7 research outputs found

    Modelling Energy Consumption of the Republic of Serbia using Linear Regression and Artificial Neural Network Technique

    Get PDF
    The objectives of the study are twofold. First, we aim to examine the most influential socio-economic indicators to explain energy consumption in Republic of Serbia. The second objective is to develop models that are able to predict the future energy consumption in the Republic of Serbia. This could be the first important step towards proper energy management in the country. Several potential socio-economic indicators are selected to be the independent variables. Regression analysis is conducted to select the most relevant independent variables as well as building the multiple linear regression (MLR) models. In addition, an artificial neural networks (ANN) model is developed as a comparison. Finally, the energy demand is projected to the year 2022. It is found that both models show the declining trend with respect to the current level of energy consumption

    Optimization of tertiary building passive parameters by forecasting energy consumption based on artificial intelligence models and using ANOVA variance analysis method

    Get PDF
    Energy consumption in the tertial sector is largely attributed to cooling/heating energy consumption. Thus, forecasting the building's energy consumption has become a key factor in long-term decision-making, reducing the huge energy demand and future planning. This manuscript outlines to use of the variance analysis method (ANOVA) to study the building's passive parameters' effect, such as the orientation, insulation, and its thickness plus the glazing on energy savings through the forecasting of the heating/cooling energy consumption by applying the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and the Long Short-Term Memory (LSTM) models. The presented methodology compares the predicted consumed energy of a baseline building with another efficient building which includes all the passive parameters selected by the ANOVA approach. The results show that the improvement of passive parameters leads to a reduction of heating energy consumption by 1,739,640 kWh from 2021 to 2029, which is equivalent to a monthly energy consumption of 181.2 kWh for an administrative building with an area of 415 m2. While the cooling energy consumption is diminished by 893,246 kWh from 2021 to 2029, which leads to save a monthly value of 93.05 kWh. Consequently, the passive parameters optimization efficiently reduces the consumed energy and minimizes its costs. This positively impacts our environment due to the reduction of gas emissions, air and soil pollution

    Using Regression Analysis for Predicting Energy Consumption in Dubai Police

    Get PDF
    The aim of this project is to build a machine learning algorithm to forecast electricity and water consumption for the 27 sites in Dubai Police facilities. This aim is to establish a central database with all the data to monitor the energy consumption in a systematic manner and feed the data in a visualized dashboard. The data was collected from the energy conservation department at Dubai Police for five years from 2017 to 2021 comprising of electricity and water consumption details data. Due to the numerous buildings and facilities any irregular behavior in consumption takes time to be identified using conventional analysis methods, therefore this project will be able to support the organization to find out their energy savings/loss hotspots and facilitate immediate action for the employees to avoid time and monetary loss. Consumption data gathered will be processed through R Programming language to break it down into quarter consumption for each site. The Processed data for 2017 to 2020 will be an input for the multiple regression and ARIMA models to forecast the quarter consumption of year 2021 and to showcase the model. Finally, tableau software will be used to visualize the data and to build the dashboard in the future

    Reducing Energy Waste through Eco-Aware Everyday Things

    Get PDF

    Review of Forecasting Univariate Time-series Data with Application to Water-Energy Nexus Studies & Proposal of Parallel Hybrid SARIMA-ANN Model

    Get PDF
    The necessary materials for most human activities are water and energy. Integrated analysis to accurately forecast water and energy consumption enables the implementation of efficient short and long-term resource management planning as well as expanding policy and research possibilities for the supportive infrastructure. However, the integral relationship between water and energy (water-energy nexus) poses a difficult problem for modeling. The accessibility and physical overlay of data sets related to water-energy nexus is another main issue for a reliable water-energy consumption forecast. The framework of urban metabolism (UM) uses several types of data to build a global view and highlight issues of inefficiency within the network. Failure to view the whole system contributes to the inability to comprehend the complexity and interconnectivity of the issues within the system. This complexity is found in most systems, especially with systems that must be able to support and react to vacillating human interaction and behavior. One approach to address the limitations of data accessibility and model inflexibility is through the application of univariate time-series with heterogeneous hybrid modeling addresses. Time-series forecasting uses past observations of the same variable(s) to analyze and separate the pattern from white noise to define underlying relationships to predict future behavior. There are various linear and non-linear models utilized to forecast time-series data sets; however, ground truth data sets with extreme seasonal variation are neither pure linear nor pure non-linear. This truth has propelled model building into hybrid model frameworks to combine linear and non-linear methodologies to reduce the fallacies of both model frameworks with the other\u27s strengths. This problem report works to illustrate the limitations of complex WEN studies, build a timeline of hybrid modeling analysis using univariate time-series data, and develop a parallel hybrid SARIMA-ANN model framework to increase univariate time-series analysis capabilities in order to address previously discussed WEN study limitations. The parallel Hybrid SARIMA – ANN model performs better in comparison to SARIMA, ANN, and Series hybrid SARIMA-ANN; and shows promise for research expansion with structure flexibility to expand with additional variables

    Evaluating building energy performance: a lifecycle risk management methodology

    Get PDF
    There is widespread acceptance of the need to reduce energy consumption within the built environment. Despite this, there are often large discrepancies between the energy performance aspiration and operational reality of modern buildings. The application of existing mitigation measures appears to be piecemeal and lacks a whole-system approach to the problem. This Engineering Doctorate aims to identify common reasons for performance discrepancies and develop a methodology for risk mitigation. Existing literature was reviewed in detail to identify individual factors contributing to the risk of a building failing to meet performance aspirations. Risk factors thus identified were assembled into a taxonomy that forms the basis of a methodology for identifying and evaluating performance risk. A detailed case study was used to investigate performance at whole-building and sub-system levels. A probabilistic approach to estimating system energy consumption was also developed to provide a simple and workable improvement to industry best practice. Analysis of monitoring data revealed that, even after accounting for the absence of unregulated loads in the design estimates, annual operational energy consumption was over twice the design figure. A significant part of this discrepancy was due to the space heating sub-system, which used more than four times its estimated energy consumption, and the domestic hot water sub-system, which used more than twice. These discrepancies were the result of whole-system lifecycle risk factors ranging from design decisions and construction project management to occupant behaviour and staff training. Application of the probabilistic technique to the estimate of domestic hot water consumption revealed that the discrepancies observed could be predicted given the uncertainties in the design assumptions. The risk taxonomy was used to identify factors present in the results of the qualitative case study evaluation. This work has built on practical building evaluation techniques to develop a new way of evaluating both the uncertainty in energy performance estimates and the presence of lifecycle performance risks. These techniques form a risk management methodology that can be applied usefully throughout the project lifecycle

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries
    corecore