261 research outputs found

    Multicasting in WDM Single-Hop Local Lightwave Networks

    Get PDF
    In modem networks, the demand for bandwidth and high quality of service (QoS) requires the efficient utilisation of network resources such as transmitters, receivers and channel bandwidth. One method for conserving these resources is to employ efficient implementations of multicasting wherever possible. Using multicasting, a source sending a message to multiple destinations may schedule a single transmission which can then be broadcasted to multiple destinations or forwarded from one destination to another, thus conserving the source transmitter usage and channel bandwidth. This thesis investigates the behaviour of single-hop WDM optical networks when they carry multicast traffic. Each station in the network has a fixed-wavelength transceiver and is set to operate on its own unique wavelength as a control channel. Each station also has a tuneable wavelength transceiver in order to transmit or receive signals to or from all the other stations. A transmission on each channel is broadcasted by a star coupler to all nodes. Multicasting in single-hop WDM networks has been studied with different protocols. This thesis studies the multicasting performance adopting receiver collision avoidance (RCA) protocol as a multicasting protocol. This study takes into consideration the effect of the tuneable transceiver tuning time which is the time required to switch from one wavelength to another, and the propagation time required by a packet to propagate from one node to another. The strategy in RCA protocol is that nodes request transmission time by sending a control packet at the head of their queues. Upon receipt of this information all nodes run a deterministic distributed algorithm to schedule the transmission of the multicast packet. With the control information, nodes determine the earliest time at which all the members of the multicast group can receive the packet and the earliest time at which it can be transmitted. If a node belongs to the multicast group addressed in the control packet, its receiver must become idle until all nodes in the group have tuned to the appropriate wavelength to receive the packet. This problem leads to poor transmission and consequently low channel utilisation. However, throughput degradation due to receiver conflicts decreases as the multicast size increases. This is because for a given number of channels, the likelihood of a receiver being idle decreases as the number of intended recipients per transmission increases. The number of wavelengths available in a WDM network continues to be a major constraint. Thus in order to support a large number of end users, such networks must use and reuse wavelengths efficiently. This thesis also examines the number of wavelengths needed to support multicasting in single-hop optical networks

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Exploiting AWG Free Spectral Range Periodicity in Distributed Multicast Architectures

    Get PDF
    Modular optical switch architectures combining wavelength routing based on arrayed waveguide grating (AWG) devices and multicasting based on star couplers hold promise for flexibly addressing the exponentially growing traffic demands in a cost- and power-efficient fashion. In a default switching scenario, an input port of the AWG is connected to an output port via a single wavelength. This can severely limit the capacity between broadcast domains, resulting in interdomain traffic switching bottlenecks. In this paper, we examine the possibility of resolving capacity bottlenecks by exploiting multiple AWG free spectral ranges (FSRs), i.e., setting up multiple parallel connections between each pair of broadcast domains. To this end, we introduce a multi-FSR scheduling algorithm for interconnecting broadcast domains by fairly distributing the wavelength resources among them. We develop a general-purpose analytical framework to study the blocking probabilities in a multistage switching scenario and compare our results with Monte Carlo simulations. Our study points to significant improvements with a moderate increase in the number of FSRs. We show that an FSR count beyond four results in diminishing returns. Furthermore, to investigate the trade-offs between the network- and physical-layer effects, we conduct a cross-layer analysis, taking into account pulse amplitude modulation (PAM) and rate-adaptive forward error correction (FEC). We illustrate how the effective bit rate per port increases with an increase in the number of FSRs. %We also look at the advantages of an impairment-aware scheduling strategy in a multi-FSR switching scenario

    Survivable multicasting in WDM optical networks

    Get PDF
    Opportunities abound in the global content delivery service market and it is here that multicasting is proving to be a powerful feature. In WDM networks, optical splitting is widely used to achieve multicasting. It removes the complications of optical-electronic-optical conversions [1]. Several multicasting algorithms have been proposed in the literature for building light trees. As the amount of fiber deployment increases in networks, the risk of losing large volumes of data traffic due to a fiber span cut or due to node failure also increases. In this thesis we propose heuristic schemes to make the primary multicast trees resilient to network impairments. We consider single link failures only, as they are the most common cause of service disruptions. Thus our heuristics make the primary multicast session survivable against single link failures by offering alternate multicast trees. We propose three algorithms for recovering from the failures with proactive methodologies and two algorithms for recovering from failures by reactive methodologies. We introduce the new and novel concept of critical subtree. Through our new approach the proactive and reactive approaches can be amalgamated together using a criticality threshold to provide recovery to the primary multicast tree. By varying the criticality threshold we can control the amount of protection and reaction that will be used for recovery. The performance of these five algorithms is studied in combinations and in standalone modes. The input multicast trees to all of these recovery heuristics come from a previous work on designing power efficient multicast algorithms for WDM optical networks [1]. Measurement of the power levels at receiving nodes is indeed indicative of the power efficiency of these recovery algorithms. Other parameters that are considered for the evaluation of the algorithms are network usage efficiency, (number of links used by the backup paths) and the computation time for calculating these backup paths. This work is the first to propose metrics for evaluating recovery algorithms for multicasting in WDM optical networks. It is also the first to introduce the concept of hybrid proactive and reactive approach and to propose a simple technique for achieving the proper mix

    Resilient optical multicasting utilizing cycles in WDM optical networks

    Get PDF
    High capacity telecommunications of today is possible only because of the presence of optical networks. At the heart of an optical network is an optical fiber whose data carrying capabilities are unparalleled. Multicasting is a form of communication in wavelength division multiplexed (WDM) networks that involves one source and multiple destinations. Light trees, which employ light splitting at various nodes, are used to deliver data to multiple destinations. A fiber cut has been estimated to occur, on an average, once every four days by TEN, a pan-European carrier network. This thesis presents algorithms to make multicast sessions survivable against component failures. We consider multiple link failures and node failures in this work. The two algorithms presented in this thesis use a hybrid approach which is a combination of proactive and reactive approaches to recover from failures. We introduce the novel concept of minimal-hop cycles to tolerate simultaneous multiple link failures in a multicast session. While the first algorithm deals only with multiple link failures, the second algorithm considers the case of node failure and a link failure. Two different versions of the first algorithm have been implemented to thoroughly understand its behavior. Both algorithms were studied through simulators on two different networks, the USA Longhaul network and the NSF network. The input multicast sessions to all our algorithms were generated from power efficient multicast algorithms that make sure the power in the receiving nodes are at acceptable levels. The parameters used to evaluate the performance of our algorithms include computation times, network usage and power efficiency. Two new parameters, namely, recovery times and recovery success probability, have been introduced in this work. To our knowledge, this work is the first to introduce the concept of minimal hop cycles to recover from simultaneous multiple link failures in a multicast session in optical networks

    A survey of multicasting protocols for broadcast-and-select single-hop networks

    Full text link

    Node design in optical packet switched networks

    Get PDF
    corecore