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Abstract: Kidney abnormality is one of the major concerns in modern society, and it affects millions
of people around the world. To diagnose different abnormalities in human kidneys, a narrow-beam
x-ray imaging procedure, computed tomography, is used, which creates cross-sectional slices of the
kidneys. Several deep-learning models have been successfully applied to computer tomography
images for classification and segmentation purposes. However, it has been difficult for clinicians to
interpret the model’s specific decisions and, thus, creating a “black box” system. Additionally, it has
been difficult to integrate complex deep-learning models for internet-of-medical-things devices due
to demanding training parameters and memory-resource cost. To overcome these issues, this study
proposed (1) a lightweight customized convolutional neural network to detect kidney cysts, stones,
and tumors and (2) understandable AI Shapely values based on the Shapley additive explanation
and predictive results based on the local interpretable model-agnostic explanations to illustrate the
deep-learning model. The proposed CNN model performed better than other state-of-the-art methods
and obtained an accuracy of 99.52 ± 0.84% for K = 10-fold of stratified sampling. With improved
results and better interpretive power, the proposed work provides clinicians with conclusive and
understandable results.

Keywords: convolutional neural network; deep learning; kidney abnormalities; lightweight model;
explainable artificial intelligence

1. Introduction

The kidney, an abdominal organ that filter waste and excess water from the blood, can
developed abnormalities [1] that have a significant impact on health and affect over 10% of
the worldwide population [2]. The exact causes and mechanisms of kidney abnormalities
have yet to be fully understood [3], but research in recent years has identified a variety of
genetic, environmental, and lifestyle factors that may contribute to their development [4].
The severe symptoms of kidney abnormalities include a pain in the side or back; blood
in the urine; fatigue; and swelling in the legs and feet [5]. The most common kidney
abnormalities that impair kidney function are the development of cysts, nephrolithiasis
(kidney stones), and renal cell carcinoma (kidney tumor) [6]. Kidney stones are hard
crystalline mineralized material that varies in size and is formed in the kidney or urinary
tract. The complex phenotype of kidney stone disease is caused by the interplay of several
genes, in conjunction with dietary and environmental variables [7]. Another urinary
problem, a cyst, is a fluid-filled sac in the kidneys [8], whereas tumors are abnormal
growths with symptoms such as abdominal pain, blood in the urine, and unexplained
weight loss [9].

In the early stages, patients may not show any symptoms or signs of kidney abnor-
malities, as they are initially benign. However, if untreated, they can develop further and
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even become malignant. For early detection and treatment, pathology tests are frequently
used, with imaging techniques including X-rays, computer tomography (CT), B-ultrasound
devices, and magnetic resonance imaging (MRI) [10]. Ultrasound devices that use high-
frequency sound waves and MRIs may not be suitable for patients with medical implants
or conditions. CT scans are generally faster and provide detailed images of dense tissues,
such as bones in the spine and skull [11].

Despite its limitations, such as non-standardized image acquisition [12]; the improper
labeling of data collected; and regulatory barriers [13], deep-learning (DL) research has
show a significant positive impact in radiology applications, such as reducing the workload
of radiologists [14]; increasing medical access in developing countries and rural areas [15];
and improving diagnostic accuracy [16]. DL models have been applied for a wide range of
concerns, such as COVID-19 [17], brain tumors [18], radiation therapy [19], blood clotting
[20], heart diseases [21], liver cancer [22], fin-tech [23], intrusion detection [24], vibration
signals [25], organic pollutant classification [26], agriculture [27], and steganography [28].
Recent research has shown that DL models can be used successfully for diagnosing kidney
abnormalities [29–33]. However, in diagnosing kidney abnormalities, the lightweight
models [33] have achieved low accuracy, as compared to the more complex models [29–32].
Therefore, a lightweight customized DL model could be considered as an alternative
approach to achieve higher accuracy.

Meanwhile, explainable artificial intelligence (XAI) [34] is a pragmatic tool that ac-
celerates the creation of predictive models with domain knowledge and increases the
transparency of automatically generated prediction models in the medical sector [35,36],
which has assisted in providing results that are understandable to humans [37]. We noted
that most of the recent research defined the detection of kidney problems in terms of indi-
vidual categories, including stones [38], tumors [39], and cysts [40]. However, the proposed
study classified all three abnormalities using a single model, and it provided the following
contributions.

1. For diagnosing three different kidney abnormalities, a fully automated lightweight
DL architecture was proposed. The model’s capability to identify stones, cysts, and
tumors was improved by utilizing a well-designed, customized convolutional neural
network (CNN).

2. The proposed model had fewer model parameters, surpassing current approaches,
and was able to locate the target area precisely, so that it could operate effectively
with internet of medical things (IoMT)-enabled devices.

3. The explanatory classification of the model was conducted using XAI algorithms, a
local interpretable model-agnostic explanation (LIME), and a Shapley additive expla-
nation (SHAP).

4. An ablation study of the proposed model was performed on a chest X-ray dataset for
the diagnosis of COVID-19, pneumonia, tuberculosis, and healthy records.

2. Related Works
2.1. Conventional Practices

Most studies on the classification of kidney abnormalities have employed a region-of-
interest (ROI) localization and conventional image processing approaches [41]. By limiting
the necessity for invasive and ionizing diuretic renography, Cerrolaza et al. [42] presented a
computer-aided design method to build a connection between non-invasive, non-ionizing
imaging modalities and renal function. A subset of 10 characteristics was chosen for the
predictive variables (size, geometric curvature descriptors, etc.). Specificity results of
53% and 75%, respectively, for the logistic regression and support-vector-machine (SVM)
classifier were attained by adjusting the probability decision thresholds. On a dataset
of more than 200 ultrasound images, Raja et al. [43] employed k-means clustering and a
histogram equalization to localize the kidney and retrieved the textural features of the
segmented region for classification, with a sensitivity of 94.60%.



Appl. Sci. 2023, 13, 3125 3 of 17

2.2. Machine-Learning Practices

Before adopting a probabilistic neural network (PNN), the authors of [44] employed
image enhancement and Gaussian filtering to obtain better features, and they achieved a
classification accuracy of 92.99%, a sensitivity of 88.04%, and a specificity of 97.33%, on 77
ultrasound images of kidney, which included 4 different classes (normal, cyst, calculi, and
tumor). An automated identification system for renal disorders was built by Raja et al. [45],
using a hybrid fuzzy neural network with feature extraction techniques for 36 features.
In this work, 150 ultrasound images were utilized for training, and 78 images were used
for testing. The suggested approach achieved an F1-score of 82.92%. Viswanath et al. [46]
used ultrasound images to create a model to identify kidney stones, and they initially used
a diffusion method to locate the kidney. Multi-layer perception (MLP) was utilized as a
classifier for the characteristics retrieved from ROI. The suggested approach obtained an
accuracy of 98.8% on a dataset of approximately 500 images.

2.3. Deep-Learning Approaches

For modeling an artificial intelligence (AI)-based diagnostic system for kidney disease,
the authors of [29] independently generated 12,446 CT images of the whole abdomen via
CT urogram. Resnet50, VGG16, and Inception v3 were used to achieve accuracy rates
of 73.40%, 98.20%, and 99.30%, respectively. The results from the models were further
explained with the GradCAM XAI approach. Ahmet et al. [33] endeavored to identify
kidney cysts and stones using YOLO architectures, which were augmented with XAI
features. The performance analysis included CT images from three categories, including 72
kidney cysts, 394 kidney stones, and 192 healthy kidneys. The results indicated that their
YOLOv7 architecture design outperformed the YOLOv7 tiny architecture design, achieving
a mAP50 of 0.85, a precision of 0.882, a sensitivity of 0.829, and an F1-score of 0.854. A study
by Abdalbasit et al. [30] focused on identifying the three types of kidney abnormalities
(stones, cysts, and tumors) using AI techniques on a dataset of over 12,000 CT images. A
hybrid approach of pre-trained models and machine-learning algorithms was used, and the
Densenet-201 model and random-forest classification yielded an accuracy rate of 99.44%.
Venkatesan et al. [31] proposed a framework for classifying renal CT images as healthy
or malignant using a pre-trained deep-learning approach. To improve its accuracy, they
employed a threshold-filter-based pre-processing scheme to eliminate artifacts. The process
included four stages: image collection, deep feature extraction, feature reduction and
fusion, and binary classification through a fivefold cross-validation. Experimentation on
CT images with and without artifacts showed the KNN classifier achieved 100% accuracy
by using pre-processed images.Using a XResNet-50 model, Kadir et al. [32] automated the
diagnosis of kidney stones (the presence of stones vs. no stones present) using coronal CT
images. Each subject had distinct cross-sectional CT scans taken, yielding a total of 1799
images, and the results had a 96.82% accuracy rate for diagnosing kidney stones. Using
the features extracted from ResNet-101, ShuffleNet, and MobileNet-v2, kidney ultrasound
images were categorized by the authors of [47] using an SVM. The final predictions were
generated using the majority-vote technique to achieve a maximum accuracy of 95.58%.
While considering stones, cysts, hyper-echogenicity, space-occupying lesions, and hydro-
nephrosis as abnormalities, Tsai et al. [48] collected 330 normal and 1269 abnormal pediatric
renal images from a U.S. database.After performing the pre-processing tasks, the final
linking layer of ResNet50 was redefined, and an accuracy of 92.9% was achieved. Though
several studies have employed different DL approaches for better accuracy, they have
primarily used DL models that consisted of more parameters, and they have not focused
on improving the clarity and transparency of the result from DL models. The proposed
work clearly showed the superiority of the customized model in terms of performance,
clarity, and training parameters.
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3. Materials and Methods
3.1. Data Collection and Pre-Processing

A publicly available dataset (3709 cysts; 5077 normal; 1377 stones; 2283 tumors) was
used in this study. Using the picture archiving and communication system (PACS), the an-
notators [29] of the dataset gathered data from various hospitals in Dhaka, Bangladesh. The
images were prepared from a batch of Digital Imaging and Communications in Medicine
(DICOM) standardized records.

The coronal and axial cuts were selected from both contrast and non-contrast studies
to create DICOM images of the ROI for each radiological finding. For better computa-
tional efficiency, pixels were re-scaled into the [0, 1] range, and each image was resized
to 150 × 150 pixels.In order to maintain a percentage of samples for each class, stratified
sampling was utilized the training-and-testing split results. Figure 1 shows the sample
images for individual categories.

(a) (b) (c) (d)

Figure 1. Sample Images from the Dataset. (a) Cyst, (b) Normal, (c) Stone, (d) Tumor.

3.2. Proposed Framework

The proposed framework included a CNN model and an XAI-based explanation
framework. The CNN model classified CT images into four categories (cyst, normal, stone,
tumor). The visual representation of the proposed CNN model is shown in Figure 2.

Figure 2. Proposed Methodology to classify CT images into cyst, normal, stone and tumor.

3.2.1. CNN Model

The CNN proved its capacity to create an internal representation of the two-dimensional
images, which enabled the model to represent specific locations and scales of various
image features, using different elements of AI, including deep-fake [49], medicine [36,50],
agriculture [51] etc.

In the proposed customized CNN model (Figure 3), all five convolution layers were
followed by max-pooling layers. The results of the final max-pooling layers were flattened,
followed by a drop-out layer as well as two dense layers. In addition, an L2 regularization
(l2 = 0.0001) was used for the last two dense layers to eliminate sparse weighting [52]. In
order to visualize the ROI in the CT images more effectively [53], a kernel size of 3× 3
was used. According to Sitaula et al. [54], an ideal stride value of 1 should be used to
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enhance the medical images, as a greater stride had overlooked the discriminating semantic
regions; therefore, the same was used in this study. Furthermore, to prevent the network
from over-fitting, the dropout layer was adjusted to 0.2. We concluded the model was
lightweight, and the parameters of all the layers are shown in Table 1.

Figure 3. Visual representation of the proposed CNN model.

Table 1. Total parameters (trainable and non-trainable) of the proposed CNN model. Variables F, K,
S, and FLOP denote the filters, kernel size, stride, and floating-point operations, respectively.

S.N. Layer Type (F, K, S) Output Shape Parameters FLOPs

1 Input - (150, 150, 3) 0 -
2 Conv2D + relu (3, 3, 1) (148, 148, 63) 1792 25,233,408
3 MaxPool2D (2) - (74, 74, 64) 0 296
4 Conv2D + relu (3, 3, 1) (72, 72, 64) 36,928 5,971,968
5 MaxPool2D (2) - (36, 36, 64) 0 144
6 Conv2D + relu (3, 3, 1) (34, 34, 64) 36,928 1,331,712
7 MaxPool2D (2) - (17, 17, 64) 0 68
8 Conv2D + relu (3, 3, 1) (15, 15, 64) 36,928 259,200
9 MaxPool2D (2) - (7, 7, 64) 0 28

10 Conv2D + relu (3, 3, 1) (5, 5, 64) 36,928 5760
11 MaxPool2D (2) - (2, 2, 64) 0 8
12 Flatten - 256 0 131,072
13 dropout(0.2) - 256 0 -

14 Dense + relu +
l2(0.0001) - 128 32,896 65,536

15 Dense + Softmax +
l2(0.0001) - 4 512 1024

Total parameters 182,916

Total FLOPs 33,000,224

3.2.2. Explainable AI

XAI demonstrated the black-box approach recognized in DL models and revealed
the precise reasoning behind their predictions [55]. As the complexity of DL models has
increased, XAI has become an important strategy, particularly in domains where critical
decisions are needed, such as for medical image analysis [56]. Medical experts have been
able to more easily understand the results of these DL models and use them to quickly



Appl. Sci. 2023, 13, 3125 6 of 17

and accurately diagnose cysts, normal growths, kidney stones, and tumors [57].Therefore,
Shapley additive explanation (SHAP) and local interpretable model-agnostic explanation
(LIME), two popular XAI algorithms, were specified in this study.

By normalizing the marginal feature values, SHAP assessed the influence of the
model features. The scores exemplified the significance of each pixel on a predicted
image and were used to substantiate their classification. To obtain the Shapley value,
all potential combinations of characteristics of kidney abnormalities were used. Red pixels
increased the likelihood of predicting a class once the Shapley values were converted into
pixels, while blue pixels reduced the likelihood [58]. The Shapley values were generated by
Equation (1).

φi = ∑
S⊆N\{i}

|S|!(M − |S| − 1)!
M!

[ fx(S ∪ {i}) − fx(S)] (1)

where fx is the adjustment of the output by Shapely values for feature i. Feature N, S is the
subset of the features, and |S|!(M−|S|−1)!

M! is the weighing factor that determined the number
of permutations of the subset S are present. The predicted result, fx(S), was calculated
using Equation (2).

fx(S) = E[ f (x)|xS] (2)

where each original trait replaced (xi), using SHAP,and a binary variable z
′
i is replaced that

represents whether xi is absent or present, as shown in Equation (3)

g(z
′
) = φ0 +

M

∑
i=1

φiz
′
i = ∑ f eatureContribution + bias (3)

where the primordial model f (x), in Equation (3), g(z
′
) is the local surrogate model, feature

i is based on the result, and φi assisted in understanding the model.
To interpret the representation of an instance being presented in a way that could be

explained, (x ∈ Rd) using LIME, a binary vector (x
′ ∈ {0, 1}d

′
) represented the “absence”

or “presence”, and a continuous patched super-pixel was considered. Having domain

{0, 1}d
′

for the model g ∈ G to display the conclusive representation, g determined the
presence/absence of the accountable components. We found that all the components of
g ∈ G could not interpret the results, so Ω(g) was utilized to gauge the complication of the
explanation.

In order to classify the sample as either cyst, normal, stone, or tumor, and to define the
locality around x for the proposed model f : Rd → R: if f (x) is the probability of x, then
πx(z) is used as a proximity measure between an instance from z to x. To define the locality
πx, =( f , g, πx), as a fidelity function, was used as a dimension to determine the amount of
error generated by g when calculating f . In order to maximize the interpretations, Ω(g)
was reduced to the absolute minimum, and the fidelity function was similarly decreased.
Overall, LIME, as an explanation generator, is summarized in Equation (4).

ξ(x) = arg max
g∈G

=( f , g, πx) + Ω(g) (4)

3.2.3. Implementation Details

The proposed CNN model and XAI algorithms were implemented in Python (version
3.7) using Keras (version 2.5.0) and Tensorflow (version 2.5.0). We collaborated using
Google Colab’s runtime NVIDIA K80 GPU with 12 GB of RAM.

With a ratio of 90:10 for each category, the dataset was divided into the training and
testing sets, respectively.The final averaged performance of the CT dataset was reported
using K = 10 [59] for the separate, random training/testing assignments. Early termination
was applied after monitoring validation loss across three epochs, and 10% of the training
data were reserved for validation to prevent the model from over-fitting during training.
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4. Evaluation Metrics

Considering TP, TN , FP, and FN represented true positive, true negative, false positive,
and false negative, respectively, the precision ( TP

TP+FP
), the recall ( TP

TP+FN
), the F1-score

(2× P×R
P+R ), the accuracy ( TP+TN

TP+TN+FP+FN
), and the receiver-operating curve-area under the

curve (ROC-AUC) were calculated.

5. Results and Discussion
5.1. CNN Results

Traditional statistical validation variables were taken into account, including model
loss and accuracy for the training, and for the validation and test sets, the precision, the
F1-score, and the recall.
For 15 epochs, every fold was set to terminate early using callbacks that monitored the vali-
dation loss for 3 epochs. After 10 folds, the model achieved an average training accuracy of
99.30 ± 0.18%, a validation accuracy of 99.39 ± 0.99% (Figure 4), a training loss of
0.0557 ± 0.07, and a validation loss of 0.0491 ± 0.06 (Figure 5). In addition, the aver-
age testing accuracy and testing loss were 99.52 ± 0.84% and 0.0291 ± 0.03, respectively
(Table 2). Figure 6 shows the ROC-AUC of the 10th fold. Since the AUC for all abnormalities
was 1.00, the model could precisely differentiate all positive and negative classes. As the
ROC curve depended upon the true-positive rate (TPR) and false-positive rate (FPR), the
model prediction on the test data supported a very high TPR, reaching 100% of the AUC
values.Consequently, these results showed that even for classes with non-uniform sample
distributions, the suggested model was more reliable and consistent.

Table 2. For K = 10 folds, this table represents the training, testing, and validation performance of
the proposed model (after 15 epochs, in %): Training Accuracy (TrA),Training Loss (TrL), Validation
Accuracy (VaA), Validation Loss (VaL), Test Accuracy (TsA), and Test Loss (TsL).

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg (µ ± σ)

TrA 99.33 99.64 99.04 99.31 99.31 99.22 99.64 99.5 99.43 99.24 99.30 ± 0.18

TrL 0.0321 0.0192 0.0445 0.0348 0.0352 0.0350 0.0223 0.2680 0.0335 0.0323 0.0557 ± 0.07

VaA 99.76 99.68 96.47 100 99.76 99.76 99.84 99.68 99.76 99.2 99.39 ± 0.99

VaL 0.0208 0.0192 0.1518 0.0118 0.169 0.0195 0.0142 0.0201 0.0195 0.0452 0.0491 ± 0.06

TsA 99.84 99.76 97.19 100 100 100 100 99.68 99.84 98.88 99.52 ± 0.84

TsL 0.0221 0.0164 0.1106 0.0018 0.0145 0.0131 0.0117 0.0208 0.0178 0.0621 0.0291 ± 0.03

Figure 4. 99.24% training and 99.20% validation accuracy of 10th fold.
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Figure 5. Training loss of 0.0323 and validation loss of 0.0452 of the 10th fold.

Figure 6. The AUC-ROC results of the 10th fold via the CNN shows AUC score for all abnormalities
as 1.00.

5.2. Descriptive Analysis from XAI
5.2.1. SHAP

Since it was difficult to directly interpret the mathematical behavior of the CNN model,
XAI techniques were applied to the model [60]. Four results were illustrated by the SHAP
results for each category (cyst, normal, stone, tumor).Testing images are shown on the left
with a transparent gray background behind each explanation.

Red pixels are featured in the first explanation image in Figure 7 to increase the proba-
bility that a cyst would be predicted. The likelihood that the input image would be classified
as normal, stone, or tumor decreased, since the second, third, and fourth explanations did
not contain any red or blue pixels. In Figure 8, the red pixels are concentrated in the normal
image, indicated the image was normal, whereas Figures 9 and 10 were determined as
stone and tumor, respectively.
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Figure 7. Based on the high concentration of red pixels in the first explanation image (second column),
we determined that the CT image indicated the presence of a cyst.

Figure 8. Based on the high concentration of red pixels in the second explanation image (third
column), we determined the CT image was normal.

Figure 9. Based on the high concentration of red pixels in the third explanation image (fourth column),
we determined the CT image indicated the presence of a stone.

Figure 10. Based on the high concentration of red pixels in the fourth explanation image (fifth
column), we determined that the CT image indicated the presence of a tumor.

5.2.2. LIME

Using the means and standard deviation from the training data, The LIME image
explainer was used to extract numerical features and perturbations, as sampled from a
normal (0, 1) image, and perform the inverse operations of mean-centering and scaling.
The explainer was adjusted so that it calculated the first 100 features using simple linear
iterative clustering (SLIC) [61] to define the highest contributing boundaries and embed
them in the image. The second column of Table 3 shows the original test images for each
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category; these results defined the masks in the third column of Table 3. In the fourth
column of Table 3, the segmented image portion, resulting from the mask, reflected the
LIME results.

Table 3. LIME Result Interpretation along with Masked and Segmented Images.

Category CT Image Mask LIME (Segmented)

Cyst

Normal

Stone

Tumor

As shown in Table 3, LIME provided a visual explanation of the model’s decision-
making process and highlighted the regions of the image that contributed significantly to a
specific class prediction. For example, in Table 3, the segmented LIME results showed only
those portions of the image that contributed to the image being classified as a cyst.

5.3. Class-Wise Study of Proposed CNN Model

In order to analyze the performance of the suggested model for each class of abnormal-
ities, the precision (99.30 ± 1.55%–99.70 ± 0.64%), the recall (97.90 ± 3.30%–99.90 ± 0.30%),
and the F1-score (98.8 ± 1.83%–99.80 ± 0.40%) were measured for 10 folds (Table 4). The
foremost F1-score for the cyst class was recorded by the proposed model, demonstrating
the model’s superior ability to detect and recognize cysts. As all three categories had an
F1-score greater than 98%, the model was also successful in detecting the normal, stone,
and tumor categories. In addition, Figure 11 displays the confusion matrix for the correct
and incorrect categorizations generated by the model.
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Table 4. K = 10-fold average result of the proposed model in (%): Precision (Pre), Recall (Rec), F1-score
(Fsc).

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg (µ ± σ)

Pre

Cyst 99 99 99 100 100 100 100 100 99 98 99.4 ± 0.66

Normal 100 100 97 100 100 100 100 99 100 100 99.5 ± 0.95

Stone 100 100 98 100 100 100 100 99 100 100 99.7 ± 0.64

Tumor 100 100 95 100 100 100 100 100 100 98 99.3 ± 1.55

Rec

Cyst 100 100 99 100 100 100 100 100 100 100 99.9 ± 0.30

Normal 100 100 98 100 100 100 100 100 100 99 99.7 ± 0.64

Stone 99 99 90 100 100 100 100 99 99 93 97.9 ± 3.30

Tumor 100 100 96 100 100 100 100 99 100 100 99.5 ± 1.20

Fsc

Cyst 100 100 99 100 100 100 100 100 100 99 99.8 ± 0.40

Normal 100 100 97 100 100 100 100 100 100 100 99.7 ± 0.89

Stone 100 99 94 100 100 100 100 99 99 97 98.8 ± 1.83

Tumor 100 100 96 100 100 100 100 100 100 99 99.5 ± 1.20

Figure 11. Confusion matrix for 10th fold.

5.4. Calculating the Floating-Point Operation

The floating-point operation (FLOPs) of the proposed model was computed for the total
number of addition, subtraction, division, multiplication, or any other operation that requires a
floating-point value. The total operations performed by the model were (33,000,224 operations),
and this was calculated from the convolutional layers (2×NumberO f Kernel ×KernelShape×
OutputShape), the max-pooling layers (Height×Depth×WidthO f Image), and the fully con-
nected layers (2× InputSize×OutputSize ) and is shown in Table 1 in detail. The proposed
model performed significantly fewer operations, only 33 million, as compared to other
transfer-learning approaches using SOTA methods, such as InceptionV3 (6 billion) [62],
VGG19 (19.6 billion) [63], and ResNet50 (3.8 billion) [64].

5.5. Comparison with the State-of-the-Art Methods

A comparative analysis with other state-of-the-art methods is shown in Table 5, in
terms of classes, results, and the number of parameters. All compared models used a
transfer-learning approach with a high number of parameters, whereas the proposed
model was a lightweight customized CNN and had significantly fewer parameters.

The authors of [29] classified 4 classes with an accuracy ranging from 61% to 99.30% for
6 different algorithms, and among them, CCT had the lowest number of parameters, at
approximately 4.07 million. Our model achieved an accuracy of 99.52% with only 0.18
million parameters. Using only the axial plane for 3 different classes, the authors of [33]
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implemented 2 transfer-learning algorithms with approximately 6 million parameters. Both
the algorithms achieved an approximately 85% precision and F1-score, whereas our model
achieved more than 99%. With the same 3 different kidney planes for 4 classes, 99.44%
was achieved by the authors of [30]. They used a DenseNet algorithm, and their model
had 19.82 million more parameters than our model. Though the results obtained by VGG–
DN–KNN using 5-fold cross-validation was 100% in the work performed by the authors
of [31], it only achieved approximately 96% for VGG16–NB and Densenet121–KNN. All
the algorithms implemented had a high number of parameters. The author of [32] applied
XResNet50 to coronal images and achieved only 96.82% with 23.7 million parameters,
whereas the proposed model had only 0.18 million parameters and achieved 99.52%.

Table 5. Comparative table for proposed model and other state-of-the-art models. Note: ‘Ev.P’,
‘P.M’, ‘TsA’, ‘Pre’, ‘Fs’, ‘AP’, ‘AR’ and ‘AF’ stand for evaluation protocol, parameters in millions, test
accuracy, precision, F1-score, average precision, average recall, and average F1-score.

Ref Plane Ev.P Class Model Result P.M XAI

[29] Coronal ,
Axial

64:16:20
10-fold

Normal—1300
Stone—1300
Cyst—1300
Tumor—1300

Inception v3

TsA

61.60% 22.32

GradCAM
VGG16 98.20% 14.74

Resnet 73.80% 23.71

EANet 77.02% 6

Swin Transformers 99.30% 4.12

CCT 96.54% 4.07

[30]
Coronal,
Axial and
Sagittal

80:20:00

Normal—1350
Stone—1350
Cyst—1350
Tumor—1350

Densenet201-
Random Forest TsA 99.44% 20 N/A

[31] Axial 80:10:10
5-fold

Normal—1340
Tumor—1340

VGG16-NB
TsA

96.26% 14.74
N/ADensenet121-KNN 96.64% 20

VGG-DN-KNN 100.00% 14.74

[32] coronal 80:20
Normal: 1009
Stone: 790 XResNet-50 TsA 96.82% 23.7 N/A

[33] Axial 75:10:15
Normal—288
Stone—494
Cyst—498

YOLOv7 Pre. 88.20%

6 GradCAMFs 85.40%

YOLOv7 Tiny Pre. 88.20%

Fs. 85.40%

Ours Coronal,
Axial

80:10:10
10-fold

Cyst: 3709
Normal: 5077
Stone: 1377
Tumor: 2283

Custom CNN

TsA 99.39%

0.18 LIME
SHAP

AP 99.47%

AR 99.25%

AF 99.45%

6. Result Analysis: Medical Opinion

To enhance the confidence and trust in DL models, the interpretation and explanation
of the DL models are required. This can only improve by testing DL models, including
ours, on real-world samples and verifying the results with a medical expert [65].

6.1. Reception by Medical Professionals

Our results and the study’s CT images were presented to medical professionals and
their views and medical opinions were records. The impressions of the medical profes-
sionals were then validated with the results of DL and XAI frameworks. Table 6 shows
the overall feedback indicated the proposed study could effectively be utilized to identify
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kidney abnormalities in patients. To conclude, the proposed methodology could assist
medical teams in making more accurate diagnoses and treatments.

Table 6. Medical Sensation: Findings and Impressions.

CT Image Radiological Findings Impressions

Figure 2a Simple cystic lesion arising from right renal pelvis. Right parapelvic cyst.

Figure 2b Both kidneys appear normal in size; parenchyma shows
normal width and structure. Normal-appearing bilateral kidneys in the given section.

Figure 2c Radiopaque lesion visualized in right kidney. Right renal calculus.

Figure 2d Heterogeneously enhancing lesion likely originating from
left kidney. Malignant mass arising from left kidney.

6.2. Expert’s View towards to Dataset

CT images from the dataset were provided to medical experts for validation. The
medical experts responded that the findings could be incomplete due to the absence of
complete cross-sectional images of the individual organs.

7. Ablation Study of the Proposed Model

Ablation studies are crucial for deep-learning research [66]. Therefore, we adapted
the dataset as chest X-ray (CXR) scans without any modification of the model, and we
conducted an ablation study of the model to confirm its efficacy. A dataset [36] of 7132 CXR
images in four categories, including COVID-19 (576), pneumonia (4273), tuberculosis (TB),
and normal (1583), were ablated.

Since the dataset was imbalanced due to an insignificant amount of COVID-19 and TB
data, a stratified sampling was utilized, and each image was scaled to 150 × 150 and [0, 1],
correspondingly. The training, testing, and validation sets were randomly selected from
the dataset according to a ratio of 80:10:10, respectively.

For 15 epochs, the callbacks were monitored for losses for 3 epochs. The 10-fold result
of the model is shown in Table 7. The model achieved a 96.07 ± 0.34% training accuracy, a
0.1279 ± 0.03 training loss, a 94.20 ± 0.97% validation accuracy, a 0.2007 ± 0.03 validation
loss, a 93.50 ± 1.39% test accuracy, and a 0.2160 ± 0.047 test loss.

The confusion matrix of the 10th fold is shown in Figure 12. Only 5 COVID-19, 9
Normal, 15 pneumonia, and 10 TB images were misclassified, out of 69, 155, 423, and
67 images, respectively. Figure 13 shows the ROC-AUC curve that indicated the model
supported the accurate diagnosis of COVID-19 and pneumonia.

According to the results of the ablation study, the model could be applied to CXR
pictures in order to diagnose conditions such as COVID-19, normal, TB, and pneumonia.

Table 7. The 10-fold training, testing and validation results of the proposed model in CXR dataset
(after 15 epochs, in %): Training Accuracy (TrA),Training Loss (TrL), Validation Accuracy (VaA),
Validation Loss (VaL), Test Accuracy (TsA) and Test Loss (TsL).

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg (µ ± σ)

TrA 96.22 95.60 96.36 95.59 96.50 96.30 95.60 96.42 95.93 96.20 96.07 ± 0.34

TrL 0.1094 0.1360 0.1058 0.1278 0.1048 0.1120 0.1340 0.1589 0.1894 0.1012 0.1279 ± 0.03

VaA 95.93 92.85 94.53 92.99 94.24 95.22 92.91 94.41 94.13 94.78 94.20 ± 0.97

VaL 0.1281 0.1919 0.1804 0.2398 0.1964 0.2109 0.2034 0.2078 0.265 0.1831 0.2007 ± 0.03

TsA 94.26 89.92 94.40 92.30 94.54 94.30 93.12 94.55 93.30 94.36 93.50 ± 1.39

TsL 0.2009 0.2684 0.1618 0.2219 0.1589 0.1789 0.245 0.2719 0.2930 0.1680 0.2160 ± 0.047
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Figure 12. Confusion matrix for 10th fold of proposed model in CXR dataset.

Figure 13. ROC Curve for 10th fold of proposed model in CXR dataset.

8. Conclusions

This work presented a lightweight CNN architecture with XAI frameworks for catego-
rizing four types of kidney abnormalities, including cyst, normal, tumor, and stone. The
model achieved 99.30 ± 0.18%, 99.39 ± 0.99%, and 99.52 ± 0.84% accuracy for training,
validation, and testing, respectively.The explanations provided by the XAI algorithms
were verified by radiologists. Despite its lighter design, as compared to other state-of-art
techniques, the model performed better in categorizing CT images of kidneys. The XAI
results showed the model had the potential to be used as a support tool for IoMT devices.
The ablation study showed that the model was more accurate for predicting COVID-19,
normal, TB, and pneumonia conditions based on CXR images. This work used a limited
number of CT samples, and the performance could be improved with data augmentation.
The transparency of the results could be improved by combining DL models with other
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XAI algorithms. However, as the model negated aggregate characteristics, such as medical
histories, experience gaps, and other physical signs, human supervision is still required.
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