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ABSTRACT 

 

Review of Forecasting Univariate Time-series Data with Application to Water-Energy Nexus 

Studies & Proposal of Parallel Hybrid SARIMA-ANN Model 

Cory Sumner Yarrington 
 
 

The necessary materials for most human activities are water and energy. Integrated analysis to 

accurately forecast water and energy consumption enables the implementation of efficient short 

and long-term resource management planning as well as expanding policy and research 

possibilities for the supportive infrastructure. However, the integral relationship between water 

and energy (water-energy nexus) poses a difficult problem for modeling. The accessibility and 

physical overlay of data sets related to water-energy nexus is another main issue for a reliable 

water-energy consumption forecast. The framework of urban metabolism (UM) uses several types 

of data to build a global view and highlight issues of inefficiency within the network. Failure to 

view the whole system contributes to the inability to comprehend the complexity and 

interconnectivity of the issues within the system. This complexity is found in most systems, 

especially with systems that must be able to support and react to vacillating human interaction and 

behavior.  

 

One approach to address the limitations of data accessibility and model inflexibility is through the 

application of univariate time-series with heterogeneous hybrid modeling addresses. Time-series 

forecasting uses past observations of the same variable(s) to analyze and separate the pattern from 

white noise to define underlying relationships to predict future behavior. There are various linear 

and non-linear models utilized to forecast time-series data sets; however, ground truth data sets 

with extreme seasonal variation are neither pure linear nor pure non-linear. This truth has propelled 

model building into hybrid model frameworks to combine linear and non-linear methodologies to 

reduce the fallacies of both model frameworks with the other's strengths. This problem report 

works to illustrate the limitations of complex WEN studies, build a timeline of hybrid modeling 

analysis using univariate time-series data, and develop a parallel hybrid SARIMA-ANN model 

framework to increase univariate time-series analysis capabilities in order to address previously 

discussed WEN study limitations. The parallel Hybrid SARIMA – ANN model performs better in 

comparison to SARIMA, ANN, and Series hybrid SARIMA-ANN; and shows promise for 

research expansion with structure flexibility to expand with additional variables.  
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Chapter 1. Introduction 

 
This problem report works for viewing urban metabolism (UM) through the scope of water-energy 

nexus (WEN), limiting variables to reduce the complexity of system modeling. The basic 

underpinnings of UM struggle with the ability to efficiently tether human interactions with the 

impacts on the surrounding environment in order to understand, govern, and implement resource 

management strategy and long-term policy. A UM model integrates and evaluates many factors 

from physical, technical, and social interfaces that contribute to the consumption and production 

of various resources and energy as well as the relationship between the resource and energy [1]. 

The framework of UM uses several types of data to build a global view and highlight issues of 

inefficiency within the network. As Kenway [1] illustrates, failing to view the system-wide issues 

contributes to the lack of ability to “understand the emergence of complex and wicked problems; 

problems which are ever-changing and are highly interconnected with action that could be taken.” 

This complexity is found in most systems, especially with systems that must be able to support 

and react to vacillating human interaction and behavior. City planners and managers, traffic and 

civil engineers, and others must interpret complex data sets and determine solutions while taking 

into account ripple effects from implementing those strategies. Without a proper validating model, 

this process is near impossible to evaluate. 

Supporting human activity in an urban environment has historically been dependent on 

maintaining the network of water resources. Despite advancements in technology and the design 

of modern infrastructure, a quarter of urban centers with a totaling $4.8 ± 0.7 trillion in economic 

activity, remain water stressed due to environmental and economic limitations [2]. The water- 

related challenges impacting the sustainability of urban areas include the lack of access to safe 

water and sanitation as well as acts of God such as floods and droughts [189]. Improper 

management has enormous consequences on human health and well-being, economic growth and 

development, and the environment. One of these management areas centers around the water- 

energy infrastructure. The integral relationship between water and energy, WEN, poses a difficult 

yet vital problem to model. The WEN is the relationship between the amount of water used to 

generate and conduct energy and the amount of energy in the collection, distribution, and 

processing of water [3, 4, 5]. In other words, the relationship is based on the resource production- 

consumption tradeoff. 
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1.1. Problem Statement and Needs 

Modeling the links between water and energy classifies significant research and development 

directions, advancement possibilities for technological and management innovation, and 

implications of institutional decisions and actions [6, 7, 8, 9, 10]. There are many studies 

suggesting strategy and policy changes that would result in decreasing water-energy consumption 

values. However, Mitchell [11] identifies a lack of ability to accurately monitor and analyze data 

through case studies in Australia to measure the efficacy of those changes. Without the integration 

of systems—organizational networks and physical infrastructure - there is no way to precisely 

report system efficiency at its current capacity nor the impact of a future policy or implementation 

of new technology. 

This issue centers around the inability to share and integrate data from these sectors. This feeds 

into an unsolvable loop, where change is necessary in order to effectively collect data that can be 

used to steer change. There have been many problems identified with data sharing in general [12], 

which include unstandardized data platforms and inconsistent formatting in time and spatial scales. 

For WEN data sharing limitations, [1] identified issues with “data detailing directional flow and 

linkages” for water and wastewater as well as daily population fluctuations within the boundary. 

The lack of coherence in water and energy sector datasets, specifically platform standardizations 

and physical infrastructure overlay, restrict the scope of all WEN studies. 

The first step in understanding the relationship between water and energy consumption is to model 

and forecast the patterns of a single variable over time. This requires separating the two resources 

for analysis before conjoining their consumption patterns. Before the development of a 

complicated multivariate model, univariate time-series forecasting through a middle-out approach 

allows one to understand what will happen without explaining how it is happening. The resulting 

predictive model serves as validation for alternative models produced through top-down or bottom-

up approaches. Time-series forecasting uses past observations of the same variable(s) to analyze 

and separate patterns from random error to define underlying relationships in order to predict future 

behavior [13]. Applications include: economic forecasting, material and operations planning, and 

model and strategy evaluations. These applications vary by time-series forecast horizon and model 

approach, both dependent on the data set(s) available. 
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There are linear and non-linear model methods utilized to forecast time-series data: engineered 

(simple and complex), statistical, supervised machine learning, and hybrid models. However, real- 

world data with extreme seasonal variation is neither purely linear nor pure non-linear. This reality 

has propelled the main motivation of this study. The expansion of time-series analysis model 

building into hybrid frameworks combines linear and non-linear methodologies in order to reduce 

the fallacies of both frameworks with the strengths of the other. Systems engineering requires 

gaining understanding through a correct approach to the data and the issues [14]. Most WEN 

studies fall under either top-down or bottom-up analyses and are limited to the aspects of 

understanding or governing decisions [1]. A middle-out model approach combats the afflictions of 

WEN studies data limitations and availability by reducing variables necessary for analysis to water 

or electricity consumption over time. The model proposed in this report addresses both of these 

limitations with the ability to be applied across any field of study. 

 

 
1.2. Research Objective and Scope 

The objective of this problem report is to explore the limitations of urban metabolism and suggest 

a feasible solution through the scope of WEN. In order to address the data inaccessibility and 

model inflexibility inherent in these studies, this document explores the possibilities of a univariate 

time-series model with a middle-out approach to use limited data for global conclusions. With 

limitations in data accessibility, a middle-out approach through univariate time-series forecasting 

proves to be advantageous as a first step to establish a predictive model. The limitation of model 

adaptability to allow for future expansion on the univariate validation model is reviewed through 

the implementation of heterogeneous hybrid modeling. The specific aims for this report are: 

• Understand the methodologies and conclusions of past studies. 

• Explore the various model approaches: top-down, bottom-up, and middle-out. 

• Address the limitations of data inaccessibility and model inflexibility. 

• Discuss the advantage of univariate time-series forecasting models. 

• Research the development of univariate time-series forecasting models. 

• Assert heterogeneous hybrid modeling of univariate time-series forecasting as the answer 

to limitations of past urban metabolism and WEN studies. 
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1.3. Report Organization 

The first chapter of this report (2) will explore the study of urban metabolism and the framework 

used to explore the WEN issues. This will be followed by the four themes that unify research 

within urban metabolism: 2.1) sectoral analysis, 2.2) boundary conditions, 2.3) methodologies to 

quantify water-energy link, and 2.4) adaptive approaches to solutions. These themes highlight the 

conclusions and limitations of past studies. Chapter 3 discusses the existing models to forecast 

water and energy consumption broken down further into types of data and approaches available. 

The combined discussion of past study limitations and current existing models leads to Chapter 4 

univariate time-series forecasting. The limitations discussed in previous chapters filter the model 

choices to heterogeneous hybrid univariate forecasting models. In Chapter 5, the parallel hybrid 

SARIMA-ANN model developed through this research is presented with the case study data used 

to illustrate the model build and performance. Future work is discussed with the possible expansion 

of this study with the proposed model in mind. Chapter 6 is the conclusion of this research. 
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Chapter 2. Urban Metabolism and Frameworks for Water-Energy Nexus Issues 

 
Urban metabolism (UM) is “the total of the technical and socio-economic processes that occur in 

cities, resulting in growth, production of energy, and elimination of waste” [15]. Marx [16] first 

deliberated UM with his assessment of industrialization in 1883 and described metabolism as the 

material and energy exchanges within the environment or system. The simplest definitions 

consider the mass balances of all materials of the urban system [17]. The complex definition 

considers the city as an organism [18, 19]. Urban metabolism analysis requires quantifying the 

overall mass fluctuations and linkages of selected resources within a designated city boundary [17, 

18, 19]. Witnessing the degradation of human wellbeing and the environment within the urban 

center, Wolman [18] developed the UM accounting exercise with a top-down relationship between 

resource consumption and the production of goods and wastes. He concludes that the expansion 

of a city causes a conflict of interest with the natural environment and socio-economic system. 

This conflict extends into the concept of urban sprawl, where Wolman’s conclusion is reinforced 

with further studies on the impact of unrestricted, unplanned urban growth [20, 21, 22]. System 

friction due to increasing physical distance decreases the efficiency and stability of the system. As 

resource demand from the urban area periphery grows, the entire area is subjected to become a 

resource desert with detrimental impacts on the environment as well as the citizens within the 

system. 

The intricate balance of resource supply-demand illustrates the magnitude of UM study, where the 

stability of the social fabric and political decisions are affected by the connection and management 

of resources—such as water and energy—within and around the city [23]. The concept of UM 

defines a methodical framework to help model this balance. The UM framework unifies research 

themes as follows: 1) categories of study to allow sectoral analysis for a hierarchical approach to 

research; 2) explicitly identifies the system’s boundary conditions; 3) analyzes mathematical 

modeling approaches to integrate data for water-energy links; and 4) allows for an adaptive 

approach to sustainable solutions for policy and technology with respect to the consequences of 

implementation [24]. The following sub-chapters will break down each of these themes. 
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2.1. Sectoral Analysis 

The complexity of UM studies propels scholars to focus on a simpler, singular flow of essential 

materials such as water [25, 26, 27] or energy [28, 29, 30, 31]. Although focused on a singular 

flow, these studies remain complex and require extensive investigation with large quantities of 

data. Access to water and energy is necessary for most modern human activities and general 

society's well-being [32]. City centers are heavily reliant on water resources and tend to pull 

resources from the surrounding region or periphery [33]. Resource pools of water and energy are 

becoming strained increasingly due to a growing population, effects of the phenomenon known as 

climate change and aging infrastructure. The expansion of the system to reach further into the 

periphery is not sustainable or resilient [21, 22]. Increases in resource distance to end-use will lead 

to increases of friction in the distribution of the resource and associated wastes. When accessibility 

to a vital resource, such as water, is constrained or damaged, ripple effects can be seen economics, 

environment, and social fabric of the city [34]. In order to understand the connections between 

societal conflict and water resources, the Pacific Institute [35] categorizes events related to water 

conflict through an interactive map and chronology. The integral relationship between water and 

energy, water-energy nexus (WEN), poses a difficult problem to understand and model; and, 

therefore, issues for resource governing and planning. In order to create an efficient system for 

tethering humanity and their interactions with the environment, a framework should integrate and 

evaluate numerous factors from technical and social interfaces that contribute to the consumption 

of water and energy. 

A broad literature review of WEN study objectives illustrates the absence of detailed research and 

policy priorities. This spurred the development of numerous WEN studies on various scopes and 

scales in the early 2000s. Research in WEN has been done in the United States and Australia [1, 

36, 37, 38]. Based on this research, the policy has already been implemented in at least nine states 

that include Arizona, California, Colorado, Connecticut, Nevada, South Dakota, Washington, 

West Virginia, and Wisconsin. These states have statutes that mention the annexation of water for 

energy production [39]. These laws mention the importance of recognizing the relationship and 

the need for appropriating resources accordingly. 

The National Energy-Water Science and Technology Roadmap developed by the Department of 

Energy (DOE) outlines the efforts to remove barriers toward sustainable, efficient water and 
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energy use, overcome current technological obstacles, and improve familiarity with the conceptual 

relationship between energy and water resources [40, 41]. Consequently, the Roadmap aims to 

establish short- and long-term water-energy security through a coordinated and integrated DOE 

approach. The short-term security calls for accurate mapping of resource supply-demand patterns. 

Long-term security requires effective implementation of policy, research, and technology for 

water-energy resource utilization. An Energy-Water Nexus Crosscut Team was formed in 2012 to 

advance this DOE approach through working on the following four areas of focus: integrated data, 

modeling, and analysis of the WEN; technology research development, demonstration, and 

deployment to support energy-efficient water systems or water-efficient energy systems; policy 

analysis for energy and water sustainability at the regional or national scale; and outreach and 

stakeholder engagement to strengthen the proposed activities. 

These studies illustrate the dire need for understanding and identifying WEN but do not explain 

the complications. Water and energy are essential material products that have complex 

characteristics: storage, production, and transportation are difficult and costly. Both energy and 

potable water must be produced and consumed as demanded. Emergy is the available energy used 

directly or indirectly to produce and distribute material or service. The development of emergy 

metabolism allows a combination of numerous material flows into one value [42, 43, 44]. It follows 

that emergy values on products increase as the distance between production and consumption 

increases. This value quantifies why urban sprawl (unregulated expansion of the city’s boundary) 

is unsustainable. The process of transforming various products into an emergy value is difficult 

and varies from study to study. The infrastructure of production, distribution, and consumption of 

water and energy sets the boundary of study and enables the study of how people are connected to 

the area. 

From this end-user perspective, water efficiency measures conserve water and energy resources 

simultaneously [45, 46, 47, 48, 49]. From a producer perspective, the cooperation of demand 

management programs for water and energy utilities is much more difficult to achieve as both can 

be owned by several entities across varying spatial scales. The water-energy infrastructure 

seldomly overlaps, and management strategies have conflicting goals. According to the Energy 

Information Administration (EIA), utility systems are owned by private investors, federal and other 

public entities, or cooperatively owned [50]. This explains the difficulty in the integrated 
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planning, development, and organization of water and energy systems, which have been 

historically under the control of different agencies [4, 51], as seen in Figure 1. Private and public 

stakeholders on multiple scales with different goals, ranging from economic and political gains to 

environmental and social wellbeing, must be presented with a variety of plans that accurately 

depict trade-offs for all parties [12, 52]. A politically charged process such as this would require 

accurate models to make justified and educated decisions. 

 

 

 

 

Figure 1. Arrangement of utility management. Adapted from [12]. 

 

 
 

The next scope of WEN studies is based upon circumstantial dependency. There are three 

established perspectives of WEN [53]: 

1) Energy use of water infrastructure for water service. 

2) Water use of energy infrastructure for power generation. 

3) Nexus of the urban system, where system changes impact energy or water consumption. 

 
This circumstantial dependence is the pivotal issue, creating a conflict of interest and difficult sets 

of trade-offs in strategy selections such as: private versus public services to supply energy and 

water, centralized versus decentralized infrastructure, pricing mechanisms, and facility placement. 

Organizational arrangements of utilities are one of the complications for data collection as well as 

integrated management and planning. These are issues with the first and second established 

perspectives. The third perspective is intricate, with multiple variables to consider. These 
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contradictions and limitations require a simplified method of analyzing and correlating water and 

energy consumption data in order to step forward. The cooperation of government, industry, 

research, and community is necessary to address the challenges of efficient planning and 

implementation of the policy. This challenge of planning, funding, regulation, data management 

and sharing, target setting, and study requirements are summarized in Table 1, adapted from [1]. 

 

 
Table 1. Current water-energy nexus challenges and address of these challenges. 

 

Current WEN Challenges Addressing WEN Challenges 

Management of water and energy 

performance is done separately. Planning, 

funding, regulation, and standards for 

water and energy are made separately; 

therefore, trading challenges between 

sectors. 

Comprehensive and cooperative 

management of water and energy sectors 

through a governance framework to ensure 

systematic efficiency. 

Methodologies for WEN studies are either 

inconsistent system boundary definitions 

or do not consider defining the system 

boundary. 

Standardized methodologies will lead to 

venerated practices and policies. 

Data sets and monitoring are inconsistent. Coordinated data sets and monitoring 

systems enable a variety of analysis and 

management strategies. Management 

responses  are  cooperative, understanding 
how each decision impacts the other sector. 

Unquantified indicators of urban 

performance or limited performance 

indicators that provide poor guidance for 

policy; analysis frameworks inconsistently 

applied. 

Identification of quantified indicators that 

simultaneously consider water, energy, and 

related flows to model and implement 

policy. 

Optimization analysis for the urban area for 

overall water and energy efficiency is 

absent. 

Optimization studies will contribute to the 

community planning and assess the 

efficiency of implemented strategy and 

policy to allow for effective step-by-step 

adjustments. 

Targets for urban systems are missing or 

unquantified. 

Quantified targets for resource efficiency 

of cities through the joint effort of 

government, industry, resident, and 
commercial sectors. 
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The challenges in Table 1 can be summarized in the inability to efficiently collect and analyze 

water-energy data. These originate from two main issues: 1) unstandardized data platforms 

between water and energy sectors and 2) inflexible model frameworks for management and 

efficiency evaluations [1, 11]. Further illustrated in Figure 2, the challenges of WEN studies 

provided in Table 1 disseminates from the raw data from both sectors with inaccessible and 

unstandardized data platforms. These issues feed into WEN studies with inconsistent boundary 

definitions and lack performance indicators to determine the efficiency of implemented plans. The 

challenge presented by raw data feed into the WEN study and management response, wherein the 

data complication feed-back into the insoluble cycle. 

 

 

 

 

Figure 2. Dissemination of WEN study challenges 

 

 
 

2.2. Boundary Conditions 

The scope of a study relies on defining the boundary of a system. With the system boundary 

condition as “a critical first step to modeling analysis,” there is an understanding that the scale of 

study defines the function and purpose of the analysis [54]. Numerous authors note the significance 

of system boundary to research conclusions [19, 48, 55, 56]. This helps to highlight the strength 

of the urban metabolism framework in a distinct system boundary leading to strong diagnostic 

options. The scale of the study will also reveal the data accessible and the type of framework that 
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is applicable for such analysis. Figure 3 illustrates how WEN studies vary from global to local 

scales with different functions, purposes, and types of framework. An overall review of various 

studies organized by dimension and scale is further discussed in the following subchapters. The 

following subchapters review past studies at each scale. Kenway [7] reviews each of these much 

more thoroughly with the methodologies utilized by each study. 

 

 

 

 

Figure 3. The scale of the study focusing on WEN. Adapted from [57]. 

 

 

2.2.1. Global 

Resource management is complicated as resources impact multiple stakeholders or interested 

parties. The crux of coordinating across one or more international boundaries lies in balancing 

socio-economic needs and environmental sustainability for more than one ruling party [57, 58]. 

This is commonly done through a benefits shared framework. International WEN conflict is often 

found in transboundary river basins and watersheds. Examples of nexus model frameworks 

centered around the Mekong River Basin [58, 59, 60], Euphrates-Tigris river basin [61], and the 

Amu Darya Basin of Central Asia [62] were all proposed to demonstrate cost-benefit values 

amongst countries. These studies provide a basis for international cooperation and mediation with 

proposals to enacting international laws under the guise of similar interest in resources [63]. The 
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Trans-Pacific Partnership (TPP) is a recent attempt at incorporating economic interests with 

environmental regulations on water and energy sectors, among many other sectors [64]. 

 

 
2.2.2. National 

The main goal of WEN studies at a national scale is to connect decision-making to efficiencies of 

water and energy resources. Policy and institutional arrangement reviews are performed to 

improve the management of the resources. Key challenges to be addressed in these studies at the 

national level include: water scarcity, irrigation pressure, climate shift, and resource stock capacity 

[1, 65, 66, 67, 68, 69, 70, 71, 72, 73]. The end goal for WEN studies at the national scale is for 

governing and management assessments for resource management. As discussed in Chapter 2.1, 

the National Energy-Water Science and Technology Roadmap developed by the Department of 

Energy (DOE) frameworks the steps to define and comprehend WEN, but there is difficulty in 

uniting policy through various state governments [40, 41]. Countries such as Italy, Zambia, Saudi 

Arabia, Australia have all made similar strides to establish national programs. The majority of 

programs remain in the initial stages of human and climate impact analysis with attempts toward 

implementing national policy and institutional changes [74, 75, 76, 77]. 

 

 
2.2.3. Regional 

Regional-scale WEN studies investigate the connections of water and energy consumption used 

for urban areas and the impacts on the peripheral area. Long-term regional water and energy 

resources management strategies are assessed with the inclusion of the raw water source and the 

main areas of consumption and wastewater production. This scale allows for the connection and 

integration of water and energy with the surrounding environment. Stepping further than national 

studies, the regional scale enables policy and management strategies to be tested for efficiency. 

The methodological frameworks established within some of these regional studies, specifically in 

California and Australia, include: Water Evaluation and Planning (WEAP), Long-range Energy 

Alternatives Planning (LEAP), regional scale-integrated WEAP and LEAP, and the integrated 

model framework of New South Wales [78, 79, 82, 81]. These frameworks employ a methodical 

approach with the aim to support efficient policy implementation and strategy development by 

illustrating trade-offs [57]. 
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2.2.4. City 

The connection between the studies of UM and WEN collides at the scale of the city. The city is 

illustrated as a focal point of resource flows [1, 57]. Urban centers permit a representable scope 

for solving several problems of resource efficiency with extensive, interchanging flows of water, 

energy, and materials within urban areas. Cities are the center of financial and research ventures 

with continued redesign and development of infrastructure [1]. The loose definition of the city 

leads to the difficulty of using it as a proper boundary. Within the largest cities, Satterthwaite [55] 

identifies four different boundaries: city core, contiguous built-up area, metropolitan area, and 

extended planning region. The increase in population and resource demand within cities is 

becoming an issue for current infrastructure design. Giradet [82] states cities are only expected to 

grow; 

“By 2030, 60% of the world population, or 4.9 billion people, are expected to live 

in urban areas. In developing countries, as villagers move to the city, per capita, 

resource consumption typically increases fourfold. Cities located on 3-4% of the 

land surface use 80% of its resources, and discharge the bulk of the solid, liquid, 

and gaseous waste.” 

At the city scale, research has lacked to link resource “flows to policy frameworks at multiple 

scales, from local to international” [83]. Understanding the flow of material through various factors 

that influence innovation and development of effective sustainability policies include: “political, 

demographic, economic, and geographical” [83]. The city boundary provides an intermediary 

connection between global and local consumption. This allows an overview that includes detailed 

information, a method that connects policy to local implementation. Numerous studies illustrate 

that water is the limiting factor for the sustainability of a city [18, 19]. It is a central feature of 

infrastructure design that has a singular focus despite having multivariate implications. Water and 

energy use are inextricably linked. Water infrastructure investment in order to accommodate 

growing urban demand encompasses a large portion of city spending [187]. These are often 

massive overhauls and redesigns in the facility as well as management structure [1, 19, 81]. 

Restrepo [84] identifies a lack of consistency among studies for comparison in addition to a lack 

of knowledge in the influence of political, legal, and institutional policy on WEN efficiency. 

Counter to the significant WEN connection, various current energy policy positions and energy 

strategies disregard water matters, as water strategies likewise disregard energy matters [81]. 
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These studies focus on climate and pollution impacts within water and energy sectors dealt with 

separately. This disconnect is true at a city scale, as noted by Kenway [1]: 

“In cities, management of water and energy is frequently shared across levels of 

government and private enterprise with little ability to communicate and analyze 

data. Management…is undertaken in isolation and too inconsistent boundaries.” 

At this scale, one can look into circumstantial dependence. A revision of the previously established 

perspectives of WEN through the retail water cycle provides more detail at the production scale 

[53]. Emerging links are confined to three categories: 1) production, 2) transportation, and 3) 

consumption, as seen in Figure 4. Production is defined by the treatment of raw water and 

wastewater. Transportation is defined by distribution from water resources to production and 

consumption nodes or connection points. Consumption is defined by end-user activities. These 

end-user activities can be defined by the node of consumption, buildings. Buildings are built with 

purpose, typically constrained by zoning code: residential, commercial, industrial, agriculture, and 

government/public use. Thorough studies have been completed to understand energy consumption 

in water production and distribution, but the consumption category remains a dynamic problem 

with many research sectors depending on the end-user activity. The reduction in the scale of study 

from a city to a local view to find these links, where measurements of water and electricity 

consumption over time are confined to the same boundaries, will avoid the data limitations listed 

above. 

 

 

Figure 4. The retail water cycle categorized into three WEN links. Adapted from [53]. 
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2.2.5. Local 

The local scale focuses on the direct analysis of the consumption category within the retail water 

cycle or end-user activities. The broad range of UM studies has developed the consumption 

category over time through varying perspectives: end-user metabolism [15, 77], industrial 

metabolism [30, 85, 86, 87], and household metabolism [17, 83, 88, 89]. Studies performed at the 

local scale provide an opportunity to study and influence the social behaviors and interactions 

within the boundary. For example, institutions, such as universities, provide reasonable testing 

grounds [90]. Bottom-up studies are composed of data sets including: building classification, 

HVAC systems, solar radiation exposure, energy consumption, and energy-efficiency approaches 

[91]. However, there has been an interest in a top-down approach to model the social and 

educational impacts of resource consumption on campus. Payam [92] found that the schedules of 

inhabitants influence the use of water and energy in a building more than any other factor, 

including outdoor temperature. Accurate forecasting requires a baseline maintenance consumption 

rate with dynamic functions representing human interaction within the building [93]. While these 

forecasts can provide a slew of results to guide decision-making, they require the accumulation of 

enormous data sets that are largely unavailable for analysis. 

 

 
2.3. Mathematical Modeling Approaches for WEN 

The discussion of the model approach is necessary to address the limitations in data set 

accessibility and model flexibility. This initiates the three-step process of building a model: 

specification/identification, fitting, and diagnostics [94]. The largest development in UM is the 

methodical framework. There are five main mathematical modeling approaches relevant to WEN: 

life cycle analysis, input-output modeling, mechanistic modeling, machine learning, and hybrid 

modeling discussed in the following chapters. 

 

 
2.3.1. Life Cycle Analysis (LCA) 

Life Cycle Analysis (LCA) studies the “entire life cycle of a product, from raw material extraction 

and acquisition, through energy and material production and manufacturing, to use and end of life 

treatment and final disposal” [95]. In the previous context, this would be the application of emergy 

in the retail water cycle. There are four phases in LCA: objective and specific aim definition, 
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inventory examination, impact assessment, and result interpretation [95]. LCA is a methodical 

overview, providing a tool to examine trade-offs and complexities. Following this type of analysis, 

subjective discussions in the “interpretation stage” are made, shifting potential environmental and 

political burdens between life cycle phases or specific system processes. This analysis helps to 

define the WEN relationship on a large scale – global to city scales – but does not aid management 

optimization. This focus of WEN has been saturated with research and has expanded into other 

areas such as the water-energy-food nexus [96, 97]. This mathematical model requires extensive 

data sets to function, conflicting with the data accessibility limitation. 

 

 
2.3.2. Input-Output Modeling 

Developed by Wassily Leontief [98], input-output analysis (I-O) is a quantitative economic 

procedure based on the mutuality amongst the economic sectors. Input-output analysis is 

fundamentally a theory of production based on a specific type of activity. This method is frequently 

used to evaluate the impacts of economic shocks, whether negative or positive, and analyze the 

aftershocks throughout an economy. Its key relationships center around the production processes 

within the involved technology that produces the quantities of inputs and outputs. I-O modeling 

does not present a theoretical overview of either the supply or the demand side of the system of 

study. It does not map alternative behaviors to optimize the system. Improvement on the supply 

side is precluded by the assumption that the input values used are directly proportional to the output 

values; therein, one correct solution is attainable. Optimization of the demand side is dependent 

on whether the I-O model is open or closed. In the closed models, the inner workings of the system 

are technologically determined. In other words, the system of people is given a designated value, 

and therefore, does not have optimizing choices. In the open models, part of the system is 

designated not as products but as consumption or demand. This open system falls in line with the 

retail water cycle discussed in Chapter 2.2.4. 

Wolman [18] developed a simple input-output linear model for urban metabolism study. Wolman 

relied on the system inputs going into a ‘black box,’ which represented all activities and 

transformations before becoming an output. This would be an example of a closed system. The 

black box requires a boundary condition around the city and does not take into account the inner 

workings or activities of the urban system. In more recent studies, the input-output model has been 
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established as a strong tool investigating economic pressures on resource pools and the 

environment of the urban center, revealing both direct and indirect links of resource consumption 

[ 99, 100], exploring the resources pressure transfer through economic trade networks [101, 102], 

and distinguishing the driving force of resource consumption from an economics perspective [103, 

104]. Additionally, the model can be used to examine the supply chain effects on resource 

consumption in an economic system by examining the linkages amid sectors [105, 106]. The 

linkage analysis resulting from input-output analysis is an effective approach to categorize each 

supplier and consumer within a sector. Duarte [105] supplemented the terms of linkage analysis 

with component descriptions: internal impacts, mixed supply-consumption linkages, backward 

linkage processes, and forward linkage processes. These descriptors help to distinguish crucial 

sectors from a consumption perspective. 

An economic network perspective can “apply linkage analysis to a particular case of the water- 

energy nexus in an urban system, in order to explore the production and consumption structure of 

both water and energy resources, as well as the interconnected relationship between two essential 

resources” [107]. Many researchers, like Kenway [1] among others, have determined that “IO 

analysis captures big picture and more remote linkages for the entire economy; however, it is 

difficult to apply at city-scale” and is suited for regional or national levels. Girardet [108] proposed 

a cyclical urban metabolic model because “linear sequence did not accurately emulate real 

organisms.” Duan [109] agrees with this statement in contrasting natural metabolism to urban 

metabolic pathways, where the urban pathways were too long, and the circulation of materials and 

energy was too inefficient and incomplete. Recent studies and models attempt “to move the water– 

nexus construct beyond an input-output relationship into the realm of resource governance” [68]. 

Model flexibility is necessary to shift from forecasting to optimization applications. 

 

 
2.3.3. Mechanistic Modeling 

Mechanistic modeling is based on the fundamental laws of natural sciences with the purpose of 

representing real-life events through assumptions on mechanisms or processes. This involves using 

experimental data sets to construct and calibrate a model then validates through data. The 

mechanisms are composed of simplified mathematical formulations to determine possible input- 
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output behaviors. Analytical tools determine whether the range of possible input-output behaviors 

predicted by the model are consistent with experimental observations [110]. 

Zhang [111] redevelops the black box theory from Wolman [18], defined as inner details, or 

efficiencies, of system/s unknown. Zhang replaces the black box with an inner network process 

for urban metabolism. The metabolic process is defined with input, conversion, cycling, and output 

of materials and waste from a top-down perspective. This concept merges the frameworks of LCA 

and I-O. The object’s environment and life cycle end at the boundary of the system. Exchanges 

across the boundary are designated as inputs and outputs, depending on the flow direction [111]. 

Connections between urban metabolism and spatial distribution of land-use types were extensively 

[112-118] analyzed in both directions- the top-down approach and the bottom-up approach. This 

helps to establish the need to incorporate local geographical data and geographic information 

system (GIS) mapping with the model. Zhang provides a thorough review that lists all the cities 

which have performed accounting exercises to develop an urban design [111]. All perspectives of 

end-user metabolisms, single metabolic flows, emergy, and spatial location-specific models have 

advanced early research. With this early research and accounting exercise, studies have begun to 

turn into tools for development. 

The quantity of energy used for water services in densely settled areas depends on factors such as 

local topography, quality of raw water, advancement of treatment technology, and quality 

measurements of environmental and citizen wellbeing [37]. However, there is more to WEN than 

the footprint values that have been established through metrics of carbon, energy, or water 

consumption. The value of WEN requires socio-economic and environmental ‘externalities’ in 

order to identify opportunities for technological and management innovation as well as the 

implications of these investments within the city. Scholars began to develop an idea of UM and its 

relation to social factors. 

Boyden [118] reviewed factors such as housing, air pollution, mortality, health, wellbeing, crime, 

and future urban development to evaluate the metabolic status of the City of Hong Kong, China. 

Newman used social factors such as the wellbeing of residents, employment rates, and education 

in order to include human opportunity and livability as measures for urban metabolism [119]. 

Schiller [120] established a flow linkage between energy and material with social theory by 

exploring potential “communicative action” to adjust “social relativity,” where the idea of a bi- 
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directional cause and effect relationship” is apparent. This shows that an accurate model requires 

accounting for system sensitivities and multiple effects/counter-affects. Due to the lack of 

connection within the city scale, the efficiency of implementing new strategies and technologies 

cannot be properly measured between macro and micro scales. 

Mechanistic modeling conceptualizes original hypotheses for fundamental mechanisms that are 

generated through relatively few observations of the study focus. There is flexibility in the model's 

ability to be developed with small amounts of data; and, once validated, can be used as a 

forecasting tool where experimental data is hard to access [110]. The complexity of these models 

requires time for fine-tuning. For this reason, adaptability for scale and cross-study examination 

becomes difficult. Other disadvantages of mechanistic models are composed of oversimplified 

assumptions built on hypothesis; and poor prediction power. Modeling human interaction with the 

environment is one of the main drivers of WEN and requires a flexible, stochastic approach. This 

will be discussed further in Chapter 4. 

 

 
2.3.4. Machine Learning 

Machine learning models are applied to parse relevant inputs from large datasets for a provided 

output. Artificial Intelligence (AI) is the application of machine learning to solve actual problems. 

AI is a complex combination of computer science, physiology, and philosophy that attempts to 

mimic human brain learning capabilities. According to Bellman [121], “AI is the automation of 

activities that we associate with human thinking, activities such as decision-making, problem- 

solving, learning.” The AI improves forecasting performance over time, learning by trial and error. 

This is counter to traditional model methods that rely on procedural coding based on logic, if-then 

rules, and decision trees [122]. 

There are currently two major types of AI: symbolic and computational intelligence [123]. 

Symbolic AI focuses on attempts to structure knowledge bases by simulating human intelligence 

and expertise of certain fields. The most well-known symbolic AI method is the expert system 

(ES). The purpose of ES is to understand the inside mechanisms of a real-life system and to predict 

its behavior. Expert systems provide advice and solutions to humans and appropriately use that 

advice and solutions to get better predictions. The advantages of ES are the ability to: 1) intake 

large amounts of information, 2) impute missing data, and 3) reduce the time required to solve 
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problems. The over-reliance on large, clean datasets is a disadvantage of ES, falling into the 

limitation of data accessibility [123]. Computational intelligence focuses on using a computational 

algorithm to deal with complex, real-world. The two most common types of the computation- 

intelligence method are genetic algorithms (GAs) and artificial neural networks (ANN). These 

models are discussed in Chapters 4.4 and 4.5. 

The application of AI in time-series analysis has gathered the attention of many studies proposing 

new ML frameworks, methodological advances, and accuracy improvements [124-130]. Many of 

these studies fail to provide evidence of performance versus other models. Conclusions are often 

condemned to three limitations [122]: 

1) Report conclusions are not statistically significant, typically based on a few or even a single 

time-series. 

2) Method forecasting time frames, or horizon, are limited to short-term or one step ahead. 

These forecasts do not consider alternative time frames such as medium and long-term or 

multiple steps. 

3) Lack of benchmarks to compare the accuracy of tested ML methods with alternatives. 

 
With these limitations, it is clear that all data sets and model goals are different. The flexibility of 

machine learning models makes it hard for cross-study examination. However, there is a demand 

for consistent results and repeatability. 

 

 
2.3.5. Hybrid Modeling 

Hybrid modeling is a concept of highlighting the strengths and reducing the disadvantages of two 

or more models. The advantage of statistical linear modeling is the ease of use and the ability to 

capture patterns. The major limitation is the rigid pre-assumed linear relationship with past events. 

A linear approach may not be adequate for real-world data. The advantage of machine learning is 

the flexible, non-linear modeling capability. The limitation of scalability in mechanistic techniques 

can be overcome with the use of machine learning. In addition, the advantages of mechanistic 

models can be exploited by machine learning algorithms both as temporary inputs and later as a 

validation model [110]. The literature on hybrid modeling was advanced by Reid [131] and Bates 

and Granger [132]. Clemen [133] provides a thorough review of heterogeneous hybrid models. 
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Supported by theoretical and empirical findings in neural network forecasting research, the 

combination of diverse methods can significantly and efficiently improve forecasting performance. 

Pelikan [135] and Ginzburg and Horn [136] proposed combining several feedforward neural 

networks to improve time-series forecasting accuracy. Several hybrid models composed of the 

autoregressive moving average (ARIMA) and artificial neural networks (ANNs)applied to time- 

series forecasting with improved model performance. These models will be discussed in chapter 

4. The hybrid modeling technique is an attempt to address both limitations of WEN, data set 

accessibility, and model flexibility. 

 

 
2.4. Adaptive Approaches to Solutions 

The WEN studies, within the UM framework, have developed over time from an accounting 

exercise into a design tool. Kennedy [77] provides a further detailed chronological assessment that 

shows this development. The application of these design tools has branched out in various studies. 

Kenway [1] breaks down possible applications for UM developed into four categories: 

sustainability indicators, greenhouse gas accounting, policy analysis via dynamic mathematical 

models, and a tool for strategy and design. 

The use of UM as a means of sustainability indicators is done with an analysis of the efficiency of 

energy and material cycles, waste management, and infrastructure of an urban system. This use is 

outlined by Maclaren [137] and allows for a deeper understanding of the resilience of a city. UM 

studies have applied greenhouse gas as a primary variable, similar to the concept of energy as the 

primary variable in ‘emergy’ discussed in chapter 2.1, where all material flows translate into a 

single value of greenhouse gas emissions for each activity; examples can be found in [1, 15, 138]. 

Policy analysis through the use of Dynamic mathematical models have been explored more 

extensively; for example, SIMBOX [139] and STAN [140, 141]. These dynamic mathematical 

models include the representation of sub- system processes, resource pools, and links within the 

boundary-defined system to economic modeling. 

While some models are useful for accessing current resource pools and linkage flows, they can be 

used to simulate future changes to UM as a result of technological interventions or policies. UM 

models are particularly advantageous for classifying resolutions to environmental issues beyond 

‘end of pipe’ approaches. In this respect, studies allow for analysis of technology or policy 
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implementation. This is first shown in work by Oswald and Baccini [142] in ‘Netzstadt.’ It 

establishes structural and physiological tools, which can be used in the “long process of 

reconstructing the city,” with the recognition that the center-periphery model of cities is outdated 

while also recognizing current trends of expanding urbanization as unsustainable. It integrates UM 

by establishing four principles of redesigning cities: adaptability, sustainability, redevelopment, 

and accountability, as well as five criteria of urban quality: identification, diversity, flexibility, 

degree of self-sufficiency, and resource efficiency. Examples and uses for this are found in New 

Orleans after the effects of Hurricane Katrina as well as environmentally conscious designs for the 

city [190]. This adaptive analysis allows for the production of numerous solutions to a single issue. 

Identifying both physical and organizational reconstruction possibilities advance system efficiency 

in allocating resources. The limitation of data accessibility and model flexibility become evident 

with the discussion of complex design tools. 



23 | P a g e  

Chapter 3. Existing Models to Forecast WEN 

 
The previous chapters have established WEN study limitations in data set accessibility and model 

flexibility. Therefore, exploring the model approaches and data set types determines which models 

are viable. The model approach is dependent on the study, whether the hypothesis is developed 

initially. It may also be dependent on data. The choice of modeling approach (top-down, bottom- 

up, or middle-up) and the specific model choice is determined by the data set type and data set 

availability. Type of data is discussed through load forecasting terms in order to discuss time- 

series analysis. Load forecasting is the foundation for establishing robust and efficient 

management operation schedules as well as future facility expansion [143]. The scale (or 

boundary) of a data set determines the proper model required for forecasting. After the appropriate 

model approach and data types are determined, data preprocessing is conducted to clean and 

standardize data sets. 

 

 
3.1. Approaches: Top-down, Bottom-up, and Middle-out 

The approach of model structuring is the process to define and analyze data requirements to 

identify a model and includes three main approaches: top-down, bottom-up, and middle-out; see 

Figure 5. The top-down approach starts with a hypothesis and builds a model with data to solve 

the stated issue(s) and aids in governing and policy decisions. This approach has the ability to 

establish system behavior constraints and performance goals within the model limits. The top- 

down approach generally employs stringent mathematical tools such as classical and stochastic 

control theory, constraint estimation, and optimization theory. The bottom-up approach is typically 

a mechanistic model, utilizing available data to make exploratory insights or reverse engineer a 

system with the parts making up the system to illustrate the system processes as a whole. The 

analysis tools available in the bottom-up approach are extremely efficient in describing the average 

system behavior. The bottom-up approach is dependent upon probability methods such as mean- 

field statistics and dynamical system theory. The middle-out approach focuses on a validation 

variable through time-series analysis. The middle-out approach is generally implemented on 

projects that require system improvement or optimization [144, 145]. 
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Figure 5. General analysis approaches: Top-down, Bottom-up, and Middle-Out. 

 

 

3.1.1. Top-down Approach 

The top-down approach treats the boundary of study as a black box or material sink and applies 

available datasets to describe the system. The top-down approach maintains an initial focus on 

information of higher-level concepts, such as identification and classification of data populations, 

membership rules, and relationships between such data populations. This approach allows 

engineers to create a system from scratch to explain an issue but requires time and resources. In 

the view of the WEN, the top-down approach helps to determine the impacts on water or electricity 

consumption due to long-term fluctuations. Variables frequently used by top-down models tend to 

be explanatory, including macroeconomic (i.e., GDP) and environment wellness indicators, 

housing construction rates, and estimates of appliance inventory within a boundary of study. The 

primary purpose of the top-down approach in relation to water and electricity consumption is to 

determine supply requirements. The strength of the top-down approach lies in the ability to rely 

on aggregate data—wide availability, simplicity, and reliability on historical values. In reference 

to the scale of the city, the census provides an abundance of available datasets. The drawback is a 

reliance on historical data. This does not provide a capability to model the development and 

implementation of new technology and policy. There is a lack of model flexibility. The simplicity 

of top-down modeling highlights the lack of detail regarding the activities involved in the 
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consumption of water and energy; therefore, it eliminates the ability to designating improvements 

necessary to implement and critique policy and technology innovation. 

 

 
3.1.2. Bottom-up Approach 

In contrast to the top-down approach, the bottom-up approach calculates values through a detailed 

step-by-step process and aggregates the values to represent a whole system. A bottom-up approach 

requires an engineered modeling method with two categories: comprehensive and simple. WEN 

models with bottom-up approaches use physical principles and consumption behavior within the 

designated boundary (i.e., building, city, state, or nation). For a detailed, comprehensive model of 

a building's consumption, intricate formulas are utilized to determine the building baseline 

maintenance consumption along with variations to the baseline due to human interaction. These 

formulas are impacted by four factors: energy balances of indoor and outdoor climate (to be 

referred to as “localized artificial climatic forcing”), the physical construction of the building, 

utility rates linked with social interaction, and the technology that is interacted with to consume 

the material—water or energy. As this approach begins to reach out of the focus of this report, 

readers may refer to [92, 93, 146, 147, 148] for detailed energy consumption calculations and [149, 

150] for detailed commercial and residential end uses of water, respectively. 

 

 
3.1.3. Middle-out Approach 

Both top-down and bottom-up modeling approaches require a clear definition of the variable of 

the study. WEN is ill-defined and varies depending on what approach is used. A middle-out 

approach is required in order to optimize models through both top-down or bottom-up approaches. 

The relationship between water and electricity consumption over time is the first step before 

introducing other variables, as seen in Figure 5. The reduction of modeling to univariate time- 

series establishes a flexible model able to produce validating forecasting data with limited initial 

training datasets. This simple forecasting model would serve as the foundation of building complex 

models for WEN studies. The middle-out approach focused on univariate time-series analysis 

addresses the fundamental problem statement of data limitations and accessibility for WEN and 

optimizes current models and policy decisions. Results from the middle-out approach can be used 

to validate models and results from top-down and bottom-up approaches. It is the best next step 
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for WEN studies that seem to have stagnated from data inaccessibility, inconsistency between 

studies, and lack of optimization capabilities. 

 

 
3.2. Types of Data Sets 

Types of data sets for forecasting the purposes of water and electricity consumption vary from the 

time scales, short-term versus long-term time spans, and a number of available variables within 

the given time frame. These variances in data set types have different end goals. For example, the 

electric power load forecasting (EPLF) terms of the time-series forecasting horizon duration, 

which can be expanded to other resources/utilities, are as follows: short-term load forecasting 

(STLF), medium-term load forecasting (MTLF), and long-term forecasting (LTLF). The bounds 

of the horizons are one day, two weeks, and three years, respectively [151], as seen in Figure 6. 

Short-term load forecasting is an immediate analysis for demand response and scheduling. 

Medium-term forecasting is utilized as operation control, system planning, and resource trade. 

Long-term forecasting is utilized over weeks, months, and years for the purpose of capacity 

planning, maintenance scheduling, and policy. 

 

 

 

 
Figure 6. Forecasting capability based on the time frame of the data set. Adapted from [151]. 
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The complexity of a model revolves around the number of input variables, either multivariate -- 

multiple variables or univariate -- one variable, with respect to time. Multivariate forecasting 

models have strength in short-term forecasting and connecting other factors. As the time scale is 

increased to long-term forecasting, the significance of multiple variables begins to degrade. 

Therefore, univariate forecasting models have strength in long-term forecasting and limited data 

accessibility. 

There is an argument that univariate models are sufficient for short-term purposes by claiming that 

multiple variables put parsimony and robustness at risk [152]. This claim is formed around the 

reliability of the data and how it is processed; for example, incorporating models with climatic- 

based data sets reduces dependability to predicted climatic inputs. An additional complication to 

multiple variables, data processing is necessary to recognize patterns like trend and seasonality as 

well as white noise or randomness for various data sets. Univariate time-series analysis is of 

interest due to the middle-out approach’s ability to address WEN limitations of data accessibility 

and model flexibility. 

 

 
3.3. Data Preprocessing 

In order to properly analyze a time-series, modeling techniques may require all observations to be 

independent. However, observations in a time-series are time-dependent. This requires the time- 

series to be stationary. A stationary time-series requires a constant variance, mean, and auto- 

correlation over time, as seen in Figure 7. To test the stationarity hypothesis, one must distinguish 

whether a time-series has a unit root. A unit root is evidence of more than one trend within the 

series. The two-unit root tests performed to determine hidden trends within specific orders of 

differencing are the Augmented Dickey-Fuller Test (ADF) and Phillips-Perron Unit Test. 
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Figure 7. Examples of stationary and non-stationary time-series. 

 

 

The Dickey-Fuller test is a unit root test that accesses the null hypothesis that α = 1, with α (alpha) 

as the coefficient of the first lag on Y. 

yt =c  + þt + α(yt–1) +  ߮ 6Yt–1 + et 

where, (yt–1) = lag 1-time-series; and  ߮ 6Yt–1 is first difference of time-series at the time(t-1). 

This is a similar null hypothesis as the unit root test. If the coefficient of (yt–1) is 1, the 

assessment implies the existence of a unit root. If not rejected, the assessment concludes the time-

series is non- stationary. The augmented Dickey-Fuller (ADF) test expands the Dickey-Fuller test 

equation to include the high order of the regressive process in the model [153]. The critical t-

distribution values that test results should be less than (<) for the Dickey-Fuller and Phillips- 

Perrone tests are listed in Table 2. 

Table 2. Critical values for the Dickey-Fuller t-distribution test. 
 

Critical values for Dickey-Fuller t-distribution test 

 Without Trend With Trend 

Sample Size Value at 5% confidence Value at 5% confidence 

25 -3.00 -3.60 

50 -2.93 -3.50 

100 -2.89 -3.45 

250 -2.88 -3.43 

500 -2.87 -3.42 
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Phillips-Perron (PP) test is similar to the ADF test, generating data for higher orders of 

autocorrelation [154]. The PP test is non-parametric and does not require the selection of the level 

of serial correlation or lag functions as in ADF. Similar to the DF test in many ways but has the 

ability to conduct autocorrelation and heteroscedasticity corrections. Both tests work well in large 

samples but are susceptible to poor results with small sample sizes. 

The preprocessing options for time-series stationarity are transformation, deseasonalize, 

detrending, and combination. Transforming the data utilizes log or the Box-Cox [155] power 

transformation to achieve stationarity in the variance. If there are significant patterns in the data, 

autocorrelations at lag 4 or 12 may exist. Deseasonalizing the data uses the classical, multiplicative 

decomposition approach [156]. If there is a change in mean overtime or trending, detrending is 

applied to the data. A Cox-Stuart test [157] is conducted to evaluate the existence of a deterministic 

linear trending or exponential trending. Elimination of these trends from the data is necessary to 

achieve time-series stationarity. All techniques can be applied simultaneously to adjust the time- 

series [122]. 
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Chapter 4. Modeling for Univariate Time-Series Forecasting 

 
When data sets are limited to one variable over time, the choice of model is reduced to a time- 

series analysis. In the interest of UM and WEN studies, the data sets are specified to water and 

electricity consumption over time. Time-series analysis uses past observations of the same 

variable(s) to analyze and separate patterns from random error to define underlying relationships 

to predict future behavior [111]. There are two main types of time-series: deterministic and non- 

deterministic. Deterministic time-series are analytically expressed with no random or probabilistic 

aspects. By contrast, a non-deterministic time-series cannot be explained by an analytic expression 

as there are non-linear and random elements to the time-series. 

The aim of time-series forecasting is to take real-world data composed of a mixture of both 

deterministic and non-deterministic time-series and forecast a sequence of observations. Since 

non-deterministic time-series is composed of a random element, probabilistic methods are taken 

into consideration. Randomness is a means of statistical terms rather than explicit mathematical 

relations, i.e., means and variances. A probabilistic model depends on the availability of historical 

data for training stages as well as on the temporal autocorrelation function of the input variables 

[158]. Addressing both deterministic and non-deterministic data set possibilities, models typically 

used for univariate time-series analyses are linear regression, ARIMA, Holts-Winter exponential 

smoothing, Genetic Algorithm, Artificial Neural Network, Exponential smoothing with gradient 

smoothing, and Hybrid SARIMA-ANN. 

 

 
4.1. Linear Regression 

Common types of linear regression models are simple and multiple linear regression. The simple 

linear regression (SLR) model relates a single independent variable to a single dependent variable, 

and its mathematical formation is expressed, as shown in Equation 4.1: 

y = Nx ± c ± e Equation 4.1 

 
where y is equal to the dependent variable, x is equal to an independent variable acting as a function 

for the dependent variable, m is a coefficient that represents the slope of the line, c is an intercept, 

and e is an error term. The model approaches a perfect solution as the SLR model coefficient m 

approaches the value of 1. Multiple linear regression (MLR) model is an expansion of SLR by 
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integrating more than one independent variable as a function of the single dependent variable, as 

shown in Equation 4.2: 

Y(x) = k1x1 + k2x2 + kixi ±C ±e , Equation 4.2 

 
where Y is a dependent variable, x1, x2, ∙∙∙∙∙∙, xi (i = 1, 2,ꞏꞏꞏꞏ ,n) are independent variables, k1, k2, 

∙∙∙∙∙∙, ki (i = 1, 2, ꞏꞏꞏꞏ,n) are the coefficients of a linear relationship, c is a constant, and e is an error 

term. To produce a more reliable model for the MLR model, multiple independent variables are 

filtered to select the most significant combination of variables. 

The performance of the SLR model is assessed by a correlation coefficient (R), which assesses the 

linear relationship between two variables. The range of R is between -1 and 1. If the value of R is 

-1 or 1, the variables are highly negatively or positively correlated; however, if R closes to 0, the 

variables are not correlated. In addition, the coefficient of determination (R2) is commonly used to 

assess the performance of the model. The range of R2 is the same as that for the R-value. When R2 

is close to 1, the fitted trend-line is very close to the actual value; it is far from the actual value 

when R2 is close to 0. 

There are two commonly used variable selection methods: forward stepwise selection and 

backward stepwise selection [159]. In the forward stepwise selection method, the model begins 

with no independent variables in the model and then adds independent variables one at a time until 

no variables present strong evidence of their importance in the model. The p-value is used to select 

the variables based on statistical significance. Backward stepwise selection is the reverse of the 

forward selection method. This method starts with all potential independent variables. Variables 

are eliminated one at a time until the remaining variables have significant p-values. 

With application to time-series, the choice between univariate and multivariate times series models 

determines the end goal and complexity of the model. Univariate time-series forecasting is the 

simplest method, using the information on the variable to be forecast. There is no attempt to 

discover explanatory factors of the behavior of the variable. The only goal is to determine what is 

happening with the variable over time. The pattern of the variable will typically be composed of 

trending, seasonal patterns, and white noise, or error. In this case, Equation 4.3 represents a suitable 

time-series forecasting equation; 
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EDt+1 = ƒ(EDt , EDt–i, … , error) Equation 4.3 

 
where t is the present day, t+1 is the next day, t−1 is the previous day, t−2 is two days ago, and so 

on. The prediction of the future, t+1, is based on past values of a variable. The “error” term 

represents a random variable and the effects of relevant variables that are not included in the model. 

As discussed in chapter 3.2, the univariate model has strength in long-term forecasting and limited 

data access. 

Multivariate time-series models are much more complex, explanatory models. Multivariate time- 

series models use influencing factors, or predictor variables, to predict what will happen in the 

future and why that variable is happening. The type of variable is dependent on the approach, top- 

down or bottom-up. These variables are called predictor variables. For example, forecasting the 

daily electricity load demand (ELD), a model with predictor variables could be illustrated as; 

LD = ƒ(TENEERATURE, ECONONIC strength, eoeulation, day oƒ week, error) Equation 4.4 

 
The normal distribution of the error illustrates no hidden patterns to be explained by an additional 

variable. This type of model would be found in either a top-down or bottom-up approach. Direct 

relationships or correlations are used to formulate an algorithm with these variables. See Chapters 

3.1.1 and 3.1.2 for a review of types of data relating to the model approach. The third type of model 

type combines the explanatory and time-series features of the above two models. The equation 

would be similar to the previous Chapters 4.3 and 4.4, as seen; 

EDt+1 = ƒ(TENEERATURE, eoeulation, EDt , EDt–i, … , error) Equation 4.5 

 
This type of “mixed model” is designated various names depending on the discipline, including 

dynamic regression models, panel data models, longitudinal models, transfer function models, and 

linear system models. These explanatory models are found in top-down or bottom-up approaches 

as they describe why something is happening. These mixed models are useful because they 

incorporate information about other variables rather than only historical values of the variable to 

be forecast. There are disadvantages to utilizing explanatory or mixed models. The system may 

not be understood properly. The data sets necessary to model an elaborate system would be 

extensive. If extensive datasets are accessible, accurate correlations assumed to direct the 

explanatory variable behavior may prove difficult to measure. Due to the varying reliability of 

these correlations between explanatory variables and outputs, the time-series model may provide 
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more resilient correlations and reliable forecasts than those provided by the explanatory or mixed 

model. Therefore, the model to be implemented for the forecasting analysis is dependent on the 

model approach, dataset availability, competitive model accuracy, and model result application. 

The discussion advances through the various methods used for long-term univariate forecasting – 

as this becomes the focus of the problem statement – to address the data limitations of WEN 

studies: data accessibility and model flexibility. 

 

 
4.2. Auto-Regressive Integrative Moving Average (ARIMA) 

The auto-regressive integrative moving average (ARIMA) model is an assembly of autoregressive 

(AR) coefficients and moving average (MA) coefficients. The AR coefficients are multiplied by 

past values of the time-series and MA coefficients multiplied by past random shocks [155, 160]. 

The integrative term provides the differencing tool utilized to stationarize the time series. The 

values of the AR and MA coefficients are chosen such that the data preprocessing tests with 

autocorrelation function (ACF) and partial autocorrelation function (PACF) simulate the estimated 

ACF and PACF for the modeled time-series. ACF is an auto-correlation function that provides 

values of auto-correlation of a time-series series with past values. Simply, it describes the influence 

of lagged values on the current value. Similar to ACF, PACF finds correlations of the residuals. 

ARIMA modeling requires a stationary time-series (with constant mean, variance, and 

autocorrelations). Nonstationary time-series are assimilated into stationary time-series through 

simple operations and transforms, such as differencing and taking the log transform, see Chapter 

3.3 for data preprocessing of nonstationary series. After this preprocessing, the ARIMA can be 

applied to the time-series for forecasting modeling. 

Box and Jenkins [155] proposed a simple three-stage procedure for synthesizing accurate ARIMA 

models: 1) identification, 2) estimation, and 3) diagnostic checking. The model construction 

process requires data set separation where an end portion of the time-series is set aside in order to 

validate the forecasting accuracy. In stage 1) identification, the data preprocessing unit tests of 

ACF and PACF are calculated for the available time-series data. If these unit tests indicate 

nonstationarity, conversion of the time-series to a stationary series is performed through 

appropriate transforms and differencing operations. In addition, this action can be done through 

nonseasonal and seasonal lags. The ACF and PACF tests provide a guideline or skeleton 
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framework for the ARIMA model to simulate the resulting stationary time-series. Tentative 

ARIMA models offer numerous options. The best option is a subjective part of the analysis 

process. 

In simple terms, the ARIMA model is a time-series stationarized by integration terms (differencing 

or detrending) and simulated through a combination of AR and MA portions; all with the ability 

to include seasonal and nonseasonal patterns. The qualifications for a good forecasting model are 

accurate forecasts as well as parsimonious coefficients; i.e., the least number of coefficients 

necessary to explain the available data. In stage 2) estimation, these model coefficient values 

project forecasts that are then compared to actual values and adjusted to minimize a standard for 

the residual errors. Comparison of ARIMA model coefficient values is made through evaluating 

statistical quality, reduction of multicollinearity, and satisfying stationarity and invertibility 

restrictions [155, 161]. Once the ARIMA model fulfills all the requirements and designated 

standards, the resulting forecast residuals are tested for unit roots to illustrate statistical 

independence from random noise. This leads to stage 3) diagnostic checking, unit root tests ensure 

that forecast residuals are a) statistically minor, b) reduce variance, and their ACF function does 

not have significant short-term autocorrelations. 

The seasonal auto-regressive integrative moving average (SARIMA) model is an expansion of 

ARIMA modeling suitable to define the linear relationship of a non-deterministic time-series with 

seasonal variation. The SARIMA model employs three terms to forecast univariate data: 

differencing term, auto-regressive (AR) term, and moving average (MA) term. Seasonality in a 

time-series is denoted by recurring pattern shifts that repeat over S time periods, where S defines 

the number of lags until the pattern repeats again. For example, monthly data typically 

demonstrates seasonality where patterns within the values tend to occur in particular months. In a 

year-to-year case, S=12 represents the time lag of months in a year. The following subchapters are 

presented for the discussions about the fundamental structure and identification of the best model 

structure. 

The added differencing strengthens the traditional ARIMA model. A time-series {Zt|t=1, 2, …, k} 

is generated by SARIMA (p, d, q) (P, D, Q) s model with a mean (µ) of Box and Jenkins time- 

series model is represented by Equation 4.6; 
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  ߮p(B)0P(Bc)(1— B)d(1 — Bc)D(Zt — µ) = 8q(B)©Q(Bc)at Equation 4.6 

 
where p, d, q, P, D, Q are integers; s is periodicity; $(B) = 1−$1B−$2B2−…−$pBp, 8(Bs) = 

1−81Bs−82B2s−…−8PBPs, 8(B)  =  1−81B−82B2−  …  −8qBq,  and ©(Bs)  =  1−©1Bs−©2B2s−  … 

−©QBQs are polynomials in B of degree p, q, P, and Q; B is the backward shift operator; d is the 

number of regular differences, D is the number of seasonal differences; Zt denotes the observed 

value at time t, t=1, 2, …, k; and at is the estimated residual at time t. 

The SARIMA model involves the same 3-stag iterative cycle from the ARIMA model [161]: 1) 

identification of the SARIMA (p, d, q)(P, D, Q)s structure; 2) estimation of the unknown 

parameters; and 3) diagnostic checks on the estimated residuals. This is followed by validating 

forecasting future outcomes based on the known data. 

The random error, at is expected to demonstrate independence with ACF unit tests. This is shown 

through the normal distribution of residuals, displaying mean=0 and reduced variance a2. The roots 

of $(Z)=0 and 8(Z)=0 should all lie outside the unit circle. It was suggested by Box and Jenkins that 

at least 50 or preferably 100 observations should be used for the SARIMA model. 

Choosing the best fit model structure requires a subjective analysis. To aid in ARIMA construction, 

Duke University provides 13 guidelines [162]: 

1) Identification of difference variable (I) and the constant: 

A. If the series presents positive autocorrelations in high lag values (10 or 

more), a higher-order of differencing is required and possibly indicated 

seasonality. 

B. If the lag-1 autocorrelation is negligible, then the series does not require a 

higher-order of differencing. If the lag-1 autocorrelation is -0.5 or more 

negative, this may be indicative of over differencing. 

C. Optimization of differencing the time-series is typically done with the focus 

on lowering the standard deviation. Impacts of over/under differencing may 

be adjusted with AR or MA terms. 

D. Stationary time-series do not require differencing. First-order differencing 

assumes the original time-series has a constant average trend. Second-order 

differencing assumes that the original time-series has a fluctuating trend. 
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E. Zero and first-order differencing typically involve constant terms in order 

to account for a non-zero mean value. In contrast, second-order differencing 

typically does not need to apply a constant term. 

2) Identification of AR and MA coefficients: 

A. If the partial autocorrelation function (PACF) of the adjusted (differenced) 

time-series illustrates under differencing through a sharp cutoff and/or the 

lag-1 autocorrelation is positive, it is possible to reduce the impact with 

additional AR terms to the model. The PACF test will show a cutoff lag that 

may indicate the AR coefficient terms required. 

B.  If the autocorrelation function (ACF) of the adjusted (differenced) time- 

series illustrates over differencing typically indicated by a sharp cutoff 

and/or the lag-1 autocorrelation is negative, it is possible to reduce the 

impact with additional MA terms to the model. The ACF test will show a 

lag cutoff that may indicate the MA coefficient terms required. 

C. Model parsimony must be maintained, reducing the number of AR-MA 

terms. This is highlighted by the possibility of AR and MA terms canceling 

each other out. 

D. If the sum of the AR coefficients is almost exactly 1-- indicating a unit root, 

it is recommended to reduce the number of AR terms and increase 

differencing. 

E. If the sum of the MA coefficients is almost exactly 1 -indicating a unit root, 

it is recommended to reduce both the number of MA terms and the order of 

differencing. 

F. Another unit root test for AR-MA terms is indicative in erratic or unstable 

long-term forecasts. 

3) Identification of model seasonality: 

A. The existence of strong correlations to higher lags demands the use of 

seasonal differencing. It is not recommended to implement more than one 

seasonal differencing or more than two orders of total differencing (seasonal 

nonseasonal). 
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B. When the adjusted (differenced) time-series illustrated positive at lag s in 

the ACF results, where s is the number of periods in a season, it is 

recommended to add a SAR term to the model. In contrast, when the 

adjusted (differenced) time-series illustrated negative at lag s in the ACF 

results, it is recommended to add an SMA term to the model. The SMA term 

is likely necessary along with seasonal differencing due to the presence of 

stable and logical seasonal patterns. The SAR term is likely necessary when 

the seasonal difference has not been used. This is only done when the 

seasonal pattern is erratic or fluctuating over time. Overfitting of time-series 

with the data must be avoided. Do not implement more than one or two 

seasonal parameters (SAR+SMA) within the same model. 

ARIMA models have the advantage of being simple, therefore, are less likely to overfit the data in 

comparison to exponential smoothing and adjustment models. The calculation of confidence 

intervals for longer-horizon forecasts is more reliable in theory with comparison to other models. 

ARIMA models with constant trends retain higher confidence levels in long-term forecasts 

resulting in wide confidence intervals at long-term forecast horizons. Models that do not assume 

fluctuation in trends retain narrow confidence intervals at long-term forecast horizons [162]. The 

advantage of SARIMA is its ability to express the stochastic nature of time-series. Modeling 

multiple seasonal cycles is not a problem. However, there are disadvantages in representing only 

linear relationships between variables. SARIMA also becomes subjective when determining the 

proper order or structure [163]. 

 

 
4.3. Holts-Winter Exponential 

The exponential smoothing method is a time-series forecasting method for univariate data with the 

ability to model regular trends and/or seasonal patterns. In comparison to Box-Jenkins ARIMA 

methodology, exponential smoothing forecasting uses weighted sums of past observations. The 

difference between the two models is the exponentially decreasing weight for past observations. 

Therefore, the exponential smoothing forecast associates higher weight to lower time lags. 
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The Holts-Winter Exponential Smoothing model is a triple exponential smoothing function that 

incorporates simulating seasonal patterns. There are several hyperparameters added to the function 

in order to adjust for seasonality [161]: 

• Alpha -- variance 

• Beta -- trending 

• Gamma -- seasonal patterns 

o Trend: Additive or multiplicative 

o Dampen: Additive or multiplicative 

• Phi -- Damping coefficient 

o Seasonality: Additive or multiplicative 

o Period: Time lags within the period 

 

The alpha (a) parameter, also known as the smoothing factor, determines the rate of decay the 

weight influence shifts over time. The alpha parameter is set to a value between 0 and 1. A value 

close to 1 indicates fast learning or a recent event. Whereas a value close to 0 indicates slow 

learning or past observations with heavy influence. The beta (b) parameter determines the rate of 

decay with influence to trend overtime shifts. The gamma (g) parameter determines the influence 

on the seasonal component. 

A damping coefficient, Phi (p), determines the rate of dampening in either: additive or 

multiplicative. This is dependent on the trend: linear or exponential, respectively. This model can 

be used for heteroscedastic time-series, but exogenic variables cannot be introduced to the model. 

This makes the model inflexible to additional variables. In addition, there are disadvantages of 

over-parameterization and a large number of starting values to estimate [163]. 

 

 
4.4. Genetic Algorithms (GA) 

A genetic algorithm is an adaptive investigative algorithm with principles of natural selection. The 

genetic algorithm iteratively alters a population of individual solutions based upon strength results. 

GAs are a simulated natural computation, which means that species pursue suitable circumstances 

for survival by continuously evolving. Evolution generates new individuals through three steps: 

selection, crossover, and mutation. Selection develops the living environment by preserving better 
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species and eliminating worse species. GAs mimics these processes to solve complex problems 

with self-organizing capabilities; therefore, it is usually used in categorization, pattern recognition, 

and association. GAs can solve difficult problems quickly and can interface with other models and 

simulations [164]. 

Randomness is utilized within each stage of the genetic algorithm. Individuals (data points) are 

selected at random from the current population (dataset) to be parents. These parents produce 

children (forecast) for the next generation. Over successive generations, the population "evolves" 

toward an optimal solution. The genetic algorithm maintains three types of restrictions within each 

cycle to produce the next generation [161]: 

1) Selection rules 

2) Crossover rules 

3) Mutation rules 

 
The first restriction is based upon how parents are selected. The second restriction is based upon 

how the parent passes on characteristics to the next cycle. The third restriction applies randomness 

to form mutations within the new cycle. In terms of data, the GA results become more robust in 

the presence of reasonable noise. The GA method can exploit extensive datasets with directed 

searches for better performance. 

 

 
4.5. Artificial Neural Network (ANN) 

The artificial neural network (ANN) model is appropriate to define non-linear, complex 

correlations within a time-series composed of multiple variables. The ANN model operates with 

an iterative machine learning process to produce robust results. ANN is inspired by human nervous 

systems and signal transmission. A neural network system uses input and output data to learn and 

train. It consists of many interconnected, identical basic-processing neurons. Each neuron is 

connected by links. During the training process, the links where are between neurons keep updating 

strength, and then all the experience and knowledge are saved in the links. ANN is powerful 

because it has a strong mathematical background and logical system. It is also able to deal with 

linear and complex non-linear relationships with a large number of input and output variables 

[164]. Due to the structure, there is model flexibility in adjusting to new variables. 
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4.5.1. Structure of ANN 

The structure of an ANN model is built by a network of computing elements (called neurons) that 

adjust and work together to solve specific problems. The algorithm of the ANN model is originally 

inspired by the human nervous systems and signal transmission [165]. The neurons of the ANN 

model recognize incoming signals as input variables (e.g., X1 and X2), and the ANN model needs 

a term of bias (e.g., b) to increase the flexibility of the model. The input variables and bias are 

multiplied by the corresponding weights (e.g., W1, W2, and W3). The weighted input variables are 

then formulated as an activation function, which is designed to process the input variables to an 

output variable (e.g., Y), which in turn becomes an input variable for the next neuron. 

The ANN model is typically constructed in three layers of neurons: 1) input, 2) hidden, and 3) 

output, as shown in Figure 8. Each circle (also called node or unit) represents a neuron. A simplistic 

ANN model consists of one input layer, one hidden layer, and one output layer. However, multiple 

hidden layers are possible but tend to be avoided, typically resulting in overfitting. 

 

 

 

 
Figure 8. Structure of an artificial neural network. 

 

 

There is some theoretical basis for governing the number of neurons in use. The general guidelines 

for determining the correct number of neurons to use in the hidden layers, such as the following 

[188]: 

• Between the number of neurons within the input layer and output layer 

• Roughly 2/3 size of the input layer, greater than the size of the output layer 

• Less than twice the size of the input layer. 
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However, training and validating is to find the best number of hidden neurons [166]. Increasing 

the number of hidden layers and neurons in an ANN model increases the learning capacity. This 

increases the processing time and the possibility of overfitting [167]. Overfitting is a limitation of 

ANN, where the model tends to memorize the observations within the training set instead of 

extrapolating the patterns. To avoid overfitting and to fit the prescribed guidelines, an equation is 

recommended; 

N  = 
Nc

 
h (α × (Ni + N0)) 

Equation 4.7 

 

Where, Nh is the number of hidden neurons; Nc is the sample size of training dataset; α is an 

arbitrary scaling factor usually between 2-10; Ni is the number of input neurons; and N0 is the 

number of output neurons. 

The ANN models can be classified into feedforward and recurrent network based on the types of 

connections between neurons. The feedforward neural network moves only one direction, a 

forward path from the input layer to the output layer through the hidden layer. That is, the 

feedforward neural network has no connections between neurons located in the same layer. The 

recurrent neural network includes multidirectional network flow between the neurons in the hidden 

layer, as shown in Figure 9. It is known that feedforward neural networks are more commonly 

used because they are simpler and more efficient than recurrent networks [168]. 

 

 

Figure 9. Structure of feedforward and recurrent neural networks. 
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4.5.2. Building of ANN Model 

The data preprocessing to build ANN models take the first steps for data organization to detect 

outliers, split the data into training and validation data sets, normalize the data for the training data 

set, and classify input variables. The option to stationarize the data is possible (see Chapter 3.3), 

although there are conflicting arguments of whether machine learning models such as ANN require 

stationary time-series [122]. As the last proves of the ANN model building, the model validation 

has four steps: normalizing the input of test data, feeding normalized input test data into the model 

which is selected, de-normalizing the output value of the model, and comparing it to the real output 

value to check whether error measures (e.g., root-mean-square error (RMSE) and mean absolute 

error (MAE)) are satisfied. The method of modifying the weights between the network layers to 

reach the desired output in an ANN model is called a training or learning process [169]. ANN 

learning methods can be categorized as supervised, unsupervised, and reinforcement learning. The 

main principle of the supervised learning method analyzes the difference between the values of 

input and output data for a training process that adjusts the weights of the neuron connections 

between two different layers (e.g., input and hidden layers or hidden and output layers). The 

supervised learning method continues the training process until there is an acceptable output value 

found. The supervised learning of the ANN model is efficient in classification when the output 

variable is a category (e.g., “right” or “wrong”) and regression when the output variable is an actual 

measurement (e.g., “concentration” or “weight”) [170]. The unsupervised learning method has no 

consideration of output data for a learning process. In other words, the main purpose of the 

unsupervised learning method is to map inferences from input data from unlabeled responses. In 

general, it is used in clustering problems to searching for characteristic groupings within the dataset, 

such as categorizing clients by purchase patterns [171]. 

The reinforcement learning method is similar to the supervised learning method in its training 

process, but the output data is not provided to the network. The reinforcement training uses trial 

and error to maximize a performance index called a reinforcement signal that is to reflect the 

success or failure of the entire system after some sequences of actions have been performed [172]. 

The reinforcement signal can be positive or negative, which can refer to rewards or punishments. 

For example, if the robot operates well, then the learning system returns a positive value (i.e., 

reward), but if not, the system returns a negative value (i.e., punishment). The system takes these 

retunes to improve itself based on the trial-and-error process [173]. 
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The three learning methods to utilize for training: supervised, unsupervised, and reinforcement 

learning. Zhou [100] finds that the supervised learning method is the most efficient in forecasting 

problems because the historical input and output data are available; hence, the system can directly 

learn from the output data and minimize the error between the future observed and predictive 

values. The well-known training algorithms for the supervised learning method include back- 

propagation network, probabilistic network, counter-propagation network, and others. The back- 

propagation algorithm based on the feedforward neural network is a prevalent method due to the 

relative simplicity [174]. The feedforward back-propagation neural network directs a one- 

directional signal (feedforward) from the input, hidden, and output layers. The feedforward back- 

propagation neural network takes three steps as follows: 1) input neurons distribute data forward 

through to the hidden layer; 2) data is processed through an activation function and directed into 

the output layer, and 3) residuals are distributed back into each neuron link to adjust weights for 

optimization, see Figure 10 [173]. 

 

 

Figure 10. Example of feedforward back-propagation neural network. 

 

 

Figure 10 shows the example for the feedforward and backpropagation processes that include two 

neurons in the input layer, two neurons in the hidden layer, and one neuron in the output layer. 
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1 

The input and hidden layers also include one neuron for bias. The preliminary value of the bias 

neuron is assumed to be 1, but the value of biases can adjust to the other values. The links 

connecting any two neurons in the different layers are associated with weights. These preliminary 

weights are randomly selected from a given range for the neural network. 

The values to the neurons (e.g., x1 and x2) and the value of the bias neuron in the input layer are 

proportioned by the weights assigned to the neurons in the hidden layer for the input values. The 

proportioned values of the input and bias neurons are then summed to generate y1 and y2 for the 

two neurons in the hidden layer as follows: 

y1 = x1 × w(1) + x2× w(1) + b(1) ×1 Equation 4.8 
11 12 1 

 

y2 = x1 × w(1) + x2× w(1) + b(1) ×1 Equation 4.9 
21 22 2 

 

The weighted sums (e.g., y1 and y2) for the hidden neurons are transformed for a non-linearity 

property of the ANN model by one of three activation functions: logistic activation function, 

hyperbolic tangent activation function, and linear-activation function. The activation function is 

the non-linearity element of the ANN model. The logistic activation function generates all output 

values between 0 and 1. The logistic activation function is defined by Equation 4.10. The 

hyperbolic tangent activation function generates all values between -1 and 1, seen in Equation 4.11. 

The linear-activation function generates the same values as the input values, seen as Equation 4.12. 

F(X) = 
1
 

1 + e–s 

F(X) = 
2

 
(1 + e–2s) 

Equation 4.10 

—1 
Equation 4.11 

 

F(X) = X Equation 4.12 

 
where X = hidden neuron inputs 

 
Equations 4.13 and 4.14 show the transformed values (e.g. a(2) and a(2)) of the weighted sums by 

1 2 

the activation function, fn. 

a
(2) 

= ƒn(y1) Equation 4.13 
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2 

1 

a 

1 

12 

11 11 a a 

12 12 a a 

11 12 a a 

a
(2) 

= ƒn(y2) Equation 4.14 

 
The transformed values of the hidden neurons and the value of the bias neuron in the hidden layer 

are computed as the weighted sum (= y3) for the input of the neuron in the output layer as follows: 

y3 = a(2) × w(2) + a(2) × w(2) + b(2) ×1 Equation 4.15 
1 11 2 12 1 

The input of the output neuron is then transformed for the final output of the ANN model as follows: 

a(3) = ƒn(y3) Equation 4.16 

Once the feedforward process is completed, the backpropagation process first calculates the error 

between the final output in the output layer and an actual output value using a partial derivative. 

For  example,  the  error of  the  transformed  value, E (3) ,  is calculated  by  Equation 4.17, where 
1 

Target
a

(3)  is desired output value and Out
a

(3)  is given by Equation 4.12which is the output value 
1 

 

of a(3): 

1 

 
 

 
E

a
(3) = Out

a
(3) × (1 — Out

a
(3))× (Target

a
(3) — Out

a
(3) ). Equation 4.17 

1 1 1 1 1 

The error, E (3), is then considered to adjust the weights of the neuron connections (e.g., w(2) and 
a1 

11 

w(2)) in Equation 4.15 by the following Equations 4.18 and 4.19: 

W
+(2) 

= W
(2) 

+ 5E
 

(3) Out (2) Equation 4.18 
1 1 

W
+(2) 

= W
(2) 

+ 5E
 

(3) Out (2) Equation 4.19 
1 2 

In Equations 4.18 and 4.19, W+(2) and W+(2) are the adjusted weights, Out (2) and Out (2) are 
1 2 

given by Equations 4.13 and 4.14, which are output values of a(2) and a(2), respectively, in the 
1 2 

hidden layer, and the symbol 4 represents a learning coefficient between 0 and 1, which is 

determined by a user. Determining the constant learning coefficient for an ANN model is usually 

a tedious process requiring much trial and error. If 4 is too high, the training process may become 

unstable and oscillate widely; if 4 is too low, the training process may take more time to converge 

or not converge. 

The backpropagation process also calculates the errors of the transformed values in the hidden 

layer (e.g., E
a

(2) and E
a

(2) ), hereby Equations 4.20 and 4.21: 
1 2 

E (2)  = Out (2) × (1 — Out (2)) × (E (3) W(2)). Equation 4.20 
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a1 a1 a1 a1 
11
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E (2) = Out (2) × (1 — Out 
(2)) × (E (3) W(2)). Equation 4.21 

a2 a2 a2 a1 
12

 

After calculating the errors, E
a

(2) and E
a

(2), the weights between the input layer and hidden layer 
1 2 

are updated (e.g., W+(1), W+(1), W+(1), and W+(1) ) by Equations from 4.22 to 4.25. Where 
11 12 21 22 

InX1and InX2 are the input values of input  neurons. 

W
+(1) 

= W
(1) 

+ 5E
 (2)InX1 

Equation 4.22 

11 11 a1
 

W
+(1) 

= W
(1) 

+ 5E
 (2)InX2 

Equation 4.23 

12 12 a1
 

W
+(1) 

= W
(1) 

+ 5E
 (2)InX1 

Equation 4.24 

21 21 a2
 

W
+(1) 

= W
(1) 

+ 5E
 (2)InX2 

Equation 4.25 

22 22 a2
 

 

The process above is just a one-time training process, also called one epoch. An epoch is one cycle 

of the feedforward and backpropagation to update the weights. In general, in the ANN model, this 

process repeatedly runs several times until the ANN model finds the minimum error [173]. There 

is caution in over-training the model as it will fall into overfitting the data. This is one of several 

limitations for the ANN model. Other limitations of ANN are: 1) bias-variance tradeoff, 2) 

complexity, 3) standardization of input values, 4) hidden patterns within the output values, 5) 

heterogeneity of data, 6) redundancy in the data, and 7) the presence of interaction and non- 

linearities [175]. 

 

 
4.6. Exponential Smoothing with Gradient Boosting 

Exponential smoothing with gradient boosting is another form of hybrid modeling designed for 

short-term forecasting [176]. The double exponential smoothing forecasting is improved by fitting 

the residuals with a gradient boosting algorithm. Gradient boosting is an iterative procedure. 

Optimization steps are taken following each stage, with residuals from the previous step are fit 

using a decision tree learning method. This method is flexible and powerful but requires fine- 

tuning of many parameters. The issue with exponential smoothing still lingers with the inability to 



48 | P a g e 

 

adjust to additional variables once a validation model is established. 



49 | P a g e  

4.7. Hybrid SARIMA-ANN 

The idea of combining ARIMA with ANN was first introduced by Zhang [111], but this model 

was limited to non-seasonal data. However, future studies expanded on this research [177-179]. 

These studies focus on building ARIMA models and utilizing the error in the outputs, residuals, 

as inputs into their ANN models. Wang and Meng [179] showed promising results in energy 

consumption for the region of Hebei in China. Moeeni [180] pushes further with this research to 

predict the monthly water inflow of a dam. The data is comprised of 30 years of monthly values 

with evidence of extreme seasonal variance. Extreme seasonal variance is an issue not addressed 

by recent hybrid model studies. The Moeeni [180] framework is set up as a series with residuals 

of the SARIMA model feeding into the ANN model, as seen in Figure 11. The series Hybrid 

SARIMA-ANN model initially calls for the production of a linear forecast through a SARIMA 

model. The results are compared to a validation data set, and residuals are produced. The hybrid 

concept of the model routs the residuals into an ANN model to determine non-linear residual 

patterns that were missed by the SARIMA model. The ANN output is used as an adjustment to 

produce a final forecast output. 

 

 

 

 
Figure 11. Series hybrid SARIMA – ANN model proposed by [180]. 
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The hybrid SARIMA ANN model was able to capture the extreme seasonality. However, the 

performance fails to accurately forecast baseline values in comparison to SARIMA. This 

framework does not fully utilize the potential of the ANN network by providing little training data. 

In many past hybrid model frameworks, there is a focus on utilizing the linear residuals to use as 

the ANN input. This concept of hybrid model framework relies heavily on linear modeling, 

remaining subjective to how well one model is built. The concept also assumes that the real-world 

data provided is more linear in nature as it is the predominant model. 
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Chapter 5. Modified Model Proposal 

 
The management of water and energy is critical to human progress and urban sustainability. 

Models are necessary to guide decisions and implementation of WEN systems, including resource 

management and institutional policy involving WEN infrastructure. The complexities of WEN 

studies require vast amounts of data. With data accessibility limited, the middle-out approach using 

the univariate time-series model serves as an initial validation model for further model building 

and WEN study expansion. Hybrid models have shown promise in combining the strengths of 

linear and non-linear modeling, highlighting the strengths of both model approaches. 

 

 
5.1. Parallel Hybrid SARIMA-ANN (PHSA) 

In order to improve the model performance of traditional linear modeling while gaining model 

flexibility, this research proposes adjusting the hybrid SARIMA-ANN model structure. The former 

model is set up as a series, with the SARIMA residuals feeding into the ANN model to capture 

non-linear patterns. The proposed parallel hybrid SARIMA-ANN model calls for two parallel 

models, SARIMA and ANN, where model inputs are fed the same time-series with results 

combined through a simple second ANN for an accurate forecast, as seen in Figure 12. This is 

different from many other current hybrid models that focus on a series framework feeding residuals 

of the linear model into non-linear models. The objective of the Parallel Hybrid SARIMA-ANN 

(PHSA) design is to forecast seasonal time-series of univariate data without overreliance on results 

of initial linear model results. This objective is achieved through the following specific steps: 

1. Preliminary stage of data preparation 

A. Visualize and preprocess data 

B. Data split into training and validation datasets 

2. Analyze and forecast energy consumption with univariate data analysis: 

A. Seasonal Auto-Regression Integrated Moving Average (SARIMA) 

B. Artificial Neural Network (ANN0) 

3. Combine linear (SARIMA) and non-linear (ANN0) forecast into ANN1 model 
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Figure 12. Parallel hybrid SARIMA-ANN model. 

 

 

In comparison to SARIMA, ANN, and series Hybrid SARIMA-ANN, the proposed PHSA 

structure embraces the power and flexibility of ANN. The entire time-series is analyzed by the 

ANN model. The parallel framework retains the ANN ability to work with univariate data as well 

as multivariate data, another fault of the previous Hybrid SARIMA-ANN model. The PHS-A 

model analyzes and forecasts univariate data analysis using Seasonal Auto-Regression Integrated 

Moving Average (SARIMA) and Artificial Neural Network (ANN), separately; then combines the 

results into a second ANN to fit in outputs with higher forecast accuracy. This framework works 

to properly highlight the strengths of both systems and does not limit the ANN model to one 

variable. 

 

 
5.2. Case Study: Morgantown, WV Apartment 

The data within this case study is composed of monthly electricity consumption (kWh) within an 

apartment building from 2005-2016 in Morgantown, WV. This data set was used to demonstrate 

the parallel hybrid SARIMA-ANN model. Results were compared to SARIMA, ANN, and series 

hybrid SARIMA-ANN models. 
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5.2.1. Preliminary Stage (Steps 1A and 1B) 

The data is preprocessed through preliminary steps 1A and 1B to have prepared the dataset for 

initial model builds. The preliminary step 1A enables a breakdown of the time-series to see hidden 

trends that need to be captured by models, see Figure 13. Once these trends are understood through 

various testing from step 1A, preprocessing of the data can be done to transform the time-series 

into a stationary time-series. However, it is up to the model designer to incorporate these trends 

within the model or transform the data before input (refer to chapter 3.3 on data preprocessing). 

The application of these test results guided the structure design of both SARIMA and ANN0. 

 

 

 

 

Figure 13. Preliminary stage part 1A. 

 

 

Before model design specifications were attempted, the raw time-series was visualized to 

determine if there are any hidden trends and/or patterns of seasonality, see Figure 14. The 

increased mean over time indicated a positive trend. The month-to-month variation of values in 

relation to the indicates covariation issues. Both of these patterns are evidence of non-stationarity 

within the time-series. Figure 15 illustrates an alternative view to the raw data with monthly max, 

min, and average values. This is further visual evidence of seasonal variation. Specific monthly 

datasets of note that will be difficult to capture in a robust model are January and September. The 

month of January shows the widest range between max and min values at 11,000 kWh difference. 

The September to October average values show the largest decrease between month averages 

(5,000 kWh). Capturing these monthly values in the validation model will show model resiliency 

to extreme seasonality trends in time-series data. 



54 | P a g e  

 
 

Figure 14. Visualize the raw time-series with notable trending. 
 

 
 

Figure 15. Time-series monthly max, min, and average showing seasonal variation. 
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After visualizing the time-series, it is expected to find hidden patterns within the time-series 

through statistical tests. Unit root testing for time-series stationarity with Phillips-Perron (PP) and 

Augmented Dickey-Fuller (ADF) test shows the time-series is not stationary with a 12-month lag, 

see Table 3. All t-test values pass the critical t-distribution values of < -3.45 (provided in Table 2) 

except for the ADF 12-month lag test value. This confirms hidden seasonal 12-month trends within 

the time-series, as was indicated by the analysis of Figure 15. The ADF lag 1 test provides an 

opportunity to transform the series and conduct ACF and PACF plotting to further understand the 

hidden trends. 

 

 
Table 3. Unit root testing results. 

 

Test Lag Test Value Stationary Result Utilization 

Phillips-Perron 4 -51.36 Y Reveal trend within 12 months 

Augments Dickey-Fuller 1 - 6.48 Y Allows ACF-PACF plot 

Augments Dickey-Fuller 4 - 5.02 Y Reveal trend within 12 months 

Augments Dickey-Fuller 12 - 3.11 N Reveal overall 12-month trend 

Test value must be <-3.45 critical t-distribution value with trend and 100 samples at 95% certainty. 

 

 

 

Figure 16. First-order difference of time-series. 
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Transformation of the time-series to remove trend was conducted through a first-order difference 

transformation, see Figure 16. There remains to be evidence of extreme seasonality with a high 

variation of values month to month from the mean, indicated by the large spikes followed by 

smaller spikes on the graph. The ACF and PACF plots confirm there is seasonality in the first- 

order difference time-series; see Figures 17 and 18. Major positive correlations are found 

breaching the significance guideline (indicated by the dotted line) at the seasonal lags 1, 2, and 3 

in the ACF plot. There are smaller correlation patterns between the 1, 2, 3, 4, and 6 months in the 

ACF plot. Both of these patterns are circles in Figure 17. The PACF plot indicates similar patterns 

in Figure 18. 

 

 

 

 

Figure 17. ACF of first-order difference time-series. 
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Figure 18. PACF plot of first-order difference time-series. 

 

 

In order to address the seasonality in the time-series, a 12-order transformation (12 lag) was 

implemented, see Figure 19. The time-series was tested as before to be thorough. The ACF and 

PACF plots were done for the seasonal differenced time-series; see Figures 20 and 21. The 

guidelines to interpreting ACF and PACF plots [162] indicate: 1) positive autocorrelations out to 

a high number of lags requires a higher order of differencing, 2) If lag-1 autocorrelation is zero or 

negative, indicates higher order of difference is not necessary, and 3) If the lag-1 autocorrelation 

is -0.5 or more negative, the series may be over-differenced. The over-differencing can be adjusted 

by additional terms in the model. 

Both plots indicate a non-stationary time-series with autocorrelation at lag 1. Therefore, it is 

understood the initial model constructed must contain a variable to capture the seasonal, 12-month 

autocorrelation as well as addressing correlation issues at lower lag values. The seasonal variable 

can be addressed by feeding the lag-12, seasonal differenced time-series into the models or by 

structuring models to process the seasonal correlation. Both SARIMA and ANN models have the 

ability to address both the seasonal and local (lag 1-4) correlations. 
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Figure 19. Seasonal (12 lag) differenced time-series. 
 

 

 

 

Figure 20. ACF plot of seasonal (12 lag) difference time-series. 
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Figure 21. PACF plot of seasonal (12 lag) differenced time-series. 

 

 

To finish the preliminary stage with 1B, the time-series was split into the training and final 

validation datasets, see Figure 22. The final validation dataset remained unknown to the models 

until final forecasts were compared. The SARIMA training dataset that retains more data points as 

the years of 2005-2006 were consumed by the ANN model data preprocessing, requiring the lags 

of 1- 4 months and 1-2 years in order to capture the autocorrelations identified in step 1A. 

 

 

 

 
Figure 22. Data split for training and final validation datasets. 
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5.2.2. PHSA construction (Steps 2A and 2B) 

After the preliminary stage, the process continued to 2A and 2B (refer back to Figure 12). The 

unit root test results and ACF/PACF plots provide a guide to initial model structures for 2A and 

2B, see Figure 23. Both SARIMA and ANN models must be able to capture the seasonal and local 

autocorrelations indicated in step 1A. The SARIMA model (1, 0, 0) (0, 1, 0)12 assumes a seasonal 

value from an independent random walk. The additional non-seasonal AR-term preserves seasonal 

patterns and lowers the amount of differencing required. This increases the stability of the trend 

and response to cyclical turning points. The 7x5x1 ANN0 structure was suggested by Zhang [111] 

to ensure robustness while maintaining simplicity in the model. In addition, seven is the number 

of inputs that seem to hold a correlation identified in step 1A. The ACF and PACF plots show peak 

correlations at 1, 2, 3, 4, 6, 12, and 24 months. 

 

 

 

 

Figure 23. 2A and 2B initial model structures. 

 

 

Step 2A focuses on the SARIMA build. The initial SARIMA model is the seasonal random walk 

(SRW); see Figure 24. The seasonal random walk model predicts that next year’s seasonal cycle 

will have exactly the same shape (i.e., the same relative month-to-month changes) as this year’s 

seasonal cycle. This is the typical initial model for SARIMA model building. However, step 1A 

has already shown evidence of additional terms to capture local, non-seasonal autocorrelations. 

The following step is to plot residential ACF. Expected failure leads to the application of 13 rules 

for additional optimal SARIMA parameters described in section 4.2 [162]. Multiple feasible 
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SARIMA models are constructed with these rules as a guide and compared using Akaike 

Information Criterion (AIC) and significance of coefficient. 

 

 

 

 
Figure 24. Fundamentals for building SARIMA model 

 

 

To address this local auto-correlation, there is an additional non-seasonal AR-term to capture the 

month's prior influence. The initial SARIMA model (1, 0, 0) (0, 1, 0)12 forecast results are 

compared to the validation dataset set aside in step 1B. The difference in forecast and validation 

values produces the model residuals. The residual ACF plot provides a pass-fail sequence to 

establish whether there is evidence of autocorrelation within the residuals of the model. If there is 

a pattern, or correlation, within the residuals, it indicates the need for additional terms. The tests 

provide an initial model for evaluation. However, variations of this model provide options with 

changes in non-seasonal and seasonal AR, MA, and differencing terms, see Figure 25. These 

models allow for a balance between model parsimony, optimization, and accuracy. The choice of 

model depends on the application of the result. Models may provide wide or narrow confidence, 

trending may be higher or lower, and the model may be overfitted or underfitted. Testing and 

applying a standard qualifying best fit model is necessary for the following step. 
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Figure 25 Testing all feasible SARIMA structures 

 

 

The feasible models were run through the process discussed in chapter 4.2. Models were compared 

by AIC, σ2, and significance of variable. The Akaike Information Criteria (AIC) is a widely used 

measure of a statistical model to quantify the goodness-of-fit as well as the simplicity of the model. 

This combines model accuracy and parsimony in one indicator. When comparing the two models, 

the one with the lower AIC is generally “better.” This is not the only deciding factor. There is a 

craft to ARIMA model construction with guidelines. All feasible models are reviewed with these 

guidelines to understand what each model structure is accomplishing with the various terms within 

the structure. Multiple differencing terms cause a loss of original data formatting, and multiple 

AR-MA terms can be conflicting in their implementation. After a thorough review of all feasible 

models in Figure 26, the list of feasible models is reduced to four choices, see Figure 26. These 

four models reduce differencing to one seasonal difference and rely on 1-3 additional terms to 

capture the other indicated correlations. Reducing the number of additional terms increases the 

significance of the variable, determined by the coefficient divided by the standard error. Although 

the AIC and σ2 are not the best in comparison to the other four models. The model X ( 1, 0, 0) (1, 

1, 0) provides the best fit model equation; 

0.7467(B)(-0.5317(B)S)(1 — Bs)Dyt = st Equation 5.1 
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Figure 26. Identification of best-fit SARIMA model 

 

 
Step 2B focuses on the ANN build. The build process is composed of data preprocessing (blue), 

model structure design (green), and validation process (red), see Figure 27. The process is similar 

to the process in chapter 4.5. Adjustments are made to the model structure ( i x n x 1), with i 

representing a number of inputs and n representing a number of hidden neurons. 

 

 

 

 
 

Figure 27. Fundamental process for building ANN 
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All feasible models are reviewed. Model structures vary by input lags, transfer functions, and the 

number of hidden nodes. After a thorough review of all feasible models in Figure 28, the list of 

feasible models was compared by R2. The initial structure, 7x5x1, proved to be the best ANN 

model with a 0.89 R2 and fits the guidelines discussed in chapter 4.5.1 that maintains the number 

of hidden nodes should be less than input nodes. 

 

 

 

 

 

Figure 28. Testing all feasible ANN0 model structures. 

 

 

5.2.3. Construction of ANN1 and forecast combination (Step 3) 

After testing for the best model structure, the training datasets were reduced for both 2A and 2B; 

refer to Figures 29 and 30. In order to provide forecast residuals for the following ANN1 model, 

the training data is reduced to a 6-year cycle to forecast data. This is listed as SARIMA x-11. The 

forecast residuals are then set aside for ANN1 training data in step 3. The SARIMA model is linear 

and will produce the same results depending on the data provided. The ANN0 model must have 

100 sample runs with the training data set with an average of 100 results taken to determine the 

final forecast of the model. After forecasts for 2011 are set aside for the ANN1 training set, the 

SARIMA training sets are increased by one year and run through a similar process. This is listed 

as SARIMA x-12. Each cycle increases the year of training data (SARIMA x-13,14,15); refer to 

Figure 29. This provided five years of forecasting data from 2A to be input into the simple ANN1 

model in step 3. 
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Model 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

SARIMA x-16 
Training data ‐ 132 Points 

11 Year Cycles 
Validation 

SARIMA x-11 
Training data ‐ 72 Points 

6 Year Cycles 

Forecast 

12 Points 

  

SARIMA x-12 
Training data ‐ 84 Points 

7 Year Cycles 

Forecast 

12 Points 

  

SARIMA x-13 
Training data ‐ 96 Points 

8 Year Cycles 

Forecast 

12 Points 

  

SARIMA x-14 
Training data ‐ 108 Points 

9 Year Cycles 

Forecast 

12 Points 

  

SARIMA x-15 
Training data ‐ 120 Points 

10 Year Cycles 

Forecast 

12 Points 

 

 

Figure 29. Reduction in 2A SARIMA training dataset to produce forecast data. 
 

 
 

Model Trans. Func. / Nodes 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

ANN 0-16 

Tan and Log 

(4, 5, 7) x (2‐6) x (1) 

Training data ‐ 96 Points 

9 Year Cycles 
Validation 

ANN 0-11 

Log 

7 x 5 x 1 
 Model 

Trace 
  

ANN 0-12 

Log 

7 x 5 x 1 

Training data ‐ 44 Points 

5 Year Cycles 

Forecast 

12 Points 
  

ANN 0-13 
Log 

7 x 5 x 1 

Training data ‐ 56 Points 

6 Year Cycles 

Forecast 

12 Points 
  

ANN 0-14 
Log 
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Figure 30. Reduction in 2B ANN0  training dataset to produce forecasting data. 

 

 
The process for 2B is similar to 2A. In order to provide forecast residuals for the following ANN1 

model, the training data is reduced to a 6-year cycle to forecast data. This is listed as ANN 0-11. 

The forecast residuals are then set aside for ANN1 training data in step 3. The ANN model is non- 

linear and will produce different results with every iteration. The ANN0 model must have 100 

sample runs with the training data set with an average of 100 results taken to determine the final 

forecast of the model. After forecasts for 2011 are set aside for the ANN1 training set, the ANN 0 

training sets are increased by one year and run through a similar process. This is listed as ANN 0- 

12. Each cycle increases the year of training data (ANN 0-13, 14, 15); refer to Figure 30. This provided 

one year of traced data and four years of forecasting data from 2B to be input into the simple ANN1 

model in step 3. One of the limitations of this study is the limited dataset. The ANN0 requires 
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minimum data input. The limited data requires that the 2011 data forecast was the ANN0 model 

trace of 2011 data. This means the model was provided the 2011 data in the training set. This will 

provide better results for the ANN0 model in the 2011 forecast results; however, it should not have 

a major impact on the overall results of the study. The best way to avoid this issue would be to 

have an additional year for the training set. This completes the training data set for the ANN1 model 

structure testing and forecasting. 

The structure of the ANN1 should remain simple. A balance of hidden neurons and restricting 

training iterations reduces the issues of overfitting and overcorrection of the ANN1 model. A more 

dynamic ANN1 model structure will change whether the PHSA framework is built on a 1) 

combined linear - nonlinear method or 2) nonlinear method. Multiple hidden neurons in the ANN1 

model increase the nonlinear computing power; therein, it is expected to increase the forecasting 

accuracy. Figure 31 shows testing the structure of ANN1 structure with two inputs and one output, 

1-10 hidden node(s), and tangent/logarithmic transform function. 

 

 

 

 

Figure 31. Average R2 comparison of ANN1 model structure test with 1-10 hidden nodes. 
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The comparison of models is made by running 100 simulations and taking the average R2. Training 

reiterations were reduced to 10 in order to limit overfitting. There was no significant increase in 

model performance with additional nodes other than 0.001 increase at the hidden layer to 7 nodes 

with a tangent transform function. The only difference made with adding numerous nodes in the 

hidden layer is to define the final output of the parallel hybrid SARIMA-ANN model as a non- 

linear model instead of a combined linear/non-linear model. Therefore, the model structure for the 

ANN1, in this case, will be a simplified ANN model (2X1X1) with log transform. 

The reduction of the hidden neuron layer to one neuron reduces forecasting capability to linear 

with linear and nonlinear dataset inputs. The simple one hidden neuron reduces the volatility of 

the model and emphasizes reliance on the forecast of 2A) SARIMA and 2B) ANN0. In accordance 

with the previous guidelines from chapter 4.5.1 and preserving model simplicity, ANN1 is a simple 

structure (2x1x1); see Figure 32. This model structure is composed of: 1) two inputs of the five 

years of forecasting data from SARIMA and ANN0; 2) one hidden neuron; and 3) log-sigmoid 

transfer function. This structure avoids overfitting and processing with the task to simply 

understand which model had the best fit. The forecasting points provided by 2A and 2B training 

dataset reduction process were submitted into the ANN1 model structure. This is a simple ANN 

model, 2x1x1, that took the best points for both models to forecast a more accurate forecast. This 

captured the strengths of the SARIMA model and the preciseness of the ANN model. 

 

 

 

 
Figure 32. Identification of best fit ANN1 Model 
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The performance metrics used for the model comparisons are the root-mean-square error (RMSE) 

and mean average relative error (MARE). RMSE is a quadratic scoring rule that measures the 

average magnitude of the error; see Equation 5.2. MARE measures the average magnitude of the 

errors in a set of predictions without considering direction; see Equation 5.3. 

 
 

RMSE = J
(totaS CUN of error)2 

NUNBER of CANPSEC 

 
MARE = 

totaS CUN of abcoSute error 

NUNBER of CANPSEC 

Equation 5.2 

 

Equation 5.3 

 

The results of the forecasting model in comparison are provided in Figure 33. The validation 

dataset is graphed with a solid black line and all other models listed in the legend. Most models 

trail a similar trend in comparison to the validation data except for the months of January, May, 

July, and September. The ANN0 model had a large amount of error in the September forecast. This 

is due to ANN models overreacting to the local maxima. 

 

 

 

 

Figure 33. Forecasting validation results 
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The percentage of the error to the actual value for each forecast model is shown in Figure 34. This 

provides a better understanding of how the models performed month to month in comparison to 

the validation data set. The ANN0 model shows its ability to outperform all other models in months 

(January, February, June, and November). However, the ANN0 forecasts for the months of 

September and October are extreme outliers. Again, this shows the volatility of ANN models 

overacting to local maxima. This also shows how the parallel hybrid SARIMA-ANN model seems 

to act as an average function between the SARIMA and ANN function while also improving on 

both models in some cases. This is further discussed in Chapter 6. 

 

 

 

 

Figure 34. Forecasting validation results with percentage error to the actual value. 

 

 
The performance metrics of RMSE and MARE for the final forecast models are provided in Figure 

35. This shows the overall performance of the forecasting models. SARIMA and ANN0 models 

have similar performances. ANN0 is able to capture better results for a majority of months while 

overacting to the seasonal extremes in September and October. The parallel hybrid SARIMA- 

ANN model is able to combine both forecasts of the SARIMA and ANN0 models while improving 

them in some cases. The absolute average error for SARIMA, ANN0, Series, and Parallel models 
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were 2149, 1879, 3489, and 1638, respectively. The absolute error standard deviation for 

SARIMA, ANN0, Series, and Parallel models were 1674, 1584, 1734, and 1355, respectively. The 

error standard deviation for SARIMA, ANN0, Series, and Parallel models were 1897, 2456, 2289, 

and 1846, respectively. This results in an overall better performance metric for the parallel hybrid 

SARIMA-ANN model. The series hybrid SARIMA-ANN performed poorly in all cases across the 

board. 

 

 

 

 

Figure 35. Performance metrics of forecast models 

 

 

5.2.4. Discussion 

The ANN0 outperformed SARIMA in the first six months with the spike of inaccuracy in September 

2016, reacting to local maxima but capturing extremes in January, February, April, and November. 

SARIMA outperformed all models in September and October. Series hybrid SARIMA- ANN did not 

perform well due to the need to replicate the ANN model training with forecast values, therefore 

consuming limited data. Parallel hybrid SARIMA-ANN (PHSA) smoothed out the ANN0 local 

maxima reaction and improved seven forecasting points of ANN0. The PHSA did improve 9 out of 

the 12 SARIMA model forecast points. SARIMA had slightly better results for the forecast in 

September and October with near 1% error, edging the parallel hybrid model by 5% error 

improvement. This is caused by the influence of the ANN0 model, which is highly reactive to the 

September maxima. The largest error for ANN0 is the September forecast. The PHSA was able to 
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improve forecast when inaccuracies were similar, i.e., March, July, and December. Overall, the 

PHSA had the best RSME and MARE than all other tested forecast models 

Expanded studies in this study would involve: 1) increasing the forecast horizon to three years in 

order to illustrate model reliability for long-term forecasts; 2) rearranging the years within the 

dataset would test model resilence to adapt to different patterns; and 3) testing additional datasets 

with downward and variable trends would test the reliability of the parallel hybrid SARIMA-ANN 

model framework. Evaluations for the best fit ANN1 structure with changes to the number of 

hidden neurons require comparing long-term forecasts of 3 years with various datasets. 

The previous series hybrid SARIMA-ANN model relies on preset patterns and subjective judgment 

of SARIMA. The PHSA model acts as a smoothing function of linear and non-linear models. The 

major contribution of this model is the ability to transcend into any application of research 

involving forecasting data. The flexibility of the ANN model allows for additional variables. 

 

 
5.3. Future Work 

The long-term goal of this research is focused on a robust and resilient network design of energy 

and water infrastructure. This is done by integrating water- energy data with organized planning. 

The idea is to analyze and process limited, raw water-energy data that can be incorporated into 

decision-making methods through GIS mapping systems. These mapping systems have the ability 

to evaluate infrastructure network vulnerabilities to natural and manmade disasters. 

Models used in the analysis must have the flexibility to handle various factors. With social 

topography taken into account, network failures can be modeled to show impacts on the social and 

economic activity within the community. Similarly, innovations in technology and policy can be 

modeled to illustrate the positive social impacts. A new study framework consists of four revolving 

steps: 

1) Collating water-energy supply and usage data sets; 

2) Developing a data analysis model to map resource supply-demand patterns; 

3) Delineating decision-making procedures and geopolitical boundaries (city boards, 

utility providers, institutions, etc.) for balancing water-energy supply-demand; and 
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4) Identifying and sequencing resource planning criteria. The outcomes obtained from the 

technical and organizational procedures will lead to resource-efficient technical and 

organizational practices. 

This is designed to establish a dual framework that integrates resource technical and organizational 

procedures to homogenize the resource information flows. In order to identify and sequence 

resource planning criteria, two tasks are necessary. Stakeholder and critical node analysis lead to 

the end goal of WEN optimization at the city scale. 

 

 
5.3.1. Stakeholder Analysis 

After the integration of planning and decision-making processes between water and energy sectors, 

the development of the physical database platform for collection and investigation of water-energy 

issues and solutions can be done efficiently. Planning requires data; however, there needs to be a 

network in place to acquire and analyze data. With combined database information, one would be 

able to map current and future demand patterns, identify trade-offs, allocate resources, streamline 

the decision-making network, and provide a resilient infrastructure for future use. Siddiqi [72] 

considers a framework to assess the physical system integrated with social and political 

stakeholders. As one of the first to focus a study on the stakeholders of the WEN system at a 

countrywide scale, Siddiqi [72] attempts to illustrate the current management networking of the 

water-energy sector as well as expanding links to other sectors that can serve as collection of 

knowledge and evaluation exercise for decision-making activities. 

It is necessary to understand the strategic linking among key stakeholders and decision-making 

institutions to enable impactful decision-making processes and achieve higher resource-use 

efficiency [52]. The analysis of the California Energy Commissions [46] shows that California can 

achieve “nearly all of its energy and demand reduction goals for the 2006-2008 program period by 

simply allowing energy utilities to realize the value of energy saved for each unit of water saved. 

In that manner, energy utilities can co-invest in water use reduction programs, supplementing 

water utilities efforts to meet as much load growth as possible through water efficiency.” 

Stakeholder analysis works toward improving policy. In this approach, it should be recognized that 

policy development is a complex process in unstable and changing environments [52], building 

upon the thought of wicked problems identified by Kenway [1]. By taking into account 
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the interests of the whole range of stakeholders, influence or influenced, compromise is necessary. 

The agglomeration of public goals and private stakeholder interests into a common objective. The 

only way for compromise to be met is through fluid organizational networking and data and 

knowledge communication. 

Stakeholder Analysis, or SA, requires identifying stakeholders, assessing and comparing their 

interests, and examining inherent conflicts, compatibilities, and trade-offs. The term ‘Stakeholder’ 

is to define “any group of people, organized or unorganized, who share a common interest or stake 

in a particular issue or system; they can be at any level or position in society, from global, national 

and regional concern down to the level of household” [52]. SA is a holistic approach or procedure 

serving to comprehend a system and evaluate the links and influences to that system. This is done 

by categorizing the essential stakeholders and weighing influence within the system. Two distinct 

concepts are necessary to understand SA: conflicts and trade-offs. Conflicts are states of 

competition, where there is a fight over control of a resource. The trade-off is an alternative 

objective used to balance the interests among conflicting stakeholders. Trade-offs imply an 

opportunity cost in terms of benefits lost [52]. Conflict among stakeholders is likely to be between 

the influencer— ‘active stakeholder’-- and the influenced— ‘passive stakeholder.’ Intended 

beneficiaries are measured by importance: primary and secondary stakeholders [181]. This 

designation classifies a hierarchy of needs and interests. The power of influence refers to the 

weight certain stakeholders have over the success of a project [52, 181]. 

With reference to WEN and natural resource management, situations are characterized by interests 

and trade-offs. These are typically pulled from citizens, government departments, national and 

international planners, and professional advisors; and thus, particularly suited to SA [182]. In 

complex decision-making situations with various stakeholders using a multiple-stakeholder 

approach, a single solution is not the end goal. It is implemented to clarify the stakeholders' 

positions and identify sources of conflict to aid in developing a myriad of compromising solutions 

[183]. Stakeholders should be identified, weighed, and organized so that communication and 

representation are clearly established. Boundary spanning intermediaries, or agents, are used to 

mitigate dialogue. Boundary-spanning intermediary allows for the implementation of policy across 

different levels of decision-making [184, 185]. These intermediaries are the interface of 

community specialists and decision-makers, allowing knowledge to flow from the expert opinion 
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to decision-maker understanding. This translates to the effective implementation of efficient policy 

and regulation [186]. By using stakeholder analysis and boundary spanning intermediaries, 

organizational networking can be open and transparent to identify and express the concerns and 

goals for all members involved. 

 

 
5.3.2. Critical Node Analysis 

The use of stakeholder analysis and boundary spanning intermediaries opens WEN studies to the 

understanding of the influence of the decision-making process. The decision-making process can 

be streamlined to allocate resources to projects to alleviate the needs of stakeholders on all levels 

while encouraging efficiency. The ability to implement technology and policy changes efficiently, 

however, still requires the breakdown of the physical water-energy infrastructure at the city and 

state scale. A clear picture of current infrastructure and demand patterns allows experts and 

decision-makers to identify and communicate designs and ideas. However, considering only 

linkages in the provision and production of water-energy perspective misses a much larger picture 

where only co-location of physical infrastructure and interwoven data analysis can provide a clear 

understanding. The only way to successfully define a water-energy nexus system based around the 

stakeholders and decision-makers, as well as the physical infrastructure, is through a system of 

nodes and links [111]: 

1) Identify critical nodes in the system by the practice of an index of centrality. 

2) Optimize regulation of links with the creation and destruction of pathways in order to 

reveal bottlenecks in the system. 

3) Optimize regulation of network flows in order to track materials and links. 

This methodology allows for adjusting parameters based on empirical data and testing the impact 

of management and technical changes. This simple framework can be expanded into a complex 

methodology for the breakdown, analysis, and design of both the WEN organizational (stakeholder 

analysis results) and physical networking (critical node analysis results) at a city scale. 

 
 

5.3.3. Optimization of WEN at City Scale 

Optimization of the WEN system at a city scale requires cooperation within planning, data 

collection, and modeling in order to support decision-makers in implementing policy and 
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technology investment. The only way to successfully create an efficient water-energy nexus 

system is to organize the stakeholders and decision-makers as well as illustrate the physical 

infrastructure and system efficiencies. By using stakeholder analysis, organizational networking 

can become open and transparent with the ability to identify and express the concerns and goals as 

well as formal assignment and responsibility for all members involved. By using critical node 

analysis, physical infrastructure can be mapped to identify opportunities and assess system 

reliability. Mapping the data available now is limited and only allows for a glimpse into the 

intricate WEN relationship. With additional resources and data sharing, modeling of material flows 

as a result of technology or policy intermediation can be used to simulate future changes to the 

WEN system. The combination of data platforms between water and energy sectors will increase 

the efficiency of the current system as well as the modeling of a more resilient WEN system within 

the city. 



76 | P a g e  

Chapter 6.  Conclusions 

 
WEN studies have emerged across the globe, highlighting the importance of understanding the 

relationship between water and energy resources as well as the impact on the environment. 

However, there remains a gap at the city level within WEN studies due to two major limitations, 

data inaccessibility and model inflexibility. Traditional model approaches for analysis fall under 

top-down or bottom-up approaches. Both require vast datasets and require time for fine-tuning the 

models. A middle-out approach using univariate time-series analysis demands only one data input. 

Within the realm of univariate time-series forecasting, heterogeneous hybrid models composed of 

linear and non-linear techniques provides a symbiotic relationship between model strengths and 

weaknesses. In particular, the parallel Hybrid SARIMA – ANN model shows promise for research 

expansion as the ANN model structure flexibility allows for the possibility to expand with 

additional variables. The model provides a simple yet powerful forecasting tool with the ability to 

expand into a more complex model and design tool. The parallel hybrid SARIMA- ANN model 

forecast performed better overall in comparison to SARIMA, ANN, and series hybrid SARIMA-

ANN model forecasts. The flexibility and performance of the parallel hybrid SARIMA-ANN 

model allow for the implementation of WEN data analysis in decision- making processes within 

the water-energy infrastructure. Future work looks to use this model to develop a dual framework 

that integrates resource technical and organizational procedures to homogenize the resource 

information flows. In order to establish a robust and resilient network design of energy and water 

infrastructure, a model that works with the limited data must show expansive capabilities and 

flexibility to new factors as research develops. The parallel hybrid model shows promise in 

achieving this goal. The parallel hybrid SARIMA-ANN model framework would benefit additional 

resilency testing with numerous datasets, varying in trends, as well as expanding the feasible model 

structures of the ANN1 in step 3. 
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