I (3)

where

ΔWt—change in weights of the neurons;
L—learning rate;
P—predicted or desired output.

Table 4. Multilayer perceptron approach—parameter settings.

Parameters Settings

Max. output unit error 0.2
Learning function Rprop Backprop

Modification None
Print covariance and error No
Cache the unit activations No

Prune new hidden unit No
Min. covariance change 0.040

Candidate patience 25
Max. no. of covariance updates 200

Activation function LogSym
Error change 0.010

Output patience 50
Max. no. of epochs 200

2.4.3. Random Forest Approach

In this work, we utilized the tuneRanger package in RStudio for the quick deployment of the
random forests. Table 5 presents the hyperparameter settings of the random forest (RF) approach in
this work. Random forest is an ensemble approach; it uses a recursive partitioning method to produce
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numerous trees, which are then aggregated to get the results [15–17]. Every tree in the random forest
was constructed independently with the help of bootstraps of the training data. In random forest, each
tree was constructed using two-thirds of the training data and the remaining one-third was used for
testing the tree. The error rate of the forest depends on the strength of the individual trees and the
correlation between each tree. The main advantage of using random forest is that there is no need to
use any cross-validation methods, as the random forest approach itself has a built-in method called
the out-of-bag errors to determine the test set errors in an unbiased manner. When compared with
decision tree, random forest seems to have better accuracy and was less dependent on the training set
and more tolerant to noise.

Table 5. Random forest approach—hyperparameter settings.

Hyperparameter Settings

mtry 3
sample size 3040
replacement TRUE

node size 1
number of trees 1000

splitting rule random

2.4.4. SVM Classifier

Support vector machine (SVM) is a machine learning algorithm that can be modeled for both
regression and classification problems but it is majorly used for classification of a binary class
problem [18,19]. In this work, we utilized the e1071package in RStudio for the deployment of the SVM
classifier. Table 6 illustrates the hyperparameter settings for the SVM classifier in this work.

Table 6. Support vector machine (SVM) classifier—hyperparameter settings.

Hyperparameter Settings

Kernel RBF
Problem type Classification

log2 C −5, 15, 2
log2 γ 3, −15, −2

When a labeled training data is given as an input, the model gives an optimal hyperplane as an
output, which categorizes the samples. It is easy to maintain a linear hyperplane between two classes.
However, when there is no precise classification between the vector points, manual separation is not
possible [20]. For such situations, SVM has a strategy called the kernel. Kernel techniques convert a
non-separable space to a separable space, which is called kernels used in non-linear separation models.
Some of the commonly used kernel techniques are Gaussian kernel, Polynomial kernel, and many
more [21,22].

2.5. Integrated MultiStage Support Vector Machine Classification Model

The proposed integrated multistage support vector machine classification model comprises of
two segments: the first one being the design of the SVM classifier, and the second is the UD feature
selecting and ranking.

2.5.1. Design of Integrated Multistage Support Vector Machine Classifier

In the proposed model, we were combining the individual SVM classifiers into a stronger and
accurate model to improve the robustness and the generality of the SVM classifier. The deployment of
this integration model depends on two factors: (i) the efficient way to build the member classifiers,
aligning with the integration technique, and (ii) how to make all the member classifiers fuse to end up
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with a robust classifier. Therefore, to form a group of member classifiers, a random sampling method
based on bagging is applied repeatedly [23]. For every individual SVM classification member classifier,
around 75% from the original data sample is selected randomly for the training set, and the rest of
the samples are used as a test or validation set to evaluate the performance of the model. A grid
search utilizing the factor ranges C = {1, 2, 3, 4, 5, . . . , 30} and γ = {0.1, 0.2, 03, 0.4, 0.5, . . . , 5} is
accomplished, for determining the optimimum values of C and γ. Later, without considering the
optimal number of members in an integrated classifier, in this study, we implemented 10 different
SVM classifiers with data from 10 random samplings and validated using the 10-fold cross-validation.
This technique uses SVM RFE as the base learner. Thus, we constructed an SVM classifier with ten
members in this study. In the SVM RFE, the features will be selected by the member classes based
on their rankings in the support vector ratio-based ranking criteria. As the member classifiers are
built with different random samples, they tend to have behaviors different from each other, and also,
they will have different classification outcomes for the same data. As the final step, to integrate all
the decisions by the individual classifiers to form ensemble SVM classifiers, the SVR-based weighted
voting technique is implemented. The overall design of the proposed method is shown in Figure 1.
Once the integrated classifier is built, it can be used for any classification tasks, as shown in Figure 1.
In Figure 1, we can see that, once the member classifier was trained, the rest of the samples, which
was 25% from the training set, was used as a temporary validation set for evaluating the performance
of the model. In order to maintain the diversity of the classifiers and the simplicity of the integrated
model, we used m = 10 member classifiers in this study.

Figure 1. Proposed support vector ratio-based integrated multistage support vector machine
classification model—architectural framework.

2.5.2. Ranking and Selection of Features

The essential step in implementing the integrated multistage SVM classification model is selecting
the feature subset, which eventually enhances the performance of the member classifiers. Figure 2
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represents the flow diagram of the support vector ratio-based support vector machine recursive
feature ranking—the irrelevant variables and the variables that interact with each other usually slow
down the overall performance of the model concerning computation and storage, during training or
prediction. Sometimes, the irrelevant features can make drastic effects on the learning phase of the
model. To improve the performance of the SVM classifier, we implemented an effective feature ranking
and feature selection method to remove the irrelevant features from the 22 available features in the
dataset, which can be seen in Table 1. The commonly used feature selection algorithms come under two
categories, the filter methods and wrapper methods [24]. As simple as the filter methods look, they are
not considered most of the time because they do not take into account the interaction between the
features, which reduces the optimality of the feature subset, though they are computationally effective.
On the other hand, wrapper methods evaluate the features jointly and iteratively, which results in
effective capturing of interaction between the features [25].

Figure 2. Support vector ratio-based support vector machine recursive feature ranking—flow diagram.
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Due to the above-mentioned advantage, we used a wrapper method for feature selection in
constructing the ensemble-based SVM classifier. Among all the existing wrapper-based feature selection
methods, SVM RFE is considered as the most effective [26]. In this study, we implemented RFE as a
part of the RBF SVM classification with the help of the support vector rate (SVR) metric for ranking all
the 22 features shown in Table 1. The SVR is given by,

Support Vector Ratio =
The number of support vectors

the number of total training samples
× 100% (4)

The features are the support vectors in SVM; it is known that some of the support vectors help
in minimizing the computational load of SVM and also improve its efficiency during the training.
The ranking process is illustrated in Figure 2. The algorithm for the ranking process is as follows,

Step 1: Initialize the feature set, define S with all the 22 features from the dataset.
Step 2: Assume the ranked feature set as R.
Step 3: Eliminate one feature from the set and train the SVM model with 21 features. The classifier

is initialized with empirical parameters, in order to calculate the SVR, which allows us to find out the
contribution of the removed feature.

Step 4: Repeat step 3 for all the 22 features in the dataset. The feature with higher SVR after
removal is placed in the ranked set R. It implies that the feature is not a support vector and is far away
from the hyperplane.

3. Results and Discussion

The collected dataset had 3040 samples with 22 features, including the outcome variable.
We preprocessed the dataset for removing the missing values using the MICE technique. Once the
missing values were handled, we applied a wrapper-based feature selection technique, SVM RFE,
to eliminate the less relevant and low performing features from the set. The algorithm removed the
features in iteration and ranked them based on the SVR score. From the total 22 features, the algorithm
selected nine features as the most important ones. These nine features did not depend on each other and
also there was no interaction among them. The dataset was then divided into training and testing sets,
where the model was trained with a training set and evaluated with the testing set. The composition
was 75-25 for the training and testing dataset, respectively, with 10-fold cross-validation. In the
numerical implementation, we implemented the proposed method with 10-member SVM classifiers
and then integrated them with the help of the SVR-based weighted voting technique, as explained in
the previous section.

To evaluate the proposed model, we have used the confusion matrix [27]. The confusion matrix was
used to validate the performance of the model, which was tested with test data and whose true values
were known. The technical terms involved in the confusion matrix are the true positive TP (model
prediction—positive, actual outcome—positive), true negative TN (model prediction—negative, actual
outcome—negative), false positive FP (model prediction—positive, actual outcome—negative), and
false negative FN (model predicted—negative, actual outcome—positive). From the confusion matrix,
different performance metrics can be calculated, such as accuracy, specificity, precision, sensitivity,
and FMeasure [27]. The respective formulas for the metrics can be seen in Table 7. The results are
tabulated in Table 8; the proposed model was compared with other methods such as logistic regression
(LR), multilayer perceptron (MLP), random forest (RF), and bagging SVM (majority voting). Figure 3
represents the confusion matrix for LR, MLP, RF, and bagging SVM (majority voting), the proposed
model, respectively. A comparison of evaluation metrics of the proposed model with other approaches
is illustrated in Figure 4. It can be witnessed that the proposed model surpasses all other compared
approaches in terms of performance and superior accuracy. The receiver operating characteristic (ROC)
curve for the LR, MLP, RF, bagging SVM (majority voting), and the proposed model is depicted in
Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9, respectively. Stability comparison between the
integrated SVM classifier and the member classifiers is shown in Figure 10.
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          (e) 

Figure 3. Confusion matrix: (a) Logistic regression (LR), (b) multilayer perceptron (MLP), (c) Random
Forest (RF), (d) bagging SVM (majority voting), and the (e) proposed model.
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Figure 4. Comparison of evaluation metrics of the proposed model with other approaches.

Figure 5. Receiver operating characteristic (ROC) curve for logistic regression.

Figure 6. Receiver operating characteristic curve for multilayer perceptron.
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Figure 7. Receiver operating characteristic curve for random forest.

Figure 8. Receiver operating characteristic curve for bagging SVM (majority voting).

Figure 9. Receiver operating characteristic curve for the proposed model.
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Figure 10. Stability comparison between the integrated SVM classifier and the member classifiers.

Table 7. Confusion matrix related metrics.

Confusion Matrix Formula

Specificity TN/TN + FP
Recall TP/TP + FN

Accuracy TN + TP/TP + FP + TN + FN
Precision TP/TP + FP

FScore 2 × (Precision × Recall)/(Recall + Precision)

Table 8. Comparison of evaluation metrics of the proposed model with other approaches.

Evaluation
Metric

LR (%)
MLP
(%)

RF (%)
Bagging SVM

(Majority Voting)
Proposed

Model (%)

Specificity 94.12 95.20 96.23 97.13 98.64
Recall 62.5 68.47 77.08 82.29 93.75

Accuracy 90.13 91.97 93.81 95.26 98.02
Precision 60.6 66.31 74.74 80.61 90.91

FScore 61.53 67.37 75.89 81.44 92.31

4. Conclusions

In this study, we proposed an effective ensemble-based classification model, integrated multistage
support vector machine classification model for enhancing the predicting accuracy of UD. As the first
step, we cleaned the data with MICE for handling the missing values. Then we implemented SVM RFE,
a wrapper-based feature selection technique in order to reduce the feature dimension and select the
necessary features, which are not dependent on each other, which eventually improves the accuracy of
the model. The initial number of features in the original dataset was 22 on which the feature selection
technique was applied. We used a 75-25 composition for training and testing datasets. The results
proved that the proposed methodology had improved the prediction accuracy of UD when compared
with other classification models. It could be observed that the proposed model was better than all
other compared approaches in terms of performance and also offered greater accuracy.

Author Contributions: Conceptualization, K.S., N.M. and D.R.V.; Methodology, K.S. and N.M.; Software, K.S.;
Validation, C.-Y.C. and S.S.-A.; Formal Analysis, K.S.; Investigation, K.S.; Resources, C.-Y.C. and S.S.-A.; Data
Curation, N.M. and D.R.V.; Writing—Original Draft Preparation, K.S.; Writing—Review & Editing, K.S., N.M.,
C.-Y.C., and S.S.-A; Visualization, K.S.; Supervision, C.-Y.C.; Project Administration, C.-Y.C. and S.S.-A.; Funding
Acquisition, C.-Y.C. and S.S.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the “Intelligent Recognition Industry Service Center” from The
Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the
Ministry of Education (MOE) in Taiwan and The APC was funded by Ministry of Education (MOE) in Taiwan.

213



Electronics 2020, 9, 647

This work was partly supported by Ministry of Science and Technology (MOST), Taiwan (106-2923-E-038-001-MY2,
107-2923-E-038-001 -MY2, 106-2221-E-038-005, 108-2221-E-038-013); Taipei Medical University (106-3805-004-111,
106-3805-018-110, 108-3805-009-110); Wanfang hospital (106TMU-WFH-01-4).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Patalay, P.; Gage, S.H. Changes in millennial adolescent mental health and health-related behaviours over 10
years: A population cohort comparison study. Int. J. Epidemiol. 2019, 48, 1650–1664. [CrossRef] [PubMed]

2. McElroy, E.; Fearon, P.; Belsky, J.; Fonagy, P.; Patalay, P. Networks of Depression and Anxiety Symptoms
Across Development. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 964–973. [CrossRef] [PubMed]

3. Fried, E.I.; Nesse, R.M.; Zivin, K.; Guille, C.; Sen, S. Depression is more than the sum score of its parts:
Individual DSM symptoms have different risk factors. Psychol. Med. 2013, 44, 2067–2076. [CrossRef]

4. Fried, E.I.; Nesse, R.M. Depression is not a consistent syndrome: An investigation of unique symptom
patterns in the STAR*D study. J. Affect. Disord. 2014, 172, 96–102. [CrossRef]

5. Klakk, H.; Kristensen, P.L.; Andersen, L.B.; Froberg, K.; Møller, N.C.; Grøntved, A. Symptoms of depression
in young adulthood is associated with unfavorable clinical- and behavioral cardiovascular disease risk
factors. Prev. Med. Rep. 2018, 11, 209–215. [CrossRef] [PubMed]

6. Papakostas, G.I.; Petersen, T.; Mahal, Y.; Mischoulon, D.; Nierenberg, A.A.; Fava, M. Quality of life assessments
in major depressive disorder: A review of the literature. Gen. Hosp. Psychiatry 2004, 26, 13–17. [CrossRef]
[PubMed]

7. Hamilton, M. A Rating Scale For Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [CrossRef]
[PubMed]

8. Azur, M.; Stuart, E.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how
does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [CrossRef]

9. Raghunathan, T.W.; Lepkowksi, J.M.; Van Hoewyk, J.; Solenbeger, P. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Surv. Methodol. 2001, 27, 85–95.

10. Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification.
Stat. Methods Med. Res. 2007, 16, 219–242. [CrossRef]

11. Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177.
[CrossRef] [PubMed]

12. Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events
per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [CrossRef]

13. Press, S.J.; Wilson, S. Choosing between logistic regression and discriminant analysis. J. Am. Stat. Assoc.
1978, 73, 699–705. [CrossRef]

14. Gardner, M.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in
the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

15. Breiman, L. Random Forests. Mach. Learn. 2011, 45, 5–32. [CrossRef]
16. Kandaswamy, K.K.; Chou, K.-C.; Martinetz, T.; Möller, S.; Suganthan, P.N.; Sridharan, S.; Pugalenthi, G.

AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
J. Theor. Boil. 2011, 270, 56–62. [CrossRef]

17. Zhou, Q.; Zhou, H.; Zhou, Q.; Yang, F.; Luo, L. Structure damage detection based on random forest recursive
feature elimination. Mech. Syst. Signal Process. 2014, 46, 82–90. [CrossRef]

18. Hamed, T.; Dara, R.; Kremer, S.C. An Accurate, Fast Embedded Feature Selection for SVMs. In Proceedings
of the 2014 13th International Conference on Machine Learning and Applications, Detroit, MI, USA,
3–5 December 2014; pp. 135–140.

19. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
20. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.A.; LeCun, Y. What is the best multi-stage architecture for object

recognition? In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto,
Japan, September 27–October 4 2009; pp. 2146–2153.

21. Chang, C.-Y.; Srinivasan, K.; Chen, M.-C.; Chen, S.-J. SVM-Enabled Intelligent Genetic Algorithmic Model
for Realizing Efficient Universal Feature Selection in Breast Cyst Image Acquired via Ultrasound Sensing
Systems. Sensors 2020, 20, 432. [CrossRef]

214



Electronics 2020, 9, 647

22. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector
Machines. Mach. Learn. 2002, 46, 389–422. [CrossRef]

23. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
24. Tuia, D.; Pacifici, F.; Kanevski, M.; Emery, W.J. Classification of Very High Spatial Resolution Imagery Using

Mathematical Morphology and Support Vector Machines. IEEE Trans. Geosci. Remote. Sens. 2009, 47,
3866–3879. [CrossRef]
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