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Abstract: Energy consumption in the tertial sector is largely attributed to cooling/heating energy 

consumption. Thus, forecasting the building’s energy consumption has become a key factor in long-

term decision-making, reducing the huge energy demand and future planning. This manuscript outlines 

to use of the variance analysis method (ANOVA) to study the building’s passive parameters’ effect, 

such as the orientation, insulation, and its thickness plus the glazing on energy savings through the 

forecasting of the heating/cooling energy consumption by applying the Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) and the Long Short-Term Memory (LSTM) models. The 

presented methodology compares the predicted consumed energy of a baseline building with another 

efficient building which includes all the passive parameters selected by the ANOVA approach. The 

results show that the improvement of passive parameters leads to a reduction of heating energy 

consumption by 1,739,640 kWh from 2021 to 2029, which is equivalent to a monthly energy 

consumption of 181.2 kWh for an administrative building with an area of 415 m2. While the cooling 

energy consumption is diminished by 893,246 kWh from 2021 to 2029, which leads to save a monthly 

value of 93.05 kWh. Consequently, the passive parameters optimization efficiently reduces the 
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consumed energy and minimizes its costs. This positively impacts our environment due to the reduction 

of gas emissions, air and soil pollution. 

Keywords: cooling/heating energy consumption; passive parameters; SARIMA models; LSTM 

models; ANOVA 

 

1. Introduction 

Currently, the Moroccan building sector is the second most energy-consuming sector, after the 

transport sector, which represents 4,000 Ktoe in 2020 [1]. Furthermore, the ratio of the consumed 

energy in the building sector increases successively during these years, and we expect that this ratio 

will continue growing in the future. Moreover, the worldwide energy crisis due to the war in Ukraine 

presents a serious issue in terms of the limited energy resources and its highest costs, which oblige 

different countries to think seriously about the optimization of buildings’ energy efficiency plus 

reducing energy consumption and costs. Thus, it is important to forecast the building’s energy 

consumption to improve its energy efficiency, which leads to conserving energy and reducing 

environmental pollution. 

Forecasting energy consumption has become a key factor in long-term decision-making and 

future planning. Indeed, a reliable energy consumption prediction has a crucial role in the 

implementation of performant management energy systems. Nevertheless, the buildings’ energy 

system is quite complex, whereas the main energy sources in buildings are electricity, cooling, heating, 

and hot water consumption. Furthermore, the building’s energy consumption is affected by several 

factors, such as climatic conditions [2], the thermal-physical characteristics of the used buildings’ 

materials[3–7], the occupants’ behavior [8] and (HVAC) systems [9–12], the lighting systems, their 

efficiency, and schedules [13,14]. Because of this complex issue, accurate forecasting for analyzing 

the building’s energy consumption is highly demanded. 

Recently, many predictive approaches have been proposed and applied to overcome several 

problems in the building sector [15–20]. Moreover, many works have applied different Artificial 

Intelligence (AI) models for forecasting different interests. Newsham and Birt [21] improved an Auto-

Regressive Integrated Moving Average with external input (ARIMAX) to predict electrical energy 

needs of an office, moreover, they have applied the occupancy dataset as an extrinsic predictor to 

develop it. Bilgili and Pinar have done a comparative study between SARIMA and LSTM Models to 

predict gross electricity consumption in Turkey, they have found that the two models are quite close to 

each other. And generally, the LSTM model provides more performance than the SARIMA model [22]. 

Blázquez-García et al. have used the Sarima models to predict the consumed energy of a green-elevator 

integrating batteries and photovoltaic, the results were validated by comparing the SARIMA models 

with the ANN and the GAM models. The SARIMA outperformed slightly better [23]. A Hybrid 

Artificial Neural Network (ANN) plus an Auto Regressive Integrated Moving Average (ARIMA) 

model was introduced by Wang and Meng [24] for predicting the consumed energy of the whole 

Chinese Hebei province. They selected the annual consumed energy datasets between 1980 and 2008 

to improve and test the used model. Kandananond [25] applied ARIMA, ANN plus Multiple Linear 

Regression (MLR) model to forecast electrical energy needs in Thailand. The chosen datasets were 

determined between 1986 and 2010. The findings indicated that the MAPE equals 0.996% for ANN, 
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while it’s respectively equal to 2.809% and 3.260% for ARIMA and MLR models. Wang et al. [26] 

Applied Long short-term Memory (LSTM) model to predict a periodic time series. They studied and 

analyzed a daily cooling system periodicity energy consumption through LSTM model. They deduced 

that the Lower-dimensional input instead of all presented variables minimizes the calculation cost, 

while minimizing the input variables diminishes the accuracy of this proposed model. Chujai et al. [27] 

presented the analysis of time series for the consumed electric energy of a residential building based 

on ARIMA and Auto Regressive Moving Average (ARMA) models. The selected data were collected 

from December 2006 until November 2010 for developing the proposed models. The findings showed 

that ARIMA model can perform the most appropriate predictions for the monthly and quarterly periods 

while the ARMA model presented the most suitable predictions for daily and weekly periods. 

Inspired by those previous observations, the utilization of SARIMA and LSTM Models was 

applied in different domains [28–32]. In the energy efficiency sector, this paper examines SARIMA 

and LSTM models for predicting heating/cooling energy consumption the upcoming years. The 

proposed model in this research investigates the impact of improving the building’s passive parameters 

such as: orientation, insulation, and its thickness, plus the glazing on reducing the amount of the energy 

used. The selection process of those parameters was done using the Analysis of Variance method 

ANOVA. The adequate model is selected by comparing the statistical errors RMSE (Root Mean Square 

Error), MSE (Mean Square Error), MAE (Mean Absolute Error) and the Scatter Index SI. 

In this work, a study was performed to show the impact of building’s orientation, envelope, and 

its thickness, plus the glazing on the forecasted heating/cooling energy consumed the next years by 

using SARIMA and LSTM models. The comparison was done by choosing two buildings. The 

base/reference building, and the efficient one contained the passive parameters selected by ANOVA 

approach. 

This study presents a novel investigation, it is the first study using the statistical method ANOVA 

to select the building’s passive parameters that have an influence on the energy consumption. Plus, the 

contribution in the utilization of SARIMA and LSTM models to conduct a comprehensive comparative 

analysis of forecasted energy consumption between a reference building and an energy-efficient 

counterpart. By examining these parameters in tandem, the research offers a holistic understanding of 

their combined effects on energy use, providing valuable insights for optimizing building design and 

energy management strategies. 

This study’s remaining sections are organized as follows: Section 2 provides an overview of the 

used architectures as well as a summary of the technique and method that was used, plus evaluation 

metrics that gauge the effectiveness of models are defined. The results and discussion are covered 

simultaneously in Section 3 and 4. The study's conclusions are presented in section 5 to conclude. 

2. Materials and methods 

2.1. Data description 

In this research, our study is focused on two administrative buildings with an area of 415 m2 and 

both are located in Errachidia city, Morocco. The buildings are composed of two floors, each one 

containing five offices, two secretariats, a hall, and stairs. The first building is the reference building 

and the second one is efficient. The first building’s main materials components are: The 

interior/exterior walls are composed of a single red brick layer with a thickness of 15 cm, plus a simple 
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glazing for the windows. While for the efficient building, we have added a layer of airgap as insulation 

with a thickness of 5 cm inside the exterior walls. Also, we have changed the windows’ simple glazing 

by double glazing with a medium of air gap. 

The energy consumption datasets of the reference and the efficient buildings during cooling and 

heating operations were determined by using ECOTECT ANALYSIS software from January 2016 until 

December 2020 (Figures 1 and 2). 

 

Figure 1. Heating energy consumption of the base and the efficient building (Wh). 

 

Figure 2. Cooling energy consumption of the base and the efficient building (Wh). 
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The simulations were performed by considering the occupants’ behavior (Table 1) and the 

thermal-physical characteristics of an administrative building in its surrounding climatic          

conditions (Figures 3 and 4). 

Table 1. Occupant’s behavior. 

 Office Stairs Secretariat Hall 

Clothing (clo) 1 1 1 1 

Lightning level (Lux) 400 100 400 200 

Occupant’s number 2 3 1 5 

Occupant’s activity (W) 70 80 70 70 

 

Figure 3. Temperature climatic conditions. 

 

Figure 4. Radiation climatic conditions. 
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2.2. SARIMA model 

First, the SARIMA model time series correlates non-seasonal and seasonal components, which is 

symbolized as SARIMA (p, d, q) (P, D, Q) s. While, the p is the order of the AR model, d is the degree 

of differentiation, q is the order of the MA model, P is the seasonal autoregressive order (AR) part, D 

is the seasonal difference order, Q presents the seasonal moving average order (MA), and s is the order 

of the seasonal component. 

The AR process considers the previous observed measures up to an indicated maximum lag, plus 

the error term. The differentiation process is the integration part, which considers the data stabilization 

by removing the periodicity or the trend, but for MA path, it considers the last error terms that help for 

determining predictions. 

The mathematical description of SARIMA model is presented as follow (Eq 1): 

𝜑(𝐵)𝜙(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝜀𝑡+𝜃0     (1) 

Where the mathematical symbols/equations’ meanings are described in Table 2. 

Table 2. Mathematical symbols/equations’ meanings. 

Mathematical symbol/equation Mathematical description 

𝑌𝑡 Time series data 

𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵
2 −⋯−𝜑𝑝𝐵

𝑝 Order p of the autoregressive operator AR 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑝𝐵

𝑝 Order q of the moving average operator MA 

𝜙(𝐵𝑠) = 1 − 𝜙1𝐵
𝑠 − 𝜙2𝐵

2𝑠 −⋯− 𝜙𝑃𝐵
𝑃𝑠 Order P of a seasonal auto-regressive operator AR 

Θ(𝐵𝑠) = 1 − Θ1𝐵
𝑠 − Θ2𝐵

2𝑠 −⋯− Θ𝑄𝐵
𝑄𝑠 Order Q of a seasonal moving average operator MA 

𝜀𝑡 Time t error term 

B Backward shift operator 

𝜃 Non-seasonal moving average coefficient 

𝜑 Non-seasonal auto-regressive coefficient 

Θ Seasonal moving average coefficient 

𝜙 Seasonal auto-regressive coefficient 

2.3. LSTM models 

The LSTM “Long Short-Term Memory” is a type of RNN “recurrent neural network” [33]. The 

LSTM can memorize the values of the previous steps, while these values can be used in the future. 

The LSTM is a unit of three “gates” that compute domains that regulate the flow of information 

by performing specific actions with two outputs called states: 

• Input gate: Controls the information’s amount entering the input gate of a memory cell. 

• Output gate: Use the sigmoid activation functions, it checks an amount of information flowing 

in the rest of the network (Eq 2). 

• Forget gate: Chooses the state of the cell at the precedent instant and adaptively retains some 

of the information at the present time. 

• Hidden state: Allows the LSTM to retain information over extended sequences, enabling it to 

understand and capture long-range dependencies within the data. 

• Cell state: Allows weighting of the data that will combine with the input gate to update the state 

of the cell. 
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𝜎(𝑥) =
1

1+𝑒𝑥
            (2) 

The input gate, output gate, and forget gate are represented by 𝑖𝑡, 𝑜𝑡, and 𝑓𝑡, respectively. The 

input data of the LSTM model at time t is  𝑥𝑡, the output data is ℎ𝑡, 𝑐𝑡 is the memory state, and �̃�𝑡 is 

the intermediate value during computation. The LSTM memory block is described as follows (Eq 3): 

{
  
 

  
 

𝑖𝑡 = 𝜎(𝑊𝑖𝑋𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑡)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑋𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
𝑓𝑡 = 𝜎(𝑊𝑓𝑋𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)       

𝑐𝑡 = 𝑖𝑡 ∗ �̃�𝑡 + 𝑓𝑡 ∗ 𝑐𝑡−1
𝑜𝑡 = 𝜎(𝑊𝑜𝑋𝑡 + 𝑜𝑈𝑖ℎ𝑡−1 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) 

       (3) 

While 𝑊𝑖 , 𝑈𝑖 , 𝑊𝑧 , 𝑈𝑧 , 𝑊𝑓 , 𝑈𝑓 , 𝑊𝑜  and 𝑈𝑜  are weight matrices. 𝑏𝑡 , 𝑏𝑧 , 𝑏𝑓  are bias vectors. Xt 

represents the present input. ht and ht−1 are respectively the outputs at time t and at the precedent 

time t−1 (Figure 5). The hyperbolic tangent function is defined as follows (Eq 4): 

𝑡𝑎𝑛ℎ =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
          (4) 

 

Figure 5. LSTM model architecture. 

After generating the historical data, we will consider them as input data for the two models studied 

namely SARIMA and LSTM. The data from 2016 to 2019 are used as training set for these models, 

while the data from 2019 to 2020 are used as test set for SARIMA models. For the LSTM models, we 

will use six months as validation data and the next six months as test data. 

The next step is to compare the statistical errors generated by the models of cooling/heating 

energy consumption, then select the one that generates the smallest values of RMSE (Root Mean 

Square Error), MSE (Mean Square Error) and MAE (Mean Absolute Error). 

From Table 3, we notice that the RMSE values are quite high due to the order of heating/cooling 

energy consumption magnitude values. Therefore, we have calculated the dispersion index SI to 

properly compare the opted models to predict the energy consumption. We can see that the performant 
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model for forecasting heating/cooling energy consumption is SARIMA model with dispersion indices 

of 5% and 7.3% respectively. 

Table 3. Statistical errors generated by SARIMA and LSTM models. 

Energy 

consumption 

Models Statistical errors The best model 

MSE RMSE MAE SI 

Heating SARIMA 10927.13 104.53 70.12 0.05 SARIMA 

LSTM 13480.3 116.104 108.3 0.07 

Cooling SARIMA 48486.35 220.19 142.52 0.073 SARIMA 

LSTM 51440.93 226.80 138.77 0.075 

2.4. ANOVA analysis method 

The main propose of analyzing the variance through ANOVA method is to study the parameters 

that directly affect the energy needs during heating/cooling operations, namely the orientation, the 

envelope’s insulation, the thickness of the insulation and the glazing. Then study the impact of these 

significant parameters on energy consumption by comparing the predicted energy of the reference 

building with that of the efficient building. 

The methodology consists of using the ANOVA method to detect the parameters which have a 

significant effect on heating/cooling energy consumption. At next, we will generate a new database of 

the energy consumption of an efficient building by taking into consideration that it does contain the 

parameters selected by the method ANOVA. Finally, we will predict the energy consumption for the 

second time and compare it with that of the reference building to calculate the energy loss margin in 

Kilowatt hours for a single building in the south-east of Morocco. We have opted for the following 

passive parameters described in Table 4. 

Table 4. Passive parameters selected by ANOVA method. 

Passive parameter  

Orientation South, east, north, west, south-east, south-west, north-east 

Insulation Air gap, hemp wool, glass wool, rock wool and polystyrene 

Glazing Single glazing, double glazing 

Thickness 5 cm, 10 cm, 15 cm 

The Table 5 presents the ANOVA analysis of variance to determine the influence of these 

parameters on energy consumption, we see that: 

• For glazing and insulation, the difference between groups is significant for heating and 

cooling (p = 0.000). We can therefore conclude that glazing and insulation have an impact on 

energy consumption. Accordingly, The ANOVA analysis essentially reveals a convincing 

connection between glazing, insulation, and energy usage. An in-depth statistical study 

confirms that the observed changes in heating and cooling behaviors are not mere coincidences 

and support their direct influence on energy efficiency. This information has the potential to 

support better informed design and construction decision-making, fostering the development 

of a greener and more sustainable built environment. 

• For orientation, the dataset was deliberately divided into eight separate groups, each of which 

contained a certain orientation configuration, to provide a comprehensive viewpoint. This 

strategic grouping made it possible to evaluate energy consumption patterns in detail over a 
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wide range of circumstances, which helped to clarify the function of orientation. The results of 

the statistical analysis were extremely significant, especially when it came to the area of heating 

energy use (p = 0.000). It strongly implies a link between heating energy consumption patterns 

and building orientation. The results highlight the fact that the deliberate differences in 

orientation protocols are fundamentally linked to the variations in heating energy usage. 

However, when examining the effect of orientation on cooling energy use, a more complex 

picture begins to take shape. The predicted cooling energy consumption p-value of 0.425 

supports a different narration. Practically speaking, this means that even if orientation may not 

have a significant impact on cooling energy consumption, it still plays a crucial part in overall 

building design, even though its impact on heating is more evident. 

• The thickness of the insulators presents a value of (p = 0.045) for the heating, which shows that 

this parameter influences the heating. While the difference between the three groups is however 

not significant for cooling (p = 0.789), we can therefore conclude that the thickness has no 

impact on the cooling energy needs. Which means that there is no correlation between 

increasing the insulation’s thickness and reducing cooling energy consumption. 

Table 5. Analysis of ANOVA variance. 

  ddl F p-value 

Glazing Heating  1 27.256 0.000 

Cooling 1 544.058 0.000 

Insulation Heating  4 9.321 0.000 

Cooling 4 8.549 0.000 

Orientation Heating  7 20.632 0.000 

Cooling 7 1.010 0.425 

Thickness Heating  2 3.135 0.045 

Cooling 2 0.238 0.789 

3. Results 

First, the SARIMA (p, d, q) (P, D, Q)12 model was established by python programming language, 

then, we have trained and tested that model by exploring the collected energy consumption data during 

the cooling/heating operations between January 2016 and December 2020, for the reference building 

plus the efficient one in Errachidia city, at the north-east of Morocco. The determination of the 

forecasted energy consumption by using SARIMA models was realized as follow: 

Step 1: The first stage is reserved for checking the datasets stationarity. If stationarity is not 

satisfied and the series has trend or seasonal components, we should change it by using differencing. 

In this study, we have differentiated the cooling/heating dataset of the two buildings once to 

make it stationary. Thus, the orders of seasonal and non-seasonal differences are respectively: D = 1 

and d = 1. 

Step 2: For the second stage, the orders (p, q, P, Q) of SARIMA models must be defined by using 

Akaike Information Criterion AIC “Eq 5”. 

AIC = 2K − 2ln(L)          (5) 

The smallest value of AIC for the cooling/heating datasets lead to the optimal combination of the 

orders (p, q, P, Q) for the reference building and the efficient one (Table 6). 

Table 6 shows that the SARIMA (2,1,0) (2,1,0)12 and SARIMA (0,1,2) (2,1,0)12 models present, 
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respectively, the minimum AIC values for heating of the reference building and the efficient building. 

The SARIMA (0,1,3) (1,1,0)12 model generates significant results in terms of AIC for the cooling 

energy consumption of the two studied buildings. Therefore, these models are sufficient to forecast 

energy consumption during heating-cooling operations. 

Step 3: In this last step, after selecting the best SARIMA model, we can now forecast 

heating/cooling energy consumption of the reference and efficient buildings from 2021 to 2029. 

Table 6. AIC values of the cooling/heating data of the reference building and the efficient building. 

Heating Cooling 

(p, d, q) (P, D, Q) s AIC (p, d, q) (P, D, Q) s AIC 

Reference building  

(1,1,1) (0,1,0)12 1018.965 (1,1,1) (0,1,0)12 1027.901 

(0,1,0) (0,1,0)12 1019.874 (0,1,0) (0,1,0)12 1033.739 

(1,1,0) (1,1,0)12 1020.537 (1,1,0) (1,1,0)12 1012.047 

(0,1,1) (0,1,1)12 1020.616 (0,1,1) (0,1,1)12 1011.850 

(1,1,1) (1,1,0)12 1017.483 (0,1,1) (0,1,0)12 1026.341 

(1,1,1) (2,1,0)12 1006.211 (0,1,1) (1,1,1)12 1011.429 

(1,1,1) (3,1,0)12 1008.175 (0,1,1) (1,1,0)12 1009.644 

(2,1,1) (3,1,1)12 1003.016 (0,1,1) (2,1,0)12 1011.384 

(2,1,0) (2,1,0)12 999.264 (0,1,1) (2,1,1)12 1013.079 

(2,1,0) (1,1,0)12 1007.760 (0,1,0) (1,1,0)12 1031.949 

(2,1,0) (3,1,0)12 1001.089 (0,1,3) (1,1,0)12 997.460 

(2,1,0) (2,1,1)12 1001.092 (0,1,3) (0,1,0)12 1064.785 

(2,1,0) (1,1,1)12 1000.379 (0,1,3) (2,1,0)12 998.625 

(2,1,0) (3,1,1)12 1003.090 (0,1,3) (1,1,1)12 998.791 

Efficient building 

(0,1,0) (0,1,0)12 1018.948 (1,1,1) (0,1,0)12 1023.168 

(1,1,0) (1,1,0)12 1019.571 (0,1,0) (0,1,0)12 1029.908 

(0,1,1) (0,1,1)12 1019.525 (1,1,0) (1,1,0)12 1007.250 

(1,1,1) (1,1,0)12 1016.500 (0,1,1) (0,1,1)12 1007.022 

(1,1,1) (2,1,0)12 1005.131 (0,1,1) (0,1,1)12 1007.022 

(1,1,1) (3,1,0)12 1007.101 (0,1,1) (0,1,0)12 1021.752 

(1,1,1) (2,1,1)12 1007.100 (0,1,1) (1,1,1)12 1006.721 

(1,1,1) (1,1,1)12 1007.614 (0,1,2) (1,1,0)12 1000.754 

(1,1,2) (3,1,1)12 1002.472 (0,1,2) (0,1,0)12 1025.151 

(0,1,2) (2,1,0)12 998.254 (0,1,2) (2,1,0)12 1002.426 

(0,1,2) (1,1,0)12 1008.526 (0,1,3) (1,1,0)12 992.857 

(0,1,2) (3,1,0)12 1000.070 (0,1,3) (0,1,0)12 1059.570 

(0,1,2) (2,1,1)12 1000.071 (0,1,3) (2,1,0)12 993.735 

(0,1,2) (1,1,1)12 999.511 (0,1,3) (0,1,0)12 1059.570 

4. Discussion 

Figures 6 and 7 show the forecasting of the energy cooling and heating consumed for the reference 

building in red and the efficient building in green for eight years. 

We note that the improvement of the passive parameters, namely the application of double glazing 

separated by an air gap for the windows, the insulation of the exterior walls by an air gap with a 

thickness of 5 cm, and the orientation to the south-east will allow us to save up to 893,246 kWh for 

the cooling consumed energy from 2021 to 2029, which leads to save a monthly value of 93.05 kWh 

for a single building with an area equal to 415 m2. Moreover, it will ensure a significant decrease of 

the heating energy consumption by 1,739,640 kWh from 2021 to 2029, which is equivalent to a 

monthly value of 181.2 kWh for an administrative building with an area of 415 m2. 
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These recommendations are very useful for building engineers and architects to exploit the 

building’s passive parameters to achieve promising reductions in heating/cooling energy consumption. 

Therefore, this energy saving in the building sector reduces the emission of Carbon Dioxide CO2, 

which leads to save the environment and reduce the pollution. 

 

Figure 6. Forecasted cooling energy consumption by SARIMA models. 

 

Figure 7. Forecasted heating energy consumption by SARIMA models. 

5. Conclusions 

In this work, we apply the variance analysis method (ANOVA) to study the effect of passive 

parameters on heating/cooling energy consumption which are the orientation, insulation and its 

thicknesses, and the glazing. This process concerns the use of SARIMA and LSTM models to forecast 
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the energy consumption during heating and cooling operations of two different buildings existed in 

Errachidia city, Morocco. The analysis of the statistical errors generated by SARIMA and LSTM 

models shows that SARIMA model is more adequate and efficient for predicting energy consumption 

compared to LSTM model. This research also compares the predicted energy of a reference building 

with that of an efficient building which includes the proposed passive parameters generated by ANOVA 

method. The results show that by improving these parameters, the heating consumption reduced           

by 1,739,640 kWh from 2021 to 2029, which is equivalent to a monthly value of 181.2 kWh for an 

administrative building with an area of 415 m2. While for the cooling energy consumption we could 

save up to 181.2 kWh from 2021 to 2029, which is equivalent to a monthly value of 93.05 kWh for a 

building with a surface equal to 415 m2. 

Finally, the optimization of passive parameters contributes efficiently to reduce energy 

consumption and costs for the future. 
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