390 research outputs found

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Artificial Intelligence Techniques in Medical Imaging: A Systematic Review

    Get PDF
    This scientific review presents a comprehensive overview of medical imaging modalities and their diverse applications in artificial intelligence (AI)-based disease classification and segmentation. The paper begins by explaining the fundamental concepts of AI, machine learning (ML), and deep learning (DL). It provides a summary of their different types to establish a solid foundation for the subsequent analysis. The prmary focus of this study is to conduct a systematic review of research articles that examine disease classification and segmentation in different anatomical regions using AI methodologies. The analysis includes a thorough examination of the results reported in each article, extracting important insights and identifying emerging trends. Moreover, the paper critically discusses the challenges encountered during these studies, including issues related to data availability and quality, model generalization, and interpretability. The aim is to provide guidance for optimizing technique selection. The analysis highlights the prominence of hybrid approaches, which seamlessly integrate ML and DL techniques, in achieving effective and relevant results across various disease types. The promising potential of these hybrid models opens up new opportunities for future research in the field of medical diagnosis. Additionally, addressing the challenges posed by the limited availability of annotated medical images through the incorporation of medical image synthesis and transfer learning techniques is identified as a crucial focus for future research efforts

    A Systematic Survey of Classification Algorithms for Cancer Detection

    Get PDF
    Cancer is a fatal disease induced by the occurrence of a count of inherited issues and also a count of pathological changes. Malignant cells are dangerous abnormal areas that could develop in any part of the human body, posing a life-threatening threat. To establish what treatment options are available, cancer, also referred as a tumor, should be detected early and precisely. The classification of images for cancer diagnosis is a complex mechanism that is influenced by a diverse of parameters. In recent years, artificial vision frameworks have focused attention on the classification of images as a key problem. Most people currently rely on hand-made features to demonstrate an image in a specific manner. Learning classifiers such as random forest and decision tree were used to determine a final judgment. When there are a vast number of images to consider, the difficulty occurs. Hence, in this paper, weanalyze, review, categorize, and discuss current breakthroughs in cancer detection utilizing machine learning techniques for image recognition and classification. We have reviewed the machine learning approaches like logistic regression (LR), Naïve Bayes (NB), K-nearest neighbors (KNN), decision tree (DT), and Support Vector Machines (SVM)

    Medical Image Segmentation by Deep Convolutional Neural Networks

    Get PDF
    Medical image segmentation is a fundamental and critical step for medical image analysis. Due to the complexity and diversity of medical images, the segmentation of medical images continues to be a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks (CNNs) have received extensive research and achieve great success in many vision tasks. Specifically, with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation based on FCNs is a promising research field. This thesis focuses on two medical image segmentation tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images. For the lung segmentation task, we investigate several FCNs that have been successful in semantic and medical image segmentation. We evaluate the performance of these different FCNs on three publicly available chest X-ray image datasets. For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine

    Get PDF
    Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computa-tional as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles

    Computer Aided Diagnosis on customized Ultrasound Imaging system

    Get PDF
    This thesis seeks implementation of mid end, back end algorithms to develop ultrasound imaging system and computer aided diagnosis for kidney. Integration of new algorithms onto present ultra-sound system is not possible as they are mostly based on DSPs and FPGAs. Hence firstly, mid end and back-end system has been designed for Kintex 7 FPGA, to replicate present ultrasound system. Later our algorithms related to compression techniques, image contrast enhancement are validated by porting them on to the developed system. The thesis also focuses on diagnosing kidney related problems using ultrasound images. Recent statistics show that there is a large increase in population suffering with kidney related problems. Many a times, detecting the kidney related problem at an early stage can prevent most of these diseases. Some of the major issues in maintaining quality of healthcare services are low doctor to patient ratio in rural areas, unavailability of trained medical professionals in remote areas, infrastructural constraints etc. Computer aided diagnosis helps in solving this issue. Computer aided algorithms can assist semi-skilled sonographers to confidently make decisions, thus improving the quality of healthcare services

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients

    A novel NMF-based DWI CAD framework for prostate cancer.

    Get PDF
    In this thesis, a computer aided diagnostic (CAD) framework for detecting prostate cancer in DWI data is proposed. The proposed CAD method consists of two frameworks that use nonnegative matrix factorization (NMF) to learn meaningful features from sets of high-dimensional data. The first technique, is a three dimensional (3D) level-set DWI prostate segmentation algorithm guided by a novel probabilistic speed function. This speed function is driven by the features learned by NMF from 3D appearance, shape, and spatial data. The second technique, is a probabilistic classifier that seeks to label a prostate segmented from DWI data as either alignat, contain cancer, or benign, containing no cancer. This approach uses a NMF-based feature fusion to create a feature space where data classes are clustered. In addition, using DWI data acquired at a wide range of b-values (i.e. magnetic field strengths) is investigated. Experimental analysis indicates that for both of these frameworks, using NMF producing more accurate segmentation and classification results, respectively, and that combining the information from DWI data at several b-values can assist in detecting prostate cancer
    corecore